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Abstract. In this paper we continue the analysis of a network of symmetrically coupled
cells modeling central pattern generators for quadruped locomotion proposed by Golubitsky,
Stewart, Buono, and Collins. By a cell we mean a system of ordinary differential equations
and by a coupled cell system we mean a network of identical cells with coupling terms. We
have three main results in this paper. First, we show that the proposed network is the simplest
one modeling the common quadruped gaits of walk, trot, and pace. In doing so we prove a
general theorem classifying spatio-temporal symmetries of periodic solutions to equivariant
systems of differential equations. We also specialize this theorem to coupled cell systems.
Second, this paper focuses on primary gaits; that is, gaits that are modeled by output signals
from the central pattern generator where each cell emits the same waveform along with
exact phase shifts between cells. Our previous work showed that the network is capable of
producing six primary gaits. Here, we show that under mild assumptions on the cells and
the coupling of the network, primary gaits can be produced from Hopf bifurcation by vary-
ing only coupling strengths of the network. Third, we discuss the stability of primary gaits
and exhibit these solutions by performing numerical simulations using the dimensionless
Morris-Lecar equations for the cell dynamics.

1. Introduction

Quadrupedal gaits have been studied by many authors [23,21,22,18,1,13,19,2]
and models of central pattern generators (CPGs) for quadruped locomotion have
been studied using a variety of approaches including: equivariant bifurcation the-
ory [9], numerical simulations [7,10], phase response curves [6], and numerical
simulations of an externally aroused CPG [32]. In this paper we continue the study
of a CPG model for quadruped locomotion based on symmetry introduced in Golu-
bitsky et al. [15].
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1.1. Coupled cell systems

One of the early attempts at modeling animal locomotor CPG using coupled cell
systems reduced to phase models is due to Cohen et al. [8,33] in the case of the
lamprey. In this context cell means a system of ordinary differential equations. Er-
mentrout and Kopell [11] have also successfully used coupled cell systems reduced
to phase models to describe animal locomotion. Indeed, some of the most signifi-
cant work on the modeling of CPGs comes from a collection of papers by Kopell
and Ermentrout [24–27] where they investigate coupled cell systems as models for
lamprey and fish CPGs. In Kopell et al. [28], predictions about the lamprey CPG
model are made and these predictions are verified experimentally in Williams et
al. [36].

1.2. Symmetry

The idea of symmetry was introduced into the description of quadruped gaits by
Howell [23] and Hildebrand [21]. Schöner et al. [35] study the rhythmic patterns
of gaits using phase models with symmetry. Collins and Stewart [9] were the first
to emphasize symmetrically coupled cell systems as CPG models of quadruped
locomotion.

To carry out the modeling, Collins and Stewart [9] make the assumption that
the rhythmic gaits of animals mirror the output signals from the CPG. Studies made
on primitive vertebrates support this assumption. Indeed, Grillner et al. [20] state:
“The lamprey spinal cord in vitro can produce a motor pattern with a similar phase
lag, burst, and cycle duration as the spinal and intact lamprey swimming in a swim-
mill” and further on “the same results have been obtained in the spinal dogfish, the
decerebrate stingray and the frog embryo”. Assuming that symmetric gait patterns
mirror the activity of the CPG, it follows that the output signals from the CPG must
be symmetric. Thus, as in [9] and [15], we assume that the CPGs possess symmetry.

1.3. The eight-cell network

The CPG model for quadruped locomotion in [15] is a network of identical sym-
metrically coupled cells. As shown in [15] this network is capable of producing
periodic solutions modeling quadruped gaits called primary gaits; that is, gaits
modeled by output signals from the CPG where each cell emits the same wave-
form along with exact phase shifts between cells. The primary gaits produced by
our model are walk, trot, pace, bound, jump, and pronk. Our contribution to the
theory of this CPG model is twofold. First, we show that the proposed quadruped
network is the smallest one under the assumptions used to create the model. See
Theorem 3.2. Second, under mild assumptions on the cell dynamics and the cou-
pling of the network, we show that by varying only coupling strengths between
cells, the network can produce all primary gaits, except pronk, by Hopf bifurcation.
See Theorem 4.1.

The proposed coupled cell model consists of eight cells and has the mathemat-
ical form:

u̇i = F(ui)+
∑
j→i

αjiH(uj , ui)
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Fig. 1. Schematic eight-cell network for gaits in four-legged animals.

where ui ∈ Rk are the state variables of cell i, the vector field F : Rk → Rk

models the internal dynamics of each cell, the functionH : Rk×Rk → Rk models
the coupling of one cell to another, and αji is the strength of coupling from cell
j to cell i. Observe that the sum is taken only over those cells j that are actually
coupled to cell i. The network in [15] has the form of two unidirectionally coupled
rings of four cells, as shown in Figure 1. In that model the output u1 is sent to the
left hind leg; output u2 is sent to the right hind leg; output u3 is sent to the left fore
leg; and output u4 is sent to the right fore leg.

Some of the gaits commonly used by quadrupeds are the walk, trot, pace, bound,
transverse gallop, rotary gallop, and canter. For example, in a walk, each leg strikes
the ground in turn in a figure eight pattern with a quarter-period phase difference
between successive legs while in a trot, pairs of diagonal legs strike the ground
simultaneously with a half-period phase difference with the other diagonal pair of
legs. The phase shifts for the primary gaits of walk, trot, and pace are listed in
Table 1 in terms of the output u1(t) from cell 1.

Table 1. Phase shifts of primary gaits.

Legs Walk Rrot Pace

3 4 u1(t + 1
4 ) u1(t + 3

4 ) u1(t + 1
2 ) u1(t) u1(t) u1(t + 1

2 )

1 2 u1(t) u1(t + 1
2 ) u1(t) u1(t + 1

2 ) u1(t) u1(t + 1
2 )

Legs Jump Bound Pronk

3 4 u1(t) u1(t) u1(t + 1
2 ) u1(t + 1

2 ) u1(t) u1(t)

1 2 u1(t + 1
4 ) u1(t + 1

4 ) u1(t) u1(t) u1(t) u1(t)
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Figure 2 shows numerical simulations from the model CPG of [15] that illus-
trate a walk and a trot. Note the quarter-period phase shift from u1 to u3 to u2 to u4
in the walk. Additional discussion of numerical simulations is given in Section 6.

1.4. Why four cells do not suffice

Networks of four symmetrically coupled cells are used in [9] to model the CPGs of
quadrupeds, each cell sending an output signal to a corresponding limb. Periodic
solutions in the four-cell networks correspond to different gait patterns of quadru-
peds. The networks studied in [9] have the following property: if walk, trot, and pace
periodic solutions are present in the network, then trot and pace are symmetrically
related periodic solutions.

Suppose that two different gait patterns are modeled by symmetrically related
periodic solutions, also called conjugate periodic solutions. Then the periodic so-
lutions exist simultaneously and have the same stability properties. However, there
is evidence indicating that trot and pace do not exist simultaneously and evidence
indicating that they do not have the same stability properties. First, camels and gi-
raffes use the pace for locomotion at slow and intermediate speeds, but do not trot;
while horses are known to trot, but unless taught, do not use the pace. See [22] p. 705
or [18] p. 274. Therefore, the CPG of the camel selects pace but suppresses trot, and
the horse CPG selects trot but unless taught suppresses pace. Second, results from
Blaszczyk and Dobrzecka [2] indicate that the stability of pace and trot are not the
same. In [2], it is reported that puppies use a trot gait at intermediate speed. In their
experiment, the puppies’ legs are restrained as they make their first steps, so that
they can only use a pace at intermediate speeds — not a trot. Different dogs retain
this device for amounts of time ranging from 2 to 6 months. In post-restraint trials
it is reported that dogs that were in the shorter restraint period switched back to a
trot quickly with only occasional use of a pace. In the longer restrained animals,
occurrence of pace was more frequent but the use of pace decreased with every
post-restraint experimental trial. Therefore, as in [15], we make the assumption
that different gait patterns are modeled by periodic solutions that are nonconjugate.

1.5. Symmetry in the eight-cell network

The symmetry group of the network in Figure 1 is the abelian group Z4 × Z2. We
make the modeling assumption that a cell in the network sends its signal to only one
leg. In order for this network to model observed quadrupedal gaits it is necessary
that the output signals to the four legs are sent by the top four cells in Figure 1.
Assuming that cell 1 sends its signal to the left hind leg, it follows that cell 2 sends
its signal to the right hind leg, cell 3 to the left fore leg, and cell 4 to the right
fore leg. A possible explanation for the role of the bottom part of the network is
discussed in [16] where it is argued, based on observations of the human gaits walk
and run, that the signals are sent to muscle groups rather than to legs. See also the
explanation before Theorem 3.3.

In [15], it is shown that this quadruped network can model trot, pace, and
walk, without introducing unwanted conjugacies between the periodic solutions.
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Fig. 2. Signal u1 goes to the left hind leg; u2 goes to the right hind leg; u3 goes to the left
fore leg; and u4 goes to the right fore leg. Top: walk. Bottom: trot.
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The absence of conjugacy follows from the fact that Z4 × Z2 is abelian. A stand
equilibrium of the network is an equilibrium that is fixed by all symmetries of the
network. Since Z4×Z2 is abelian, generically the nonreal eigenvalues of the linea-
rization of the system of ordinary differential equations of the network are simple.
Then, periodic solutions modeling the quadruped gaits can be produced by simple
Hopf bifurcation from equilibria. All periodic solutions that bifurcate from stand
by simple Hopf bifurcation are primary gaits.

1.6. New results concerning the eight-cell network

We continue the study of the quadruped network in two directions. First, we show
that the quadruped network with Z4×Z2 symmetry is the smallest one that produc-
es walk, trot, and pace as nonconjugate periodic solutions. To prove this result, we
classify the possible spatio-temporal symmetry groups of a �-equivariant vector
field when � is finite. Based on the idea that signals go from cells to muscle groups
(as discussed in [16]), we also show how to make a natural assignment of cells to
legs for all eight cells in our network. See Theorem 3.3. This theorem leads to the
two networks shown in Figure 6. These networks have the same symmetries and
are dynamically equivalent to the one in Figure 1.

