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Abstract 

Detectives are used to determine the symmetry of attractors in finite-dimensional systems. We derive an explicit formula 
for a symmetry detective for each representation of a finite group. 
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1. Introduct ion 

Computer experimentation shows that symmetric systems may exhibit symmetric attractors (see [4,6,7,10]). For 

planar systems, the symmetry of an attractor is usually determined by visual inspection. For dimensions greater 

than two it is less clear how to calculate the symmetry group of an attractor. Barany et al. [3] devised the method of 

detectives for calculating the symmetries of attractors in higher dimensions; this method was expanded in [9] (see 

also [1,2,5,13]). The idea behind the method in [3] is that symmetries of an attractor are transferred to symmetries 

of a point in an associated space, by integrating an equivariant polynomial (known as an observable) over the given 

attractor. It is shown that, for an open and dense set of polynomials (known as detectives), the symmetry group 

of the attractor is generically equal to the isotropy subgroup of the associated point. Thus the symmetries of the 

original attractor may be calculated by finding the isotropy subgroup of a point, which is a relatively straightforward 

calculation. 

One difficulty in applying this theory is that it is not immediate how to construct a detective for a given symmetry 

group. Sufficiency theorems from [3,9] allow one to decide when a given observable ~o is a detective. The converse 

question, how to build a detective for a given system, has some partial answers. In [3,9], a detective is created for 

systems of coupled cells with (global) dihedral symmetry. This detective has been used by Kroon and Stewart [1 11 
to study a model of hexapodal gaits, with some success. Tchistiakov [13] presents a detective for n coupled cell 
systems with full Sn symmetry, which he uses to study the dynamics of Josephson junction arrays when n is small. 

Tchistiakov also shows that his method of construction can be generalized to an algorithm which may be used 
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to construct a detective for any finite group; however, this algorithm depends on the choice of  a polynomial with 

certain properties, and these properties are often difficult to verify. 

In this note we present a formula for a detective for finite groups. Before introducing this formula we need a 

few preliminary definitions. Let F C O(n)  be a finite group acting on R n. For each isotropy subgroup T C F,  

define 

zrT : R n -+ Fix(T) 

to be orthogonal projection, and define 

T' = N ( T ) / T ,  

where N(T)  is the normalizer of  T in F .  Note that T ~ acts on Fix(T). 

(1.1) 

Definition 1.1. The point z ~ R n is a generic point if zrr (Z) has trivial T '  isotropy for all isotropy subgroups T. 

Let (., .) be the standard inner product on ~n, and let L2(F) be the vector space of  all real-valued functions on 

F .  

Theorem 1.2. Let F C O(n)  be a finite group acting on R n, and let z0 e R n be a generic point. Then the map 
~0 : ~n _+ L2(/-,) defined as 

~o(z)[×] = ((z,  ×z0} + l)  Jrt 

is an SBR detective. 

The formal definition of  an SBR detective is given in Definition 2.2. Roughly speaking, SBR detectives work by 

integrating the observable ~o over an attractor A with respect to an (assumed) SBR measure." 

The remainder of  this paper divides into two sections. In Section 2 we give precise definitions of  observables 

and detectives which also includes the sufficiency theorem of  [9]. We then present the proof of  Theorem 1.2 in 

Section 3. 

2. Detectives 

We begin with some background material on SBR (Sinai, Bowen andRuelle) measures and attractors. Following 

[9], let f : ~n _..). ~n be a continuous mapping. 

Definition 2.1. 
(a) An SBR measure for a mapping f with an invariant set A is an ergodic measure/9 with support equal to A 

and with the property that there exists an open neighborhood U D A such that for every continuous function 
g : R n --~ R and for Lebesgue a.e. x E U 

f lim g ( fJ  (x)) = g dp. 
N---,~Oo N j=0 A 

(b) An SBR attractor is a w-limit point set together with an SBR measure. 

(2.1) 
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Suppose that F C O(n)  is a finite group, and f is F-equivariant with an SBR attractor A. Define the symmetry 

group ,U(A) of  A to be the subgroup 

E ( A )  : {~ E F :  a A  = A}. (2.2) 

Assume that F also acts orthogonally on the vector space W. An observable is a C ~ F-equivariant mapping 

~0 : ~n ~ W. An observation K¢ is 

1 N-1 
K~0 = lira - -  ~ ~o(fJ(x)) .  (2.3) 

N-+oo N j=0 

Since A is an SBR attractor, Definition 2.1 implies that there exists an open set U D A such that for Lebesgue a.e. 

x 6 U the vector K~ ~ W is independent o f x .  We denote the isotropy subgroup of K¢ by E~0(A). 

