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This paper states necessary and sufficient conditions for the convergence of 
the age structure (in a discrete time, one-sex model of population growth); it 
aIso contains a new and simple proof of the weak ergodic theorem of stable 
population theory. The main tool used to attain these results is Hilbert’s notion 
of the projective metric. This metric provides a way of defining the distance 
between positive vectors in [w” which has two important features: First, the 

distance between any two positive vectors depends only on the rays on which 
the vectors lie; and, second, positive matrices act as contractions in this metric. 

1. THE PROJECTIVE METRIC 

Let x and y  be vectors in [w” with x = (x1 ,..., x,) and y  = (yl ,..., y,). We 
shall adopt the following cqnventions for vector inequalities. 

(9 x >Y, i f f  xi 3 yi for all i; 

,c!; ;;;I 
i f f  x>y and x #y; 
i f f  xi > yi for all i. 

The vector x is positive if x > 0 (where 0 is the vector all of whose components 
are 0). The positive orthant is the set in Rn which consists of all the positive 
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vectors. A vector x is strictly positive if x > 0. The same terminology applies to 
matrices. In this paper the set of all strictly positive vectors in Iw” will be 

denoted Q. 
We define a distance between two vectors in the positive orthant of lR* and 

then show that this distance depends only on which rays the given vectors lie. 
(A ray in R” is a half line starting at the origin.) Let x and y be positive vectors 
in [w”. Define p(x, y) as follows. 

(1) Suppose there exist scalars a and b such that x < ay and ay < bx; 
then define 

p(X, y) = min In(b), 

where this minimum is taken over all pairs (a, b) satisfying the above 
inequalities. Figure 1 shows how the choice of a and b can be made. 

(2) If no such scalars a and b exist, then define p(~, y) = co. 

El Area where vectors are LX, 
e.g., 8y LX. 

Area where vectors are )&y, 
e.g., bx 2 ay. 

FIGURE 1 

A way of computing p(~, y) when x and y are strictly positive, is as follows. 
Let r = max,gi(- (zci/yi) and s = minlCicn (x,/y,). Then p(x, y) = ln(r/s). Note 
this method will not work when x = (1,O) = y. 

As an example of (l), let x = (1, 1,2) and y = (3,2, 1); then p(~, y) = In 6. 
As an example of (2) let x = (1,O) and y = (1, 1). 

DEFINITION. p is called the projective metric and the number p(x, y) is the 
projective distance from x to y. 
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The following lemma, which states some basic facts about p, justifies this 
terminology. 

LEMMA 1.1. Let x, y, and x be positive vectors in W. Then, 

(i) P(X, Y) = Ph SY) w ere h r and s are positive scalars. Thus p only 

depends on the rays generated by x and y  in the positive orthant. 

(ii) P(x,r) 2 0. 
(iii) p(x, y) = 0 22 x = uy for some positive scalar a. 

(iv> P(X, Y) = P(Y, 4. 
(v) p(x, y) < p(x, z) + p(z, y) (the triangle inequality). 

Proof. (i) Suppose x < ay < bx, then rx < r(ay) = (ru/s)(sy). Let a’ = 
ra/s. Now a’(sy) = r(ay) < r(bx) = b(rx). So YX < a’(sy) and a’(sy) < b(rx). 

Thus a “b” which works to compute p(x, y) also works to compute p(rx, sy). 
The process is reversible, so p(rx, sy) = p(x, y). 

(ii) If x < ay < bx, then x < bx, which implies b > 1. So In b > 0. 

(iii) Since x ,< X, p(~, X) = In(l) = 0. By (i), p(x, ax) = 0. Conversely 
suppose that p(~, y) = 0. Then we can take b = 1. Thus x < ay < x and 
x = ay. 

(iv) If x < ay < bx, then y < (b/a) x < (b/a)(ay) = by. So a “b” which 
works to compute p(~, y) also works to compute p(y, x) and p(x, y) = p(y, x). 