Second, suppose that the cells are two-dimensional and the coupling of the net-
work is linear synaptic. Suppose also that the cell dynamics has an equilibrium and
the linearization at the equilibrium has nonreal eigenvalues. Then, we show that
all primary gaits (except pronk) can be made to bifurcate from a stand equilibrium
by varying only coupling parameters. For certain gaits (trot, pace, and bound) we
show that these bifurcations can lead to stable periodic solutions. Moreover, by
numerical exploration all primary gaits can be found to occur as stable periodic
solutions.

The complexity of the central nervous system of mammals has prevented a
detailed description of the CPG for locomotion. Since our proof of existence of
primary gaits depends only on the existence of an equilibrium for the cell dynam-
ics with linearization having nonreal eigenvalues, our result is robust; it does not
depend explicitly on biological details of the animal’s central nervous system.

1.7. Structure of the paper

In Section 2 and Appendix A, we determine the possible spatio-temporal symmetry
groups of time periodic solutions when� is finite. In Section 3, we use the results of
Section 2 to prove Theorem 3.2, from which it follows that the quadruped network
with Z4×Z2 symmetry is the smallest network modeling walk, trot, and pace with-
out conjugacies. In Section 4, we state the theorems of existence and stability of
periodic solutions from Hopf bifurcation. In Section 5, we prove the existence and
stability results stated in Section 4. Numerical simulations using the dimensionless
Morris-Lecar equations [30,34] as cell dynamics are presented in Section 6 and a
summary is given in Section 7.
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2. Robust periodic solutions

In this section and in Appendix A we discuss the spatio-temporal symmetries of
periodic solutions in symmetric systems of differential equations. Additional back-
ground may be found in [17]. We also discuss the conditions under which the
periodic solution and its symmetries are robust to small parameter changes, which,
as is discussed below, is an important consideration in gait CPG modeling.

We begin by defining the symmetries of a differential equation and the spa-
tio-temporal symmetries of periodic solutions, and then, as in [15], relate these
symmetries to gaits.

Let � ⊂ O(n) be a finite group acting on Rn and let f : Rn → Rn be a smooth
�-equivariant vector field, that is,

f (γ x) = γf (x) ∀γ ∈ �.

2.1. Spatio-temporal symmetries

Each symmetry of a periodic solution U(t) to the system of differential equations

dU

dt
= f (U) (2.1)

is a combination of spatial and temporal. For simplicity in exposition we assume
that our periodic solutions are 1-periodic. Let γ ∈ �; by equivariance γU(t) is also
a solution to (2.1). Uniqueness of solutions to initial conditions in (2.1) implies that
there are two possibilities: either the trajectories {γU(t)} and {U(t)} are identical
or they are disjoint. In the former case, uniqueness of solutions also implies that
there is a phase shift θ such that

γU(t) = U(t − θ).

See [17] for details. Then the phase shift θ can be thought of as an element of the
circle group S1 by identifying S1 = [0, 1). The pair

(γ, θ) ∈ � × S1

is a spatio-temporal symmetry of U(t); and the collection of all spatio-temporal
symmetries of U(t) forms a subgroup � ⊂ � × S1.

As illustrated in Table 1, standard quadruped gaits are time periodic states
with certain well-defined phase shifts. Following [15] we show how these phase
shifts can be derived from the symmetries of associated periodic solutions in our
CPG model (Figure 1). The symmetry group of the network shown in Figure 1 is
Z4(ω) × Z2(κ) generated by the four-cycle ω that permutes cells around the ring
and the two-cycle κ that interchanges left cells with right cells. We can define each
primary gait by associating phase shifts to ω and κ , as in Table 2. For example,
suppose U(t) = (u1(t), . . . , u8(t)) is a periodic solution with the spatio-temporal
symmetries of a trot. Then (κ, 1

2 ) symmetry implies that u2(t) = u1(t + 1
2 ) and

u4(t) = u3(t + 1
2 ). Similarly, (ω, 1

2 ) implies u3(t) = u1(t + 1
2 ) and u4(t) =

u2(t + 1
2 ). In this way a trot solution has the form indicated in Table 1.
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Table 2. Symmetries of primary gaits.

Gait Pronk Pace Bound Trot Jump Walk

ω phase shift 0 0 1
2

1
2

1
4

1
4

κ phase shift 0 1
2 0 1

2 0 1
2

There is a second and equivalent way to view spatio-temporal symmetries. Let
H ⊂ � consist of symmetries that preserve the trajectory of U ; that is, γ ∈ H if

γ {U(t)} = {U(t)}.
As noted previously, if γ ∈ H , then there exists θ ∈ S1 such that (γ, θ) is a spa-
tio-temporal symmetry of U(t). Moreover, the map ϕ : H → � × S1 defined by
h→ (h, θ) is an isomorphism of H onto �.

Thus, spatio-temporal subgroups � ⊂ � × S1 are isomorphic to subgroups
of �. Next we show that these subgroups have additional algebraic structure. Let
K ⊂ � be the group of purely spatial symmetries of U(t); that is, γ ∈ K if

γU(t) = U(t)

for all t . It is clear that K ⊂ H . Moreover, the map � : H → S1 defined by
�(h) = θ where (h, θ) is a spatio-temporal symmetry of U(t) is a group homo-
morphism with kernel K . It follows that the quotient group H/K is isomorphic to
a finite subgroup of S1. Therefore,

H/K ∼= Zm (2.2)

for some integer m ≥ 0. Thus, spatio-temporal subgroups of � × S1 can be iden-
tified with pairs of subgroups K ⊂ H of � satisfying (2.2). For example, for a
periodic solution corresponding to a trot, K = Z2(ωκ) and H = Z4 × Z2.

2.2. Symmetry - generated subgroups

Definition 2.1. A hyperbolic periodic solution U(t) ∈ Rn of (2.1) with spatio-tem-
poral symmetry subgroup � is robust if periodic solutions obtained from U(t) by
small �-equivariant perturbations of (2.1) also have spatio-temporal symmetry
subgroup �.

The subgroup � ⊂ � × S1 is symmetry generated (for the action of � on Rn)
if there is a robust periodic solution for some �-equivariant system of differential
equations on Rn whose spatio-temporal symmetry subgroup is �.

The following theorem, which is proved in Appendix A, classifies symmetry
generated subgroups (and hence the types of spatio-temporal symmetry of robust
periodic solutions) for coupled cell systems of the kind we consider.

Theorem 2.2. Let K ⊂ H ⊂ � be subgroups where � is the symmetry group of a
coupled cell system. Assume that
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(a) the order of � equals the number of cells and every cell is mapped to any other
cell by a symmetry, and

(b) the dynamics of each cell is at least two-dimensional.

Then robust periodic solutions whose spatial symmetries are K and whose spatio-
temporal symmetries are H exist only if (2.2) is valid.

Note that the eight-cell network pictured in Figure 1 with symmetry group
Z4 × Z2 satisfies the hypotheses of Theorem 2.2. Therefore, we can enumerate all
the types of spatio-temporal symmetry that any periodic solution to any system of
differential equations based on this network can have, as was done in [15], Table 4.
In Section 4 we use Hopf bifurcation to produce robust periodic solutions for this
eight-cell model.

2.3. An example with D4 symmetry

We need the following example when discussing the uniqueness of the eight-cell
gait model in Section 3. Consider the eight-cell system shown in Figure 3 having
permutation group D4. (Note the arrows go in opposite directions around the two
rings in this network.)

Geometrically D4 is the symmetry group of a square and is generated by a
four-cycle ω corresponding to rotation counterclockwise by 90◦ and a reflection κ
whose line of reflection connects midpoints of opposite sides of the square. Note
that κω is a reflection whose line of symmetry connects opposite vertices of the
square. There are eight conjugacy classes of subgroups of D4:

D4 Ds
2 = 〈κ, ω2, κω2〉 Dp

2 = 〈κω, ω2, κω3〉 Z4 = 〈ω〉
1 Zs

2 = 〈κ〉 Zp

2 = 〈κω〉 Z2 = 〈ω2〉

Figure 4 illustrates the containment relations between these subgroups.

Fig. 3. Eight-cell network with D4 symmetry.
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Fig. 4. Lattice of subgroups of D4.

When the internal dynamics is at least two-dimensional, Theorem 2.2 there are
12 types of robust periodic solutions with nontrivial temporal symmetries (H � K)
in this coupled cell system, and they are:

Z4 ⊂ D4 Dp

2 ⊂ D4 Ds
2 ⊂ D4 Z2 ⊂ Z4

Z2 ⊂ Dp

2 Zp

2 ⊂ Dp

2 Z2 ⊂ Ds
2 Zs

2 ⊂ Ds
2

1 ⊂ Z4 1 ⊂ Z2 1 ⊂ Zp

2 1 ⊂ Zs
2

Note that there is only one symmetry generated subgroup that can correspond to
a robust periodic solution with a quarter-period phase shift and that subgroup is
given by the pair 1 ⊂ Z4.

3. CPG network for quadruped locomotion

The CPG network for quadruped locomotion is shown in Figure 1. The arrows
in Figure 1 determine the nearest neighbor coupling between the cells as well as
the symmetry of the network. In principle, there can be as many couplings in this
network as desired, as long as the couplings respect the symmetry group of the net-
work. That is, each coupling generates a group orbit of couplings, and the couplings
must not change the symmetry group of the network. For instance, it is possible
to have bidirectional coupling between neighboring cells in the rings, as long as
the coupling in one direction is different from the coupling in the opposite
direction.

In order to understand why an eight-cell network is the simplest network that
can describe quadruped locomotion, we make explicit the modeling assumptions
that preclude four-cell networks. Two of our modeling assumptions are:
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Fig. 5. Schematic four-cell network for gaits in four-legged animals.

(A1) Each cell in the CPG network sends its signal to only one leg.
(A2) Different gaits are modeled by nonconjugate periodic solutions.

Consider the four-cell network of Figure 5. By (A1) we can identify each cell
with a leg and without loss of generality we can assume that the signal from cell
1 goes to the left hind leg. Suppose that the four-cell network produces a walk. In
a quadruped walk the animal moves its left hind leg, then its left fore leg, then its
right hind leg, and then its right fore leg — each with a quarter-period phase shift.
Since symmetries of this network are permutations of the four cells followed by
a phase shift, it follows that there must be a four-cycle that is associated with the
walk. By renumbering the cells, if necessary, we can assume that that four-cycle is
(1 3 2 4). It then follows that cell 3 must send its signal to the left fore leg, cell 2
to the right hind leg, and cell 4 to the right fore leg, as shown in Figure 5.

