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Many processes in nature are characterized by periodic bursts of activity
separated by intervals of quiescence. In this chapter we describe a method
for classifying the types of bursting that occur in models in which variables
evolve on two different timescales, i.e., fast-slow systems. The classification
is based on the observation that the bifurcations of the fast system that
lead to bursting can be collapsed to a single local bifurcation, generally of
higher codimension. The bursting is recovered as the slow variables peri-
odically trace a closed path in the universal unfolding of this singularity.
The codimension of a periodic bursting type is then defined to be the codi-
mension of the singularity in whose unfolding it first appears. Using this
definition, we systematically analyze all of the known universal unfoldings
of codimension-one and -two bifurcations to classify the codimension-one
and -two bursters. Takens was the first to analyze the unfolding spaces
of a number of these. In addition, we identify several codimension-three
bursters that arise in the unfolding space of a codimension-three degener-
ate Takens-Bogdanov point. Among the periodic bursters encountered in
mathematical models for nerve cell electrical activity, so-called elliptical,
or type III, bursters are shown to have codimension two. Other bursters
studied in the literature are shown to first appear in the unfolding of the
degenerate Takens-Bogdanov point and thus have codimension three. In
contrast with previous classification schemes, our approach is local, pro-
vides an intrinsic notion of complexity for a bursting system, and lends
itself to numerical implementation.
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1.1 A framework for classifying bursters

The fields of mathematical and computational neuroscience focus on mod-
eling electrical activity in nerve cells. Fundamental processes, such as volt-
age changes and ion transport across cell membranes, occur on disparate
time scales. As a result, the mathematical models consist of fast and slow
variables:

g = f(z’y)
y' eg(z,y) (1.1)

where € > 0 is small.

The Hodgkin-Huxley equations, FitzHugh-Nagumo equations, Morris-
Lecar equations, as well as many other fast-slow models of the above form,
exhibit an extremely rich variety of nonlinear dynamical behaviors. In this
work, we focus exclusively on the phenomenon of periodic bursting.

Rinzel [52] defines a periodic burster as a periodic solution to a system
of autonomous differential equations whose behavior alternates between
near steady-state and trains of approximate spike-like oscillation; see also
[66]. Within the particular framework of fast slow systems (1.1), Rinzel [50,
51, 54], Ermentrout and Kopell [23] and others, use analytical methods for
identifying and constructing periodic bursters. One thinks of the slow
variables y as providing a time-periodic forcing in the fast =’ equation, so
that the solution of the fast equation visits various invariant sets in order.
As noted in [54], the slow variables either provide this forcing effectively
without feedback from the fast system, in which case the slow variables
oscillate periodically on their own, irrespective of how the coupling to the
fast subsystem influences them. Or, they provide it with feedback from
the fast system, in which case the switching between the two states is
determined also by the fast variables.

In the former case, the system may effectively be modeled as:

z' flz,y)
y' €9(y) (1.2)

with the slow component only depending on the slow variable y. A reduc-
tion to (1.2) can also be made for the latter case. However, in this second
case, one needs to use invariant manifold theory, and the reduction is made
separately over each of the local segments of the periodic trajectories, not
globally over the entire period of the slow oscillation.

There is also a geometric approach to constructing bursters that entails
thinking of bursters as generalized heteroclinic orbits. Here the bursting
trajectory is a trajectory that moves from one invariant set (a steady state,
a periodic solution, or a quasiperiodic solution) to another, spending a
relatively short time in transition and a relatively long time near each
invariant set. Golubitsky and Stewart [28] emphasized the heteroclinic
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structure of bursters by introducing the stylized notion of a pipe system in
phase space. Pipe systems consist of joints containing hyperbolic invariant
sets, such as equilibria and limit cycles, and tubes connecting the joints.
They showed that primitive piecewise smooth constructions of pipe systems
do lead to bursting time series of the type seen in experiments.

From all of these points of view, a bursting trajectory is described by
certain characteristics: the sequence of invariant states (equilibria, periodic
orbits, invariant tori, etc.) visited by the bursting trajectory and the ways
in which these trajectories approach and leave each invariant set. The clas-
sification schemes that have been explored based on such phenomenological
descriptions, including that in Izhikevich [37], all suffer from one difficulty
— there is no way to know when the classification is complete.

In this chapter, we suggest that bursters should be classified by their
phenomenological description and by the codimension of the singularity in
whose unfolding they first appear. We will use the fast slow structure in
(1.2) and the local unfolding ideas as a basis for this classification scheme.
This approach is analogous to the path formulation description of bifur-
cation problems given in [26] where here the paths will be closed curves
rather than curves and the unfolding theory will be the dynamical sys-
tems unfolding theory described in [30] rather than the singularity theory
unfolding theory of Thom and Mather.

This local approach has several advantages over the above global an-
alytical and geometrical methods. First, it is well known [20, 26, 27, 30]
that many bifurcations that are first observed globally can be more easily
studied by local theory, i.e., by using the unfolding theory of degenerate
singularities. In particular, the local theory provides methods by which
global phenomena can be found locally using calculus and numerical tech-
niques. Second, the local theory provides a rational method of classification
by codimension that naturally indicates how complex a system needs to be
in order for it to support bursters of given types.

The local approach developed in this work based on the unfolding of
singularities may be viewed as a logical extension of the approach taken in
Bertram et al. [8]. In particular, Bertram et al. [8] showed that the distinct
bursters known at the time, including the three from the classification of
[51], as well as some found later, could be obtained by choosing appropriate
paths in the bifurcation diagram of a codimension-three degenerate Takens-
Bogdanov bifurcation point. Their analysis, in turn, relied heavily on the
results reported in Dumortier et al. [22] for the unfolding space of this
singularity. The central new element we add is that the codimension of
a periodic bursting type should be the codimension of the singularity in
whose unfolding the burster first appears. It is this new definition, made
precise in definition 1.5 below, that makes possible a rational classification
scheme and that offers a natural measure of the complexity of each bursting

type.



A framework for classifying bursters 4

Our work also complements the classification scheme presented in de
Vries [67). There, a bifurcation map of the parameter space is developed by
first finding the codimension-one bifurcation curves and then by finding the
special codimension-two points along these curves that bound the regions
with different bursters. The domain of the map is naturally split into
separate regions, one for each distinct bursting type. This map therefore
broadens the schemes developed earlier in [51] and [8].