(v) If either p(zc, z) or p(,z, y) = co, the inequality holds trivially. So let 
p(x, x) = In b and p(z, y) = In b’. Then x < az < bx and z < a’y < b’z, 
for constants a and a’. It follows that 

or 
x < az < a(a’y) < a(b’z) = b’(az) < b’(bx), 

x < (aa’)y < (bb’)x. 

Hence, p(x, y) < In(bb’) = In b + In b’ = P(x, x> -I- P(% Y). 
Note that the projective distance between any two vectors in Q, that is, between 

any two strictly positive vectors, is finite. 

LEMMA 1.2. Fix y  in Sz. Then the real-valued function f defined on l2 by 
f(x) = p(x, y) is continuous. 

Proof. As long as x and y are in Sz, there exist constants a and b such that 
x < ay < bx. It should be clear that the choice of a and b can be made con- 
tinuously as x varies. (Look at Fig. 1.) 

PROPOSITION 1.3. Let x and y  belong to the positive orthunt of R* and let S 
be a nonnegative n x n matrix. Then p(Sx, Sy) < p(x, y). If S > 0 (aZ1 the 
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entries of S are positiwe), then S is a strict contraction relative to p; i.e., 

p( Sx, Sy) < Ks p(x, y) for all positive vectors x and y where Ks is a constant < 1. 
The contraction constant Ks varies continuously with the entries of S. 

Proof. The complete proof, due to Birkhoff (1957), is too complicated to 
present here. The first part however, is easy. If  p(zc, y) = co, then p(Sx, Sy) < 

P(% Y)* If  Ph Y> < co, then for some a and b, 

x < uy < bx. 

Since S is a positive matrix, 

Sx < aSy < bSx 

so that if p(x, y) = In b, p(Sx, Sy) < In b.l 

2. THE WEAK ERGODIC THEOREM 

The discrete, one-sex model of population growth may be sketched as follows. 

Break the population into n equally spaced age groups and let n,, be the vector 
whose ith component is the number of people in the ith age group; vs is a vector 
in the positive orthant of W. If we let ~~zI~~=~v~~+*~~+~‘u~~ where 

v  = (?I1 )...) v,), then 6s = ns/il a, I/ gives the vector of percentages of people 

in each age group; B,, is the age structure vector at time 0. Suppose that each age 
group has the birth rates (b, ,. .., b,) and survival rates (s, ,. .., s,-i). The survival 
rate for the oldest age group s, is necessarily equal to 0. In the discrete time 

model, birth rates necessarily include some component of survival; only in 
continuous models is fertility completely separated from mortality. This is an 

inconvenient, although not unimportant fact, which we shall henceforth ignore. 
Let 

4 b, --- b,-, b, 
s, o***o 0 

T= 0 s,...O 0 . 

(: : 4 6 o--Sri-l 0 

Then the population and age structure vectors next period are given by o1 = Two 
and B, = WJ or jj. Of course, we must measure time so that it takes exactly 
one period to move from one age category to the next. Thus, if the data in T 
represent birth and survival rates for 5-year intervals, a single time period is 5 

1 See Birkhoff (1966, Chap. 16), Bushel1 (1973), and Keeler (1972) for other discussions 
and applications of the projective metric. 
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years long. T is called a “population matrix” and is a positive 12 x n matrix. 
The Perron-Frobenius Theorem2 states that a positive matrix like T has a 
unique positive eigenvalue h whose modulus is exceeded by no other eigenvalue 
and a unique positive eigenvector e with Te = he and /I e j 1 = 1. Such a matrix T 

is primitive if T has no other eigenvalue whose modulus is h. A sufficient 
condition for a population matrix T to be primitive is that the survival rates si , 
the last birthrate, 6, , and birth rates in the middle age groups are nonzero 
(i.e., two successive age groups, not including the first, have positive birth rates).3 
With these conditions Tz 3 0 for some integer 1. 

If the birth and survival rates are constant, then after k time periods the age 
structure is 5, = T%+,/jl Tkv,II. 

These conditions are sufficient to ensure the convergence of the age structure 
vk to the vector e independent of the initial population. This result is the Strong 
Ergodic Theorem of stable population theory. 

THEOREM 2.1 (The Strong Ergodic Theorem). Under the conditions stated 

lim,,, d, = e. 

