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Abstract. In this paper we continue the analysis of a network of symmetrically coupled
cellsmodeling central pattern generatorsfor quadruped locomotion proposed by Golubitsky,
Stewart, Buono, and Collins. By acell we mean a system of ordinary differential equations
and by acoupled cell system we mean a network of identical cells with coupling terms. We
havethree main resultsin this paper. First, we show that the proposed network isthe simplest
one modeling the common quadruped gaits of walk, trot, and pace. In doing so we prove a
general theorem classifying spatio-temporal symmetries of periodic solutionsto equivariant
systems of differential equations. We also specialize this theorem to coupled cell systems.
Second, this paper focuses on primary gaits; that is, gaitsthat are modeled by output signals
from the central pattern generator where each cell emits the same waveform along with
exact phase shifts between cells. Our previous work showed that the network is capable of
producing six primary gaits. Here, we show that under mild assumptions on the cells and
the coupling of the network, primary gaits can be produced from Hopf bifurcation by vary-
ing only coupling strengths of the network. Third, we discuss the stability of primary gaits
and exhibit these solutions by performing numerical simulations using the dimensionless
Morris-Lecar equations for the cell dynamics.

1. Introduction

Quadrupedal gaits have been studied by many authors [23,21,22,18,1,13,19, 2]
and models of central pattern generators (CPGs) for quadruped locomotion have
been studied using a variety of approaches including: equivariant bifurcation the-
ory [9], numerical simulations [7,10], phase response curves [6], and numerical
simulations of an externally aroused CPG [32]. In this paper we continue the study
of aCPG model for quadruped locomotion based on symmetry introduced in Golu-
bitsky et al. [15].
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1.1. Coupled cell systems

One of the early attempts at modeling animal locomotor CPG using coupled cell
systems reduced to phase models is due to Cohen et al. [8,33] in the case of the
lamprey. In this context cell means a system of ordinary differential equations. Er-
mentrout and Kopell [11] have al so successfully used coupled cell systemsreduced
to phase models to describe animal locomotion. Indeed, some of the most signifi-
cant work on the modeling of CPGs comes from a collection of papers by Kopell
and Ermentrout [24—27] where they investigate coupled cell systems as modelsfor
lamprey and fish CPGs. In Kopell et al. [28], predictions about the lamprey CPG
model are made and these predictions are verified experimentally in Williams et
al. [36].

1.2. Symmetry

The idea of symmetry was introduced into the description of quadruped gaits by
Howell [23] and Hildebrand [21]. Schoner et al. [35] study the rhythmic patterns
of gaits using phase models with symmetry. Collins and Stewart [9] were the first
to emphasize symmetrically coupled cell systems as CPG models of quadruped
locomotion.

To carry out the modeling, Collins and Stewart [9] make the assumption that
the rhythmic gaits of animalsmirror the output signalsfrom the CPG. Studiesmade
on primitive vertebrates support this assumption. Indeed, Grillner et al. [20] state:
“The lamprey spinal cord in vitro can produce a motor pattern with asimilar phase
lag, burst, and cycle duration asthe spinal and intact lamprey swimming in aswim-
mill” and further on “the same results have been obtained in the spinal dogfish, the
decerebrate stingray and the frog embryo”. Assuming that symmetric gait patterns
mirror the activity of the CPG, it follows that the output signalsfrom the CPG must
be symmetric. Thus, asin[9] and [15], we assume that the CPGs possess symmetry.

1.3. Theeight-cell network

The CPG model for quadruped locomotion in [15] is a network of identical sym-
metrically coupled cells. As shown in [15] this network is capable of producing
periodic solutions modeling quadruped gaits called primary gaits; that is, gaits
modeled by output signals from the CPG where each cell emits the same wave-
form aong with exact phase shifts between cells. The primary gaits produced by
our model are walk, trot, pace, bound, jump, and pronk. Our contribution to the
theory of this CPG model istwofold. First, we show that the proposed quadruped
network is the smallest one under the assumptions used to create the model. See
Theorem 3.2. Second, under mild assumptions on the cell dynamics and the cou-
pling of the network, we show that by varying only coupling strengths between
cells, the network can produce all primary gaits, except pronk, by Hopf bifurcation.
See Theorem 4.1.

The proposed coupled cell model consists of eight cells and has the mathemat-
ical form:

= F(ui)+ Y ajiH(uj, u)

Jj—i
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Fig. 1. Schematic eight-cell network for gaitsin four-legged animals.

where u; € R* are the state variables of cell i, the vector field F : R¥ — R*
modelstheinternal dynamics of each cell, thefunction H : R* x R¥ — R¥ models
the coupling of one cell to another, and «; is the strength of coupling from cell
Jj tocel i. Observe that the sum is taken only over those cells j that are actualy
coupled to cell i. The network in[15] has the form of two unidirectionally coupled
rings of four cells, as shown in Figure 1. In that model the output «1 is sent to the
left hind leg; output u» is sent to the right hind leg; output 13 is sent to the left fore
leg; and output u4 is sent to the right fore leg.

Some of the gaitscommonly used by quadrupeds arethewalk, trot, pace, bound,
transverse gallop, rotary gallop, and canter. For example, in awalk, each leg strikes
the ground in turn in afigure eight pattern with a quarter-period phase difference
between successive legs while in a trot, pairs of diagonal legs strike the ground
simultaneously with a half-period phase difference with the other diagonal pair of
legs. The phase shifts for the primary gaits of walk, trot, and pace are listed in
Table 1 in terms of the output u1(¢) from cell 1.

Tablel. Phase shiftsof primary gaits.

Legs Walk Rrot Pace

3 4| wmt+d w+d | m@+d) uy(t) ur(t) ui(t+3)
12| w@® w43 | w@®  wG+3) | wa@)  uit+3)
Legs Jump Bound Pronk

3 4 uy(t) uy(t) uy(t + %) uy(t + %) uy(t) uy(t)

1 2| wmt+3 wm@+3 | w@ ur(t) | oua(t)  ua(r)
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Figure 2 shows numerical simulations from the model CPG of [15] that illus-
trate awalk and atrot. Note the quarter-period phase shift from u1 touz tous toug
in the walk. Additional discussion of numerical simulationsis given in Section 6.

1.4. Why four cells do not suffice

Networks of four symmetrically coupled cellsare used in [9] to model the CPGs of
quadrupeds, each cell sending an output signal to a corresponding limb. Periodic
solutions in the four-cell networks correspond to different gait patterns of quadru-
peds. The networksstudiedin[9] havethefollowing property: if walk, trot, and pace
periodic solutions are present in the network, then trot and pace are symmetrically
related periodic solutions.

Suppose that two different gait patterns are modeled by symmetrically related
periodic solutions, also called conjugate periodic solutions. Then the periodic so-
lutions exist simultaneously and have the same stability properties. However, there
is evidence indicating that trot and pace do not exist simultaneously and evidence
indicating that they do not have the same stability properties. First, camels and gi-
raffes use the pace for locomotion at slow and intermediate speeds, but do not trot;
whilehorsesareknowntotrot, but unlesstaught, do not usethe pace. See[22] p. 705
or [18] p. 274. Therefore, the CPG of the camel selects pace but suppressestrot, and
the horse CPG selects trot but unless taught suppresses pace. Second, results from
Blaszczyk and Dobrzecka [2] indicate that the stability of pace and trot are not the
same. In[2], itisreported that puppies use atrot gait at intermediate speed. Intheir
experiment, the puppies’ legs are restrained as they make their first steps, so that
they can only use a pace at intermediate speeds — not atrot. Different dogs retain
this device for amounts of time ranging from 2 to 6 months. In post-restraint trials
it is reported that dogs that were in the shorter restraint period switched back to a
trot quickly with only occasiona use of a pace. In the longer restrained animals,
occurrence of pace was more frequent but the use of pace decreased with every
post-restraint experimental trial. Therefore, as in [15], we make the assumption
that different gait patterns are modeled by periodic solutions that are nonconjugate.

1.5. Symmetry in the eight-cell network

The symmetry group of the network in Figure 1 is the abelian group Z4 x Z,. We
make the modeling assumption that acell inthe network sendsitssignal to only one
leg. In order for this network to model observed quadrupedal gaitsit is necessary
that the output signals to the four legs are sent by the top four cellsin Figure 1.
Assuming that cell 1 sendsitssignal to the left hind leg, it followsthat cell 2 sends
its signal to the right hind leg, cell 3 to the left fore leg, and cell 4 to the right
fore leg. A possible explanation for the role of the bottom part of the network is
discussed in[16] whereit isargued, based on observations of the human gaitswalk
and run, that the signals are sent to muscle groups rather than to legs. See also the
explanation before Theorem 3.3.

In [15], it is shown that this quadruped network can model trot, pace, and
walk, without introducing unwanted conjugacies between the periodic solutions.
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Fig. 2. Signa u; goesto the left hind leg; u, goesto the right hind leg; u3 goes to the left

foreleg; and u4 goesto theright fore leg. Top: walk. Bottom: trot.
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The absence of conjugacy follows from the fact that Z4 x Z, is abelian. A stand
equilibrium of the network is an equilibrium that is fixed by all symmetries of the
network. SinceZ4 x Zy isabelian, generically the nonreal eigenvalues of thelinea-
rization of the system of ordinary differential equations of the network are simple.
Then, periodic solutions modeling the quadruped gaits can be produced by simple
Hopf bifurcation from equilibria. All periodic solutions that bifurcate from stand
by simple Hopf bifurcation are primary gaits.