Remark 1.1. The need for a cogent mathematical classification also stems
from the fact that there are difficulties inherent in relating features of times
series to the topological classifications of bursters; see (8] and [37]. In
particular, indicators from the time series, such as phase resetting, spike-
frequency profiles, and spike undershoot, only provide a limited tool for
classification.

1.1.1 Phenomenological Approach to Bursting in Fast-Slow Sys-
tems

A necessary condition for bursting in (1.2) is that each of the fast system
invariant sets must be asymptotically stable for certain values of ¥ and lose
stability at a bifurcation as y changes. Assuming that the slow system is
varying periodically, which we assume for periodic bursters, we can rewrite
(1.2) as a periodically forced system of differential equations of the form

' = f(z,y(et)). (1.3)

We now think of the solution of (1.3) as visiting invariant states of the
frozen system

' = f(z,y") (1.4)

where y* = y(6) for some 6. i.e., the time-periodic evolution of y(t) forces
the solution trajectory z(t) to oscillate between these invariant sets. With
this structure in mind, we define a burster type as follows.

Definition 1.2. A periodic burster type consists of

(a) an ordered set S; (j = 1,...,¢) of stable equilibria, periodic orbits,
or invariant tori for the frozen system (1.4) existing at y* = y(8) for ¢
in the interval (8;,60;41), where 6,41 = 6.

(b) the type of bifurcation that S; undergoes as 6 varies past 6;41,
where these bifurcations cause the trajectory to leave the vicinities of
the invariant sets.

(c) the eigenvalues (or spectra) — all real (nodal) or some complex
(oscillatory) — associated to each S;.

We assume that the eigenvalues (or spectra) of S; in (c) do not change their
type as 6 varies in (8;,6;41) nor do the signs of their real parts change.
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Remark 1.3. This definition of bursting allows for bursting in systems in
which there is at most one stable state at each parameter value of the fast
system. Hence, it contrasts with previous descriptions of bursters which
rely primarily on bistability of states. Furthermore, our description of
bursters leads to an enlargement of the class of systems that are labeled
as ‘bursting’. For example, it includes bursts between two steady states,
which have no spiking in the active phase.

1.1.2 A Local Description Using Singularities and Their Unfold-
ings

We now set up our framework for discussing the local birth of periodic
bursters. We assume that the frozen system

z' = f(IL‘,O)

has a singularity of codimension k at £ = 0 and that the y variables are
universal unfolding parameters for this singularity. That is, we assume that
f:R* x R* 5 R". In this context, we assume that the unfolding theorem
is valid and y(#) is a small amplitude periodic path in R*¥. Of course, our
discussion only refers to an unspecified neighborhood of the origin in R¥,
so that the convention of writing the parameter space of k parameters as
R* is a slight abuse of notation.

Locally, near the origin the universal unfolding defines a codimension-
one transition variety V C R¥. This variety consists of parameter values at
which singularities of codimension at least one occur. These singularities
include, but are not limited to, saddle-node bifurcations, Hopf bifurcations,
and homoclinic trajectories.

A diffeomorphism ¢ : R* — R* preserves V if o(V) = V and if it
maps each component manifold constituting the variety to itself. Hence, in
particular, it is the case that ¢(0) = 0 whenever ¢ preserves V, since 0 is
the only codimension-k point of V.

Definition 1.4. Two paths y(6) and z(6) are path equivalent if there exists
amap ¢ : R* x 8! —» R* and a reparametrization © : 8! — S! such that
(-, 8) is a diffeomorphism that preserves V for each § € S! and

2(8) = p(y(©(6)), 9)-

Therefore, one directly sees that whenever y(f) and 2(8) are path
equivalent, the corresponding bursters have the same type. The idea is
that when two paths are path equivalent they traverse the same sets of
(stable) equilibria, periodic solutions, etc. with the same eigenvalue types
— hence they have the same burster types.
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1.1.3 Classification Based on Minimum Codimensions of Singu-
larities

We make the following definition of codimension of a periodic bursting type
in order to be able to classify periodic bursters in a framework intrinsic to
the fast-slow decomposition of the governing equations. The viewpoint
adopted here is that, among all of those singularities whose unfoldings
contain a given bursting type, the one with smallest codimension gives an
intrinsic measure of the complexity of that burster:

Definition 1.5. The codimension of a periodic bursting type is the min-
imum codimension of a bifurcation point in the fast system in whose un-
foldings that type of bursting occurs.

Definition 1.5 forms the basis for the classification presented in this
work. We will show that there is a single codimension-one burster, namely
that which arises through a (nondegenerate) Hopf bifurcation in the fast
subsystem. Then, we classify all codimension-two bursters by systemati-
cally studying the known unfoldings of all codimension-two bifurcations.
These include: the cusp singularity, degenerate Hopf bifurcation, Takens-
Bogdanov bifurcation, Hopf-steady state mode interaction, and Hopf-Hopf
mode interaction. All other bursting types must be of codimension three
or more, and in this work we will also discuss certain codimension-three
bursters.

A surprising observation resulting from our analysis is that systems
traditionally labeled as type III (or elliptic) bursters have codimension
two, whereas the other most commonly studied bursters — those labeled
as types la (square-wave), Ib, II (parabolic) and IV — first occur in the
unfoldings of codimension-three bifurcations, as was shown in [8] and as
we will see here.

Remark 1.6. Ultimately a local classification of bursters, as we describe
here, is limited by the extent to which universal unfoldings of dynamical sin-
gularities are understood. For example, in the classification of codimension-
two bursters, the unfoldings of Hopf-steady state and Hopf-Hopf mode in-
teractions are not yet completely understood in a rigorous fashion. We
have only reported results here for the studies of the truncated normal
forms and, hence, we can only say that our classification is complete to the
extent that it is covered by the known theory. See section 1.3.4 and sec-
tion 1.3.5 for more discussion. It seems likely, however, that these details
will have little significant impact on our conclusions.

Remark 1.7. The singularity-based approach may be contrasted with that
of Izhikevich [37]. Specifically, [37] has classified periodic bursters by the
precise bifurcations that occur along the trajectory. Each distinct sequence
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of codimension-one bifurcations in the fast subsystem is considered as giv-
ing rise to a different type of burster. Also, the resultant sequence is labeled
as a ‘codimension-one’ burster, e.g. a sequence is labeled as Hopf-Hopf
when the active phase begins and ends with Hopf bifurcations. There is,
therefore, a mixture of local and global in this classification scheme, whereas
the singularity-based approach is purely local and intrinsic. In addition,
it is not clear from the classification in [37] how ‘likely’ each of the given
sequences is. In the singularity-based approach the possible sequences that
occur in the unfolding of a given singularity can be seen directly. Moreover,
since each of these sequences arises in an unfolding of a singularity, their
intrinsic complexity is that of the associated singularity.