A trot is a gait in which the diagonal legs move synchronously; that is, the
permutation (14)(23) is a symmetry of a trot. Both a trot and a pace are gaits where
interchanging left and right legs is associated with a half-period phase shift; that
is, a symmetry of these gaits is the permutation (12)(34) followed by a half-period
phase shift. Finally, in the pace gait the animal moves its left legs and its right legs
synchronously. Therefore, the permutation (13)(24) is a symmetry of a pace. We
emphasize that the quarter-period phase shift of the walk, and the half-period phase
shift of trot and pace is exact even under parameter perturbations. We make this
additional assumption.

(A3) The network has robust periodic solutions that model walk, trot, and pace.

Theorem 3.1 ([15]). Suppose that the four-cell network satisfies (A1), (A2), and
(A3). Then trot and pace are conjugate solutions.

Proof. Let � ⊂ S4 be the symmetry group of the network. Since the walk is ro-
bust, the four-cycle (1324) ∈ �. Suppose that the subgroups corresponding to
trot and pace are symmetry generated, then (12)(34) ∈ �. Moreover, trot implies
(14)(23) ∈ � and pace implies (13)(24) ∈ �. Note that

(1324) · (14)(23) · (1324)−1 = (13)(24)
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(1324) · (13)(24) · (1324)−1 = (14)(23)

(1324) · (12)(34) · (1324)−1 = (12)(34).

Thus, (1324) conjugates the generators of the symmetry groups of trot and pace
and these subgroups are conjugate. ��

The consequence of Theorem 3.1 is that four-cell networks cannot model walk,
trot, and pace unless trot and pace are conjugate periodic solutions. Therefore, we
must consider symmetric cell systems with more than four cells.

From [15], we know that there exists a cell to leg assignment for an eight-
cell network with Z4 × Z2 symmetry of Figure 1 that can produce nonconjugate
walk, trot, and pace robust periodic solutions. Theorem 3.2 shows that the eight-cell
quadruped network with Z4×Z2 symmetry is the smallest network that can model
walk, trot, and pace without unwanted conjugacies. To prove this result we make
an additional assumption.

(A4) The symmetry group of the coupled cell network acts transitively on the cells;
that is, every cell can be mapped to any other cell by a symmetry.

Theorem 3.2. Let N be a �-symmetric cell network. Assume that N is a network
satisfying (A1), (A2), (A3), and (A4) with minimum |�|. Then N is the quadruped
eight-cell network with � = Z4 × Z2.

Proof. The group � must contain at least a four-cycle permutation ω to account for
the quarter-period phase shift of the walk and ω must permute the signals sent to
the four legs. Thus the network contains at least four cells, say cells 1,3,5,7 which
ω permutes cyclically. Pace and trot have a half-period phase shift between left
and right; so � must contain a transposition, say κ . There are three possible cases:
either κ = ω2, κ and ω commute, or κ and ω do not commute. We consider the
three possibilities in turn.

Suppose that κ = ω2, then � = Z4. Transitivity then implies that the network
has four cells which is ruled out by Theorem 3.1.

Next, suppose that κ and ω commute. Since κ �= ω2, there exists a fifth cell,
labeled 2, such that κ interchanges cell 1 with cell 2. Since κω = ωκ , then κ

must send cell 3 where ω sends cell 2; label this sixth cell 4. Repeating the above
argument with κω = ωκ shows that there is a second ring of four cells. Thus, we
obtain the quadruped network with Z4 × Z2 symmetry.

Finally, suppose that κ and ω are noncommuting permutations: they generate
the group D4. Since |�| is minimal, � = D4. Transitivity implies that the network
has four or eight cells, and the case of four cells is ruled out by Theorem 3.1.

Suppose that U(t) is a 1-periodic solution to the differential equations in the
eight-cell system that models a walk. A walk is characterized by permuting the legs
from left rear to left front to right rear to right front coupled with a quarter-period
phase shift. For walk to be modelled by a robust periodic solution, there must be a
four-cycle in the group that induces the quarter-period phase shift on U(t). There
are two possible four-cycles in D4 — ω and ω3. Since these four-cycles are conju-
gate, we may choose either one to induce the quarter-period phase shift in the walk
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— and we choose ω. So

ωU(t) = U

(
t − 1

4

)
. (3.1)

Transitivity of D4 implies that the eight cells divide into two rings of four cells
that are cyclicly permuted by ω. See Figure 3. We can number these cells so that

ω = (1 3 5 7)(2 4 6 8).

Transitivity of D4 implies that κ must permute the two rings of four cells that are
permuted by ω. We can choose cell 2 so that κ permutes cells 1 and 2. It follows
from the identity κω = ω3κ that

κ = (1 2)(3 8)(5 6)(7 4).

Suppose that we write the walk solution

U(t) = (u1(t), . . . , u8(t))

where uj (t) denotes the output from cell j . It follows from (3.1) that

u3(t) = u1

(
t − 1

4

)
, u5(t) = u1

(
t − 1

2

)
, u7(t) = u1

(
t − 3

4

)

and

u4(t) = u2

(
t − 1

4

)
, u6(t) = u2

(
t − 1

2

)
, u8(t) = u2

(
t − 3

4

)
.

We can number the cells so that cell 1 sends its signal to the left hind leg. It
follows that the signal from cell 3 is sent to the left fore leg, the signal from cell 5
is sent to the right hind leg, and the signal from cell 7 is sent to the right fore leg.

Next we explore the implications of existence of a symmetry generated 1-peri-
odic solution V (t) = (v1(t), . . . , v8(t)) that represents either a trot or a pace. The
trot and pace solutions have the half-period phase shift between signals to the left
and right legs. Pace has the same signal going to front legs and hind legs, and trot
has the same signal going to pairs of diagonal legs.

It follows from κ symmetry that

v2(t) = v1

(
t + 1

2

)
v4(t) = v7

(
t + 1

2

)
v6(t) = v5

(
t + 1

2

)
v8(t) = v3

(
t + 1

2

)
.

Note that κ is contained in a unique subgroup of D4 that is isomorphic to D2, namely
D2(κ, ω

2, κω2). There is also a unique subgroup of D4 that is isomorphic to D2 and
which does not contain κ , namely, D2(κω, ω

2, κω3). Therefore, the classification
of robust periodic solutions in Section 2 shows that there are three possible types
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of periodic solutions having κ as a spatio-temporal symmetry with a half-period
phase shift and also having a nontrivial spatial symmetry. They are:

D2(κω, ω
2, κω3) ⊂ D4

Z2(ω
2) ⊂ D2(κ, ω

2, κω2)

Z2(κω
2) ⊂ D2(κ, ω

2, κω2)

The restrictions on the signals going to each cell in each of these symmetry
types of solutions are:

RF v1

(
t + 1

2

)
7 8 v1(t)

RH v1(t) 5 6 v1

(
t + 1

2

)
LF v1

(
t + 1

2

)
3 4 v1(t)

LH v1(t) 1 2 v1

(
t + 1

2

)
RF v3(t) 7 8 v3

(
t + 1

2

)
RH v1(t) 5 6 v1

(
t + 1

2

)
LF v3(t) 3 4 v3

(
t + 1

2

)
LH v1(t) 1 2 v1

(
t + 1

2

)
RF v3

(
t + 1

2

)
7 8 v3

(
t + 1

2

)
RH v1

(
t + 1

2

)
5 6 v1(t)

LF v3(t) 3 4 v3(t)

LH v1(t) 1 2 v1

(
t + 1

2

)
The cells to legs assignment for the right cells is also restricted by the walk.

Hence suppose that cell 4 sends its output signal to the left hind leg, then we have
two possible assignments: 4-LH, 6-LF, 8-RH, 2-RF or 4-LH, 2-LF, 8-RH, 6-RF. We
can choose either one of the above assignments to illustrate the remainder of the
proof. Note, however, that regardless of the assignment of cells to legs on the right
hand side, we can rule out the three periodic solutions shown above. In the first and
second periodic solutions, the signals sent to the left hind leg and the right hind leg
are in-phase. Therefore they cannot be either a pace or a trot. The third periodic
solution is a candidate for either a pace or a trot because of the half-period phase
shift between left hind and right hind. Since pace and trot are nonconjugate, this
symmetry type cannot model both trot and pace. Hence, robust periodic solutions
modelling walk, trot, and pace do not coexist in this network. ��

Note that there exists an eight-cell network that consists of two disjoint four-cell
networks which produces nonconjugate symmetry generated walk, trot, and pace
periodic solutions. One subnetwork is a four-cell network with Z4 symmetry that
models walk, and the other is a four-cell network with D2 symmetry that models
pace and trot, see [9]. Periodic solutions of this network have symmetry groups
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Table 3. Cell to leg assignment in Figure 1.

7 8 LH RH
5 6 LF RF

→
3 4 LF RF
1 2 LH RH

based on Z4 × D2. In this eight-cell network, signals can be sent to the legs si-
multaneously from each subnetwork. So, modeling of quadruped CPG with two
four-cell models requires the existence of an external control that determine which
gait is sent to the legs.

The existence of an external control for the CPG does not seem to be justified
by the physiological data. It is known that external controls from the cerebellum
to the CPG contribute to the coordination of gaits. It seems that these signals are
not necessary, since less coordinated locomotion can be carried out even after cer-
ebelloctomy, see Grillner [19] p. 1207-1208. Note that there is evidence that the
initiation and control of the CPG for locomotion depends on a variety of signals
coming from the brain stem, see [19] p. 1209-1213. However, much evidence shows
that the CPG has enough flexibility to produce different locomotor behavior even
in the absence of inputs from the brain or peripheral feedback, Grillner [19] p. 1213
and Pearson [31] p. 270. Hence, the two independent network CPG model is too
restrictive.

Theorem 3.2 shows that there is only one possible eight-cell network that can
produce the nonconjugate gaits walk, trot, and pace, and that this network has
Z4×Z2 symmetry. We proved this theorem assuming that the signal from each cell
is transmitted to precisely one leg. So far, however, we have not discussed how the
assignment of cells to legs is made in this abelian network. There are a number of
different and consistent ways in which the cell to leg assignment can be made of
which the assignment implicit in Figure 1 is only one. In [15] we assumed that the
signals from cells to legs is the one given in Table 3.

