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Bifurcation and Planar Pattern Formation
for a Liquid Crystal

Martin Golubitsky and David Chillingworth

Abstract. We consider the Landau — de Gennes model for the free energy
of a liquid crystal, and discuss the geometry of its equilibrium set (critical
points) for spatially uniform states in the absence of external fields. Using
equivariant bifurcation theory we classify (on the basis of symmetry consid-
erations independent of the model) square and hexagonally periodic patterns
that can arise when a homeotropic nematic state becomes unstable, perhaps
as a consequence of an applied magnetic or electric field.

1. Introduction

In the Landau theory of phase transitions for a liquid crystal the degree of coher-
ence of alignment of molecules is usually represented by a field of symmetric 3 x 3
tensors Q(x), x € R® with trace tr(Q) = 0 (the tensor order parameter) [15]. We
think of @ as the second moment of a probability distribution for the directional
alignment of a rod-like molecule. In a spatially uniform system, @ is independent
of x € R3. When Q = 0 the system is isotropic, with molecules not aligned in
any particular direction. If there is a preferred direction along which the molecules
tend to lie (but with no positional constraints) the liquid crystal is in nematic
phase. There are many other types of phase involving local and global structures,
see [15].

SYMMETRIES IN THE ORDER PARAMETER. The complex linear space V of trace-
less symmetric 3 x 3 matrices Q) is 5-dimensional over C with unitary basis

1
5 (Mo, M1, My}

where
-1 0 0© 0 0 %1 1 +i 0
M0=\/§ 0 -1 0| Mgy=|0 0 i Myo=|4i -1 0
0 0 2 +1 i 0 0 0 0

A state (phase) of the liquid crystal in R? is given by the real part of a map
Q : R3 — V. At each point x in space the rod-like molecule is assumed to align
along the eigendirection corresponding to the largest eigenvalue of Q(x).
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The action of rigid motions in R? on a state is defined as follows. Let v € O(3)
and let Ty be translation by y € R3. Then

(TyQ)(x) = Q(X_Y) (1 1)
(v-Q)x) = QU 'x)y" :

That is, translations just translate Q(x) while rotations and reflections act simul-
taneously by rigid motion on the domain of Q(x) and by conjugacy in the range.

THE FREE ENERGY FORMULATION. Equilibrium states of the liquid crystal (ig-
noring boundary effects which in physical situations do play a crucial role) are
taken to be critical points of a smooth real-valued free energy functional

1

FQ) = 7 [ FQ)ix

defined for real @), where the free energy density F is invariant under the Euclidean
action (1.1). A standard free energy is given by the Landau-de Gennes model [9]

F@Q) = %Ttr(Q'z) - %Btr(Qi‘) + %C(tr(Qg))Q 02
FCIVQR +Co|V-QP?—2DQ-VAQ

where B, C, C), Cs, D are constants of the material and 7 represents deviation from
a critical temperature. The notation here is

Vel = ) IVl

i3
Z|V'QJ’|2,
J
>.Qi-VAQ;
J

V-QP

Q-VAQ

where @Q; is the jth column of Q. This is a general O(3)-invariant function of
degree at most four in @ [8] and at most two in the first-order spatial derivatives
of Q.

In this paper we discuss aspects of bifurcations of spatially homogeneous
states (Section 2) and spatially periodic nematic liquid crystal states (Section 3).

2. Spatially uniform equilibrium states

For a spatially uniform state the derivatives of @ are zero and we are reduced to
considering critical points of F : V — R restricted to real matrices. Symmetry im-
plies that every equilibrium state corresponds to a group orbit of equilibria. Since
every symmetric matrix can be diagonalized by an orthogonal matrix, it follows
that every group orbit of equilibria contains a diagonal trace zero matrix. Thus,
to study bifurcation of equilibria, we can restrict attention to the 2-dimensional
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| 7range | equilibria | stability |
T>T) Q=0 stable
T0>7>0 Q=0 stable
Q=Q;:=mQ(0,1) i = 1 stable
m<n<0
Q=Q;:=-inQ(xV3,1) | i =2 unstable
0>r Q=0 unstable
Q=leé1, m<0 stable
Q=Q», @2, o >0 unstable

TABLE 1. Equilibria as a function of 7 where 7y = :,lf—z and Q(p,n) is
defined in (2.1).

space of diagonal traceless matrices as in [8, XV,86]. We express such @ in the
form