1.1.4 Generic Paths

Using transversality, loop space (the space of closed paths through the space
of unfolding parameters R¥) can be decomposed into connected components
separated by a codimension-one variety. Again this decomposition into
connected components is important only near the origin in loop space. We
call a closed path u : S! — R* generic if u intersects V transversely.

Transversality implies that g intersects V only in codimension-one
components and crosses those components with nonzero speed. Therefore,
transversality implies that any sufficiently small perturbation of a generic
path is generic and that the two paths are path equivalent. Thus, the
connected components of loop space mentioned above consist of paths that
are all path equivalent. The variety separating these components consists
of paths that are tangent to the variety V or that intersect V at points of
codimension greater than one.

It seems quite difficult to classify all generic paths, that is, all com-
ponents of generic paths in loop space. We sidestep this issue by mostly
considering paths in the family

1(0) = A + cos(8)B + sin(8)C (1.5)

where A,B,C € RF are vectors in parameter space. These paths are
usually our candidates for paths supporting bursters. Note that this 3k-
dimensional subspace of loop space also divides naturally into components
of generic paths.

This choice of paths in loop space can be motivated by thinking that
there is a Hopf bifurcation in the slow equations that generates a family
of periodic solutions in the slow variables. These periodic solutions then
force the fast equation, since the slow variables are the parameters in the
unfolding of the singularity in the fast equation. The family of paths ob-
tained in this way is, to first order in a Fourier decomposition sense, the
same as those in (1.5).
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1.1.5 Organization of this chapter

In section 1.2 we analyze the standard Hopf singularity that gives rise to the
unique codimension-one periodic burster. In section 1.3, we systematically
study the known codimension-two singularities of vector fields and identify
all of the codimension-two periodic bursters that they generate. Finally,
section 1.4 is devoted to a particular codimension-three singularity in whose
universal unfolding several codimension-three periodic bursters are found.
We discuss the singularity in the fast system, the relevant paths through
the unfolding of that singularity, and the associated time series for each
burster type we consider.

1.2 The codimension-one burster

We begin the classification with bursters of codimension one. The generic
codimension-one bifurcations of flows are saddle-node and Hopf bifurca-
tions. However, paths in the unfolding space of a saddle-node bifurcation
do not lead to bursting, since the fast system contains no stable states on
one side of the bifurcation point. Thus, the sole codimension-one bifurca-
tion of interest here is the Hopf bifurcation.

The nondegenerate Hopf bifurcation, also known as the Andronov-
Hopf bifurcation [1, 32, 41], has the normal form (in polar coordinates)

v = r(u-r?)+0@F"
0 = 1+0(%)

where p is a real number. Here, we have chosen the coefficient in front of
the cubic term to be negative, since we are interested in the bifurcation to
a stable limit cycle. It is known that the dynamics of (1.1) is topologically
equivalent to that of the truncated normal form, the system (1.1) without
the higher-order terms. Thus, we study the truncated normal form.

For each u, the system (1.1) has an equilibrium at » = 0. It is a stable
focus attracting all orbits at an exponential rate for each ¢ < 0, whereas
it is an unstable focus for any g > 0. The transition occurs precisely at
the Hopf bifurcation point x = 0, where the origin is topologically a stable
focus but orbits approach it at only an algebraic rate. For u > 0, there is
also a unique limit cycle (of radius /7 in the truncated system (1.1)) that
is asymptotically stable and attracts all nonzero initial conditions. In this
case, the transition variety V is just the origin.

In order to study bursting, we make the unfolding parameter vary
slowly along a closed loop:

(1.1)

u = C'sin(et), (1.2)

where A = B = 0in (1.5) and 0 < € < 1. This slow variation in the unfold-
ing parameter u causes the system to periodically cross the Hopf transition
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Figure 1.1. Time series of rcos @ obtained from (1.1) and (1.2) with C = 0.3
for € = 0.01 (top; note the slow passage effect) and for ¢ = 0.1 (bottom). The
right panels show enlargements of a portion of the left panels so the spikes are
visible. There are more spikes per burst event with ¢ = 0.01 than with e = 0.1,
since the frequency of the periodic orbit is O(1) in the fast time and, hence, the
slower the slow variable changes, the more the fast variable oscillates.

variety. More generally, in terms of the paths p(t) = A+B cos(et)+C sin(et)
considered in (1.5), A, B, C space divides into three regions: one in which
the path is always to the right of 0, one where it is always to the left of 0,
and one where the path crosses the origin twice. The path given by (1.2)
samples this last region and gives rise to bursting (in those cases where
the slow passage effect permits it, see below). The other two regions are
associated to paths that do not yield bursting.

There is an important additional phenomenon, namely slow passage
through a Hopf bifurcation [42, 43], that arises in the system (1.1) with
given by (1.2), for sufficiently small €, as well as in other bifurcations in
which the equilibria have eigenvalues with nonzero imaginary parts. For
analytic vector fields, solutions will stay close to an unstable equilibrium
point beyond the Hopf bifurcation value at which the equilibrium became
unstable. Moreover, if there is a finite ((1)) buffer point, then the so-
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lutions will do so until the value of u reaches the value of that buffer
point and they will all leave a neighborhood of the unstable equilibrium
point in an exponentially small interval about the buffer point. This de-
lay in the effect of the bifurcation runs counter to one’s intuition in that
one would instead expect that solutions get repelled by the equilibrium as
soon as it becomes unstable. Therefore, this slow passage effect plays a
prominent role in determining the amplitude profile of the burster. See
figure 1.1 for the manifestation in the analytic Hopf burster, and we re-
fer the reader to some of the by-now large literature on slow passage; see
(4,7, 14, 21, 34, 42, 43, 61, 62]. For completeness, it is also worth recalling
here that noise will destroy the slow passage effect; see [4, 42, 43].