1.6. New results concerning the eight-cell network

We continue the study of the quadruped network in two directions. First, we show
that the quadruped network with Z 4 x Z, symmetry isthe smallest onethat produc-
eswalk, trot, and pace as nonconjugate periodic solutions. To prove thisresult, we
classify the possible spatio-temporal symmetry groups of a I'-equivariant vector
field when I isfinite. Based on theideathat signals go from cellsto muscle groups
(asdiscussed in [16]), we a so show how to make a natural assignment of cellsto
legsfor al eight cellsin our network. See Theorem 3.3. This theorem leadsto the
two networks shown in Figure 6. These networks have the same symmetries and
are dynamically equivalent to the onein Figure 1.

Second, suppose that the cells are two-dimensional and the coupling of the net-
work islinear synaptic. Suppose a so that the cell dynamics has an equilibrium and
the linearization at the equilibrium has nonreal eigenvalues. Then, we show that
all primary gaits (except pronk) can be made to bifurcate from a stand equilibrium
by varying only coupling parameters. For certain gaits (trot, pace, and bound) we
show that these bifurcations can lead to stable periodic solutions. Moreover, by
numerical exploration al primary gaits can be found to occur as stable periodic
solutions.

The complexity of the central nervous system of mammals has prevented a
detailed description of the CPG for locomotion. Since our proof of existence of
primary gaits depends only on the existence of an equilibrium for the cell dynam-
ics with linearization having nonreal eigenvalues, our result is robust; it does not
depend explicitly on biological details of the animal’s central nervous system.

1.7. Sructure of the paper

In Section 2 and Appendix A, we determine the possibl e spatio-temporal symmetry
groupsof time periodic solutionswhen T isfinite. In Section 3, we use the results of
Section 2 to prove Theorem 3.2, from which it follows that the quadruped network
with Z4 x Zo symmetry isthe smallest network modeling walk, trot, and pace with-
out conjugacies. In Section 4, we state the theorems of existence and stability of
periodic solutions from Hopf bifurcation. In Section 5, we prove the existence and
stability results stated in Section 4. Numerical simulations using the dimensionless
Morris-Lecar equations [30, 34] as cell dynamics are presented in Section 6 and a
summary is given in Section 7.
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2. Robust periodic solutions

In this section and in Appendix A we discuss the spatio-temporal symmetries of
periodic solutionsin symmetric systems of differential equations. Additional back-
ground may be found in [17]. We also discuss the conditions under which the
periodic solution and its symmetries are robust to small parameter changes, which,
asisdiscussed below, is an important consideration in gait CPG modeling.

We begin by defining the symmetries of a differential equation and the spa-
tio-temporal symmetries of periodic solutions, and then, as in [15], relate these
symmetries to gaits.

LetI' c O(n) beafinitegroup actingon R" and let f : R" — R" beasmooth
I"-equivariant vector field, that is,

flyx) =yf(x) Vyel.
2.1. Spatio-temporal symmetries

Each symmetry of a periodic solution U (¢) to the system of differential equations

dUu

P f ) (21)
is a combination of spatial and temporal. For simplicity in exposition we assume
that our periodic solutionsare 1-periodic. Let y € T'; by equivariancey U (¢t) isalso
asolutionto (2.1). Uniqueness of solutionstoinitia conditionsin (2.1) impliesthat
there are two possibilities: either the trgjectories {y U (¢)} and {U (¢)} are identical
or they are digoint. In the former case, uniqueness of solutions also implies that
thereis a phase shift 6 such that

yU@) =U(t —6).

See [17] for details. Then the phase shift 6 can be thought of as an element of the
circle group St by identifying St = [0, 1). The pair

(y,0) e x S

is a spatio-temporal symmetry of U (¢); and the collection of all spatio-temporal
symmetries of U (¢) formsasubgroup A ¢ T" x St

As illustrated in Table 1, standard quadruped gaits are time periodic states
with certain well-defined phase shifts. Following [15] we show how these phase
shifts can be derived from the symmetries of associated periodic solutions in our
CPG model (Figure 1). The symmetry group of the network shown in Figure 1 is
Za(w) x Z(x) generated by the four-cycle w that permutes cells around the ring
and the two-cycle « that interchanges | eft cellswith right cells. We can define each
primary gait by associating phase shifts to w and «, as in Table 2. For example,
suppose U (t) = (u1(2), ..., ug(t)) isaperiodic solution with the spatio-temporal
symmetries of a trot. Then (, %) symmetry implies that ua(t) = u1(t + %) and
ua(t) = uz(t + 3). Similarly, (w, 3) implies uz(t) = u1(t + 3) and ua(r) =
u(t + %). In thisway atrot solution has the form indicated in Table 1.
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Table2. Symmetries of primary gaits.

Gait || Pronk | Pace | Bound [ Trot | Jump [ Walk
o phase shift 0 0 : : : :
« phase shift 0 3 0 3 0 3

Thereisasecond and equivalent way to view spatio-temporal symmetries. Let
H C T consist of symmetriesthat preserve the trajectory of U; that is, y € H if

y{Um} ={U®}.

As noted previously, if y € H, then there exists # € S' such that (y, 0) is a spa-
tio-temporal symmetry of U (r). Moreover, themap ¢ : H — I' x St defined by
h — (h, 0) isanisomorphism of H onto A.

Thus, spatio-temporal subgroups A ¢ TI' x S! are isomorphic to subgroups
of I'. Next we show that these subgroups have additional algebraic structure. Let
K c T bethe group of purely spatial symmetriesof U(¢); that is, y € K if

yU@ =U()

for al r. It is clear that K C H. Moreover, themap © : H — S! defined by
©(h) = 0 where (h, 0) is a spatio-temporal symmetry of U (¢) is a group homo-
morphism with kernel K. It follows that the quotient group H /K isisomorphic to
afinite subgroup of St. Therefore,

H/K =2, (2.2)

for some integer m > 0. Thus, spatio-temporal subgroups of I' x St can be iden-
tified with pairs of subgroups K ¢ H of I' satisfying (2.2). For example, for a
periodic solution corresponding to atrot, K = Zo(wk) and H = Z4 x Z».

2.2. Symmetry - generated subgroups

Definition 2.1. Ahyperbolic periodic solution U (¢) € R" of (2.1) with spatio-tem-
poral symmetry subgroup A isrobust if periodic solutions obtained from U () by
small I'-equivariant perturbations of (2.1) also have spatio-temporal symmetry
subgroup A.

The subgroup A c T x St is symmetry generated (for the action of I on R")
if thereis a robust periodic solution for some I'-equivariant system of differential
equations on R whose spatio-temporal symmetry subgroup is A.

The following theorem, which is proved in Appendix A, classifies symmetry
generated subgroups (and hence the types of spatio-temporal symmetry of robust
periodic solutions) for coupled cell systems of the kind we consider.

Theorem 2.2. Let K € H C I' be subgroups where I" is the symmetry group of a
coupled cell system. Assume that
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(a) the order of I" equalsthe number of cellsand every cell is mapped to any other
cell by a symmetry, and
(b) the dynamics of each cell is at least two-dimensional.

Then robust periodic solutions whose spatial symmetries are K and whose spatio-
temporal symmetriesare H exist only if (2.2) isvalid.

Note that the eight-cell network pictured in Figure 1 with symmetry group
Z4 x Z satisfies the hypotheses of Theorem 2.2. Therefore, we can enumerate all
the types of spatio-tempora symmetry that any periodic solution to any system of
differential equations based on this network can have, aswasdonein [15], Table 4.
In Section 4 we use Hopf bifurcation to produce robust periodic solutions for this
eight-cell model.

2.3. An example with D4 symmetry

We need the following example when discussing the uniqueness of the eight-cell
gait model in Section 3. Consider the eight-cell system shown in Figure 3 having
permutation group D4. (Note the arrows go in opposite directions around the two
ringsin this network.)

Geometrically Dy is the symmetry group of a square and is generated by a
four-cycle w corresponding to rotation counterclockwise by 90° and areflection «
whose line of reflection connects midpoints of opposite sides of the square. Note
that xw is a reflection whose line of symmetry connects opposite vertices of the
square. There are eight conjugacy classes of subgroups of Dg:

D4 DS = (k, @2, kw?) Dg = (kw, 02, ko) Zs = (»)
1 Z5 = (k) Z = (ko) Zo = (0?)

Figure 4 illustrates the containment relations between these subgroups.

Fig. 3. Eight-cell network with D, symmetry.
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Fig. 4. Lattice of subgroups of D,.

When theinternal dynamicsisat least two-dimensional, Theorem 2.2 there are
12 types of robust periodic solutionswith nontrivial temporal symmetries (H 2 K)
in this coupled cell system, and they are:

Z4 C Dy DS C D4 DSCDs  Z2CZs4
Z,cDy zZbcD) Z,cDy ZycDj
1 CZ4 1cz; 1czf 1cz

Note that there is only one symmetry generated subgroup that can correspond to
a robust periodic solution with a quarter-period phase shift and that subgroup is
given by thepair 1 C Z4.

3. CPG network for quadruped locomotion

The CPG network for quadruped locomotion is shown in Figure 1. The arrows
in Figure 1 determine the nearest neighbor coupling between the cells as well as
the symmetry of the network. In principle, there can be as many couplingsin this
network as desired, aslong as the couplings respect the symmetry group of the net-
work. That is, each coupling generatesagroup orbit of couplings, and the couplings
must not change the symmetry group of the network. For instance, it is possible
to have bidirectional coupling between neighboring cells in the rings, as long as
the coupling in one direction is different from the coupling in the opposite
direction.

In order to understand why an eight-cell network is the simplest network that
can describe quadruped locomotion, we make explicit the modeling assumptions
that preclude four-cell networks. Two of our modeling assumptions are:
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Fig. 5. Schematic four-cell network for gaitsin four-legged animals.

(A1) Each cell inthe CPG network sendsits signal to only one leg.
(A2) Different gaits are modeled by nonconjugate periodic solutions.