Proof. This is a simple consequence of the Perron-Frobenius Theorem. 
We present a different proof here, one based on Proposition 1.3, which is almost 
identical to the proof of the weak ergodic theorem which we give below. Since 
both e and 5, are of unit length, it will suffice to prove that lim,,,p(b, , e) = 
lim,,, p( T%J,, , e) = 0. Let S = Tz > 0; then, T* = Tk--l[~lW[kl~l = U,S[~/~l, 
where [k/l] is the greatest integer in k/l and U, = Tk--l[klzl. If k/l is an integer, 
Uk is the identity matrix; in any event, Uk is positive and, by Proposition 1.3, 
p( Ukx, U,y) < p(x, y) for all positive x and y. 

Since e is an eigenvector of T, e is an eigenvector of T”. Thus, 

p(Tkvo > e) = p(Tkv, , Tke) = p(UkS[kb,, , UkS[lclzle) 

< p(S[kh+, , Skizle) < K[,“~zl-lp(Sw,, Se), 

where Ks < 1 is the contraction constant whose existence is guaranteed by 
Proposition 1.3. Since S > 0, Sv, and Se are in 52 so that p(Sv, , Se) is finite. 
Clearly lim,,, p( Tkv, , e) + 0. 

It is unrealistic to assume that the birth and survival rates do not change 
with time. However, if these rates are constant over a single time period, then 
ergodic analysis is still possible. Let Tk be the matrix of birth and survival rates 
during the kth time period. Then after k periods, population and age structure 
vectors are a, = Tk . Tkel ... Trv, and ek = Ok/II vk 11. It is no longer true that 

s See Nikaido (1968), for a proof. We assume that T is indecomposable. 
s If b, = 0 and b, is the last nonzero birth rate, it is common to consider only the 

K x k matrix composed of the first K rows and columns of T. This essentially determines 
all facts of demographic interest. See Nikaido (1968) and Parlett (1972). 
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the Gk’s converge, but under rather modest assumptions on the Tk’s, it is still 
true that for large K’s, the vectors ‘uk are independent of TJ~ . This is the Weak 
Ergodic Theorem which we now prove. 

THEOREM 2.2 (The Weak Ergodic Theorem). Let TI , T2 ,... be a sequence 

of primitive population matrices satisfying M < Tk < Nfor all k, where M and N 
are fixed positive matrices and ML 3 0. Let S, = Tk . T,-, ‘** TI . Then if v0 
and w,, are any positive vectors lim,,, p(S,v, , S,w,) = 0. 

Remark. Since the projective distance depends only on rays, this theorem 
states that ~(6% , r&J -+ 0. It is possible to use these techniques to prove a 
slightly stronger result; that 

P(v”7c 9 z&J < CK[kILl--1, K< 1, 

where the constants C and K and 1 depend on M and N and not on v,, , wO, or 
the T,‘s. Thus the speed of convergence can be bounded independent of v,, 
and w, . See Keeler (1973) for details. 

As in the proof of the strong ergodic theorem, the key is to apply Proposition 
1.3 to products of the Tk’s taken I at a time. The following lemma states that this 
can be done. 

LEMMA 2.3. There exists a constant K < 1 such that if S is any I-foldproduct 
of the Tti’s, i.e., S = Tk ... TIC, , then S contractsprojective distance by at least K. 

Proof of Lemma 2.3. ’ Th e oun e b d d ness assumption in the Tic’s implies that 
ML < S < NL. By Proposition 1.3, S contracts distance in the projective 
metric by a factor KS. Recall that a set in I@ is compact if it is closed and 
bounded and that any continuous function on a compact set achieves its 
minimum and maximum. Now the set of matrices S satisfying ML < S < NL is 
closed and bounded in [wn” and therefore compact. Since Ks varies continuously 
with S (Proposition 1.3 again), there is a K > 0 such that Ks f  K < 1 
for all such S. 