1.3 Codimension-two bursters

The next simplest bursting types are those of codimension two. In this
section, we analyze each of the generic codimension-two local singularities
in the fast system to classify codimension-two bursters. These are

(i) the cusp point,

(ii) the degenerate Hopf bifurcation point,

(iii) the Takens-Bogdanov bifurcation point,

(iv) the Hopf-steady state bifurcation point, and
(v) the Hopf-Hopf bifurcation point.

These systems have two-dimensional unfolding spaces and, within the frame-
work of section 1.1, we take the unfolding parameter x to be of the form

M1 = Bl COS(Gt) + A1 (1 1)
pe = Cysin(et) + As. )

1.3.1 The cusp

The cusp is a saddle-node bifurcation in which there is a degeneracy in the
quadratic terms. This bifurcation involves the transition from one steady-
state to three. The universal unfolding is given by:

&= —2% + mz + p2 + O(z?). (1.2)

Here also, the dynamics of the full normal form (1.2) is topologically equiv-
alent to that of the truncated system, i.e., (1.2) without the higher order
O(z*) terms. Hence, the bifurcation diagrams are qualitatively the same,
so that one only needs to study the truncated system; see [26, chapter
II1.12(c)] or (39, chapter 8.2].

Following the framework of section 1.1, we find the transition variety
for the cusp singularity. In (u;, po, z)-space, the edges of the cusp surface
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Figure 1.2. The projection of the cusp surface —z°+pu1z+p2 = 0 onto the plane
of the unfolding parameters. The cusp curves are given by (u1/3)° = (u2/2)*.
Paths 1 and 2 lead to the two different types of bursting. The corresponding
time series are given in figure 1.3.

are given by (i1, u2) = (3z%, —2z3%). Hence, the cusp curves, which are the
projections of these edges onto the u;, ps plane, are given implicitly by

m\3 _ (p2)\?
(3)=(3) (13)
See figure 1.2. For points (u;, #2) inside the cusp curve, the cubic has three
distinct real roots, whereas outside of it, there is only one real root. The
cusp curves correspond to bifurcations along which two equilibria exist (one
of which is a saddle-node point).

Among the closed paths of the type considered in section 1.1, there are
two distinct types that give rise to periodic bursters. These are illustrated
in figure 1.2, and the corresponding time series with the unfolding param-
eters p, p varying as in (1.1) are shown in figure 1.3. In figure 1.3(left)
11, 2 vary slowly around a circle centered at the origin (path 1 in fig-
ure 1.2). Along part of this circle, the system is in the regime with only
one equilibrium, while for parameter values along the remainder of this
circle, the system is in the three equilibrium regime. Hence, the time series
in the left frame exhibits only one rapid jump (down) each period. By
contrast, the time series in figure 1.3(right) exhibits two rapid jumps (one
up and one down) each period. This time series was generated instead by
choosing a circle in parameter space that crosses each branch of the cusp
(transition) variety twice, once in each direction; see path 2 in figure 1.2.

In the remainder of this subsection, we show how the method of sec-
tion 1.1 also yields computable conditions on the parameters B, C2, A; and
Az under which the circular paths are tangent to the cusp curve. For sim-
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Figure 1.3. The time series z(t) of the solutions of (1.2) with the unfolding pa-
rameters given by (1.1) with B; = C> = 0.5 and (A,, A2) = (0,0) (left panel) and
B = Cz = 0.3 and (4, A2) = (0,0.6) (right panel). These formulae correspond
to paths 1 and 2, respectively, in figure 1.2. In both cases ¢ = 0.01.

Figure 1.4. Left panel: sketch of the family of circles that are tangent to the
cusp curves and of the locus of points at which these circles are centered, as
computed in section 1.3.1. Right panel: Members of the six components in the
space of circular paths which are separated by the families of paths depicted on
the left.

plicity of calculation throughout, we transform the unfolding parameters

to v; = =£2, and v, = £'. Hence, the cusp curves are given by

V=13 (1.4)
We let B; = C3 = R and rewrite the paths in the more convenient form

(n1,2) = (Rcos(T) + Ay, Rsin(r) + A3). (1.5)
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Parametrically, the tangency condition is then 2u»v{ — 3v2vh = 0, sub-
ject of course also to the condition that (1.4) holds. Solving (1.5) for the
trigonometric functions and recalling that R > 0, the tangency condition
becomes

21/1 (V2 e Az) + 3V§(V1 - Al) =0. (16)

Finally, the locus of points at which the circles must be centered so that
they are tangent to the cusp transition variety may now be found para-
metrically. Fixing R and solving (1.6) for v, in terms of v, and then by
plugging this into (1.4), one obtains a quartic equation for v, whose coef-
ficients depend on A; and A;. Analysis of this quartic then leads to the
desired locus of (A, A2) values; see figure 1.4.

Remark 1.8. The behavior studied in this subsection would not tradi-
tionally be considered to be bursting, since the active phase involves only
a stable equilibrium and not a periodic state.

1.3.2 Degenerate Hopf bifurcation

The next codimension-two singularity also arises when there is a degeneracy
in a codimension-one point. In particular, we focus on the codimension-two
degenerate Hopf bifurcation to a stable limit cycle; see [2, 6, 63]. The full
normal form is:

= (m + per? —rr + O®9)
¢ = 1+0(2). (1.7)
The normal form of (1.7) is again topologically equivalent to that of the
truncated normal form, i.e., (1.7) without the higher-order correction terms.
Also, the remaining codimension-two degenerate Hopf bifurcations not con-
sidered here has a plus sign of the quintic term, and a similar analysis can
be carried out for it.

Hopf bifurcations occur when g; = 0, and saddle-node bifurcations of

periodic orbits occur along the curve y; = —%i; see figure 1.5.

To generate the associated codimension-two burster, we let the unfold-
ing parameters evolve as in (1.1). Examples of the four paths that lead to
the four different periodic bursting types are shown in figure 1.5. Path 1
leads to nondegenerate Hopf bursting studied in section 1.2. Paths 2 and 3
also create bursting types that involve transitions between a stable equilib-
rium and a stable limit cycle. However, these bursters are distinguished by
whether the transition between the states is a smooth one (a Hopf bifurca-
tion) or a jump transition (caused either by a subcritical Hopf bifurcation
or by a saddle-node of limit cycles); see figure 1.6 for the corresponding
time series and also [36].