Consider the four-cell network of Figure 5. By (A1) we can identify each cell
with aleg and without loss of generality we can assume that the signal from cell
1 goesto the left hind leg. Suppose that the four-cell network produces awalk. In
a quadruped walk the animal moves its left hind leg, then its left fore leg, then its
right hind leg, and then itsright fore leg — each with a quarter-period phase shift.
Since symmetries of this network are permutations of the four cells followed by
a phase shift, it follows that there must be a four-cycle that is associated with the
walk. By renumbering the cells, if necessary, we can assume that that four-cycleis
(1 32 4). It then follows that cell 3 must send its signal to the left fore leg, cell 2
to theright hind leg, and cell 4 to the right fore leg, as shown in Figure 5.

A trot is a gait in which the diagonal legs move synchronoudly; that is, the
permutation (14)(23) isasymmetry of atrot. Both atrot and apace are gaitswhere
interchanging left and right legs is associated with a half-period phase shift; that
is, asymmetry of these gaitsisthe permutation (12)(34) followed by ahalf-period
phase shift. Finally, in the pace gait the animal movesits|eft legsand itsright legs
synchronously. Therefore, the permutation (13)(24) is a symmetry of a pace. We
emphasize that the quarter-period phase shift of thewalk, and the half-period phase
shift of trot and pace is exact even under parameter perturbations. We make this
additional assumption.

(A3) The network has robust periodic solutions that model walk, trot, and pace.

Theorem 3.1 ([15]). Suppose that the four-cell network satisfies (A1), (A2), and
(A3). Then trot and pace are conjugate solutions.

Proof. Let ' C S4 be the symmetry group of the network. Since the walk is ro-
bust, the four-cycle (1324) e TI'. Suppose that the subgroups corresponding to
trot and pace are symmetry generated, then (12)(34) € I'. Moreover, trot implies
(14)(23) € I" and pace implies (13)(24) € I'". Note that

(1324) - (14)(23) - (1324)~1 = (13)(24)
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(1324) - (13)(24) - (1324)~ = (14)(23)
(1324) - (12)(34) - (1324) "1 = (12)(34).

Thus, (1324) conjugates the generators of the symmetry groups of trot and pace
and these subgroups are conjugate. ]

The conseguence of Theorem 3.1 isthat four-cell networks cannot model walk,
trot, and pace unlesstrot and pace are conjugate periodic solutions. Therefore, we
must consider symmetric cell systems with more than four cells.

From [15], we know that there exists a cell to leg assignment for an eight-
cell network with Z4 x Zo symmetry of Figure 1 that can produce nonconjugate
walk, trot, and pace robust periodic solutions. Theorem 3.2 showsthat the eight-cell
guadruped network with Z4 x Z> symmetry isthe smallest network that can model
walk, trot, and pace without unwanted conjugacies. To prove this result we make
an additional assumption.

(A4) Thesymmetry group of the coupled cell network actstransitively onthecells;
that is, every cell can be mapped to any other cell by a symmetry.

Theorem 3.2. Let A" beaI'-symmetric cell network. Assumethat ./” isa network
satisfying (Al), (A2), (A3), and (Ad) with minimum |T"|. Then /" is the quadruped
eight-cell network withT' = Z4 x Z».

Proof. Thegroup I' must contain at least afour-cycle permutation » to account for
the quarter-period phase shift of the walk and « must permute the signals sent to
the four legs. Thus the network contains at least four cells, say cells 1,3,5,7 which
w permutes cyclically. Pace and trot have a half-period phase shift between left
and right; so I' must contain atransposition, say «. There are three possible cases:
gither k = w?, ¥ and w commute, or k and w do not commute. We consider the
three possibilitiesin turn.

Suppose that ¥ = w?, then I = Z4. Transitivity then implies that the network
has four cellswhich isruled out by Theorem 3.1.

Next, suppose that ¥ and @ commute. Since k # ?, there exists a fifth cell,
labeled 2, such that « interchanges cell 1 with cell 2. Since kw = wk, then «
must send cell 3 where o sends cell 2; label this sixth cell 4. Repeating the above
argument with k@ = wx shows that there is a second ring of four cells. Thus, we
obtain the quadruped network with Z4 x Z; symmetry.

Finally, suppose that x and w are noncommuting permutations: they generate
the group D4. Since [T'| isminimal, I' = D4. Transitivity implies that the network
has four or eight cells, and the case of four cellsisruled out by Theorem 3.1.

Suppose that U(¢) is a 1-periodic solution to the differential equationsin the
eight-cell system that modelsawalk. A walk ischaracterized by permuting the legs
from left rear to left front to right rear to right front coupled with a quarter-period
phase shift. For walk to be modelled by arobust periodic solution, there must be a
four-cycle in the group that induces the quarter-period phase shift on U (¢). There
are two possible four-cyclesin D4 — w and w®. Since these four-cycles are conju-
gate, we may choose either one to induce the quarter-period phase shift in the walk
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— and we choose w. So L
oU(t)y=U <t — Z) . (31

Transitivity of D4 impliesthat the eight cells divideinto two rings of four cells
that are cyclicly permuted by w. See Figure 3. We can number these cells so that

w=(1357)(2468).

Transitivity of D4 implies that « must permute the two rings of four cells that are
permuted by ». We can choose cell 2 so that « permutes cells 1 and 2. It follows
from the identity kw = w3« that

k= (12)(38)(56)(7 4).
Suppose that we write the walk solution

U(t) = (ua(t), ..., ug(t))

where u ; (¢) denotes the output from cell ;. It follows from (3.1) that

_ 1 _ 1 _ 3
usz(t) =uy (t—Z), us(t) = u1 (l—§>, u7(t) = u1 (t—Z)

and

_ 1 _ 1 _ 3
ug(t) = us (l—Z), ug(t) = us (t—z), ug(t) = us (t—Z).

We can number the cells so that cell 1 sendsits signa to the left hind leg. It
follows that the signal from cell 3 is sent to the left fore leg, the signal from cell 5
is sent to the right hind leg, and the signal from cell 7 is sent to the right fore leg.

Next we explore the implications of existence of asymmetry generated 1-peri-
odic solution V (¢) = (v1(z), ..., vg(t)) that represents either atrot or a pace. The
trot and pace solutions have the half-period phase shift between signals to the left
and right legs. Pace has the same signal going to front legs and hind legs, and trot
has the same signal going to pairs of diagonal legs.

It follows from « symmetry that

v2(t) = v1 (1 + %

va(t) = v7 (1 + %

ve(1) = vs (1 + 3

vg(t) = v3 (t + %) .
Notethat « iscontained in aunique subgroup of D4 that isisomorphicto D2, namely
Da(k, w?, kw?). Thereisalso aunique subgroup of D4 that isisomorphic to D, and

which does not contain «, namely, Do (kw, w?, k®®). Therefore, the classification
of robust periodic solutions in Section 2 shows that there are three possible types
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of periodic solutions having « as a spatio-temporal symmetry with a half-period
phase shift and also having a nontrivia spatial symmetry. They are:

Do(kw, wz, Ka)3) C Dg
Zg(a)z) C Do(k, w2, sz)
Zz(/ca)z) C Da(k, a)z, Ka)z)

The restrictions on the signals going to each cell in each of these symmetry
types of solutions are:
RF ||vy <t + %) 78| wvi(r)
RH| vi0) |56l (r+
LF||v (t + %) 34 i)
LH vi(®) |120v

RF v3(t) |7 8lvz (¢t

:)

1(1+9)

RH vi(®) |56v (t+2)
e

(1+3)

(1+4)

I\JII—\

LF v3(t) |34v t+2

LH v1(1) 12\v1 (1t +

RF||v3(t+3)|78Jv

RH || Et+%§ 56| vi(t)
LF v3(t) |34 wv3()
LH| no  [120u (1 +3)

The cells to legs assignment for the right cells is also restricted by the walk.
Hence suppose that cell 4 sends its output signal to the left hind leg, then we have
two possible assignments: 4-LH, 6-LF, 8-RH, 2-RF or 4-LH, 2-LF, 8-RH, 6-RF. We
can choose either one of the above assignments to illustrate the remainder of the
proof. Note, however, that regardless of the assignment of cellsto legs on the right
hand side, we can rule out the three periodic solutions shown above. In thefirst and
second periodic solutions, the signals sent to the left hind leg and theright hind leg
are in-phase. Therefore they cannot be either a pace or a trot. The third periodic
solution is a candidate for either a pace or atrot because of the half-period phase
shift between left hind and right hind. Since pace and trot are nonconjugate, this
symmetry type cannot model both trot and pace. Hence, robust periodic solutions
modelling walk, trot, and pace do not coexist in this network. |

Notethat there existsan eight-cell network that consists of two disjoint four-cell
networks which produces nonconjugate symmetry generated walk, trot, and pace
periodic solutions. One subnetwork is a four-cell network with Z4 symmetry that
models walk, and the other is a four-cell network with Do symmetry that models
pace and trot, see [9]. Periodic solutions of this network have symmetry groups
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Table3. Cell toleg assignment in Figure 1.

7 8 LH RH

5 6 LF RF
—

3 4 LF RF

1 2 LH RH

based on Z4 x Do. In this eight-cell network, signals can be sent to the legs si-
multaneously from each subnetwork. So, modeling of quadruped CPG with two
four-cell models requires the existence of an external control that determine which
gait is sent to the legs.

The existence of an external control for the CPG does not seem to be justified
by the physiological data. It is known that external controls from the cerebellum
to the CPG contribute to the coordination of gaits. It seems that these signals are
not necessary, since less coordinated locomotion can be carried out even after cer-
ebelloctomy, see Grillner [19] p. 1207-1208. Note that there is evidence that the
initiation and control of the CPG for locomotion depends on a variety of signals
coming fromthebrain stem, see[19] p. 1209-1213. However, much evidence shows
that the CPG has enough flexibility to produce different locomotor behavior even
inthe absence of inputsfrom the brain or peripheral feedback, Grillner [19] p. 1213
and Pearson [31] p. 270. Hence, the two independent network CPG model is too
restrictive.

