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An algebraic criterion for symmetric
Hopf bifurcationt

By MARTIN GOLUBITSKY! AND JAN STEWART?

! Department of Mathematics, University of Houston, Houston,
Texas 77204-3476, U.S.A
2 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.

The equivariant Hopf bifurcation theorem states that bifurcating branches of
periodic solutions with certain symmetries exist when the fixed-point subspace of
that subgroup of symmetries is two dimensional. We show that there is a group-
theoretic restriction on the subgroup of symmetries in order for that subgroup to
have a two-dimensional fixed-point subspace in any representation. We illustrate
this technique for all irreducible representations of SO(3) on the space V; of spherical
harmonics for / even.

1. Introduction

The theory of Hopf bifurcation in the presence of symmetry leads to algebraic
questions concerning a Lie group of the form I"x S*. Here I = O(n) is a Lie subgroup
acting absolutely irreducibly on R" and by the diagonal action on C" =~ R*" =
R"™ ® R"™. We assume that a parametrized family of I-equivariant opEs on R*" =~ C"
undergoes a Hopf bifurcation from an invariant equilibrium as that parameter is
varied. By irreducibility it follows that this Hopf bifurcation is non-resonant in the
sense that no eigenvalue is a non-trivial integer multiple of any other.

Hopf bifurcation induces an S* phase shift symmetry on C* that acts fixed-point
freely, by non-resonance, and commutes with the action of I'. If we identify S! with
the unit complex numbers, then the action of S! induced by Hopf bifurcation is just
the one given by complex scalar multiplication of C”. The Hopf bifurcation version
of the equivariant branching lemma (see Golubitsky & Stewart 1985; Golubitsky
et al. 1988) states that if 2 < I'x 8! is an isotropy subgroup of this action and if

dim Fix (2) = 2, (1.1)
then generically there exists a branch of time-periodic solutions with symmetry
exactly equal to 2" branching from the point of Hopf bifurcation.

By Proposition X VI, 7.2 of Golubitsky et al. (1988) isotropy subgroups X' < I'x S?
are always of the form
G° ={(9.0(9): g G},

where G = I'and @ :G — S is a group homomorphism. One way to classify all 2 such
that (1.1) holds is to list all closed subgroups G < I and all possible homomorphisms
@ ; then to compute dim Fix (2) in each case, discarding any that do not satisfy (1.1);
and finally to eliminate any redundancies. This method was used by Golubitsky et al.
(1988) for all irreducible representations of I' = O(3).

1 This paper was accepted as a rapid communication.
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728 M. Golubitsky and 1. Stewart

In this paper we determine a relatively simple group-theoretic criterion that X
must satisfy in order for (1.1) to be valid. See Corollary 2.2. This criterion eliminates
large numbers of pairs (¢, ®) from consideration. Moreover, it is important to
emphasize that this criterion is independent of the representation of I'; it just
depends on the group I". Thus the criterion greatly simplifies the classification of all
2 satisfying (1.1).

In the last section this criterion is used to find periodic solutions in SO(3)-
equivariant oDEs; these solutions were found previously in Golubitsky & Stewart
(1985) but our criterion substantially simplifies the calculations. In Dionne et al.
(1993) this criterion is used to help determine spatially periodic time-periodic
solutions in euclidean equivariant dynamical systems.

Finally, we note that (1.1) also guarantees the existence of periodic orbits in
hamiltonian systems near equilibria, given that suitable genericity hypotheses are
valid (Montaldi 1988). Much more is proved there; namely, there exist dim Fix (2)/2
periodic solutions. But the case dim Fix (2) =2 is particularly important and
accessible, and Corollary 2.2 is equally applicable in this case.

2. The algebraic restriction

As indicated in the Introduction we assume that

(@) 2 = I'x S is an isotropy subgroup,

(b) dim Fix (2) = 2.

Since 2’ is an isotropy subgroup, it is a twisted subgroup. More precisely, let ¢ be
the projection of X' into I'. Since S! acts fixed-point freely on R?", this projection
induces an isomorphism of 2" onto a subgroup G. It follows that 2" has the form

{(9.0(9):9€6G} = G°.
We call G° a twisted subgroup.

It is easy to check that ®:G—S' is a homomorphism. Let K =ker® = XN 1T.
Then 2 is determined by the pair of subgroups ¢ > K where K is normal in (; that
is, @ = N(K). Since O is a homomorphism /K is isomorphic to a subgroup of S* and
hence is either cyclic or S'. In particular, G/K is abelian. Note that @, K and @ are
uniquely determined by 2.