The bursting obtained from path 4 is a type III burster; see figure 1.7.
Thus, type III bursters are of codimension two by definition 1.5. It should
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Figure 1.5. The (1, pu2) plane for degenerate Hopf bifurcation. There are
three regions: with zero, one, or two periodic orbits, respectively, and in each
region there is also an equilibrium at 7 = 0. Paths 1-4 lead to different bursting
types. Path 1 leads to Hopf bursting; see section 1.2. For bursting along paths
2-4; see figure 1.6 and figure 1.7. Note that the discussion immediately after
definition 1.4 implies that changing the direction along paths 1 and 4 does not
lead to new bursting types.
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Figure 1.6. Time series corresponding to paths 2 and 3 in figure 1.5. For
path 2 (left) the subcritical Hopf bifurcation causes a jump to a stable limit
cycle followed by a Hopf bifurcation; for path 3 (right) there is a Hopf bifurca-
tion to a limit cycle followed by a saddle-node of limit cycles. For both paths
B, = C2 = 0.5 and (A;, A2) = (0,0). Furthermore, ¢ = —0.01 for path 2 and
¢ = 0.01 for path 3, so the two paths are traversed in opposite directions. Both
frames show the slow passage effect at the start of the active phases.

be noted that the states of the fast system and their bifurcations are the
same as those in [8). Due to the form of the equations in [8] the total
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Figure 1.7. A schematic representation of type III bursting (top) and the time
series (bottom) of rcosf generated by (1.7) and (1.1) with By = C2 = 0.15,
A; = —0.05, A2 = 0.6 and ¢ = 0.01 (corresponding to path 4 in figure 1.5). The
stable and unstable periodic orbits collide in a saddle-node of periodic orbits,
causing the system to return to the quiescent state. The slow passage effect is
manifested at the beginning of each active phase.

number of bifurcations that the fast system undergoes during one period of
the slow system is greater than in the present case. However, the sequence
of states visited by the fast system and their bifurcations are the same in
both examples. Therefore according to definition 1.2 we may say that both
systems exhibit type III bursting.

We also remark that the time series of this type III burster may seem
slightly unfamiliar, since the radius of the limit cycle is changing, whereas
in the standard case the radius is almost constant. A naive reckoning leads
to the same conclusion, since one needs two parameters to arrange for
the two essential topological characteristics of type III bursters to occur,
namely that the active phase begins in a subcritical Hopf bifurcation and
that the burst terminates in a saddle-node of periodic orbits. Of course,
type III bursters can also be found in the unfoldings of higher codimension
singularities; see for example [8, Section 4] where it is shown that type
III bursting occurs in the unfolding of the degenerate Takens-Bogdanov
bifurcation studied in [22].

Remark 1.9. The bursters corresponding to paths 2, 3 and 4 are the first
bistable bursters that we have encountered.
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Figure 1.8. Bifurcation diagram in the unfolding space of a Takens-Bogdanov
point.

Remark 1.10. Here, we have studied singly-degenerate Hopf bifurcations,
i.e., the codimension-two case. Hopf bifurcations with higher-order degen-
eracies and/or symmetries also occur in the full normal form, in which case
the resulting bursting type is of codimension three or higher; see [63].

1.3.3 Takens-Bogdanov bifurcation

The Takens-Bogdanov bifurcation involves a double zero eigenvalue, and
the universal unfolding has the form:

zI

Y

y

1 + poy + az? + bzy + O(3) (1.8)

’

where u; and u» are the unfolding parameters, a = 1, b = +1, and O(3)
indicates third-order terms in z and y. Complete studies of this unfolding
were first presented in [9, 10] and [64]. Moreover, as in the previous sections,
here also the bifurcation diagrams of the truncated normal form are not
qualitatively changed by the addition of the higher order terms, so that it
suffices to study the truncated system.

Figure 1.8 schematically depicts the dynamics in the different pa-
rameter regions of (1.8) when b = 1. The curve gy = —u3 separat-
ing regions II and III is a locus of Hopf bifurcations, while the curve
p = —(49/25)u2 + O(u3) separating regions I and II is a locus of ho-
moclinic bifurcations; see [20, chapter 4.1], [30, chapter 7.3] or [39, chapter
8.4]. The case b = —1 is similar.
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Although the unfolding of this bifurcation is the most complicated
we have considered so far, it does not lead to any new bursting types.
The system does not have any stable attracting states when the unfolding
parameters are in regions III and IV. Hence, only paths that remain in
regions I and II are of interest. More specifically, only those paths crossing
the locus of homoclinic bifurcations between regions I and II need to be
considered. However, no such path leads to bursting, since the origin is a
stable equilibrium on both sides of the homoclinic bifurcation. Finally, if
the flow of the fast system is reversed in time (i.e., the arrows in figure 1.8
point in the opposite directions), then there will be a stable limit cycle in
region II and a stable point in region III and no stable states in regions
I and IV. Therefore, this case only leads to the codimension-one bursting
already considered in section 1.2, since regions II and III are separated by
a locus of nondegenerate Hopf bifurcation points.

1.3.4 Hopf-steady state bifurcation

In order to observe a Hopf-steady state bifurcation, the fast system must
be of dimension three or higher. The normal form of this bifurcation is

v = wr+arz+r22 +0O(r,z|*)
2 = pp+br?2—22+0(r,z|*) (1.9)
= w+caz+O(rz?)

where either b = 1 or b = —1; see [20, chapter 4.6] or [39, chapter 8.5].
We focus here exclusively on the truncated normal form, which is (1.9)
without the higher order terms and with ¢; = 0. This truncated normal
form is exact when there are certain symmetries in the vector field [20, 39).
However, for general systems, the higher order terms do qualitatively alter
the bifurcation diagram of the truncated system, leading to various global
phenomena and chaotic states. Therefore, in this case (and in that of
the Hopf-Hopf bifurcation considered in the next section) the truncated
and full normal forms are not topologically equivalent, in contrast to the
bifurcations analyzed in sections 1.3.1 to 1.3.3. These two singularities
were studied in [24], and the proof of uniqueness of the limit cycle was first
given in [71, 72].

The main new bursting observed here involves a stable equilibrium
bifurcating into a stable limit cycle and then into a stable two-torus, along
with the attendant quasi-periodic spiking observed during the active phase.

This occurs for example in the time reversed (1.9) with a = 0.5, b = -1,
¢ =0, w = 0.005 and the path:
(11, p2) = 0.03(cos(g(et)), sin(g(et))) (1.10)

where g(et) = 0.865 + 0.815 cos(et).
See figure 1.9 and figure 1.10.
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~h

Figure 1.9. Sketch of the path (1.10) for the system (1.9) with a = 0.5, b = —1,
¢1 = 0, and time reversed. The corresponding time series is shown in figure 1.10.