Theorem 3.2 shows that there is only one possible eight-cell network that can
produce the nonconjugate gaits walk, trot, and pace, and that this network has
Z 4 x Zo symmetry. We proved thistheorem assuming that the signal from each cell
istransmitted to precisely oneleg. So far, however, we have not discussed how the
assignment of cellsto legsis made in this abelian network. There are a number of
different and consistent ways in which the cell to leg assignment can be made of
which the assignment implicit in Figure 1 isonly one. In [15] we assumed that the
signals from cellsto legsisthe one given in Table 3.

In our discussions in [15] we assumed that the top four cells (1, ..., 4) con-
trolled the gait rhythms and that, in effect, the bottom four cells (5, . . ., 8) served
only the role of correctly propagating the signals. Under this assumption there are
many different waysto maketheleg assignment of cells5, . . ., 8 that are consistent
with the network symmetry. In [16], however, we discussed evidence suggesting
that each cell signalsaparticular musclegroupinaparticular leg. Sinceeachjointis
controlled by two primary muscle groups (flexors and extensors), this may explain
physiologically why the doubled-up eight-cell network, as opposed to a four-cell
network, is needed to produce walk, trot, and pace. If this supposition is correct,
then there is a natural restriction to put on the cell to leg assignments, as we now
explain. Moreover, with this restriction, there exist only two possible cell to leg
assignments.

Suppose that F : cells — legs is a possible assignment. We assume that
each leg is assigned two cells and, without loss of generality, we can assume that
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F(1) = LH,thatis, oneof thetwo cellsthat isassigned totheleft hindlegiscell 1.
Based on the cell to muscle group interpretation of a CPG areasonable assumption
about F states that if the signals from cellsi and j are sent to the same leg, then
for any network symmetry y the signals from cells yi and yj are also sent to the
same leg. In symboals:

If F(i) = F(j), then F(yi) = F(yJ). (3.2)

With this assumption we prove that there are precisely two different assignments
of cellsto legs.

Theorem 3.3. Assume that the cell to leg assignment F satisfies F(1) = LH and
(3.2). Then F isone of the two cell to leg assignments given in Table 4.

Proof. Asin the proof of Theorem 3.2 the four-cycle permutation « accounts for
the quarter-period phase shift of the walk and the transposition « accounts for the
half-period phase shift between left and right in the trot and pace. Transitivity of
thegroup Z4 x Z, impliesthat w permutes cyclically four cellsthat we can number
1,35,7.

Since k and w commute and k # w?, there exists a fifth cell, labeled 2, such
that « interchanges cell 1 with cell 2. It follows that

w=(1357(2468 ad « = (12)(34)(56)(78).

We assume for definiteness that the signal from cell 1 goes to the left hind
leg. Since « reflects the interchange of left with right in the trot, the signal from
cell 2 must be sent to the right hind leg. Similarly, since w is responsible for the
quarter-period phase shift in the walk, the signal from cell 3 must be sent to the left
fore leg and then « implies that the signal from cell 4 is sent to the right fore leg.

In principle, the signal from cell 5 can be sent to any of the four legs. It is
straightforward to check that if the signal from cell 5 is sent to either the left hind
or theright hind leg, then (3.2) forces the leg assignments given in Table 4.

If the signal from cell 5 is sent to either the Ieft fore or the right fore leg, then
(3.2) forcesacontradiction. First, if that signal is sent to the left fore leg, then since
o maps cell 3to cell 5it must map left fore leg cellsto left fore leg cells by (3.2).
Therefore, the signal from cell 7 (which is mapped by » from cell 5) must also
be sent to the left fore leg. Moreover, applying « once again shows that the signal
from cell 1 must also be sent to the left fore leg, contradicting the assumption that

Table4. Céll toleg assignmentsin Theorem 3.3.

7 8 LF RF 7 8 RF LF
5 6 LH RH 5 6 RH LH

3 4 LF RF 3 4 LF RF
1 2 LH RH 1 2 LH RH
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the signal from cell 1 issent to theleft hind leg. Second, suppose that signal is sent
to the right fore leg. Since w maps cells 3to 5 and 2 to 4, it follows that w maps
cells assigned to the left fore leg (3) and the right hind leg (2) to cells assigned to
theright fore leg (5 and 4), which contradicts assumption (3.2). O

We call the first network listed in Table 4 the zig-zag network and the second
the criss-cross network. These networks are illustrated in Figure 6. See Section 7
for additional discussion of the differences between the zig-zag and criss-cross
networks.

4. Existence and stability of primary gaits
The general form of the coupled cell system that we analyzeis:
iy =Fuj)+ Y AijH@ui uj) (4.1)
i—j
whereu ; denotesthestate variablesincell j, F denotestheinternal dynamicsof the

cell, H denotes the coupling from cell i to cell j, A;; denotes coupling strengths,
and the sum is taken over those cellsi that are coupled to cell ;.

Fig. 6. Schematic eight-cell networks for gaitsin four-legged animals consistent with (3.2).
Top: The zig-zag network. Bottom: The criss-cross network.
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We now discuss how to find robust periodic solutions in the eight-cell CPG
model by utilizing Hopf bifurcations from a stand equilibrium. As was shown in
[15], thecell dynamicsmust be at | east two-dimensional in order to have Hopf bifur-
cationto atrot. Indeed, it can be proved using Theorem A.1 that robust trots cannot
occur in any eight-cell system having one-dimensional cell dynamics. We assume
that the cellshave two-dimensional internal dynamics. Wedenote F = (f, g) inco-
ordinates where f, g : R? — R are smooth nonlinear functions. Then the internal
cell dynamicsis given by

x = f(x,y)

4.2
y =g, y). 2

In this notation, we suppress the explicit dependence of f and g on parameters.

Following Kopell and Ermentrout [25] we say that the coupling function in
(4.1) isdiffusiveif H(u, u) = Ofor al u € R?. Otherwise, H iscalled synaptic. In
this paper we discuss only synaptic coupling; similar results are valid for diffusive
coupling and may befoundin[4]. In our analyseswe assumethat the coupling func-
tion has the form H(u;, u;) = (h(x;, x;), h(y;, y;)) where in the case of linear
synaptic coupling 2 (x;, x;) = x;.

The system of equations from the quadruped network is constructed asfollows.
Suppose that the coupling of the quadruped network is given by nearest neighbor
coupling only; that is, the coupling shown in Figure 1. Let «, 8 be the parameters
controlling theipsilateral coupling strength and y, § be the parameters that control
the contralateral coupling strength. From Figure 1, we see that the dynamical ac-
tivity of cell 7 and cell 2 contribute to the dynamics of cell 1 through ipsilatera
and contralateral coupling, respectively. Similarly, cell 8 and cell 1 contribute to
the dynamics of cell 2. The equationsfor the dynamics of cell 1 and 2 are therefore
given by

X1 = f(x1, y1) + ah(x7, x1) + yh(x2, x1)
y1 = g1, y1) + Bh(y7, y1) + 8h(y2, y1)
X2 = f(x2,y2) +ah(xg, x2) + yh(x1, x2)
y2 = g(x2, y2) + Bh(ys, y2) + Sh(y1, y2).

The dynamics of the ith cell in the quadruped network with nearest neighbor
coupling is given by

Xi = f(xi, yi) +ah(xi—2, xi) + Yh(Xite, Xi) 43)
vi = gxi, yi) + Bh(yi—2, yi) + 8h(Xite;, Xi),
where the indices are taken modulo 8 and ¢; = (—1) 1.

We now state the theorem of existence of primary gaits except pronk. In order
to prove the existence of atrot with linear synaptic coupling, we need to add ex-
tra couplings to the cell system. A bilateral coupling between cell 1 and cell 5is
necessary, and thus the group orbit of connections follows: cell 3 with cell 7, cell
2 with cell 6, and cell 4 with cell 8. Then the coupled cell system (4.3) with linear



Models of central pattern generators for quadruped locomation. | 309

synaptic coupling becomes

Xi= f(xi, Yi) + axi2 4 Y Xite + EXita

: (4.9
Vi = g(xi, yi) + Byi—2 +0Xite + NYita

Theorem 4.1. Consider cell system(4.4). Let (x;, y;) = (xo, yo) for all i beastand
equilibriumand let Lo be the Jacobian matrix of (4.2) at (xg, yo). Suppose that

Lo has nonreal eigenvalues. (4.5

Then by varying coupling parameters only, we can find a Hopf bifurcation from a
stand equilibrium to each of pace, bound, trot, walk, and jump primary gaits.

The proof of Theorem 4.1 failsfor trot (when second nearest neighbor coupling
is not present) and for pronk. However, we have found both trot (without second
nearest neighbor coupling) and pronk in the network by numerical simulation. See
Section 6.

Since the coupling functions are linear, the nonlinearities of the cell system are
independent of the coupling parameters. Therefore, by assuming conditionsjust on
the quadratic and cubic nonlinearitieswe can assure that all Hopf bifurcationsfrom
stand equilibria are supercritical.

We now discuss the stahility of primary gaits produced from stand by Hopf
bifurcation. To show asymptotic stability of primary gaits at Hopf bifurcation, we
need to show that all noncritical elgenvalues have negative real parts. We say that a
Hopf bifurcation is stable if the critical eigenvalues of the linearization are simple
and all other other eigenvalues have negative real part. Using this definition we
state our second theorem.

Theorem 4.2. Consider cell system (4.4). Restrict the coupling parameters by set-
tingd = y and& = n = 0. Assumethat a Hopf bifurcation from stand to a periodic
solution occurs at coupling parameters («o, Bo, Y0)-

Suppose that ag = Bo. Then, the Hopf bifurcation for

(@) apronkisstableif ag > 0, 9 > 0;
(b) apaceisstableif ag > 0, 9 < 0;
(c) abound isstableif ag < 0, yo > 0;
(d) atrotisstableif ag < 0, y9 < O.