In our discussions in [15] we assumed that the top four cells (1, . . . , 4) con-
trolled the gait rhythms and that, in effect, the bottom four cells (5, . . . , 8) served
only the role of correctly propagating the signals. Under this assumption there are
many different ways to make the leg assignment of cells 5, . . . , 8 that are consistent
with the network symmetry. In [16], however, we discussed evidence suggesting
that each cell signals a particular muscle group in a particular leg. Since each joint is
controlled by two primary muscle groups (flexors and extensors), this may explain
physiologically why the doubled-up eight-cell network, as opposed to a four-cell
network, is needed to produce walk, trot, and pace. If this supposition is correct,
then there is a natural restriction to put on the cell to leg assignments, as we now
explain. Moreover, with this restriction, there exist only two possible cell to leg
assignments.

Suppose that F : cells → legs is a possible assignment. We assume that
each leg is assigned two cells and, without loss of generality, we can assume that
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F(1) = LH , that is, one of the two cells that is assigned to the left hind leg is cell 1.
Based on the cell to muscle group interpretation of a CPG a reasonable assumption
about F states that if the signals from cells i and j are sent to the same leg, then
for any network symmetry γ the signals from cells γ i and γj are also sent to the
same leg. In symbols:

If F(i) = F(j), then F(γ i) = F(γj). (3.2)

With this assumption we prove that there are precisely two different assignments
of cells to legs.

Theorem 3.3. Assume that the cell to leg assignment F satisfies F(1) = LH and
(3.2). Then F is one of the two cell to leg assignments given in Table 4.

Proof. As in the proof of Theorem 3.2 the four-cycle permutation ω accounts for
the quarter-period phase shift of the walk and the transposition κ accounts for the
half-period phase shift between left and right in the trot and pace. Transitivity of
the group Z4×Z2 implies that ω permutes cyclically four cells that we can number
1,3,5,7.

Since κ and ω commute and κ �= ω2, there exists a fifth cell, labeled 2, such
that κ interchanges cell 1 with cell 2. It follows that

ω = (1 3 5 7)(2 4 6 8) and κ = (1 2)(3 4)(5 6)(7 8).

We assume for definiteness that the signal from cell 1 goes to the left hind
leg. Since κ reflects the interchange of left with right in the trot, the signal from
cell 2 must be sent to the right hind leg. Similarly, since ω is responsible for the
quarter-period phase shift in the walk, the signal from cell 3 must be sent to the left
fore leg and then κ implies that the signal from cell 4 is sent to the right fore leg.

In principle, the signal from cell 5 can be sent to any of the four legs. It is
straightforward to check that if the signal from cell 5 is sent to either the left hind
or the right hind leg, then (3.2) forces the leg assignments given in Table 4.

If the signal from cell 5 is sent to either the left fore or the right fore leg, then
(3.2) forces a contradiction. First, if that signal is sent to the left fore leg, then since
ω maps cell 3 to cell 5 it must map left fore leg cells to left fore leg cells by (3.2).
Therefore, the signal from cell 7 (which is mapped by ω from cell 5) must also
be sent to the left fore leg. Moreover, applying ω once again shows that the signal
from cell 1 must also be sent to the left fore leg, contradicting the assumption that

Table 4. Cell to leg assignments in Theorem 3.3.

7 8 LF RF
5 6 LH RH

→
3 4 LF RF
1 2 LH RH

and

7 8 RF LF
5 6 RH LH

→
3 4 LF RF
1 2 LH RH
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the signal from cell 1 is sent to the left hind leg. Second, suppose that signal is sent
to the right fore leg. Since ω maps cells 3 to 5 and 2 to 4, it follows that ω maps
cells assigned to the left fore leg (3) and the right hind leg (2) to cells assigned to
the right fore leg (5 and 4), which contradicts assumption (3.2). ��

We call the first network listed in Table 4 the zig-zag network and the second
the criss-cross network. These networks are illustrated in Figure 6. See Section 7
for additional discussion of the differences between the zig-zag and criss-cross
networks.

4. Existence and stability of primary gaits

The general form of the coupled cell system that we analyze is:

u̇j = F(uj )+
∑
i→j

AijH(ui, uj ) (4.1)

where uj denotes the state variables in cell j ,F denotes the internal dynamics of the
cell, H denotes the coupling from cell i to cell j , Aij denotes coupling strengths,
and the sum is taken over those cells i that are coupled to cell j .

Fig. 6. Schematic eight-cell networks for gaits in four-legged animals consistent with (3.2).
Top: The zig-zag network. Bottom: The criss-cross network.
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We now discuss how to find robust periodic solutions in the eight-cell CPG
model by utilizing Hopf bifurcations from a stand equilibrium. As was shown in
[15], the cell dynamics must be at least two-dimensional in order to have Hopf bifur-
cation to a trot. Indeed, it can be proved using Theorem A.1 that robust trots cannot
occur in any eight-cell system having one-dimensional cell dynamics. We assume
that the cells have two-dimensional internal dynamics. We denoteF = (f, g) in co-
ordinates where f, g : R2 → R are smooth nonlinear functions. Then the internal
cell dynamics is given by

ẋ = f (x, y)

ẏ = g(x, y).
(4.2)

In this notation, we suppress the explicit dependence of f and g on parameters.
Following Kopell and Ermentrout [25] we say that the coupling function in

(4.1) is diffusive if H(u, u) = 0 for all u ∈ R2. Otherwise, H is called synaptic. In
this paper we discuss only synaptic coupling; similar results are valid for diffusive
coupling and may be found in [4]. In our analyses we assume that the coupling func-
tion has the form H(ui, uj ) = (h(xi, xj ), h(yi, yj )) where in the case of linear
synaptic coupling h(xi, xj ) = xi .

The system of equations from the quadruped network is constructed as follows.
Suppose that the coupling of the quadruped network is given by nearest neighbor
coupling only; that is, the coupling shown in Figure 1. Let α, β be the parameters
controlling the ipsilateral coupling strength and γ, δ be the parameters that control
the contralateral coupling strength. From Figure 1, we see that the dynamical ac-
tivity of cell 7 and cell 2 contribute to the dynamics of cell 1 through ipsilateral
and contralateral coupling, respectively. Similarly, cell 8 and cell 1 contribute to
the dynamics of cell 2. The equations for the dynamics of cell 1 and 2 are therefore
given by

ẋ1 = f (x1, y1)+ αh(x7, x1)+ γ h(x2, x1)

ẏ1 = g(x1, y1)+ βh(y7, y1)+ δh(y2, y1)

ẋ2 = f (x2, y2)+ αh(x8, x2)+ γ h(x1, x2)

ẏ2 = g(x2, y2)+ βh(y8, y2)+ δh(y1, y2).

The dynamics of the ith cell in the quadruped network with nearest neighbor
coupling is given by

ẋi = f (xi, yi)+ αh(xi−2, xi)+ γ h(xi+εi , xi)
ẏi = g(xi, yi)+ βh(yi−2, yi)+ δh(xi+εi , xi),

(4.3)

where the indices are taken modulo 8 and εi = (−1)i+1.
We now state the theorem of existence of primary gaits except pronk. In order

to prove the existence of a trot with linear synaptic coupling, we need to add ex-
tra couplings to the cell system. A bilateral coupling between cell 1 and cell 5 is
necessary, and thus the group orbit of connections follows: cell 3 with cell 7, cell
2 with cell 6, and cell 4 with cell 8. Then the coupled cell system (4.3) with linear
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synaptic coupling becomes

ẋi = f (xi, yi)+ αxi−2 + γ xi+εi + ξxi+4

ẏi = g(xi, yi)+ βyi−2 + δxi+εi + ηyi+4
(4.4)

Theorem 4.1. Consider cell system (4.4). Let (xi, yi) = (x0, y0) for all i be a stand
equilibrium and let L0 be the Jacobian matrix of (4.2) at (x0, y0). Suppose that

L0 has nonreal eigenvalues. (4.5)

Then by varying coupling parameters only, we can find a Hopf bifurcation from a
stand equilibrium to each of pace, bound, trot, walk, and jump primary gaits.

The proof of Theorem 4.1 fails for trot (when second nearest neighbor coupling
is not present) and for pronk. However, we have found both trot (without second
nearest neighbor coupling) and pronk in the network by numerical simulation. See
Section 6.

Since the coupling functions are linear, the nonlinearities of the cell system are
independent of the coupling parameters. Therefore, by assuming conditions just on
the quadratic and cubic nonlinearities we can assure that all Hopf bifurcations from
stand equilibria are supercritical.

We now discuss the stability of primary gaits produced from stand by Hopf
bifurcation. To show asymptotic stability of primary gaits at Hopf bifurcation, we
need to show that all noncritical eigenvalues have negative real parts. We say that a
Hopf bifurcation is stable if the critical eigenvalues of the linearization are simple
and all other other eigenvalues have negative real part. Using this definition we
state our second theorem.

Theorem 4.2. Consider cell system (4.4). Restrict the coupling parameters by set-
ting δ = γ and ξ = η = 0. Assume that a Hopf bifurcation from stand to a periodic
solution occurs at coupling parameters (α0, β0, γ0).

Suppose that α0 = β0. Then, the Hopf bifurcation for

(a) a pronk is stable if α0 > 0, γ0 > 0;
(b) a pace is stable if α0 > 0, γ0 < 0;
(c) a bound is stable if α0 < 0, γ0 > 0;
(d) a trot is stable if α0 < 0, γ0 < 0.

Suppose that α0 = −β0. Then, the Hopf bifurcation for

(e) a jump is stable if γ0 > 0;
(f) a walk is stable if γ0 < 0.

The proof of Theorem 4.2 is found in Section 5.3. We note that when α0 = ±β0,
the listed constraints on Hopf bifurcation are both necessary and sufficient. The-
orem 4.2 remains valid if |α − β| and |γ − δ| are nonzero and small. Then, the
conditions for asymptotic stability depend on the sign of the sum of the coupling
parameters. For instance, a trot is asymptotically stable if α+β < 0 and γ +δ < 0.