&
£

Figure 1.10. Left panel: Time series of the variable © = 7 cos# generated by
(1.9) with the path (1.10) shown in figure 1.9 and with ¢ = 0.0001. The stable
equilibrium at r» = 0 undergoes a Hopf bifurcation to a stable limit cycle (with
r(t) slowly growing), which in turn bifurcates into a stable two-torus (with r(t)
oscillating rapidly) via a Neimark-Sacker bifurcation. The delayed passage effect
is clearly visible in both bifurcations. Right panel: Enlargement of the transitions
from periodic to quasi-periodic to periodic solutions.

Bursting to a two-torus occurs more generally when b = -1, a > 0
and time is reversed in (1.9), i.e., when one is in what is traditionally
labeled as case III (with time reversed) in the analysis of the Hopf-steady
state bifurcation. In this case, there are both a Hopf bifurcation curve
and a Neimark-Sacker bifurcation curve (bifurcation of a limit cycle into a
two-torus); see [20].

The other cases, corresponding tob=1and e >0,b=1and a <0,
and b = —1 and a < 0, respectively, are analyzed in the appendix. However,
a systematic search reveals that there are no other new types of bursting.
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1.3.5 Nonresonant Hopf-Hopf bifurcation

Hopf-Hopf bifurcations arise when there is a singularity that has a pair of
nonresonant, purely imaginary eigenvalues. The fast system must be of
dimension four or higher. The normal form [20] is:

ri = rile +pir} +perd + arf + @rird + gsrd) + O(|r)°)

ry = ra(ea +par + pars + qari + gsrirs + gerd) + O(Ir|6) (1.11)
= wi+O(r?) '
= we+ O(r]?).

As in section 1.3.4, we consider the truncated normal form here, and the
same comment about the impact of the higher order terms also applies
here.

Since 6] and 65 are constant to second order, it is sufficient to con-
sider the planar system (r1,72). A change of coordinates, together with a
nondegeneracy condition, takes the first two equations of system (1.11) up
to sixth order to

!

oz z(p1 + 1% — y + @122 + @y + ¢3y?) (112)
oy =y (uz — &z + %7y + gue® + gszy + qsyz) '

where 0,7 = £1,z > 0,y > 0, and y; and p, are the unfolding parameters.
The sign of o allows us to change the direction of time in the normal form.
The study of this system can be reduced to 16 cases, some of which are
equivalent. We refer the reader to [20, chapter 4.7] for details.

We have carried out a full analysis of these 16 cases, and many of
the bursters occurring in its unfolding are of types that have already been
described. Therefore, rather than presenting a full description of all the
unfoldings, we will concentrate on the unfoldings that lead to new bursting
types. We also emphasize that the results below are stated in terms of the
planar system (1.12), unless otherwise stated.

Casel. n=-1, >0, § > a, and ¢ = —1 (Case a— with time reversed
in [20]). Here, we find a new periodic bursting type that involves a stable
three-torus. In particular, the following sequence of bifurcations can be
observed for the path

ui(et) = 0.3 and po(et) = —0.12 + 0.13 sin(et) (1.13)

(see figure 1.11) with ¢ = 0.003 = 1 and § = 2, as well as for general
paths like it in the p;, p2 unfolding space. The corresponding time series
is shown in figure 1.12. A stable state appears from the origin in a saddle-
node bifurcation. This new stable state on the y-axis loses its stability,
giving birth to another stable state in the region z > 0,y > 0, as the
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Figure 1.11. Part of the parameter space for case 1 of (1.12).

os}
o4
02F
o L N L
2000 3000 4000

5000 6000 7000

0.7
X1

0Sp

N N N3
o’:, L hnul L Hi I L Iiiu ]

7000

Figure 1.12. Time series of z = r; cos#, (top) and of y = r2cosfs (bottom)
for Case 1 of the Hopf-Hopf bifurcation, generated by (1.12) with ¢; = 1 and
g2,-.-,96 = 0. The slow passage effect causes the delayed (and abrupt) onset of
the oscillation.

path crosses the curve M. This last stable state loses its stability via a
supercritical Hopf bifurcation (on the curve marked H in figure 1.11). As
the second half of the path is traversed, these bifurcations occur in reverse
order. Note that, in the full system (1.11), this sequence of bifurcations
becomes: a stable equilibrium at the origin undergoes a Hopf bifurcation
to a stable limit cycle, which undergoes a Neimark-Sacker bifurcation to
a stable two-torus, which finally bifurcates to a stable three-torus (with
the appropriate slow passage effect at each stage), and then back again.
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Since there is only one stable state for each of the parameter regions, this
bursting type is not bistable.!

Case 2. n=-1,>0,8< -a-1,and 0 =1 (Cases d— and h_ in
[20]). For a range of parameter values, there is a bistable regime with stable
states on the z- and y-axes. At each of the borders of this regime a saddle
from the region z > 0,y > 0 collides with one of these states, leading in
both cases to an exchange of stability. Therefore, a path traversing this
region in parameter space will lead to the fast system jumping between the
two stable states (limit cycles). In other words, in the full system, one pair
of variables will be active while the other pair is quiescent, and at each
bifurcation the roles of the two pairs are reversed.

Case 3. n=+1,a >0, f > o, and 0 = —1 (Case a4+ with time reversed
in [20]). This case is similar to the preceding one, except that there is
no bistability. There is a region of parameter space in which the origin
is stable, and the origin gives birth to stable states on the z and y axes,
respectively, at the boundaries of this region. A path traversing this region
and part of the adjacent regions will lead to the stable state approaching
these three stable states in turn. In the full system this will lead to bursting
similar to the one discussed in the previous case. The main difference is
that, while there are abrupt jumps between the two oscillating states in the
last examples, in this case the amplitudes decay to the point where both
pairs of variables are quiescent before the cycle starts again.

Case 4. n = +1, 8 >0, 8 < —a—-1, and 0 = 1 (Case d; in [20]).
In this case, a sequence of bifurcations starting from a stable state at the
origin leads to the appearance of a stable limit cycle, as in the first case.
Therefore, an appropriate path in the parameter space will lead to the same
type of bursting. However, at the parameter values at which the limit cycle
exists, the origin is also stable leading to the possibility of bursting from
the quiescent state to a 3-torus in the full system. Moreover, since the size
of the limit cycle becomes greater than O(e,,€;) before it loses stability,
the normal form cannot give a full picture of this case.