Definition 2.2. The observable ~0 is an SBR detective if for each SBR attractor A there exists an open dense subset 

A/" in a neighborhood of the identity in (the C k topology of)  Di f f r  (R n) such that all ~p 6 A/" satisfy 

Z'~(ap(A)) = 27(A). 

In Definition 2.2, the notation , ~  0P(A)) stands for the isotropy subgroup of  the point 

1 N-1 
lira - -  ~ ~o(¢~(fJ(x))) ~ W. 

N ~  N 

We conclude this section by recalling a theorem from [9] that gives sufficient conditions for an observable ~0 to 

be a detective. Suppose T is an isotropy subgroup of  F and define T t as in (1.1). Let W~ . . . . .  W~ be the isotypic 

components of  the action of  T t on Fixw (T), and let Pi : W ----> W[ be orthogonal projection. 

Theorem 2.3 ([9]). Suppose that 

(a) W contains every nontrivial irreducible representation of F ,  

(b) ~0 : R n --+ W is a F-equivariant polynomial, and 

(c) for each isotropy subgroup T and for each i the subspace 

pioqg(Fixw(T)) C W[ 

is nonzero. 

Then ~p is an SBR detective. 

3. A general detective algorithm 

In this section we present a proof of  Theorem 1.2. Let F C O(n)  be a finite group. The group F acts naturally 
on L2(F)  as follows: 

a • g[y] = g [ a - i y ]  

for all t7, y ~ F .  It is a standard fact from representation theory (see [8, p. 17]) that L2(F)  contains a copy of each 
F-irreducible Wi. We use L2(F)  as the representation space W in Theorem 2.3. 
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Define 73m to be the set of  polynomials f : R ---> • of  degree m with all coefficients nonzero, and let f(x) ~ 75m. 
Define the map f : ~n ._..> L2(/--,) as 

f(z)IT] = f((z, yz0)). (3•1) 

Lemma 3.1. The map 

f :  R n ~ L2(F)  

defined in (3.1) is F-equivariant. 

Proof We need to show that, for each a 6 F ,  the functions f(az) and trf(z) are equal. Note that 

jT(trz)[y] = f((crz, Yz0)) -- f ( ( z ,  t r - l y z 0 ) )  

with the second equality following from the orthogonality of  the F action• The action of  F on L2(F)  implies that 

a)Y(z)[y] = f ( z ) [ t r - l y ]  = f((z, t r - l gz0 ) )  

and the lemma follows. [] 

For each f c 73m, define the subspace S(f)  C L2(F)  as 

S(f)  = Span{f  (z) I z ~ Rn}. 

Lemma 3.2. Let f ~ 73m. Then 

S(f )  = Span{l, (z, Yzo) . . . . .  (z, yZO) m : Z E ~n} .  

Proof Since jz is a polynomial of  degree m in <z, Tzo), it follows that 

S(f)  c_ Span{l, (z, Tzo) . . . . .  (z, yZo)  m : Z E Rn} .  

To show the reverse inclusion, let f(x) = ao + alx +. . .  + amx m. Since f ~ 75m it follows that all aj are nonzero. 

Note that for every r e 

f (rz) = Z aj( (rz, y Zo) ) j ~- Z ajrJ ( {z, y ZO) ) j. 

Let rl . . . .  , rm+l be distinct real numbers• Then 

f(r2z) | (z, yzo) 
• ~ = B A  . , (3.2) 

\ f(rm+lZ) / (Z, yZO) m 

where the (m + 1) x (m + 1) matrices A and B are defined as 

t l r l ' " r ~ l  ta°  l r2 ... r~ a 1 
B = . . and A = . . 

" .  

m rm+l • • • rm+ 1 am 
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We claim that the matrices A and B in (3.2) are invertible. The matrix A is invertible by our assumption that the aj 

are nonzero• The determinant of  the matrix B is the VanderMonde determinant: 

1 rl • • .  r~ n 

I r2 . . .  r~ n 
• . . ---- I-I(ri -- rj). 

i#j 
m 

1 r m +  1 . . .  rm+ 1 

Since the rj are distinct, the matrix B is also invertible, and the lemma follows. [] 

Lemma 3.3. Let zo c ~n be a point of  trivial isotropy, and let y be a nonidentity element of  F .  Then 

<zo, zo) # (zo, yzo>. 