Suppose that ag = — Bp. Then, the Hopf bifurcation for

(e) ajumpisstableif yp > 0;
(H awalkisstableif yo < 0.

The proof of Theorem 4.2 is found in Section 5.3. We note that when ag = £+,
the listed constraints on Hopf bifurcation are both necessary and sufficient. The-
orem 4.2 remains valid if |« — B8] and |y — §| are nonzero and small. Then, the
conditions for asymptotic stability depend on the sign of the sum of the coupling
parameters. For instance, atrotisasymptotically stableif ¢ +8 < Oandy +8 < O.

We say that the coupling is excitatory if the sum of the coupling parametersis
positive, and inhibitory if the sum of coupling parameters is negative. Note that in
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Theorem 4.2, excitatory coupling at the point of Hopf bifurcation leadsto solutions
with in-phase output signals and inhibitory coupling leads to output signals with
half-period phase shifts. Thisagreeswith the often encountered result that excitato-
ry coupling leadsto stable synchronization of oscillatorsand inhibitory coupling to
stable half-period phase shift (or anti-phase) oscillations. See [19] p. 1218 for bio-
logical examples, and [33] or [11] for mathematical examples. The quarter-period
phase shift along the Z4 rings of cells needed for the walk and jump solutions is
achieved through neutral coupling: o + 8 = 0.
Our final result states when stable Hopf bifurcations are known to exist.

Theorem 4.3. In (4.2) assume
(x0, yo) isa spiral sink. (4.6)

If (4.4) haslinear synaptic coupling, then there exists coupling parametersleading
to a stable Hopf bifurcation for bound, pace, and trot.

The proof proceeds by finding parameter values as in the hypotheses of The-
orem 4.1 where Hopf bifurcation actualy exists. For walk and jump, the Hopf
bifurcation points of Theorem 4.1 do not seem to lead to asymptotically stable pe-
riodic solutions and we have not been ableto prove aresult similar to Theorem 4.3.
Thedifficulty infinding asymptotically stablewalk and jump by Hopf bifurcationis
based on the fact that stand equilibria move in phase space as coupling parameters
are varied. Hence, finding the location of Hopf bifurcation points leading to a sta-
ble walk and jump requires the use of numerical approximations or path following
software such as AUTO. These gaits can be found by numerical simulation of the
cell system equations. See Section 6.

5. Proof of existence and stability theorems

In this section, we prove the existence and stability results stated in Section 4. To
prove these results, we need to compute the eigenvalues of the linearization of the
system of equations of the network at a stand equilibrium. In the first subsection,
we show how astand equilibrium depends on the coupling parameters. The second
subsection is devoted to the computation of the eigenvalues at the stand and the
third subsection is devoted to the proofs of the results stated in Section 4.

5.1. The stand equilibrium

A stand is an equilibrium that is fixed by all symmetries of the network. Next we
consider how stand equilibriadepend on parameters. Let (xg, yo) bean equilibrium
of (4.2).

Proposition 5.1. Assume (4.5) is valid and the coupling is linear synaptic. There
exists a family of stand equilibria parametrized by the coupling parameters:

(‘xo(a7 ﬁ’ y’ 8’ %" 77)7 yo(a’ ﬂ’ )/’ 8’ S’ n))’
for (a, B, v, 8, €, n) in a neighborhood of the originin R%.
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Proof. Finding equilibria of the coupled cell system requires solving 16 nonlin-
ear equations. However, at a stand equilibrium, where the cells are all equal, the
equations decouple into eight identical systems of two eguations. This system is:

X=f@x,y)+@+y+&x=0

5.1
y=gx, )+ B+5+ny=0. ®1)

We apply the implicit function theorem to (5.1) asfollows. The linearization (with
respect to the state variables x and y) is Lo + A where Lg has nonzero eigenvalues
by (4.5) and A has entries near zero. Therefore, Lo + A has honzero eigenvalues
and the implicit function theorem allows us to solve for x and y in terms of
o, B, v, 8. m]

5.2. Eigenvalues of the linearization at the stand

We compute the eigenvalues of the linearization L of system (4.3) and (4.4) at the
stand equilibrium. In particular, we areinterested in thereal part of the eigenvalues.
We take advantage of the isotypic decomposition of the complexified phase space
(C®)2 to compute the diagonal block structure of L. Let

A ab  B= a0 CC= y 0 . D= 0 .
cd 0p 06 On
Equation (4.4) hasthe linearization

[ACO00DOBO]
CAO000DOB
BOACOODO

,_|0BCcaco0o0D]| 52

DOBOACOO

ODOBCAOO

0O0DOBOAC

000DOBCA,

The action of Z4 x Z5 on phase space permutes the indices of the cells. Therefore,
the phase space (R®)2 consists of two copies of the irreducible representations of
R8. The decomposition of R® into irreducible representationsis computed in detail
in[15] and [4]. Let

vik = (1, (=D, i, (=DkiT % (—Dki% 3 (—nhi¥).

The complex irreducible representations of the action of Z4 x Z, on c8are Vik =
C{vj},j=0,1,2,3andk = 0, 1. Thereal irreducible representationsare U j;, =
Vik for j =0,2andk =0, 1, Ujg = Re(V1g ® V3p), and U1 = Re(Vi11 ® Va1).
Bases for the irreducible representations U;; and the correspondence of these rep-
resentations to primary gaitsis givenin Table 5.
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Table5. Quadrupedal gaits. In jump and walk choose either + or — throughout.

U Un Ui Un Uz Uan
1 3 3 3 1 11 1
00 ;| FaEl | FiEi | 33 | 20
oo [of| £ t| L o o0 |0}
1 1 1 1 3 11 1
00 | 03 | £3+5 | 35 | 23 | 30
oo |oi| o o| o t] 00 |0}
pronk | pace | jump* walk® | bound | trot

The linearization leaves the isotypic components invariant, see Theorem 3.5,
Chapter XII [17]. Since the irreducible representations V;; are nonisomorphic,
there is a basis where the linearization L decomposesin 2 x 2 complex diagonal
blocks L ;. Wefind the diagonal blocks by multiplying each eigenvector v j; from
the left by L. Table 6 lists the diagonal blocks. The diagonal blocks L j; where
j=0,2andk = 0, 1 arereal. The remaining diagonal blocks are complex.

The eigenvalues of the real diagonal blocks are easily computed from the trace
and the determinant. The trace of the real diagonal blocksislisted in Table 7. Let
Djr = (tr ij)2 —A4det L j;. Thevalueof D for thereal diagonal blocksislisted
in Table 8.

Theeigenvalues of the complex diagonal blocks are the same asthe eigenvalues
of therestriction of the linearization to the real irreducible representations Uy and
Uq1.

Table6. Diagona blocksof L when coupling islinear synaptic.

Diagonal Blocks (rea) Diagonal blocks (complex)
Lo=A+B+C+D) Ly=A—-Bi+C—-D
Lo=A+B-C+D) Lyu=A—-Bi—C—-D
Ly=A—-(B—-C—-D) Lxp=A+Bi+C—-D
Ln=A—-B+C—-D) Luy=A+Bi—C-D

Table 7. Tracefor thereal diagonal blocks.

Block Synaptic: tr L j;

Lo | (@+d)+ @+ ++)+E+n
Lo | (@+d)+@+p)—(+d+E+mn
Ly |(@+d)—(@+p)+x++E+n
Ln | (@a+d)—(@+B) -y +8H—-E+n)
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Table8. Dj, for thereal diagonal blocks.

Block Synaptic: D,

Lo | ((@—d)+(a@—B)+ (y —8) + (£ —m)?+4bc
Lo | ((@a—d)+ (a—pB)—(y — 8+ (£ —n)*+4bc
Lo | ((@—=d)—(a—pB)+(y =8+ (£ —n)*+4dbc
Ln | ((@—d)—(a—B)—(y —8) + (£ —m)*+4dbc

Theeigenvalues of the complex blocks L ;. arealso determined by thetraceand
determinant of the matrix. However, because the matrices are complex, the complex
eigenval ues need not be complex conjugates. We want to find an expression for the
eigenvalues of complex L j; intheformu + iv, whereu, v € R.

The eigenvalues of L j; are given by

% [trij 1/ (tr L)% — 4det ij} .

Write (tr L j;)® — 4det Lj; = ®j; +iWj;. Then,

, 1 12
VR F = [ @+ (@3 + w2)2]

i 1/2
+— [~ e+ (@2 + w227 (53)
Proposition 5.2. Let A ji = d)?k + \IJJ?k and 7;; = Re(tr L;;). The real part of
the elgenval ues of the diagonal block corresponding to the U fk i sotypic component
are:

<Tjk + % [q)lk + Aﬂz:ll/z) , 5.9
('L’jk - %2 [@a+ Ag;f]”) (5.5)

Proof. Just add the real part of the trace of L ;; to the real part of (5.3) in each
case. i

Letv =trA,A=det Aand.#" = (@ —B+y —8)°>—2(a—d)(a—B+y —9).
The expressions @ j; and W ;. are found in Table 9 and Table 10 respectively. The
derivation of @ ;; and W ;; isroutine, see Buono [4] for details.

Remark 5.3. From Tables 9 and 10, ®19 = ®39, ®11 = P31, Y10 = —W¥30 and
Wy = —W3. Snce W are squared in A j; We write the eigenvalues in Theo-
remb5.2 using only ®19, W19, ®11 and Wy1.
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Corallary 5.4. For both isotypic components UlzO and Ulzl, thereisa pair of com-
plex conjugate eigenvalues for which the real part is always larger than the real
part of the other pair of complex conjugate eigenvalues.