Proof of Theorem 2.1. Again, let [k/Z] be the greatest integer in k/Z. Then, 

Sk = U7cV[k,Ll ... VI, 

where Vi = TiLTiLeI *** T+.-l)L+l and U, is the identity matrix if k/l is an 
integer and otherwise U, = Tk a.- Tc~,~I+~. In either case U, is a positive 
(but not necessarily strictly positive) matrix so that by Proposition 1.3, 
p( Ukx, U, y) < p(x, y) for all positive x and y. Then, 
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where K < 1 is the contraction constant whose existence is guaranteed by 
Lemma 2.3. Since Vr > 0, p( V,V, , V1w,) is finite and KIK~zl-lp(VlvO , VlwO) 
converges to 0.4 

3. NECESSARY AND SUFFICIENT CONDITIONS FOR 

CONVERGENCE OF AGE STRUCTURE 

The strong ergodic theorem states that if the population matrices Tk are 
constant in time ( Tk = T for all k) and primitive then the age structure 
converges. The weak ergodic theorem allows Tk to vary (with some boundedness 
assumptions) and concludes that the age structure, in the long run, does not 
depend on the initial population distribution. In general, it is not true that 
the age structure must converge. We now present conditions which are both 
necessary and sufficient for the convergence of the age structure. 

We make the boundedness assumption of Section 2 on the sequence T, , 
namely, M < T, < N for all K where AP > 0 for some 1. This implies that 
the survival rates and the middle and last birth rates of each Tk are bounded 
away from zero. Thus each TI, is primitive, has a unique positive eigenvalue A, 
which dominates all other eigenvalues of Tk (in modulus), and has a unique 
positive engenvector ek with 11 ek [I = 1. 

THEOREM 3.1. With the assumptions and notation just given, the age-structure 
vector converges to a vector e iff lim,,, ek = e. 

Remark. Recall that in a compact set any sequence has a convergent sub- 
sequence. Moreover, a sequence in a compact set converges if every convergent 
subsequence converges to the same point. 

Proof. Given an initial age-structure vector Co = et,, , define, as usual, 
6, = T&Jl T,v”,-, 11. The problem is not changed if we multiply each TI, 
by some positive scalar. So we may assume that A, = 1 for all k. 

Necessity. Assume lim,,, 5, = e. We must show that lim,,, eL = e. 
Since the e,‘s are all unit length vectors, they vary within a compact set. Let 
ek, , eK, ,..., be a subsequence converging to f. By the remark above it is sufficient 
to show that e = f. Since the Tti.‘s vary within a compact subset, there is a 
convergent subsequence. So, by passing to a subsequence if necessary, we may 
assume that limi+, Tk, = T, with M < T. The assumptions on M guarantee 

4 A similar proof of the weak ergodic theorem could be fashioned by using Lemma 3.3 
of Furstenberg and Kesten (1960) to do the work of Proposition 1.3. For other discussions 
of the basic results of stable population theory, see, e.g., Bourgeois-Pichat (1968), Coale 
(19721, Lopez (1961), and Parlett (1970). 
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that T has a unique positive eigenvector with eigenvalue 1. (Note the modulus 
of the largest eigenvalue depends continuously on the matrix. Since that 
eigenvalue is 1 for each Tkd it must be 1 for T.) In fact Tf = limi,, Tk,(e,i) = 
lim,,, eki = f, so f must be that positive eigenvector. On the other hand 

Since Tz > 0, Te # 0 for any positive vector e. So e is also an eigenvector for 
T with positive entries and unit length. By the uniqueness of such a vector 
e =f. 

Suficiency. We assume that lim,,, e, = e and show that lim,,, Q = e. 
Recall that 1 is the integer for which Mz > 0. 

Part I. It is clearly sufficient to show that lim,,, Giafkz = e for a = 1,2,..., 1. 
Moreover, since the Giile’s all have unit length, all we need do is show that any 
convergent subsequence of the sequence d,+z , 5ia+2z ,..., converges to e. (Recall 
the remark above.) 

Since Tkz > 0 for all K, each ek is strictly positive. Furthermore Tkz 3 ME 
for all k implies that all the entries of e, are bounded away from zero, so all 
the eK’s and any limit point of the e,‘s are in Q. 