We now consider in more detail the consequences of (b): dim Fix (G9) = 2. We will
show that there is an additional algebraic restriction on the pair (¢, K) in order that

(b) be satisfied. Let
C(G,K)={yel:ygy g teKVgel}.
Note that if L is a subgroup satisfying ¢ = L < N{(K), where L/K is abelian, then
(G, K) > L. (2.1)
(Let I be in L and let ¢ be in G < L. The fact that L/K is abelian implies that
lg = gl mod K or that lgl 'g e K. Hence le C(G, K).) In particular, for all pairs G, K
that correspond to isotropy subgroups, (/K is abelian. Hence
C(G,K) = G. (2.2)
We will prove:
Theorem 2.1. If dim Fix (G®) = 2, then C(G,K) = G.
Corollary 2.2. If dim Fix (G®) = 2, then G/K is a maximal abelian subgroup of
N (K)/K.

Proc. R. Soc. Lond. A (1993)
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Proof. Suppose that there exists a subgroup L such that
Kc@cL cNi(K),

where L/K is abelian. To show that (//K is maximal abelian in N{(K)/K we must
show that L = G.

Since L/K is abelian, (2.1) implies that L < C((,K). Under the assumption that
dim Fix (2) = 2, Theorem 2.1 implies that L < C(G,K) =G < L and hence that
L=@G. [

The criterion that (/K is maximal abelian substantially simplifies the search for
those isotropy subgroups with two-dimensional fixed-point subspaces. Hence, this
criterion makes it possible to find such subgroups when more direct methods lead to
intractable calculations.

Remark 2.3. In steady-state bifurcations there is an analogous restriction on
possible isotropy subgroups having one-dimensional fixed-point subspaces (that is,
on those subgroups satisfying the hypotheses of the equivariant branching lemma).
Suppose K is such a subgroup, then N (K)/K must act fixed-point freely on the one-
dimensional fixed-point subspace of K. Hence the group N{(K)/K is either 1 or Z,,
that is, either K equals N(K) or K is of index two in N (K).

We begin the proof of Theorem 2.1 by stating and proving two lemmas.

Lemma 2.4. Suppose that dim Fix (X) = 2. Then Ny q(X)/2 = S

Proof. Since X is an isotropy subgroup and dim Fix (X) =2, 2" is a maximal
isotropy subgroup. It follows that N(2')/2 acts fixed-point freely and orthogonally on
the plane Fix (2). That the action is fixed-point free follows from Lemma XIII.10.2¢
of Golubitsky et al. (1988). Hence N(X)/2 is a Lie subgroup of SO(2) and contains
no reflections, so it consists entirely of rotations and thus is isomorphic to a subgroup
of S'. Conversely, S! normalizes any subgroup of I'x S'. For twisted subgroups
2N S'={e} and S? = N(2)/2. Hence N(2)/2 =~ S O

Lemma 2.5.
Ny 1(G®) = O(G,K) x S,

Proof. Suppose that (y, ) normalizes G°. Then
v:¥)(9.0@) (v.¥) ' = (vgy L. ¥ +OB(9)—¥) = (vgr ™. O(9))
is in G°. Hence ygy '€ @ and O(ygy ') = O(g).
Since K = ker (@), the last equality holds if and only if ygy'¢~'e K. Hence
(y,¥)eC(G,K) x S* and N, 1(G®) < C(G,K) x S*.
Conversely, if (y,)eC(G, K) x S, then
(7, ¥) (9. 0(9) (v, %) = (ygy ™, ©(9)).
Since ygy ¢ '€ K, it follows that ygy €@ and that O(ygy™*) = O(g). Hence
(vgy™',0(9)) = (vgv™', Olygy™) € G°. O

Proof of Theorem 2.1. From equation (2.2) it follows that O(G, K) > (. We must
prove that the reverse conclusion is valid when dim Fix (G°) = 2.

Proc. R. Soc. Lond. A (1993)



730 M. Golubitsky and I. Stewart
Lemma 2.4 states that if dim Fix (G°) = 2, then N, (G°)/G° =~ S'. By Lemma
25 Npet(G9) /GO = (O(G, K) x S')/G®.

Thus
(C(G, K) x SY)/Gq° = St

Since ee C(G, K) it follows that every coset in (C(G, K) x S')/G® has a representative
of the form (e, 8). Thus for each ce O(G, K) there exists & S* such that

(¢c,0) = (e, ) mod G°. (2.3)
Equivalences mod G® can be computed as follows: suppose

(€1, 8;) ~ (€4, 85) mod G,

Then (crc3t,8,—8,)€G®,
and c,c;'ed@ and s;—s, = 0O(c,c;').
Thus (2.3) implies that ce @ and @(c) = 6. Hence C(G,K) < @G, as claimed. O

3. Application to SO(3) Hopf bifurcation

In this section we show how to apply Corollary 2.2 to find periodic solutions via
Hopf bifurcation in the presence of SO(3) symmetry. These solutions were previously
computed in Golubitsky & Stewart (1985), but required more involved calculations.
In Dionne et al. (1993) we shall also use Corollary 2.2 to calculate spatially periodic
time-periodic solutions via Hopf bifurcation to euclidean equivariant planar systems
of PDEs.

Corollary 2.2 suggests a strategy for determining the pairs (@, K) that can form a
(° with dim Fix (G°) = 2. This strategy splits into three steps.