1/2 1/2
Proof. From Remark 5.3, since (<I>lk + A%,{2> = <d>3k + Aé,/cz) > 0. Then,
(5.4) is dways greater than (5.5). |

5.3. Proof of Theorems

In this subsection we prove the three results of Section 4. We begin by proving
Theorem 4.1. We then explain the limitations of the proof in the pronk case and the
trot case without second nearest neighbor coupling. Theorem 4.2 is proved through
Proposition 5.5 and Proposition 5.7. Finally, using Theorem 4.2 and Lemma 5.8
we prove Theorem 4.3.

The difficulty of the proof of Theorem 4.1 lies in the fact that in general the
stand equilibrium depends on the coupling parameters. In principlethisdependence
makes it hard to follow the location of the stand and hence its linearization. The
idea of the proof isto restrict the coupling parametersin such away that the stand
isindependent of the remaining coupling parameters.

We use the following simplifications of the eigenval ues at the stand in the proof
of Theorem 4.1. A consequence of (4.5) isthat v2 — 4A < 0 at (xo, yo) and thus
remains negative in a neighborhood of the origin in coupling parameter space. Set
a = B,y = & and & = n. Then the eigenvalues become simpler. In particular,
Djr = v2 — 4A for the real diagona blocks, see Table 8. Hence the real diago-
nal blocks have complex conjugate eigenvalues. Moreover, ® j; = v2 — 4A, and
W = 0, see Table 9 and Table 10 respectively. Hence, thisimplies that

D i + (@5, + Wit =o0.

We notethereal part of the eigenvalue with eigenspace U j; by o/ Table 11 shows
the real part of the eigenvalueswhena = 8, y = §,and & = 1.

Table9. Vauesof @ .

Blocks . synaptic
Lio, Lag | v —4A — (@ = B)* +[(y =8) — ¢ —nl[2a —d) + (y = 8) — (6 — n)]
Li, Ly | vV =4A - (@ =B +[(y =)+ E = nllly =8 + (€ —n) —2(a —d)]

Table10. Valuesof W .

Blocks W, synaptic
Lo —2(a—-Plla—d)+ -8 —E—n]
Ly 200 —=Plla-d)+ -8 —¢E—n]
Lu | —2(a—Plla—d) —(y =8 — (¢ —n)]
L3 200 —Plla—-d)—(y =9 — & —n)]
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Table 11. Real part of eigenvalueswheno = 8, y = §, and & = n: synaptic case.

Block Real part of eigenvalue Block | Real part of eigenvalue
Loo oo=Vv+2a+ty+§) Ly | on=v—2a+y—%)
Loy o =Vv+2a—y+§) Lo op=v+2y—2
Lo |on=v+2(—a+y+§& | Lu ou=v-—2y—2

Proof of Theorem 4.1. Consider the walk. The pace, bound and jump are done
in asimilar way. For these cases, we can assume that £ = n = 0. We work the
trot case below. Let o = g and y = §, then o1 = v — 2y. Let v = v|(xy, ) and
o = —y,then (x, y, y) = (x0, yo, vo/2) isasolution to the system of equations

Fx,y,a,y)=f(x,y)+(@+y)x=0
Gx,y,a,y) =g, y)+(@+y)y=0
Ex,y,a,y)=v—-2y =0.

At (xo0, yo, vo/2), thelinearization at the stand equilibrium hasapair of purely imag-
inary eigenvalues with eigenspace U11. The eigenvalues cross the imaginary axis
at speed E,, (xo, yo, vo/2) = —2 # 0since v doesnot depend on y wheno = —y.
Thus, aHopf bifurcation to walk occurs. See Table 5 where the correspondence of
U11 towalk is shown.

We can go alittle bit further. Note that the determinant of

of of
%(XO, yo) 3'—§(XO, Yo) Xo

d(F, G, E) :
Y m— = | 2 (x0, yo) 2 (x0, y0) ¥o (5.6)
I, y,y) (x0,y0,—v0/2,v0/2) gi Zi

ax (X0, yo) gy (%0, y0) —2

is generically nonzero since 2 (xo, yo)g—f,(xo, y0) — % (x0. y0) 2% (x0. yo) is non-
zero. Hence, by the implicit function theorem (x (), y(), @, y («)) is a solution
to F = G = E = Ofor dl values of « in aneighborhood of vg/2. Moreover, for
a possibly smaller neighborhood around vg/2 the nonzero speed crossing condi-
tion is satisfied on the branch parametrized by «. Thus, we have proved that if the
determinant of (5.6) is nonzero, there exists a branch of Hopf bifurcation leading
towalk.

Inthetrot case, welet & and n be different from zero. Set n = £. We solve the
system

Fx,y,a+y.8)=fx,y)+@+y+&x=0
Gx,y,a+y, &) =gx,y)+@+y+£ =0 (5.7)
Ex,y,a+y,8)=v—2a+y)+2=0.
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restricted to the subspace o + y + & = 0. A solutionto thissystemisat (x, y, « +
v, &) = (x0, yo, —vo/4, vo/4), s0 the linearization at the stand has a pair of imag-
inary eigenvalues with eigenspace Uz1. (See Table 5 for the relationship of Up; to
trot.) The eigenval ues crosstheimaginary axiswith speed E¢ (xo, yo, —vo/4, vo/4)
= 2 # 0since v isconstant on « + y = —&. We remove the restriction that
& = —(a + y). Asabove, the determinant of

A (x o
0, Y0) 35 (x0, Y0) X0
3(F,G, E) 0 %

dx, y, &) (x0,y0,—Vvo/4,v0/4)

9 d
= | 3%(x0,0) 3_[;()50, Y0) Yo

2 (x0. y0) g—;(XO, yo) 2

is generically nonzero. Hence, by the implicit function theorem (x (o + y), y(a +
y), E(a + y)) isasolutionto F = G = E = Ofor al valuesof « + y inaneigh-
borhood of —vg/4. Moreover, for a possibly smaller neighborhood around —vg/4
the nonzero speed crossing condition is satisfied on the branch parametrized by
a+y. O

Under assumption (4.5), the existence of trot without the second nearest neigh-
bor coupling and of pronk cannot be proved. Consider the case of trot. To obtain a
Hopf bifurcation from stand to trot we solve the following system.

fe, ) +@+y)x=0
gx, )+ (B+38)y=0 (5.8)
oxn=v—(a+y)—(B+3 =0

By settinga +y = 8+ = 0, (xo, yo) isasolutionto f(x,y) = g(x,y) =0.
Then o217 = 0 if and only if vg = 0. However, from (4.5), vg is not necessarily
equal to zero. Now, if welet either o + y or B + § bedifferent from zero, then the
existence of a stand solution for the system is not guaranteed anymore.

The same explanation is valid in the pronk case. Moreover, the existence of
pronk cannot be shown by adding extra connections in the network. When adding
an extra connection in the network, we find stand by solving

fx, )+ @+y+ux=0
g, +(B+35+py=0

where 1 and p are the coupling parameters for the new connection. We multiply
thelinearization L, see (5.2), by the eigenvector vgg. Then the trace of the diagonal
block Log isv+ (@ + B8+ y +8 + u + p) and it corresponds to the real part of the
eigenvalue of Lgg. Hence, the same obstruction as was shown above occurs.

We now turn to the proof of the stability result. Note that for diagonal blocks
L1o and L11, we always refer to the real part of the eigenvalue with greatest real
part, see Corollary 5.4.

Let 2, be the periodic solution produced from Hopf bifurcation with eigen-
space contained in U7,
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Proposition 55. Let o« = 8, y = 8, and &€ = n = 0 in network (4.4). Suppose
that a Hopf bifurcation from stand occurs for («g, o) to a periodic solution 2.
Consider the following statement:

+1ifj=0
sgnyo = (—D* and «p= / (5.9)
_1ifj=2

Supposethat 2 = 2 ;. Then 2 is asymptotically stable if and only if (5.9) holds.

Proof. We show the theorem in the L case; that is, atrot periodic solution bifur-
cates. A trot bifurcates when 021 = 0, that isv = 2(a + y). We substitute v in
Ojk, (j. k) # (2,1). Then, oo = 4(a + y), oo1 = 4et, 020 = 4y, 010 = 20 + 4y
and 011 = 2. S0, al noncritical eigenvalues at the Hopf bifurcation have negative
real partsif andonly if « < 0and y < 0. The proof for the other gaitsisdonein a
similar way. |

Proposition 5.6. Leta = 8 # 0, y = §, and & = n = 0 befixed in network (4.4).
Suppose that either matrix L1g or L1; hasa simple imaginary eigenvalue, then at
least one eigenvalue has a positive real part.

Proof. If v = 2y, then o190 = 0. SO, 0p1 = 20 and 021 = —2«. Thus, for any
value of @ # 0, one of thereal partsis positive. A similar argument showsthe L11
case. O

Consider now the diagonal blocks L1gp and L1;. Let 8 = —a and y = 6. If
we choose o # 0 small enough, then o for the real blocksis given by the trace:
oo =0 =Vv+2yandog =021 =v—2y.Wheny =6, ®190 = ®11 =
and Wig = W1y = W, then oy = v + 2y + %(dD + (@2 + ¥2)1/2)1/2 gng

o1 =V =2y + 35(® + (P2 + WHYA)2,

Proposition 5.7. Let« = —8, y = §, and & = n = 0in network (4.4). Suppose
that a Hopf bifurcation fromstand occursfor («g, y0) toaperiodic solution 2. Sup-
posethat 2 = 21;. Then 2 isasymptotically stableif and only if sgnyo = (—1)*.