Part II. For any E > 0, there is an integer K > 0 such that p(e, , e) < E 
for all K 3 K. (Use Lemma 1.2 and the fact that eK -+ e in Q.) For such a K, 
we claim that 

P(f&+z 9 4 < CP(% , e) + 216, (*I 

where C is a constant <l independent of k. 
Let S = T,,, . T,+,-, ... Tk+l . Then, 

by Lemma 1.1(i). Now p(S 6, , e) < p(S 5, , Se) + p(Se, Se,,,) + p(Se,+, , e) 
by Lemma 1.1(v). By Proposition 1.3, there is a C < 1 so that p(sx, Sy) < 
Cp(x, y) for all x, y, and S. So 

P(G+z > 4 ,< CP(vk , 4 + E + P(s e,+, , 4 

So we need only show that p(S ekfl , e) < (2Z- 1)~. Let s’ = T,,, ... Tkt2 
so that S = s’ * T,,, . Then since T,,, e,+l = e,,, , 

As ek+l 9 4 = P(S’ek+l ,e) 

< IV e,+, , se> + P(S’e, S’ek+d + P(S’6+, ,e) 

d P(eJc+l ,e) + He, ek+J + P(S’ek+2 I 4 
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the last inequality following from Proposition 1.3. So, 

PCs ek+l , 4 < 2~ + p(S’e,+, , 4. 

A simple induction shows that 

pcSek+l, e, d 2(z - l)’ + $(Tk+tek+Zy e> 

< (2Z- 1)E. 

Part III. From (*) we see that when K > K, 

p(%+(k+1)L ) e> d cP(%+kCp e, + 2zce 

Repeated applications of this formula show that 

P&+(k+th , 4 < Ctp(G+k , 4 + 24 + C + ... + Ct-l) 

= Ctp(%+k , e) + 2141 - C”)/(l - C). 

Since C < 1 and E may be arbitrarily small, it follows that limk+mp(6ia+kl, e) = 0. 

Thus if v,+k,l, %+k,l ,.-. is a convergent subsequence of the G”a+kl’~ we have that 

P&-h G+ktl , e) = 0. By Lemma I. 1 (iii), lim,,, v”,+k,z is a scalar multiple of e. 
Since both are positive and of unit length, they must be equal. Q.E.D. 

COROLLARY 3.2. Suppose the sequence Tk converges to T where T1 > 0. 

Then the age-structure vectors always converge to the unique unit Zength positive 
eigenvector of T. 

Finally we make some remarks on the demographic interest of these results. 

COROLLARY 3.3. Suppose that the sequence of age-structure vectors d, converges 
to e = (el ,..., e,) and that T and T’ are limit points of the sequence of population 

matrices Tk . Let (b, ,..., 6, , s, ,..., s& and (b,‘,..., b,‘, sl’ ,..., s:-J be the birth 
and survivaZ rates of T and T’, respectively. Then there exist positive constants a 

and a’ such that 

a f  bie, = a’ 5 bile, , (1) 
i=l i=l 

and 
I I a+ = a sj , for 1 <j<n- 1. (2) 

Proof. Let a = l//j Tel/ and a’ = I/i/ T’e]]. In proving the necessity part 
of Proposition 3. I, we showed that 

e = Te/// Te 11 = aTe = T’e/l] T’e 11 = a’T’e. 

Writing the equation aTe = a’T’e component-by-component yields the desired 
conclusion. 
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The demographic meaning of these results is clear: An age structure will 
approach a constant only if the crude birth rates (Cy=, biei) and each age- 
specific survival rate approach constants or if, in the limit, these rates vary 
proportionally and simultaneously. The fact that the age structure converges 
imposes no other restrictions on the asymptotic behavior of the entries of T, . 
The sufficiency part of Theorem 3.1 guarantees that this asymptotic behavior 
for the crude birth rates and the age-specific survival rates is sufficient to 
guarantee convergence of the age structure. 

Remark. A version of these results was obtained by Bourgeouis-Pichat 
(1968), who discussed the relationships which must hold among the different 
demographic schedules when the age structure does not vary. His monograph, 
which contains many results of the same general form as Corollary 3.3, empha- 
sizes the practical, empirical implications of stable population theory. 
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