We say that the coupling is excitatory if the sum of the coupling parameters is
positive, and inhibitory if the sum of coupling parameters is negative. Note that in
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Theorem 4.2, excitatory coupling at the point of Hopf bifurcation leads to solutions
with in-phase output signals and inhibitory coupling leads to output signals with
half-period phase shifts. This agrees with the often encountered result that excitato-
ry coupling leads to stable synchronization of oscillators and inhibitory coupling to
stable half-period phase shift (or anti-phase) oscillations. See [19] p. 1218 for bio-
logical examples, and [33] or [11] for mathematical examples. The quarter-period
phase shift along the Z4 rings of cells needed for the walk and jump solutions is
achieved through neutral coupling: α + β = 0.

Our final result states when stable Hopf bifurcations are known to exist.

Theorem 4.3. In (4.2) assume

(x0, y0) is a spiral sink. (4.6)

If (4.4) has linear synaptic coupling, then there exists coupling parameters leading
to a stable Hopf bifurcation for bound, pace, and trot.

The proof proceeds by finding parameter values as in the hypotheses of The-
orem 4.1 where Hopf bifurcation actually exists. For walk and jump, the Hopf
bifurcation points of Theorem 4.1 do not seem to lead to asymptotically stable pe-
riodic solutions and we have not been able to prove a result similar to Theorem 4.3.
The difficulty in finding asymptotically stable walk and jump by Hopf bifurcation is
based on the fact that stand equilibria move in phase space as coupling parameters
are varied. Hence, finding the location of Hopf bifurcation points leading to a sta-
ble walk and jump requires the use of numerical approximations or path following
software such as AUTO. These gaits can be found by numerical simulation of the
cell system equations. See Section 6.

5. Proof of existence and stability theorems

In this section, we prove the existence and stability results stated in Section 4. To
prove these results, we need to compute the eigenvalues of the linearization of the
system of equations of the network at a stand equilibrium. In the first subsection,
we show how a stand equilibrium depends on the coupling parameters. The second
subsection is devoted to the computation of the eigenvalues at the stand and the
third subsection is devoted to the proofs of the results stated in Section 4.

5.1. The stand equilibrium

A stand is an equilibrium that is fixed by all symmetries of the network. Next we
consider how stand equilibria depend on parameters. Let (x0, y0) be an equilibrium
of (4.2).

Proposition 5.1. Assume (4.5) is valid and the coupling is linear synaptic. There
exists a family of stand equilibria parametrized by the coupling parameters:

(x0(α, β, γ, δ, ξ, η), y0(α, β, γ, δ, ξ, η)),

for (α, β, γ, δ, ξ, η) in a neighborhood of the origin in R4.



Models of central pattern generators for quadruped locomotion. I 311

Proof. Finding equilibria of the coupled cell system requires solving 16 nonlin-
ear equations. However, at a stand equilibrium, where the cells are all equal, the
equations decouple into eight identical systems of two equations. This system is:

ẋ = f (x, y)+ (α + γ + ξ)x = 0

ẏ = g(x, y)+ (β + δ + η)y = 0.
(5.1)

We apply the implicit function theorem to (5.1) as follows. The linearization (with
respect to the state variables x and y) is L0 +A where L0 has nonzero eigenvalues
by (4.5) and A has entries near zero. Therefore, L0 + A has nonzero eigenvalues
and the implicit function theorem allows us to solve for x and y in terms of
α, β, γ, δ. ��

5.2. Eigenvalues of the linearization at the stand

We compute the eigenvalues of the linearization L of system (4.3) and (4.4) at the
stand equilibrium. In particular, we are interested in the real part of the eigenvalues.
We take advantage of the isotypic decomposition of the complexified phase space
(C8)2 to compute the diagonal block structure of L. Let

A =
[
a b

c d

]
, B =

[
α 0

0 β

]
, C =

[
γ 0

0 δ

]
, D =

[
ξ 0

0 η

]
.

Equation (4.4) has the linearization

L =




A C 0 0 D 0 B 0

C A 0 0 0 D 0 B

B 0 A C 0 0 D 0

0 B C A 0 0 0 D

D 0 B 0 A C 0 0

0 D 0 B C A 0 0

0 0 D 0 B 0 A C

0 0 0 D 0 B C A



. (5.2)

The action of Z4 ×Z2 on phase space permutes the indices of the cells. Therefore,
the phase space (R8)2 consists of two copies of the irreducible representations of
R8. The decomposition of R8 into irreducible representations is computed in detail
in [15] and [4]. Let

vjk = (1, (−1)k, ij , (−1)kij , i2j , (−1)ki2j , i3j , (−1)ki3j ).

The complex irreducible representations of the action of Z4 ×Z2 on C8 are Vjk =
C{vjk}, j = 0, 1, 2, 3 and k = 0, 1. The real irreducible representations are Ujk =
Vjk for j = 0, 2 and k = 0, 1, U10 = Re(V10 ⊕ V30), and U11 = Re(V11 ⊕ V31).
Bases for the irreducible representations Uij and the correspondence of these rep-
resentations to primary gaits is given in Table 5.
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Table 5. Quadrupedal gaits. In jump and walk choose either + or − throughout.

U00 U01 U10 U11 U20 U21

0 0

0 0

0 0

0 0

0 1
2

0 1
2

0 1
2

0 1
2

± 3
4 ± 3

4
1
2

1
2

± 1
4 ± 1

4

0 0

± 3
4 ± 1

4
1
2 0

± 1
4 ± 3

4

0 1
2

1
2

1
2

0 0
1
2

1
2

0 0

1
2 0

0 1
2

1
2 0

0 1
2

pronk pace jump± walk± bound trot

The linearization leaves the isotypic components invariant, see Theorem 3.5,
Chapter XII [17]. Since the irreducible representations Vjk are nonisomorphic,
there is a basis where the linearization L decomposes in 2 × 2 complex diagonal
blocks Ljk . We find the diagonal blocks by multiplying each eigenvector vjk from
the left by L. Table 6 lists the diagonal blocks. The diagonal blocks Ljk where
j = 0, 2 and k = 0, 1 are real. The remaining diagonal blocks are complex.

The eigenvalues of the real diagonal blocks are easily computed from the trace
and the determinant. The trace of the real diagonal blocks is listed in Table 7. Let
Djk = (trLjk)2−4 detLjk . The value ofDjk for the real diagonal blocks is listed
in Table 8.

The eigenvalues of the complex diagonal blocks are the same as the eigenvalues
of the restriction of the linearization to the real irreducible representations U10 and
U11.

Table 6. Diagonal blocks of L when coupling is linear synaptic.

Diagonal Blocks (real) Diagonal blocks (complex)

L00 = A+ (B + C +D) L10 = A− Bi + C −D

L01 = A+ (B − C +D) L11 = A− Bi − C −D

L20 = A− (B − C −D) L30 = A+ Bi + C −D

L21 = A− (B + C −D) L31 = A+ Bi − C −D

Table 7. Trace for the real diagonal blocks.

Block Synaptic: trLjk

L00 (a + d)+ (α + β)+ (γ + δ)+ (ξ + η)

L01 (a + d)+ (α + β)− (γ + δ)+ (ξ + η)

L20 (a + d)− (α + β)+ (γ + δ)+ (ξ + η)

L21 (a + d)− (α + β)− (γ + δ)− (ξ + η)



Models of central pattern generators for quadruped locomotion. I 313

Table 8. Djk for the real diagonal blocks.

Block Synaptic: Djk

L00 ((a − d)+ (α − β)+ (γ − δ)+ (ξ − η))2 + 4bc

L01 ((a − d)+ (α − β)− (γ − δ)+ (ξ − η))2 + 4bc

L20 ((a − d)− (α − β)+ (γ − δ)+ (ξ − η))2 + 4bc

L21 ((a − d)− (α − β)− (γ − δ)+ (ξ − η))2 + 4bc

The eigenvalues of the complex blocksLjk are also determined by the trace and
determinant of the matrix. However, because the matrices are complex, the complex
eigenvalues need not be complex conjugates. We want to find an expression for the
eigenvalues of complex Ljk in the form u+ iv, where u, v ∈ R.

The eigenvalues of Ljk are given by

1

2

[
trLjk ±

√(
trLjk

)2 − 4 det Ljk

]
.

Write
(
trLjk

)2 − 4 det Ljk = 6jk + i7jk. Then,

√
6jk + i7jk = 1√

2

[
6jk + (62

jk +72
jk)

1/2
]1/2

+ i√
2

[
−6jk + (62

jk +72
jk)

1/2
]1/2

. (5.3)

Proposition 5.2. Let 8jk = 62
jk + 72

jk and τjk = Re (trLjk). The real part of

the eigenvalues of the diagonal block corresponding to theU2
1k isotypic component

are: (
τjk + 1√

2

[
61k +8

1/2
1k

]1/2
)
, (5.4)

(
τjk − 1√

2

[
63k +8

1/2
3k

]1/2
)

(5.5)

Proof. Just add the real part of the trace of Ljk to the real part of (5.3) in each
case. ��

Let ν = trA,� = det A and K = (α−β+γ −δ)2−2(a−d)(α−β+γ −δ).
The expressions 6jk and 7jk are found in Table 9 and Table 10 respectively. The
derivation of 6jk and 7jk is routine, see Buono [4] for details.

Remark 5.3. From Tables 9 and 10, 610 = 630, 611 = 631, 710 = −730 and
711 = −731. Since 7jk are squared in 8jk We write the eigenvalues in Theo-
rem 5.2 using only 610, 710, 611 and 711.
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Corollary 5.4. For both isotypic components U2
10 and U2

11, there is a pair of com-
plex conjugate eigenvalues for which the real part is always larger than the real
part of the other pair of complex conjugate eigenvalues.

Proof. From Remark 5.3, since
(
61k +8

1/2
1k

)1/2 =
(
63k +8

1/2
3k

)1/2
> 0. Then,

(5.4) is always greater than (5.5). ��

5.3. Proof of Theorems

In this subsection we prove the three results of Section 4. We begin by proving
Theorem 4.1. We then explain the limitations of the proof in the pronk case and the
trot case without second nearest neighbor coupling. Theorem 4.2 is proved through
Proposition 5.5 and Proposition 5.7. Finally, using Theorem 4.2 and Lemma 5.8
we prove Theorem 4.3.