Proof. Solve a1g = 0 by isolating v:

1
V= 2y — —(® + (% 4+ VY22, 5.10
Y7 (5.10)
Replace v in 011, ooo, and opy, respectively. After simplification we obtain —4y,
— (@ + (@7 + WAHYATZ and —dy — (@ + (92 + WAYA)V2 Itisensy to
see that these three quantities are negative if and only if y > 0. Solve o117 = O for
v

1
v =2y — 72(@ + (@2 + w2112, (5.11)

Replace v in 019, ogo, and o1, respectively. After simplification we obtain 4y,
4y — %(cb + (9% + w?)1/2)1/2 and —%Z(cb + (9% + w2212 |t is easy to
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see that —%(@ + (92 + w2)Y/2)1/2 js always negative and that 4y is negative
if and only if y < 0. Therefore, 4y — \i@(cb + (P2 + vH1/2Y2 s gdso
negative. O

We need the following lemmafor the proof of Theorem 4.3

Lemmab5.8. Leta = B,y = §,and& = nin(4.4). Supposethat a Hopf bifurcation
from stand at («o, 0, £0) leads to a trot periodic solution. Then Hopf bifurcation
totrotisstableif and only if g < 0, yo < 0, and &y > /2.

Proof. Trot isfound on the subspace ¢ = —(a + y). Solving 021 = 0 we obtain
vo = 20+ 2y —&. Replacingino i for (7, k) # (2, 1), weobtainog = 4(a + ),
010 = 4a, 090 = 4y, 011 = 20 — 4&, and o190 = 2a + 4y — 4&. Now, ogg < O,
o010 < 0,and oy < Oifandonly if« < Oandy < 0. Thusé = —(x¢ + y) > 0,
and therefore, 011 and o1 are al'so negative. O

Proof of Theorem 4.3. We assume y = —a to find pace and bound. On that
subspace the stand equilibrium does not move and so v = vg. Now og; = O if
and only if ag = —vp/4. Since the cell dynamics satisfies (4.6), then g > 0, and
yo = —ag < 0. From Theorem 4.2 the Hopf bifurcation to pace is stable. Now,
o0 = Oif and only if ag = vp/4. Similarly, sincethe cell dynamics satisfies (4.6),
ag < 0and yp > 0. From Theorem 4.2, the Hopf bifurcation to bound is stable.
We solve o1 when & = —(a + y) by setting &g = —vp/4 > 0. Sincevp < 0
by (4.6), take g < 0 and yp < O suchthat — (g + y0) = —vo/4. Since&y > 0, by
Lemma 5.8 the Hopf bifurcation to trot is stable. O

6. Numerical ssimulations
Numerical simulations are performed using the dimensionless Morris-Lecar equa-
tions[34,30] ascell dynamics:

V= —gcamW)(v—=1) —g(v—v) —gxww —vg) +i = f(u,v)

w = ¢t (v)(n(v) — w) = g(u, v)

m(w) =3 <1+tanh (U — vl))
v2

n() = % <1+tanh <v — v3>>
v4

7(v) = cosh (UZ_ U3>

v4
Using the results of the previous section we can locate Hopf bifurcation points
leading to stable primary gaits. Hypothesis(4.6) i ssatisfied for thefollowing param-
eter values of the Morris-Lecar equations. ¢ = 0.2, v1 = 0.2, v = 0.4, v3 = 0.3,
v4=02gc,=3,=06,gx =18 v, =-18vxk =-08,i =1

where
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Table 12. Approximate values of synaptic coupling parameters where stable Hopf bifurca-
tions occur.

Gat a=B8 y=68 &=n
Pace 0.3 -0.32 0
Bound -0.32 0.3 0
Trot 0.15 -016 -0.31

Table 13. Synaptic coupling parameters where primary gaits are found: ¢ = n = 0.

Gait o B y 8 Gait o B y 8
Pronk 0.2 0.2 0.2 0.2 Trot -06 -06 -06 -06
Pace 0.2 02 -02 -02|Jdmp 001 -001 02 0.2
Bound -02 -02 0.2 02 | wak o001 -001 -12 -12

The stand equilibrium is at (vo, wo) ~ (0.31, 0.52), and v ~ —1.24. From
the proof of Proposition 4.3, we find parameter values for stable Hopf bifurcation
points to pace, bound and trot, see Table 12. The genericity condition in the proof
of Theorem 4.1 iseasily verified for pace, bound, and trot. Table 13 shows coupling
parameter valueswhere primary gaits are observablein numerical simulations. The
numerical simulations shown in Figure 2 are the trot and walk periodic solutions
for the valuesin Table 13.

7. Discussion and summary

In this paper, we contribute both to the modeling of central pattern generators for
quadruped locomotion by coupled cell systems of differential equations and their
anaysis.

We contribute to the modeling of quadruped locomotion CPGs by proving that
the smallest symmetric network that can model walk, trot and pace as nonconjugate
periodic solutionsisthe Z4 x Z, network introduced in[15] (see Theorem 3.2). The
proof of this result is based on a general classification theorem for robust periodic
solutions in symmetric coupled cell systems (see Theorem 2.2).

One of the main tenets in modeling locomotion CPGs by coupled cell systems
is that the signal from each cell is transmitted to precisely one leg. Although the
modeling of walk, trot, and pace leads to one eight-cell network whose symmetry
group is Z4 x Zj, it does not lead to a unique choice of assignment of cells to
legs. Indeed, many such assignments are possible. However, when we make the
additional assumption that symmetries of the network permute pairs of cells that
send signalsto the sameleg, then only two cell to leg assignments are possible (see
Theorem 3.3). In [16] we have presented evidence that it is better to think of the
signals going from cells to muscle groups (as two muscle groups — flexors and
extensors — are needed to control each joint). This interpretation gives a physio-
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logical basis for the existence of a doubled-up eight-cell network, as opposed to a
simplefour-cell network, and makes the assumption on cell to leg assignment seem
even more natural.

These two remaining assignments, the zig-zag network and the criss-cross net-
work (see Figure 6), have the property that for primary gaits the cells that send
signals to the same leg are either in-phase or a half-period out-of-phase. In the
zig-zag network, the cell signalsto the sameleg are out-of-phase in walk and jump,
whilethe cell signalsarein-phase for the remaining primary gaits; in the criss-cross
network, the situation is reversed. The evidence for signals being sent to muscle
groupsin[16] isbased on bipeds where thereis a distinction between the run (cells
in-phase) and walk (cells out-of-phase). This allows a mathematical classification
of quadruped gaits as either walk-like or run-like depending on whether the two
signals are out-of-phase or in-phase. It remains to be seen whether there is a cor-
responding physiological distinction between the walk-like and run-like gaits in
guadrupeds. Such a distinction would further confirm the validity of doubled-up
networks for modeling locomotion CPGs.

Regarding the analysis of the Z4 x Z, network, we have shown (using Hopf
equivariant bifurcation theory) that coupling parameters can control the existence
and stability of primary gaits by making only mild assumptions on the internal
cell dynamics (see Theorems 4.1 and 4.2). Our assumptions are: the cells are two
dimensiona with an equilibrium having nonreal eigenvalues and the coupling is
linear synaptic. These results tell us how to find primary gaits in the network and
we do this computationally when using the dimensionless Morris-Lecar equations
asinternal dynamics. The question of how to find secondary gaitsin the Z4 x Z;
network is addressed in Buono [5].

The structure of our model network (as a symmetric coupled cell system) pro-
duces severa testable predictions (some of which were outlined in [16]). These
predictions include the existence of the jump gait, the physiological differences
between primary and secondary gaits, and the physiological differences between
walk- and run-like gaits. Moreover, these predictions are consequences of the dou-
bled-up network, which is forced on us simply by trying to model mathematically
walk, trot, and pace.

A. Appendix: Symmetry-generated subgroups

We prove Theorem 2.2 by characterizing all symmetry-generated subgroups of I'-
equivariant differential equations (2.1) when I' C O(n) isafinite group and then
specializing this result to coupled cell systems. The proof of the general theorem
isimplicit in the work of Field et al. [12].

Let K C H beapair of subgroups of I'. In addition to (2.2), there are four
restrictions imposed on this pair so that a periodic solution U (¢) of (2.1) can exist
with spatial symmetries K and spatio-tempora symmetries H.

Thefirst restriction isasfollows. Supposethat Uy isany point on thistrajectory
and suppose that

yUp = Up. (A.D
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Then, uniqueness of solutions guaranteesthat y U (1) = U (¢) for every ¢. It follows
that (y, 0) is a spatio-temporal symmetry of U (t) and that y € K. The subgroup
of " consisting of all y satisfying (A.1) iscalled theisotropy subgroup of Ug. Thus

K isanisotropy subgroup of the action of I" on R". (A.2)
The second restriction is straightforward:
dimFix(K) > 2, (A.3)

where
Fix(K)={U eR":0U =U Vo €K} (A.9)

isthe fixed-point subspace of K. By definition aperiodic solution with spatial sym-
metries K must lie in the subspace Fix(K ). Hence the dimension of Fix(K) must
be at least two.

A consequence of the discussion preceding restriction (A.2) is. If U(0) €
Fix(X), then the trgjectory U(r) must lie in the subspace Fix(X) for al ¢; that
is, fixed-point subspaces are flow invariant. Define

Lk = | Fix(y) N Fix(K)
1224

Melbourneet al. [29] use (avariant of) L torestrict the possible symmetry groups
of attractors; we now explain how thisis done for periodic solutions.

Since K isanisotropy subgroup, L x istheunion of proper subspacesof Fix(K).
More precisely, suppose that Fix(y) > Fix(K), then the isotropy subgroup of ev-
ery point in Fix(K) would contain both K and y ¢ K. Therefore, the isotropy
subgroup of any point in Fix(K) would be larger than K, and K could not be an
isotropy subgroup.