Remark 1.11. These bursting types also occur at other parameter val-
ues. They represent all the new bursting types in the case of two purely
imaginary eigenvalues without resonances. We refer the reader to [35], for
example, for the normal form in the case of the 1:1 resonant Hopf-Hopf
bifurcation.

1 Although it is of codimension two, this bursting type is not listed in the classification
of [37].
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1.4 Codimension-three bursters

Whereas in the previous sections we were able to give an exhaustive treat-
ment of all of the known generic codimension-one and -two bifurcations,
our goal here is limited to showing that the traditional bursters of types Ia,
IT and IV can be found explicitly using the framework of section 1.1 in the
unfolding of a particular codimension-three singularity. This was already
noted in (8].

Our goal must necessarily be limited since the unfoldings of only very
few codimension-three singularities are known. Those unfoldings that are
known are for codimension-three singularities of generic three-parameter
planar vector fields, namely the swallow-tail bifurcation, the Takens-Hopf
bifurcation, and the degenerate Takens-Bogdanov bifurcations with either
a double or a triple equilibrium; see the bibliographical notes in [39, chap-
ter 8]. In contrast, the study of codimension-three singularities in higher-
dimensional fast systems is far from complete.

1.4.1 Type Ia bursting

Type Ia bursters, also known as square wave bursters, are characterized by
monotonically decreasing spike frequency, i.e., increasing inter-spike inter-
vals. The fast system is typically two-dimensional and bistable, and the
variation of a single slow variable causes the fast systems to visit both at-
tractors in a time-periodic manner; see figure 1.15. The burst (or active
phase) begins at a saddle-node of equilibria in the fast system, where the
trajectory jumps from a branch of stable equilibria to a branch of stable
periodic orbits. The frequency of these periodic orbits decreases during
the active phase until the family of periodic orbits disappears in a saddle-
loop connection (homoclinic bifurcation). This saddle-loop connection, in
turn, marks the end of the active phase, since near it the trajectory must
jump back to the original branch of stable equilibria. Geometric singular
perturbation theory treatments of type Ia bursters are given in [56, 66).

Thus, the bursting behavior is due to two dynamic bifurcations in the
system: a saddle-node and the breaking of a homoclinic connection. From
the classifications of codimension-one and -two bursters given in the previ-
ous sections, we see that these two bifurcations were not encountered in the
unfoldings studied there. Hence, we know that the minimum codimension
of a type Ia burster must be at least three.

The codimension turns out to be exactly three, as we now show. In par-
ticular, we study a codimension-three degenerate Takens-Bogdanov point
and use its truncated normal form as the fast system of our burster to show
explicitly how type Ia bursting occurs in the framework of section 1.1:

zi 2}

gy = -z + pomy + p1 + T2 (v + 331 + 32). (1.14)
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We focus here on those features of (1.14) that are of interest to us
and, hence, do not consider the entire universal unfolding, which is quite
complicated (see [22], though note that we have taken a slightly different
form). Our principal goal is to locate a point at which both a homoclinic
(saddle-loop) bifurcation and a saddle-node bifurcation occur. We label
such a point HSN. Moreover, the procedure we use here to find the HSN
point can be implemented numerically, so that this example also illustrates
the computational advantage of the singularity-based approach.

The fixed points of (1.14) are given by

a::f = poy + 4, 9 =0 (1.15)

and the Jacobian of the vector field at (z;,0) equals

0 1
DF(z1,0) = ( =322+ py v+3z +22 ) ' (1.16)
The condition that a fixed point is also a saddle-node bifurcation point is
then that the bottom left entry of (1.16) vanishes, so that for yz > 0, we
find 22 = po/3.
Now, to further simplify our calculations, we choose py = 1/3 and
illustrate the results below in the gy — v parameter plane

P = {(p,p2,v) ER : pp = 1/3}.

Computations for other values of us proceed in the same fashion. This
simplifying choice implies that the fixed points (z; = +1/3,z2 = 0) are
saddle-node points, which due to condition (1.15) exist when u; = F2/27.
Hence, on P, the vertical lines yu; = F2/27 are labeled as saddle-node
lines. Furthermore, there is a single point on each of these saddle-node
lines at which the fixed point degenerates into a Takens-Bogdanov point.
These occur precisely where the bottom right entry of the Jacobian also
vanishes, i.e., at v = —10/9 and at v = 8/9, respectively, for y; = F2/27
and T = +1 / 3.

In the remainder of this analysis, we focus only on the first Takens-
Bogdanov point at (u,r) = (—2/27,—-10/9) on P and on the bifurcation
curves emanating from it. A similar analysis may be performed for the
second Takens-Bogdanov point. There exists a Hopf bifurcation curve em-
anating from the first Takens-Bogdanov point, and on P this curve reaches
the opposite saddle-node line (p; = 2/27) at the point with v = —22/9.
This may be seen by observing that when y; = 2/27, the second fixed
point (in addition to one with z; = —1/3) of the system (1.14) is at
(z1 = 2/3,z2 = 0) and that the condition for this second point to be
a Hopf bifurcation point is that the bottom right entry in the Jacobian
vanishes there, so that we find v = -22/9.
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Figure 1.13. Part of the bifurcation diagram of (1.14) on P. The codimen-
sion-two point at which both a homoclinic and a saddle-node bifurcation occur
is labeled HSN.
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Figure 1.14. The path v in the universal unfolding of (1.14) leading to type
Ia bursting.

Finally, it can be checked numerically that the locus of homoclinic
bifurcations emanating from the first Takens-Bogdanov point intersects
the opposite vertical line g3 = 2/27 on P at approximately » = —2.083.
Hence, the desired HSN point is located at (2/27, —2.083); see figure 1.13.