The difficulty of the proof of Theorem 4.1 lies in the fact that in general the
stand equilibrium depends on the coupling parameters. In principle this dependence
makes it hard to follow the location of the stand and hence its linearization. The
idea of the proof is to restrict the coupling parameters in such a way that the stand
is independent of the remaining coupling parameters.

We use the following simplifications of the eigenvalues at the stand in the proof
of Theorem 4.1. A consequence of (4.5) is that ν2 − 4� < 0 at (x0, y0) and thus
remains negative in a neighborhood of the origin in coupling parameter space. Set
α = β, γ = δ and ξ = η. Then the eigenvalues become simpler. In particular,
Djk = ν2 − 4� for the real diagonal blocks, see Table 8. Hence the real diago-
nal blocks have complex conjugate eigenvalues. Moreover, 6jk = ν2 − 4�, and
7jk = 0, see Table 9 and Table 10 respectively. Hence, this implies that

6jk + (62
jk +72

jk)
1/2 = 0.

We note the real part of the eigenvalue with eigenspaceUjk by σjk . Table 11 shows
the real part of the eigenvalues when α = β, γ = δ, and ξ = η.

Table 9. Values of 6jk .

Blocks 6jk: synaptic
L10, L30 ν2 − 4�− (α − β)2 + [(γ − δ)− (ξ − η)][2(a − d)+ (γ − δ)− (ξ − η)]
L11, L31 ν2 − 4�− (α − β)2 + [(γ − δ)+ (ξ − η)][(γ − δ)+ (ξ − η)− 2(a − d)]

Table 10. Values of 7jk .

Blocks 7jk: synaptic
L10 −2(α − β)[(a − d)+ (γ − δ)− (ξ − η)]
L30 2(α − β)[(a − d)+ (γ − δ)− (ξ − η)]
L11 −2(α − β)[(a − d)− (γ − δ)− (ξ − η)]
L31 2(α − β)[(a − d)− (γ − δ)− (ξ − η)]



Models of central pattern generators for quadruped locomotion. I 315

Table 11. Real part of eigenvalues when α = β, γ = δ, and ξ = η: synaptic case.

Block Real part of eigenvalue Block Real part of eigenvalue

L00 σ00 = ν + 2(α + γ + ξ) L21 σ21 = ν − 2(α + γ − ξ)

L01 σ01 = ν + 2(α − γ + ξ) L10 σ10 = ν + 2γ − 2ξ

L20 σ20 = ν + 2(−α + γ + ξ) L11 σ11 = ν − 2γ − 2ξ

Proof of Theorem 4.1. Consider the walk. The pace, bound and jump are done
in a similar way. For these cases, we can assume that ξ = η = 0. We work the
trot case below. Let α = β and γ = δ, then σ11 = ν − 2γ . Let ν0 = ν|(x0,y0) and
α = −γ , then (x, y, γ ) = (x0, y0, ν0/2) is a solution to the system of equations



F(x, y, α, γ ) = f (x, y)+ (α + γ )x = 0

G(x, y, α, γ ) = g(x, y)+ (α + γ )y = 0

E(x, y, α, γ ) = ν − 2γ = 0.

At (x0, y0, ν0/2), the linearization at the stand equilibrium has a pair of purely imag-
inary eigenvalues with eigenspace U11. The eigenvalues cross the imaginary axis
at speed Eγ (x0, y0, ν0/2) = −2 �= 0 since ν does not depend on γ when α = −γ .
Thus, a Hopf bifurcation to walk occurs. See Table 5 where the correspondence of
U11 to walk is shown.

We can go a little bit further. Note that the determinant of

∂(F,G,E)

∂(x, y, γ )

∣∣∣∣
(x0,y0,−ν0/2,ν0/2)

=




∂f
∂x
(x0, y0)

∂f
∂y
(x0, y0) x0

∂g
∂x
(x0, y0)

∂g
∂y
(x0, y0) y0

∂ν
∂x
(x0, y0)

∂ν
∂y
(x0, y0) −2


 (5.6)

is generically nonzero since ∂f
∂x
(x0, y0)

∂g
∂y
(x0, y0) − ∂f

∂y
(x0, y0)

∂g
∂x
(x0, y0) is non-

zero. Hence, by the implicit function theorem (x(α), y(α), α, γ (α)) is a solution
to F = G = E = 0 for all values of α in a neighborhood of ν0/2. Moreover, for
a possibly smaller neighborhood around ν0/2 the nonzero speed crossing condi-
tion is satisfied on the branch parametrized by α. Thus, we have proved that if the
determinant of (5.6) is nonzero, there exists a branch of Hopf bifurcation leading
to walk.

In the trot case, we let ξ and η be different from zero. Set η = ξ . We solve the
system 


F(x, y, α + γ, ξ) = f (x, y)+ (α + γ + ξ)x = 0

G(x, y, α + γ, ξ) = g(x, y)+ (α + γ + ξ) = 0

E(x, y, α + γ, ξ) = ν − 2(α + γ )+ 2ξ = 0.

(5.7)
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restricted to the subspace α+ γ + ξ = 0. A solution to this system is at (x, y, α+
γ, ξ) = (x0, y0,−ν0/4, ν0/4), so the linearization at the stand has a pair of imag-
inary eigenvalues with eigenspace U21. (See Table 5 for the relationship of U21 to
trot.) The eigenvalues cross the imaginary axis with speedEξ(x0, y0,−ν0/4, ν0/4)
= 2 �= 0 since ν is constant on α + γ = −ξ . We remove the restriction that
ξ = −(α + γ ). As above, the determinant of

∂(F,G,E)

∂(x, y, ξ)

∣∣∣∣
(x0,y0,−ν0/4,ν0/4)

=




∂f
∂x
(x0, y0)

∂f
∂y
(x0, y0) x0

∂g
∂x
(x0, y0)

∂g
∂y
(x0, y0) y0

∂ν
∂x
(x0, y0)

∂ν
∂y
(x0, y0) 2




is generically nonzero. Hence, by the implicit function theorem (x(α + γ ), y(α +
γ ), ξ(α + γ )) is a solution to F = G = E = 0 for all values of α + γ in a neigh-
borhood of −ν0/4. Moreover, for a possibly smaller neighborhood around −ν0/4
the nonzero speed crossing condition is satisfied on the branch parametrized by
α + γ . ��

Under assumption (4.5), the existence of trot without the second nearest neigh-
bor coupling and of pronk cannot be proved. Consider the case of trot. To obtain a
Hopf bifurcation from stand to trot we solve the following system.

f (x, y)+ (α + γ )x = 0

g(x, y)+ (β + δ)y = 0

σ21 = ν − (α + γ )− (β + δ) = 0.

(5.8)

By setting α+ γ = β+ δ = 0, (x0, y0) is a solution to f (x, y) = g(x, y) = 0.
Then σ21 = 0 if and only if ν0 = 0. However, from (4.5), ν0 is not necessarily
equal to zero. Now, if we let either α + γ or β + δ be different from zero, then the
existence of a stand solution for the system is not guaranteed anymore.

The same explanation is valid in the pronk case. Moreover, the existence of
pronk cannot be shown by adding extra connections in the network. When adding
an extra connection in the network, we find stand by solving

f (x, y)+ (α + γ + µ)x = 0

g(x, y)+ (β + δ + ρ)y = 0

where µ and ρ are the coupling parameters for the new connection. We multiply
the linearization L, see (5.2), by the eigenvector v00. Then the trace of the diagonal
block L00 is ν+ (α+ β + γ + δ+µ+ ρ) and it corresponds to the real part of the
eigenvalue of L00. Hence, the same obstruction as was shown above occurs.

We now turn to the proof of the stability result. Note that for diagonal blocks
L10 and L11, we always refer to the real part of the eigenvalue with greatest real
part, see Corollary 5.4.

Let Pjk be the periodic solution produced from Hopf bifurcation with eigen-
space contained in U2

jk .
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Proposition 5.5. Let α = β, γ = δ, and ξ = η = 0 in network (4.4). Suppose
that a Hopf bifurcation from stand occurs for (α0, γ0) to a periodic solution P.
Consider the following statement:

sgn γ0 = (−1)k and α0 =

+1 if j = 0

−1 if j = 2.
(5.9)

Suppose that P = Pjk . Then P is asymptotically stable if and only if (5.9) holds.

Proof. We show the theorem in the L21 case; that is, a trot periodic solution bifur-
cates. A trot bifurcates when σ21 = 0, that is ν = 2(α + γ ). We substitute ν in
σjk , (j, k) �= (2, 1). Then, σ00 = 4(α + γ ), σ01 = 4α, σ20 = 4γ , σ10 = 2α + 4γ
and σ11 = 2α. So, all noncritical eigenvalues at the Hopf bifurcation have negative
real parts if and only if α < 0 and γ < 0. The proof for the other gaits is done in a
similar way. ��
Proposition 5.6. Let α = β �= 0, γ = δ, and ξ = η = 0 be fixed in network (4.4).
Suppose that either matrix L10 or L11 has a simple imaginary eigenvalue, then at
least one eigenvalue has a positive real part.

Proof. If ν = 2γ , then σ10 = 0. So, σ01 = 2α and σ21 = −2α. Thus, for any
value of α �= 0, one of the real parts is positive. A similar argument shows the L11
case. ��

Consider now the diagonal blocks L10 and L11. Let β = −α and γ = δ. If
we choose α �= 0 small enough, then σjk for the real blocks is given by the trace:
σ00 = σ20 = ν + 2γ and σ01 = σ21 = ν − 2γ . When γ = δ, 610 = 611 = 6

and 710 = 711 = 7, then σ10 = ν + 2γ + 1√
2
(6 + (62 + 72)1/2)1/2 and

σ11 = ν − 2γ + 1√
2
(6+ (62 +72)1/2)1/2.

Proposition 5.7. Let α = −β, γ = δ, and ξ = η = 0 in network (4.4). Suppose
that a Hopf bifurcation from stand occurs for (α0, γ0) to a periodic solutionP. Sup-
pose that P = P1k . Then P is asymptotically stable if and only if sgn γ0 = (−1)k .