The third restriction placed on symmetry generated subgroupsis:

H fixes aconnected component of Fix(K) — L. (A.5)

To verify (A.5) we begin by showing that any § € N(K), where N(K) is the
normalizer of K in ", permutes connected components of R" — L . Observe that

S(Fix(y) NFix(K)) = Fix(8y8™1) NFix(§K8™Y) = Fix(8y86~1) N Fix(K)

Moreover, 88~ & K. If it were, then y would bein§~1K 8 = K, whichitisnot.
Therefore, § : Lx — Lg. Sinced isinvertible,§ : R" — Ly — R" — Lg and §
permutes the connected components of R” — Lg.

Since H/K is cyclic, we can choose an element & € H that projects onto a
generator of H/K. Notethat 4 € N(K) and therefore i permutes the connected
components of R" — Lg. We now show that # (and hence H) must fix one of
the connected components. Suppose that the trajectory of x () intersects the flow
invariant subspace Fix(y) N Fix(K). Flow invariance of Fix(y) impliesthat y isa
spatial symmetry of the solution x (¢) and, by definition y € K. Therefore, thetra-
jectory of x(¢) doesnotintersect L g . Sinceh isaspatio-temporal symmetry of x(¢),
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it preservesthetrajectory of x(¢). Therefore, h must map the connected component
of R" — Lk that contains the trgjectory of x(¢) into itself, thus verifying (A.5).
The last restriction occurswhen dim Fix(K) = 2:

If dmFix(K) =2, theneither H = K or H = N(K). (A.6)

A simple example illustrates the difficulty. Suppose that I' = Z4(p) acting by ro-
tationson R, H = Z»(p?) and K = 1. Observethat H/K = Z, iscydlic, K is
an isotropy subgroup, dimFix(K) = 2, and Lk = {0}; so all previous restrictions
are satisfied. Note, however, that N(K) = Z4 and hence N(K) 2 H 2 K. Final-
ly, suppose that x(¢) is a T-periodic solution whose spatio-tempora symmetry is
p%x(t) = x(t + L). Thetrajectory of x(r) must avoid the origin and, because p? is
rotation by 7, thetrgjectory must havethe origininitsinterior. Inthiscase p{x(¢)}
must intersect {x(7)}. Hence p{x(#)} = {x(¥)} and px(#) = x(t = %); that is, the
spatio-temporal symmetry group islarger than H. In effect, thisisthe only type of
difficulty that can arise, as we now show. Suppose that H ; K;thenH/K =2,
for somem > 2. Weclaimthat H/K isgenerated by arotation; theonly other possi-
bility isthat H/K = Z»(t) wheret actsasareflectionon Fix(K). Sincet{x(¢)} =
{x(®)} it followsthat {x(¢)} NFix(t) # @. Thus {x(¢)} C Fix(t), whichisnot pos-
sible. Asintheexample, H/K isgenerated by arotation. It followsthat Lx = {0};
otherwise, Fix(K) — L ¢ has more than one connected component (which must be
wedges) and none of these can be fixed by arotation. Asin the example, x () must
contain the origin in itsinterior. If y € N(K) — H, then y{x(z)} must intersect
{x (1)} and the spatio-tempora symmetry group of x(z) must be larger than H.

Theorem A.1. The pair of subgroups K C H corresponds to a symmetry gener -
ated subgroup if and only if the pair satisfies (2.2), (A.2), (A.3), (A.5), and (A.6).
Moreover, asymptotically stable limit cycles with the desired symmetry exist.

Proof. Inthe preceding discussion we have proved that the five conditions are nec-
essary; now we prove that they are sufficient. We must prove the existence of a
robust periodic solution with space symmetries K and spatio-temporal symmetries
H . We sketch that proof here showing, in addition, that the robust periodic solution
can be a stable limit cycle.

Choose a generator h of H/K = Z,,. By assumption, H fixes a connected
component C of Fix(K) — Lx. Recall that N(K) C T isthelargest subgroup that
acts on Fix(K) and that elementsin N (K) permute the connected components of
R" — Lk . Define

H={yeNK):y(C)=C}.
Two points need to be verified.

(8) Thereisanon-self-intersecting closed curve J in C that ismapped ontoitself by
h andno point on J isfixed by . Moreover, y (J)NJ = ¢foral y € H — H.If
S0, we can construct aC > vector field f on C for which J isastablelimit cycle
andwecansmooth f sothatitiszeronear L andneary (J) foraly € H — H.
(b) Thereisasmooth extension of f to all of R” that is I"-equivariant.
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Once these points are verified the proof may be completed asfollows. Since K
isanisotropy subgroup, the space symmetry subgroup of J isK. Sinceh : J — J,
h is a spatio-temporal symmetry of J and the spatio-temporal symmetry group of
J is H. Proving that hyperbolic periodic solutions with space symmetries K and
spatio-temporal symmetries H arerobust (that is, they perturb to periodic solutions
with the same symmetry subgroups) is straightforward. Since hyperbolicity implies
that the perturbed periodic solution V (¢) is unique, it followsthat V (z) € Fix(K)
for al ¢ and that 2V (¢) must be the same trgjectory as V (¢). Since the number of
temporal symmetriesof U (r) ism, it follows by continuity that the spatio-temporal
symmetries of V (¢) form the subgroup H .

To verify (a) choose a point x1 € C and form the group orbit x; = 4/x1 for
j =2,...,m.Notethat the pointsx; € C sinceh : C — C. Choose a non-self-
intersecting smooth curve J; in C connecting x1 to x2, which is possible since C
is connected. We can also arrange that near its endpoints J1 isastraight linein the
directions vy and vo, where (dh)y, (v1) = h(v1) = v. Now let J = U;h/ (Jy).
By construction J C C isasmooth curve that isinvariant under . There are two
difficulties: J canintersect itself and J might intersect y (J) wherey € H — H. If
dimFix(K) > 3, thenwecan usetransversality arguments (likethose used to prove
the Whitney embedding theorem, see[14]) to avoid these difficultiesin our choice
of J. If dimFix(K) = 2, then there is a potential problem when constructing J;
see Figure 7. Suppose % is rotation by %”, which generates the cyclic group Zs.
Then self intersections of J are unavoidable. If, however, we choose the generator
to be h, = K3 to be rotation through 2=, then self intersection can be avoided.
So even when dim Fix(K) = 2 the construction of J is possible. Moreover, when
dim Fix(K) = 2 assumption (A.6) states that either H = N (K) in which case no
restrictions come from H or H = K in which case we choose asmall curve J in
R2 — Lk that does not intersect any of itsimages under N (K).

Fig. 7. Unavoidable self intersection in J with certain generators of H/K when
dimFix(K) = 2.
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To verify (b) we average f over the group. First, extend f to f1 : FixX(K) —
Fix(K) by setting f = 0 off C. Then let

fax) =

-1

TR
yeN(K)

The vector field f> is N (K)-equivariant, zero near Lk, and has J as a stable limit

cycle. Next extend f> to f3 : R" — R" sothat J is now a stable limit cycle in

al of R" and f3 = 0 outside a neighborhood of J. In particular, f3 = Onear L.

Now average again by setting

1
fa@) = > v,

yell
The vector field f4 isthe desired extension. O

Remark A.2. Suppose that & is a generator of Z,, = H/K. |s there a period-
ic solution such that (4, %) is a spatio-tempora symmetry? The answer may be
no when dimFix(K) = 2. In this case, we can aways choose some generator
heZ, = H/K sotha (W, 711) is a spatio-temporal symmetry; but we can not
necessarily choose every generator h.

We now prove Theorem 2.2. Suppose that
dim(Fix(y) N Fix(K)) < dimFix(K) — 2. (A.7)

whenever y € K. ThenFix(K) — Lk isconnected and (A.5) isautomatically valid.
Therefore, if each irreducible representation of ' that occurs in the state space R”
occurs at least twice, then (A.7) is satisfied and (A.5) isvalid.

Next we discuss symmetry generated subgroupsin coupled cell systems. If the
internal dynamics of acoupled cell systemisk > 2, then eachirreducible represen-
tation appearing in state space appears at least k times. Therefore, in these coupled
cell systems, each fixed-point subspace has dimension divisible by k and condition
(A.5), and hence (A.7) and (A.3), are satisfied. In particular, since K acts by per-
muting cells, K divides the set of cellsinto p blocks where K acts transitively on
each block. Moreover, vectorsin Fix(K) haveidentical componentsin each block.
Therefore, thedimension of Fix(K) iskp. If dimFix(K) = 2, then theinternal dy-
namicsin each cell isk = 2 dimensional and the number of blocksis p = 1. Since
I actstransitively on the N cellsand |T'| = N, it follows that the only transitive
subgroupisT” and K = I'. Therefore H = K in thiscase and (A.6) is satisfied.

Finally, supposethat the permutation group I' has the same number of elements
asthe number of cells. Then the state space of the coupled cell system consists of &
copies of #2(I"), the vector space of all real-valued functionson I". It isastandard
result that all irreducible representations of T liein £2(I"). It follows from Barany
et al. [3] that for these cell systems every subgroup of T is an isotropy subgroup,
and (A.2) isautomatically satisfied. We have proved Theorem 2.2. O
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We end this discussion by considering the question of whether robust periodic
solutions exist in our coupled cell systemswhen H/K iscyclic. If al kinds of cou-
pling is permitted consistent with I' symmetry and arbitrary internal dynamics are
alowed, then the coupled cell system is just a general I'-equivariant vector field.
Inthisgenerality Theorem A.1impliesthat there exist robust periodic solutionsfor
each spatio-temporal symmetry group satisfying (2.2). However, if restrictions are
placed on couplings, such asallowing only nearest neighbor coupling or imposing a
certain kind of coupling, then Theorem 2.2 does not necessarily guaranteethe exis-
tence of robust periodic solutionsfor every possible symmetry generated subgroup.
Theorem 2.2 does, however, guarantee that the only possible symmetry generated
subgroups are those satisfying (2.2). In these instances we must use other tech-
niques, such asHopf bifurcation, to prove the existence of robust periodic solutions.
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