We now choose a path that intersects both a surface of homoclinic
bifurcations and a surface of saddle-node bifurcations. In particular, the
path we choose in P is as shown in figure 1.14, which is a magnification of
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Figure 1.15. A schematic representation of type Ia bursting (top) and the time
series generated by (1.14) with (1.17) and e = 0.005 and g2 = 1/3 (bottom). This
corresponds to the path -+, through the unfolding space shown in figure 1.14.
In the top sequence of phase portraits, the lower fixed point disappears in a
saddle-node bifurcation, and the system jumps to the periodic orbit. After the
periodic orbit disappears via a homoclinic connection, the system returns to the
fixed point, and the cycle repeats. The filled circles represent stable fixed points.

figure 1.13 around the point HSN
(pa(t),v(t)) = (0.07 + 0.015 sin(et), —2.1 — 0.15 sin(et)). (1.17)

The sequence of bifurcations corresponds exactly to the sequence of bifur-
cations in type Ia bursting.

Remark 1.12. We refer the reader to [58] for a detailed analysis of the
saddle-node separatrix-loop bifurcation.

Remark 1.13. Type Ib bursters are similar to type Ia bursters in that
the two-dimensional fast system is also bistable and the spike frequency
decreases during the active phase until a homoclinic bifurcation is reached.
However, type Ib bursting differs in that the stable periodic orbits encircle
three equilibria of the fast system, rather than just one, which results in
the spikes being more widely spaced and in there being an undershoot after
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each spike independently of the chosen projection. Moreover, there need
not be a spike plateau. Three is also the minimum codimension of the
singularity in the fast system that is needed to support type Ib bursting,
and hence type Ib periodic bursters are also of codimension three according
to definition 1.5.

1.4.2 Type II bursting

Type II bursting is characterized by a parabolic plot of time-versus-spike
frequency in which the frequency is small at the beginning and end of
the active phase and larger in the middle. Hence, this phenomenon is
also known as parabolic bursting. The two-dimensional fast system pos-
sesses an invariant circle; and, as a result of time-periodic changes in a
two-dimensional slow variable, fixed points are created and destroyed in
saddle-node bifurcations on this circle. In particular, during the quiescent
phase, there are two equilibria on the circle, and the system is near the
stable equilibrium. The disappearance of these equilibria in a saddle-node
triggers the onset of the active phase, since then orbits on the invariant
circle are free to travel around the circle periodically in time, producing
spikes. Moreover, the frequency increases as the system moves further
from the bifurcation point until it reaches a maximum, which corresponds
to the vertex of the parabola. During the remainder of the active phase,
the frequency decreases, and the active phase ends when there is again a
saddle-node bifurcation in which the two equilibria re-emerge on the in-
variant circle. Examples are given in [5, 23, 55, 60, 68].

The saddle-node bifurcation on an invariant circle (SNIC) is a global
bifurcation. In the classification of codimension-one and -two bursters given
in the previous sections, we did not encounter it in the unfoldings of any
of the local singularities. In fact, to observe a SNIC in an unfolding of a
local bifurcation point, one needs to look at a singularity of codimension
three or higher. We will establish, in this section, that type II bursting is
of codimension three, according to definition 1.5. We do this by studying
the same explicit example (1.14) of a codimension-three singularity. In the
unfolding space of this singularity one can also construct paths leading to
type II bursting. Such a degenerate point has previously also been used to
generate type II bursting in [8].

Examination of figure 1.14 shows that a SNIC bifurcation occurs on
the line separating regions I and III above the point HSN. Therefore, a
path « crossing the surface of saddle-node bifurcations from region I into
region III will lead to type II bursting. The paths

(u2(t), ¥(£)) = (0.333 + 0.02sin(et), —2.05)
(u2(t),v(t)) = (0.333 + 0.02sin(et), —2.05 + 0.002 cos(et))

with € = 0.003 lead to type II bursting; see figure 1.16.
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Figure 1.16. A schematic representation of type II bursting (top) and the time
series generated by (1.14) and (1.18) with € = 0.003 (bottom). The oscillation
stops due to a saddle-node bifurcation on the periodic orbit. The corresponding
bifurcation diagram is given in section 1.4.2.
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Figure 1.17. A path « in the unfolding of (1.14) leading to type IV bursting.

1.4.3 Type IV bursting

Although type IV bursting is similar to type III bursting (encountered in
section 1.3.2) since the bursting phase is terminated by a saddle-node of
periodic orbits, it is of higher complexity than the latter. The reason for
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this is that, at the end of the quiescent phase, the stable fixed point loses
stability through a saddle-node bifurcation rather than a Hopf bifurcation
as in the case of type III bursting; see figure 1.17. This situation does not
occur in any of the unfoldings of codimension-one or -two singularities, but
it does occur in the unfolding of a degenerate Takens-Bogdanov point of
focus type, as is shown in [8]. Therefore, this bursting type has codimension
three.

One can carry out an analysis of the truncated normal form as in
section 1.4.1 to find a path in parameter space that leads to this type of
bursting. The details of the calculations are very similar to those given
there.
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Appendix: Case-by-case analysis of Hopf-steady state
bursters of section 1.3.4

As stated in section 1.3.4, we present the case-by-case analysis of the un-
folding (1.9) of the Hopf-steady state singularity in order to verify that
there are indeed no new bursters found here. We follow the enumeration
of the cases used in [20].

Case I. Under either forward or backward time, there is only one region
in the (p1, #2) unfolding space in which there is a stable equilibrium point.
Furthermore, this equilibrium disappears on the bifurcation curves that
bound these regions, and there are no other stable invariant sets. In fact,
most of the other invariant sets are saddle periodic orbits in the 3-D system.
Hence, no bursting is observed with paths of the form (1.1).

Case II. All paths must avoid regions IITa and IIIb in (1.9). Paths con-
tained in the remaining regions exhibit either codimension-one bursting of
the type created by nondegenerate Hopf bifurcations (see section 1.2) or
the transition from a stable limit cycle to a stable two-torus (by crossing
from region Ia or Ib into region II), which is precisely the new transition
already described in section 1.3.4, or both.

Case III. In this case, we have already seen in section 1.3.4 that there is
a new burster, bifurcation to a two-torus, that exists under time reversal
in (1.9). To study the remaining possible bursters in this case, we begin
by observing that all interesting paths must lie in the upper half of the
parameter plane. However, in both forward and backward time, any such
path other than that giving rise to two-torus bursting can only give rise
to the bursting already found in the nondegenerate Hopf bifurcation, e.g.,
crossing between regions II and III or from II into IV via IIL

Case IV. Again, here, all interesting paths must lie in the upper half of
the (p1,p2) plane. There is one stable equilibrium there, but it can only
disappear via a saddle-node bifurcation of equilibria or lose stability via a
subcritical Hopf bifurcation. Hence, there is no bursting.