Proof. Solve σ10 = 0 by isolating ν:

ν = −2γ − 1√
2
(6+ (62 +72)1/2)1/2. (5.10)

Replace ν in σ11, σ00, and σ01, respectively. After simplification we obtain −4γ ,
− 1√

2
(6+ (62 +72)1/2)1/2, and −4γ − 1√

2
(6+ (62 +72)1/2)1/2. It is easy to

see that these three quantities are negative if and only if γ > 0. Solve σ11 = 0 for
ν:

ν = 2γ − 1√
2
(6+ (62 +72)1/2)1/2. (5.11)

Replace ν in σ10, σ00, and σ01, respectively. After simplification we obtain 4γ ,
4γ − 1√

2
(6 + (62 + 72)1/2)1/2, and − 1√

2
(6 + (62 + 72)1/2)1/2. It is easy to
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see that − 1√
2
(6 + (62 + 72)1/2)1/2 is always negative and that 4γ is negative

if and only if γ < 0. Therefore, 4γ − 1√
2
(6 + (62 + 72)1/2)1/2 is also

negative. ��
We need the following lemma for the proof of Theorem 4.3

Lemma 5.8. Letα = β, γ = δ, and ξ = η in (4.4). Suppose that a Hopf bifurcation
from stand at (α0, γ0, ξ0) leads to a trot periodic solution. Then Hopf bifurcation
to trot is stable if and only if α0 < 0, γ0 < 0, and ξ0 > α0/2.

Proof. Trot is found on the subspace ξ = −(α + γ ). Solving σ21 = 0 we obtain
ν0 = 2α+2γ − ξ . Replacing in σjk for (j, k) �= (2, 1), we obtain σ00 = 4(α+γ ),
σ10 = 4α, σ20 = 4γ , σ11 = 2α − 4ξ , and σ10 = 2α + 4γ − 4ξ . Now, σ00 < 0,
σ10 < 0, and σ20 < 0 if and only if α < 0 and γ < 0. Thus ξ = −(α + γ ) > 0,
and therefore, σ11 and σ10 are also negative. ��
Proof of Theorem 4.3. We assume γ = −α to find pace and bound. On that
subspace the stand equilibrium does not move and so ν = ν0. Now σ01 = 0 if
and only if α0 = −ν0/4. Since the cell dynamics satisfies (4.6), then α0 > 0, and
γ0 = −α0 < 0. From Theorem 4.2 the Hopf bifurcation to pace is stable. Now,
σ20 = 0 if and only if α0 = ν0/4. Similarly, since the cell dynamics satisfies (4.6),
α0 < 0 and γ0 > 0. From Theorem 4.2, the Hopf bifurcation to bound is stable.

We solve σ21 when ξ = −(α + γ ) by setting ξ0 = −ν0/4 > 0. Since ν0 < 0
by (4.6), take α0 < 0 and γ0 < 0 such that−(α0 + γ0) = −ν0/4. Since ξ0 > 0, by
Lemma 5.8 the Hopf bifurcation to trot is stable. ��

6. Numerical simulations

Numerical simulations are performed using the dimensionless Morris-Lecar equa-
tions [34,30] as cell dynamics:

v̇ = −gCam(v)(v − 1)− gl(v − vl)− gKw(v − vK)+ i ≡ f (u, v)

ẇ = φτ(v)(n(v)− w) ≡ g(u, v)

where

m(v) = 1
2

(
1+ tanh

(
v − v1

v2

))

n(v) = 1
2

(
1+ tanh

(
v − v3

v4

))

τ(v) = cosh

(
v − v3

2v4

)
Using the results of the previous section we can locate Hopf bifurcation points

leading to stable primary gaits. Hypothesis (4.6) is satisfied for the following param-
eter values of the Morris-Lecar equations: φ = 0.2, v1 = 0.2, v2 = 0.4, v3 = 0.3,
v4 = 0.2, gCa = 3, gl = 0.6, gK = 1.8, vl = −1.8, vK = −0.8, i = 1.
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Table 12. Approximate values of synaptic coupling parameters where stable Hopf bifurca-
tions occur.

Gait α = β γ = δ ξ = η

Pace 0.3 -0.32 0

Bound -0.32 0.3 0

Trot 0.15 -0.16 -0.31

Table 13. Synaptic coupling parameters where primary gaits are found: ξ = η = 0.

Gait α β γ δ Gait α β γ δ

Pronk 0.2 0.2 0.2 0.2 Trot −0.6 −0.6 −0.6 −0.6

Pace 0.2 0.2 −0.2 −0.2 Jump 0.01 −0.01 0.2 0.2

Bound −0.2 −0.2 0.2 0.2 Walk 0.01 −0.01 −1.2 −1.2

The stand equilibrium is at (v0, w0) ≈ (0.31, 0.52), and ν0 ≈ −1.24. From
the proof of Proposition 4.3, we find parameter values for stable Hopf bifurcation
points to pace, bound and trot, see Table 12. The genericity condition in the proof
of Theorem 4.1 is easily verified for pace, bound, and trot. Table 13 shows coupling
parameter values where primary gaits are observable in numerical simulations. The
numerical simulations shown in Figure 2 are the trot and walk periodic solutions
for the values in Table 13.

7. Discussion and summary

In this paper, we contribute both to the modeling of central pattern generators for
quadruped locomotion by coupled cell systems of differential equations and their
analysis.

We contribute to the modeling of quadruped locomotion CPGs by proving that
the smallest symmetric network that can model walk, trot and pace as nonconjugate
periodic solutions is the Z4×Z2 network introduced in [15] (see Theorem 3.2). The
proof of this result is based on a general classification theorem for robust periodic
solutions in symmetric coupled cell systems (see Theorem 2.2).

One of the main tenets in modeling locomotion CPGs by coupled cell systems
is that the signal from each cell is transmitted to precisely one leg. Although the
modeling of walk, trot, and pace leads to one eight-cell network whose symmetry
group is Z4 × Z2, it does not lead to a unique choice of assignment of cells to
legs. Indeed, many such assignments are possible. However, when we make the
additional assumption that symmetries of the network permute pairs of cells that
send signals to the same leg, then only two cell to leg assignments are possible (see
Theorem 3.3). In [16] we have presented evidence that it is better to think of the
signals going from cells to muscle groups (as two muscle groups — flexors and
extensors — are needed to control each joint). This interpretation gives a physio-
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logical basis for the existence of a doubled-up eight-cell network, as opposed to a
simple four-cell network, and makes the assumption on cell to leg assignment seem
even more natural.

These two remaining assignments, the zig-zag network and the criss-cross net-
work (see Figure 6), have the property that for primary gaits the cells that send
signals to the same leg are either in-phase or a half-period out-of-phase. In the
zig-zag network, the cell signals to the same leg are out-of-phase in walk and jump,
while the cell signals are in-phase for the remaining primary gaits; in the criss-cross
network, the situation is reversed. The evidence for signals being sent to muscle
groups in [16] is based on bipeds where there is a distinction between the run (cells
in-phase) and walk (cells out-of-phase). This allows a mathematical classification
of quadruped gaits as either walk-like or run-like depending on whether the two
signals are out-of-phase or in-phase. It remains to be seen whether there is a cor-
responding physiological distinction between the walk-like and run-like gaits in
quadrupeds. Such a distinction would further confirm the validity of doubled-up
networks for modeling locomotion CPGs.

Regarding the analysis of the Z4 × Z2 network, we have shown (using Hopf
equivariant bifurcation theory) that coupling parameters can control the existence
and stability of primary gaits by making only mild assumptions on the internal
cell dynamics (see Theorems 4.1 and 4.2). Our assumptions are: the cells are two
dimensional with an equilibrium having nonreal eigenvalues and the coupling is
linear synaptic. These results tell us how to find primary gaits in the network and
we do this computationally when using the dimensionless Morris-Lecar equations
as internal dynamics. The question of how to find secondary gaits in the Z4 × Z2
network is addressed in Buono [5].

The structure of our model network (as a symmetric coupled cell system) pro-
duces several testable predictions (some of which were outlined in [16]). These
predictions include the existence of the jump gait, the physiological differences
between primary and secondary gaits, and the physiological differences between
walk- and run-like gaits. Moreover, these predictions are consequences of the dou-
bled-up network, which is forced on us simply by trying to model mathematically
walk, trot, and pace.

A. Appendix: Symmetry-generated subgroups

We prove Theorem 2.2 by characterizing all symmetry-generated subgroups of �-
equivariant differential equations (2.1) when � ⊂ O(n) is a finite group and then
specializing this result to coupled cell systems. The proof of the general theorem
is implicit in the work of Field et al. [12].

Let K ⊂ H be a pair of subgroups of �. In addition to (2.2), there are four
restrictions imposed on this pair so that a periodic solution U(t) of (2.1) can exist
with spatial symmetries K and spatio-temporal symmetries H .

The first restriction is as follows. Suppose thatU0 is any point on this trajectory
and suppose that

γU0 = U0. (A.1)
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Then, uniqueness of solutions guarantees that γU(t) = U(t) for every t . It follows
that (γ, 0) is a spatio-temporal symmetry of U(t) and that γ ∈ K . The subgroup
of � consisting of all γ satisfying (A.1) is called the isotropy subgroup ofU0. Thus

K is an isotropy subgroup of the action of � on Rn. (A.2)

The second restriction is straightforward:

dim Fix(K) ≥ 2, (A.3)

where
Fix(K) = {U ∈ Rn : σU = U ∀σ ∈ K} (A.4)

is the fixed-point subspace ofK . By definition a periodic solution with spatial sym-
metries K must lie in the subspace Fix(K). Hence the dimension of Fix(K) must
be at least two.

A consequence of the discussion preceding restriction (A.2) is: If U(0) ∈
Fix(C), then the trajectory U(t) must lie in the subspace Fix(C) for all t ; that
is, fixed-point subspaces are flow invariant. Define

LK =
⋃
γ �∈K

Fix(γ ) ∩ Fix(K)

Melbourne et al. [29] use (a variant of)LK to restrict the possible symmetry groups
of attractors; we now explain how this is done for periodic solutions.

SinceK is an isotropy subgroup,LK is the union of proper subspaces of Fix(K).
More precisely, suppose that Fix(γ ) ⊃ Fix(K), then the isotropy subgroup of ev-
ery point in Fix(K) would contain both K and γ �∈ K . Therefore, the isotropy
subgroup of any point in Fix(K) would be larger than K , and K could not be an
isotropy subgroup.