3 3
Q=Q(p:n) = —n\/;Mu + Pg(M‘z +M_y) (2.1)
since, in these coordinates,
tr(Q%) = 6(* + 1) (2.2)
tr(Q%) = 6n(3p° - n°) = 6 Im(p + in)*. (2.3)

The function F restricted to the space U = R? of matrices (2.1) is invariant with
respect to the action of D3 in the (p, 77)-plane generated by rotation by 27/3 and
reflection in the n-axis. Thus

Proposition 2.1. Every nonzero critical orbit of F meets U in a Dg-symmetric
configuration. O

By first considering the restriction of F' to the 7-axis and then exploiting sym-
metry it is straightforward to deduce the description of equilibria for the system
Q = —grad F(Q) on U given in Table 1.

As 7 decreases through 7y = g’j—é there are simultaneous saddle-node creations
of pairs of equilibria at (p,n) = (0,70) and —4ny(£v/3,1) where 19 = —279/B;
subsequently the innermost equilibria approach the origin and coalesce at a de-
generate critical point there as 7 decreases to 0, emerging on the other side as 7
becomes negative. See Figures 1 and 2.

The physical interpretation is that for 7 > 7, the only stable phase is isotropic
(@ = 0) while for 7 < 7y there are further stable nematic phases with molecules
aligned in a particular direction: any one alignment has the same free energy as any
other. The isotropic phase loses stability when 7 becomes negative. This familiar
transition is described for example in [15].
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FIGURE 1. Bifurcation diagram for critical points of grad F on U.
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FIGURE 2. Schematic phase portraits for Q = — grad F(Q).

REMARKS ON EQUILIBRIA IN A SHEAR FLOW. In the presence of a constant shear
flow the system loses its O(3) symmetry and most of the equilibria disappear.
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However, some do remain, along with a variety of interesting dynamical phenom-
ena including Hopf bifurcations, Takens-Bogdanov bifurcation and period-doubling
that come into play as 7 decreases [14, 16]. A rigorous geometric analysis of some
of these phenomena is given in [3], where it is shown that all equilibria are in-
variant under reflection in the plane of the shear flow, with the curious exception
of a continuum (ellipse) of out-of-plane equilibria that arise with codimension 1.
This non-generic behavior casts doubt on the robustness (structural stability) of
the Landau-de Gennes model in the presence of a shear flow.

3. Spatially periodic equilibrium states

Suppose a spatially uniform equilibrium @y loses stability to a spatially periodic
state. In this section we use group representation theory (following (8, 7, 4]) to
extract information about nonlinear behavior at bifurcation that is independent
of the model.

Specifically, we consider local bifurcation from a planar layer of a homeotropic
nematic liquid crystal @ that is assumed to have constant alignment in the vertical
direction to one that has spatially varying alignment in the planar directions. We
assume that the new states are spatially periodic with respect to some planar
lattice. The symmetry group for this discussion is the planar Euclidean group
rather than the Euclidean group in three dimensions, as in the previous sections.

The fact that liquid crystals can display spatial periodicity with respect to
a planar lattice is well known by experiment. For example, Figure 3 illustrates
a so-called prewavy pattern [13, 10] while Figure 4 shows two types of chevron
[10]. (We are grateful to the authors of the abstracts [11],[12] for these pictures.)
Several striking photographs of periodic patterns can also be found in [6].
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FIGURE 3. Prewavy pattern seen with crossed polarizers (a), and cor-
responding director field (b). The scale bar is 200um. (Courtesy J.-
H.Huh.)



60 Martin Golubitsky and David Chillingworth

X

\%
LTl

X
N

5

A\

W
A

5
Z
N
I

Z,
)/\\

7
@)fi
S
-
I

\\
"
AW
7
AN
)

/\,\
NN N

S
7
>

0\
>

K&

\

77

ez

}
N
,

W
W

D\
/.
N

g\

SO

S
WYAAANLL
SN
- /<<
s
W

TR

N
2
N

\
;/J,'.'_‘ )
2
/

K
[9)

N

7

1
]

/1

FIGURE 4. Two types of chevrons: (a) defect-mediated, (b) defect-free.
The scale bar is 200pm. (Courtesy J.-H.Huh.)