Proof Assume (zo, zo) = (zo, yzo) and write Yzo uniquely as 

Yzo : azo + z ±, 

where a 6 R and z ± is orthogonal to zo. Then 

(zo, zo> = (zo,  y z o )  : (zo, azo + z ±) 

= (zo ,  a z o )  + ( zo ,  z m) : a(zo, zo) 

from which it follows that a ---- 1 and Yzo = zo + z ±. By the orthogonality of  the action of F ,  we have 

(zo,  zo) : (yzo,  yzo)  : (zo + z ±, zo + z ±) = (zo, zo) + (z ±, z±). 

Thus (z m, z ± )  ---- 0, which implies that z ± ----- 0 and yz0 = zo. The assumption of  trivial isotropy on zo implies that 

y ---- e, which proves the lemma. [] 

Lemma 3.4. Let f e 75s  w h e r e  N > I/"1. Assume zo ~ R n has trivial isotropy. Then 

S(f) = L2(E). 

Proof  Let 

1 

c = I-I  ((zo, zo> - (zo, a z o ) )  
~cP--e 

It follows from Lemma 3.3 that C is well-defined. Define 

h(x )  = C l - I  (x - (zo, az0)). 
tT E P - - e  

Note that h is a polynomial  of  degree J F I  - 1 and that 

1, y = e ,  
h((zo, Yzo)) = O, y # e. 

The polynomial  h generates a map h : ~n __+ LE(F)  as in (3.1), and 

S(/~) = Span{h(z) I z 6 •n} 

c_ Span{l ,  (z, yzo) . . . . .  (z, yzo) I r l -1  I z E R n} 

c_ Span{l ,  (z, yzo) . . . . .  (z, yzo) N [z 6 R n} 
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since N > IF I by assumption. It follows from Lemma 3.2 that 

S(h) C S ( f )  c L2(F).  

We claim that S ( h )  = L2(F). To verify this claim, let {fg ] g ~ F} be the canonical basis of L2(F) where 

1, y = g ,  
A[×]= 0, × # g .  

Then 

[t(gzo)[y] = h((gzo, Yzo)) = h((z0, g- lyzo) )  
1, g - l y = e ,  

= O, g - l y  • e  

= fg[y], 

which proves the claim. Thus LZ(F) C S ( f )  C L2(F).  [] 

Lemma 3.5. Let f 6 73m. Assume T C F is an isotropy subgroup and define T' = N ( T ) / T .  Then the map f 
restricts to a T'-equivariant map 

fT : FixR,(T) --+ FixLz(r)(T). 

Proof. Let r E T and v E FixR,(T). We need to show that f r ( v )  ~ FixL2(r)(T). Since 

the lemma follows. [] 

Our last step is to show that FixL~(r ) (T) contains a copy of each T ~ irreducible representation. The following 
lemma is proved in [9, Lemma 2.3]. 

Lemma 3.6. 

L2(T t) C FiXL2(r,)(T). 

Proof By the definition of the action of F on L2(F)  we have 

FixL2cr)(T) = {g : F --~ • such that g is constant on T cosets}. 

Each such g induces a map ~ : N r  (T) / T --~ R in L 2 (T'). We get all such maps NF (T) / T -~ R in this way, which 
proves the lemma. [] 

Proof of Theorem 1.2. Let f ( x )  = (x + 1) Irl and note that f e 731r I. Lemma 3.6 implies the orthogonal projection 
zr : FixLz(r)(T) -+ L2(T t) can be defined. Lemma 3.5 implies that 

~P = n'OfT : FixR, (T) --+ L2(T ') 

is a T'-equivariant of the form (3.1). Indeed 

~(z) = f ( ( z ,  YZO)). 



D. Gillis, M. Golubitsky/Physica D 107 (1997) 23-29 29 

It follows that 

S ( ~ )  = Span{f  (z) I z 6 FixR, (T)}. 

Lemma 3.4 and the assumption that z0 is a generic point together imply that S ( ~ )  = L2(T ') for each isotropy 

subgroup T. Thus the linear span 

Span{ f  (z) I z 6 Fix~o(T)} 

contains a copy of each irreducible T' representation, and the conclusion of the theorem follows from 

Theorem 2.3. [] 
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