The third restriction placed on symmetry generated subgroups is:

H fixes a connected component of Fix(K) – LK . (A.5)

To verify (A.5) we begin by showing that any δ ∈ N(K), where N(K) is the
normalizer of K in �, permutes connected components of Rn – LK . Observe that

δ(Fix(γ ) ∩ Fix(K)) = Fix(δγ δ−1) ∩ Fix(δKδ−1) = Fix(δγ δ−1) ∩ Fix(K)

Moreover, δγ δ−1 �∈ K . If it were, then γ would be in δ−1Kδ = K , which it is not.
Therefore, δ : LK → LK . Since δ is invertible, δ : Rn – LK → Rn – LK and δ
permutes the connected components of Rn – LK .

Since H/K is cyclic, we can choose an element h ∈ H that projects onto a
generator of H/K . Note that h ∈ N(K) and therefore h permutes the connected
components of Rn – LK . We now show that h (and hence H ) must fix one of
the connected components. Suppose that the trajectory of x(t) intersects the flow
invariant subspace Fix(γ )∩ Fix(K). Flow invariance of Fix(γ ) implies that γ is a
spatial symmetry of the solution x(t) and, by definition γ ∈ K . Therefore, the tra-
jectory of x(t) does not intersectLK . Since h is a spatio-temporal symmetry of x(t),
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it preserves the trajectory of x(t). Therefore, hmust map the connected component
of Rn – LK that contains the trajectory of x(t) into itself, thus verifying (A.5).

The last restriction occurs when dim Fix(K) = 2:

If dim Fix(K) = 2, then either H = K or H = N(K). (A.6)

A simple example illustrates the difficulty. Suppose that � = Z4(ρ) acting by ro-
tations on R2, H = Z2(ρ

2) and K = 1. Observe that H/K = Z2 is cyclic, K is
an isotropy subgroup, dim Fix(K) = 2, and LK = {0}; so all previous restrictions
are satisfied. Note, however, that N(K) = Z4 and hence N(K) � H � K . Final-
ly, suppose that x(t) is a T -periodic solution whose spatio-temporal symmetry is
ρ2x(t) = x(t + T

2 ). The trajectory of x(t) must avoid the origin and, because ρ2 is
rotation by π , the trajectory must have the origin in its interior. In this case ρ{x(t)}
must intersect {x(t)}. Hence ρ{x(t)} = {x(t)} and ρx(t) = x(t ± T

4 ); that is, the
spatio-temporal symmetry group is larger than H . In effect, this is the only type of
difficulty that can arise, as we now show. Suppose that H � K; then H/K = Zm

for somem ≥ 2. We claim thatH/K is generated by a rotation; the only other possi-
bility is thatH/K = Z2(τ )where τ acts as a reflection on Fix(K). Since τ {x(t)} =
{x(t)} it follows that {x(t)} ∩ Fix(τ ) �= ∅. Thus {x(t)} ⊂ Fix(τ ), which is not pos-
sible. As in the example,H/K is generated by a rotation. It follows that LK = {0};
otherwise, Fix(K) – LK has more than one connected component (which must be
wedges) and none of these can be fixed by a rotation. As in the example, x(t) must
contain the origin in its interior. If γ ∈ N(K) – H , then γ {x(t)} must intersect
{x(t)} and the spatio-temporal symmetry group of x(t) must be larger than H .

Theorem A.1. The pair of subgroups K ⊂ H corresponds to a symmetry gener-
ated subgroup if and only if the pair satisfies (2.2), (A.2), (A.3), (A.5), and (A.6).
Moreover, asymptotically stable limit cycles with the desired symmetry exist.

Proof. In the preceding discussion we have proved that the five conditions are nec-
essary; now we prove that they are sufficient. We must prove the existence of a
robust periodic solution with space symmetriesK and spatio-temporal symmetries
H . We sketch that proof here showing, in addition, that the robust periodic solution
can be a stable limit cycle.

Choose a generator h of H/K = Zm. By assumption, H fixes a connected
component C of Fix(K) – LK . Recall that N(K) ⊂ � is the largest subgroup that
acts on Fix(K) and that elements in N(K) permute the connected components of
Rn – LK . Define

Ĥ = {γ ∈ N(K) : γ (C) = C}.
Two points need to be verified.

(a) There is a non-self-intersecting closed curve J inC that is mapped onto itself by
h and no point on J is fixed by h. Moreover, γ (J )∩J = ∅ for all γ ∈ Ĥ – H . If
so, we can construct aC∞ vector field f onC for which J is a stable limit cycle
and we can smoothf so that it is zero nearLK and near γ (J ) for all γ ∈ Ĥ – H .

(b) There is a smooth extension of f to all of Rn that is �-equivariant.
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Once these points are verified the proof may be completed as follows. Since K
is an isotropy subgroup, the space symmetry subgroup of J isK . Since h : J → J ,
h is a spatio-temporal symmetry of J and the spatio-temporal symmetry group of
J is H . Proving that hyperbolic periodic solutions with space symmetries K and
spatio-temporal symmetriesH are robust (that is, they perturb to periodic solutions
with the same symmetry subgroups) is straightforward. Since hyperbolicity implies
that the perturbed periodic solution V (t) is unique, it follows that V (t) ∈ Fix(K)
for all t and that hV (t) must be the same trajectory as V (t). Since the number of
temporal symmetries ofU(t) ism, it follows by continuity that the spatio-temporal
symmetries of V (t) form the subgroup H .

To verify (a) choose a point x1 ∈ C and form the group orbit xj = hjx1 for
j = 2, . . . , m. Note that the points xj ∈ C since h : C → C. Choose a non-self-
intersecting smooth curve J1 in C connecting x1 to x2, which is possible since C
is connected. We can also arrange that near its endpoints J1 is a straight line in the
directions v1 and v2, where (dh)x1(v1) ≡ h(v1) = v2. Now let J = ∪j hj (J1).
By construction J ⊂ C is a smooth curve that is invariant under h. There are two
difficulties: J can intersect itself and J might intersect γ (J ) where γ ∈ Ĥ – H . If
dim Fix(K) ≥ 3, then we can use transversality arguments (like those used to prove
the Whitney embedding theorem, see [14]) to avoid these difficulties in our choice
of J . If dim Fix(K) = 2, then there is a potential problem when constructing J ;
see Figure 7. Suppose h is rotation by 4π

5 , which generates the cyclic group Z5.
Then self intersections of J are unavoidable. If, however, we choose the generator
to be h∗ = h3 to be rotation through 2π

5 , then self intersection can be avoided.
So even when dim Fix(K) = 2 the construction of J is possible. Moreover, when
dim Fix(K) = 2 assumption (A.6) states that either H = N(K) in which case no
restrictions come from Ĥ or H = K in which case we choose a small curve J in
R2 – LK that does not intersect any of its images under N(K).

Fig. 7. Unavoidable self intersection in J with certain generators of H/K when
dim Fix(K) = 2.
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To verify (b) we average f over the group. First, extend f to f1 : Fix(K) →
Fix(K) by setting f = 0 off C. Then let

f2(x) = 1

|N(K)|
∑

γ∈N(K)
γ−1f (γ x).

The vector field f2 is N(K)-equivariant, zero near LK , and has J as a stable limit
cycle. Next extend f2 to f3 : Rn → Rn so that J is now a stable limit cycle in
all of Rn and f3 = 0 outside a neighborhood of J . In particular, f3 = 0 near LK .
Now average again by setting

f4(x) = 1

|�|
∑
γ∈�

γ−1f3(γ x).

The vector field f4 is the desired extension. ��

Remark A.2. Suppose that h is a generator of Zm = H/K . Is there a period-
ic solution such that (h, 1

m
) is a spatio-temporal symmetry? The answer may be

no when dim Fix(K) = 2. In this case, we can always choose some generator
h′ ∈ Zm = H/K so that (h′, 1

m
) is a spatio-temporal symmetry; but we can not

necessarily choose every generator h.

We now prove Theorem 2.2. Suppose that

dim(Fix(γ ) ∩ Fix(K)) ≤ dim Fix(K)− 2. (A.7)

whenever γ �∈ K . Then Fix(K) – LK is connected and (A.5) is automatically valid.
Therefore, if each irreducible representation of � that occurs in the state space Rn

occurs at least twice, then (A.7) is satisfied and (A.5) is valid.
Next we discuss symmetry generated subgroups in coupled cell systems. If the

internal dynamics of a coupled cell system is k ≥ 2, then each irreducible represen-
tation appearing in state space appears at least k times. Therefore, in these coupled
cell systems, each fixed-point subspace has dimension divisible by k and condition
(A.5), and hence (A.7) and (A.3), are satisfied. In particular, since K acts by per-
muting cells, K divides the set of cells into p blocks where K acts transitively on
each block. Moreover, vectors in Fix(K) have identical components in each block.
Therefore, the dimension of Fix(K) is kp. If dim Fix(K) = 2, then the internal dy-
namics in each cell is k = 2 dimensional and the number of blocks is p = 1. Since
� acts transitively on the N cells and |�| = N , it follows that the only transitive
subgroup is � and K = �. Therefore H = K in this case and (A.6) is satisfied.

Finally, suppose that the permutation group � has the same number of elements
as the number of cells. Then the state space of the coupled cell system consists of k
copies of L2(�), the vector space of all real-valued functions on �. It is a standard
result that all irreducible representations of � lie in L2(�). It follows from Barany
et al. [3] that for these cell systems every subgroup of � is an isotropy subgroup,
and (A.2) is automatically satisfied. We have proved Theorem 2.2. ��
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We end this discussion by considering the question of whether robust periodic
solutions exist in our coupled cell systems whenH/K is cyclic. If all kinds of cou-
pling is permitted consistent with � symmetry and arbitrary internal dynamics are
allowed, then the coupled cell system is just a general �-equivariant vector field.
In this generality Theorem A.1 implies that there exist robust periodic solutions for
each spatio-temporal symmetry group satisfying (2.2). However, if restrictions are
placed on couplings, such as allowing only nearest neighbor coupling or imposing a
certain kind of coupling, then Theorem 2.2 does not necessarily guarantee the exis-
tence of robust periodic solutions for every possible symmetry generated subgroup.
Theorem 2.2 does, however, guarantee that the only possible symmetry generated
subgroups are those satisfying (2.2). In these instances we must use other tech-
niques, such as Hopf bifurcation, to prove the existence of robust periodic solutions.
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