Linear Theory

Let L denote the linearization of the governing system of PDEs at Qy (for the
free energy model we have L = D?F(Q,)). Bifurcation occurs at parameter values
where L has a nonzero kernel. Planar translation symmetry implies that eigenfunc-
tions of L have the plane wave form

e")”ik”‘Q +c.c. : (3.1)
where Q € V is a constant matrix and k € R? is a wave vector. Let
Wi = {2"%*Q + cc.: Qe V} (3.2)

be the ten-dimensional L-invariant real linear subspace consisting of such functions.
Rotations and reflections v € O(2) act on Wi by

(2T *XQ) = 2Tk X n a1 (3.3)

Rotation symmetry implies that ker L is infinite-dimensional, since it contains all
possible rotations of the eigenfunction (3.1). Restricting to planar lattices (which
restricts the allowable rotations to a finite number) typically makes the kernel
finite-dimensional.

When looking for nullvectors we can assume, after rotation, that k = £(1,0,0)
and that nullvectors of L are in Wy. Bosch Vivancos, Chossat, and Melbourne [1]
observed that reflection symmetries can further decompose Wy into two L-invariant
subspaces. To see why, consider the reflection

K(z,9,2) = (2,~v, 2).
Note that the action (3.3) of k on Wy (dropping the +c.c.) is
K (eQWik‘XQ) = MR X =1 _ g2mikex o0y =1
Since 2 = 1, the subspace Wy itself decomposes as
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where £ acts trivially on W, and as minus the identity on W_ . We call functions in
Wt even and functions in W odd. Bifurcations based on even eigenfunctions are
called scalar and bifurcations based on odd eigenfunctions are called pseudoscalar.

To determine the form of the scalar and pseudoscalar matrices (that is, those
matrices Q. Q™ appearing in W," and W respectively), we need to compute
the effect of conjugacy by x € O(3) on V. The subspace of V' where s acts as the
identity is

V*t =span{ My, M} — M_y, Ms+ M_»}
and the space where s acts as minus the identity is
V™ =span{ M)+ M_j, M, — M_»}.

A further simplification can be made. Consider R, € O(3) given by (x,y, z) —

(—z, —y. z). Since (dropping the +c.c.)
R_(Qe'z:rik-x) =R.-Q e2mike Rz (x) R, Q e~ 2mikex R—_:—QGQMKX

the associated action of R, on V is related to the conjugacy action by

R:(Q) = Rx - Q.

Since L commutes with R, and R2 = 1, the subspaces of the kernel of L where
R, (Q) = Q and R.{Q) = —Q are L-invariant. Therefore, we can assume that @
is in one of these two subspaces. Note that translation by £ = llk/ k* implies that
if v(x,Q) = €*'**Q is an eigenfunction then iv(x.Q) is a (symmetry related)
eigenfunction. It follows from (3) that if R, acts as minus the identity on ¢, then
R, acts as the identity on Q). Thus we can assume without loss of generality that

R:(Q)=Q,

that is, @ is R,-invariant. Therefore we have proved

Lemma 3.1. Generically eigenfunctions in Vi have the form e*™*Q + c.c. where
Q is nonzero, R;-invariant, and either even or odd. O

Lemma 3.1 implies that typically eigenspaces are two-dimensional subspaces
of Wit or W_ and have the form

VE = {z2e*"k*Qt 2 € C)
Vi = {ze*"%*Q~::€C}
where Qt and Q™ are R.-invariant. We check easily that
R.-My=My, Ry -Mi =Mz, R: Mgs= Mz
and so by R -invariance we may assume that

Q+ = a]‘/10+b(M2+A/I-2)+iC(A4|—]Vf_l), a,b,ce R
Q- = g(My+ M_y)+ih(Ms— M_y), g heR

where a,b, ¢, g, h € R are specific values chosen by L (cf. [7, §5.7]).

(3.5)
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The Planforms

We now consider 2-dimensional patterns by disregarding the z-coordinate in x
(but not in Q) and restrict attention to equilibrium states that are periodic with
respect to a square or hexagonal lattice in the z, y-plane.

THE SQUARE LATTICE. The holohedry (the rotations and reflections that pre-
serve the lattice) is D4 generated by « and €, where £ is counterclockwise rotation
of the plane by %. We study the case where the critical dual wave vectors have
shortest length and the kernel of L is four-dimensional:

Vieoe(VF) o Viiee(Vy).