1. Classify up to conjugacy all closed subgroups K < I.

2. Determine those ¢ that can pair with K (i.e. K<, G/K cyclic and maximal
abelian in N(K)/K).

3. Use formulas to compute dim Fix (G°) in terms of dim Fix (@) and dim Fix (K)
for the representation of I" on R”.

We comment on point (2). The methods based on the results in this paper work
best when G/K is cyclic. When G/K =~ S, the case of rotating waves, other methods
are needed. We will use special trace formula methods to handle the rotating waves
for SO(3) Hopf bifurcations at the end of this section.

We elaborate on point (3). In Golubitsky et al. (1988) the trace formula is used to
compute dim Fix () in terms of d(K) and d(() where

d(T) = dim Fix (T

for any subgroup 7' = I" (where Fix (7') is the fixed-point subset in R"). Such formulas
are valid when (/K is isomorphic either to 1, Z,, Z,, Z, or Z,. See table 1 for a list
of these formulas for the first three cases. (The last two cases do not occur in our
example.)

We now discuss Hopf bifurcation with SO(3) symmetry. The proper subgroups of
SO(3) up to conjugacy are:

Z,(m>2),D,(m>2),T,O0,IS0Q2),0Q2).
Proc. R. Soc. Lond. A (1993)
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Table 1. T'race formulas for twisted subgroups

G/K dim Fix (G°)
1 24(@)
Zz, 2(d(K)—d(t))
Z, d(K)—d(@)

Table 2. Subgroups of SO(3)

K Nso(K) G d(K) for l even
1 S0(3) S0(2) 20+1
1 50(3) D, f
Z,(m>2) 0(2) S0(2) 2(l/m]+1
D, o T [3]+1
D, o D, .
D, (m > 3) D,, D,, [1/m]+1
T o o 2030+ B —1+1
0 o o HURNEIRN eI A
I I I BA+B+E—1+1
S0(2) 0(2) o) 1
0(2) 0Q2) 0Q2) L

Table 3. Pairs G, K for which dim Fix (G°) = 2

K a l even
1/ SO(2) all even [
Z,(m>=2) SO(2) m<l
D, T 2-6
D, D, 2-4
D, (m = 3) D,, ¥ <m <1
T o 2
(0] (0] 4-10, 14
I I 6, 10-12, 16-28, 32-34, 38, 44
0(2) 0(2) all even {

The group Z,, is generated by a rotation of order m; the group D,, is the associated
dihedral group. The groups T, O and I are the (orientation preserving) symmetries
of the tetrahedron, cube and icosahedron. In table 2 we list the normalizers of these
groups in SO(3) and the possible G's that could give twisted groups with two-
dimensional fixed-point subspaces.

It is well known that there is up to isomorphism a unique irreducible representation
of SO(3) in each odd dimension 2[4 1. The computation of d(K) for each of these
representations is carried out in Golubitsky et al. (1988). There are some differences
in the formulas depending on the parity of . The case [ even is more important for
applications, so we focus on the computation of d(K) in table 2 for that case.

Using the trace formulas listed in table 1 it is now an exercise to find those pairs
G > K for which G/K is cyclic and dim Fix (G9) = 2. These pairs are listed in table 3.
As noted previously, the case where G/K =~ S, the case of rotating waves, is special.
We treat this case below.

Proc. R. Soc. Lond. A (1993)



732 M. Golubitsky and 1. Stewart

There is an issue that we have not yet addressed. In our enumeration of twisted
groups having two-dimensional fixed-point subspaces, we may have listed too many
solutions. Some of these subgroups may have the same fixed-point subspaces and be
redundant in the sense that they lead to the same solution.

In particular, suppose we have two twisted groups G¢: and G¢: whose fixed-point
subspaces are two-dimensional. Suppose, in addition, that ¢, > ¢, and the restriction
of @, to G, equals 0,. Then (92 is redundant. (It follows that K, o K,; indeed, K, =
K, nd@,.) With this discussion in mind it is not hard to show that the pairs of
subgroups D,,,, D, are redundant when 4 < m < jI/, which explains the asterisk in
table 3.

Finally we discuss the rotating waves. In these cases, @ = SO(2) and K = Z,, for
m = 1. We can assume that @ is a fixed Cartan group of SO(3). We recall the trace
formula from Golubitsky et al. (1988):

2m>

dim Fixy g, (G°) = 2f cos (O(g)) tr (g).
G
If we parametrize SO(2) by ¥, then @ () = mi in order for the kernel K of the
twist to be Z,,. So the dimension is:

2 Jﬂ cos (myr) tr () dp.

Now since SO(2) is a Cartan subgroup we can use the Cartan decomposition to
compute tr () = 142 (cos (¥)+ ... +cos ({yf)). It now follows that the dimension is:

4 fn cos? (myr) dyr

when 1 < m < [. Moreover this integral always equals 2. Thus there is a rotating
wave for each 1 <m <[
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