Therefore, we can write the general eigenfunction in the scalar case as

RT(x) = 21e?™ K1 % Q% 4 g™k X eQte~! 4 e (3.6)
and in the pseudoscalar case as
R™(x) = z1e?™ kX Q= 4 ze? ke X Q¢! 4 coc. (3.7

In each case there are two axial subgroups (isotropy subgroups with 1-dimen-
sional fixed-point spaces, that we call axial directions), so the equivariant branching
lemma [8, 4, 7] predicts that bifurcations from a spatially uniform nematic state
will occur along these axial directions at least. Up to conjugacy by an element
of D4+T?, the direction (z),23) = (1,0) corresponds to rolls and the direction
(21,22) = (1, 1) corresponds to squares.

To visualize the patterns of bifurcating solutions we assume a layer of liquid
crystal material in the z, y-plane, possibly with an applied magnetic field in the z
direction. We assume that the initial solution corresponds to a nematic phase with
all molecules oriented in the 2 direction and that a symmetry-breaking bifurcation
occurs as the strength of the magnetic field, temperature or other parameter is
decreased. At each point (z,y) we choose the eigendirection corresponding to the
largest eigenvalue of the symmetric 3 x 3 matrix Q(x) at x = (z,y) and we plot
only the z,y components of that line field. In this picture, a line element that de-
generates to a point corresponds to a vertical eigendirection, so the initial solution
looks like at array of points. In Figures 5 and 6 we plot solutions corresponding
to scalar and pseudoscalar rolls and squares. Note that pseudoscalar rolls form a
chevron pattern that can be compared to Figure 4(b).

THE HEXAGONAL LATTICE. The holohedry is Dg and is generated by « and £,
where £ is counterclockwise rotation of the plane by %. The action of £ on Q is

€Q) =€Qe™".

On the hexagonal lattice, we also study the case where the dual wave vectors
have shortest length and the kernel of L is six-dimensional. The dual wave vectors
can be chosen to be

ki=(1,00 ke=4(-1,v3) ks=1(-1,-V3).
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scalar rots

FIGURE 5. Square lattice with scalar representation: (left) rolls; (right)
squares.

FIGURE 6. Square lattice with pseudoscalar representation: (left) anti-
rolls; (right) anti-squares.

The eigenspaces are then

Vreg (W ed (W) o VegVi)ed ().
Therefore, we can write the general eigenfunction in the scalar case as

Zl€27rik.~XQ+ + 2232wik2'x£2Q+£4 + z3e2mik3-x€tlQ+€2 I cc.
and in the pseudoscalar case as

zle’_’rik]'xQ— + z262xikg~x£2Q—£~l + zgeZTrik;;-x5«lQ—€‘2 +ecec.

It is well-known from analyses of Bénard convection (see [8]) that on the
scalar hexagonal lattice there are two branches of axial solutions — hexagons and
rolls — and that the hexagons come in two types hexagonst and hexagons~. For
rolls we may take (21, 22, z3) = (1,0, 0) and for hexagons* and hexagons™ we may
take (z1,22,23) = £(1,1,1). Sample hexagon planforms are shown in Figure 7.
Rolls are the same as those in Figure 5.
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Free energy interpretations

These results imply that there are two types of steady-state bifurcations, scalar
and pseudoscalar, that can occur from a spatially homogeneous equilibrium to
spatially periodic equilibria. If a scalar bifurcation occurs, then generically all of
the scalar planforms that we listed (rolls, squares, hexagons™, hexagons™) will be
solutions. Similarly, if a pseudoscalar bifurcation occurs, then generically all of the
planforms that we listed (anti-rolls, anti-squares, hexagons, triangles, rectangles)
will be solutions. We have not discussed the difficult issue of stability of these
solutions.

What remains is to complete a linear calculation to determine when a steady-
state bifurcation occurs and whether it is scalar or pseudoscalar. The outline of
such a calculation goes as follows. We need to compute a dispersion curve for both
scalar and pseudoscalar eigenfunctions. That is, for each wave length k = |k| we
must determine the first value of the bifurcation parameter A where L has a nonzero
kernel. Call that value Ax. The curve (k, A;) is called the dispersion curve. We then
find the minimum value A, = A, on the dispersion curve; the corresponding wave
length k, is the critical wave length. We expect the first instability of the spatially
homogeneous equilibrium to occur at the value A, of the bifurcation parameter.

In principle, these calculations can be completed for the model equations
(1.2) or a similar model, extending related calculations for bifurcation from the
isotropic phase carried out by [9]. We defer the completion of this task to a future

paper.
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