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One of the simplifications, used by Sattinger (1978), in studying the planar Benard 
problem is to assume that the solutions are doubly periodic with respect to the hexagonal 
lattice in the plane. Once one makes this assumption, the generic situation is that the 
kernel of the linearized Boussinesq equations (linearized about the pure conduction 
solution) is six-dimensional, the eigenfunctions being superpositions of plane waves 
along three directions at mutual angles of 120?. In this situation the Liapunov-Schmidt 
procedure leads to a reduced bifurcation problem of the form g(x, A) = 0 where 
g: R6 x R + R6 is smooth. Here A represents the Rayleigh number. Moreover, such a g 
must commute with the symmetry group of the hexagonal lattice. 

In the paper we study such covariant bifurcation problems from the point of view of 
singularity theory and group theory, thus refining the work of Sattinger (1978). In 
particular we are able to classify the simplest such bifurcation problems as well as all 
of their perturbations. We find that stable rolls and stable hexagons occur as possible 
solutions. In addition, we find a rich structure of non-stable equilibrium solutions 
including wavy rolls and false hexagons appearing in the unfoldings of even the simplest 
degenerate bifurcation problems. 
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INTRODUCTION 

In this paper we use the singularity-theory methods developed by Golubitsky & Schaeffer 

(I979) to study the problem of pattern formation as it relates to bifurcation with respect to the 

hexagonal lattice. This work is motivated by the planar Benard problem, where a variety of 

spatial patterns such as rolls, hexagons, wavy rolls and cross rolls have been observed in experi- 
ments, and by the work of D. H. Sattinger (1978) in which the mathematical formulation of the 

specific problems we study is given. We study precisely the cases considered by Sattinger, 
improving on his results in two distinct ways, which we explain. 

We consider bifurcation problems g(x, A) where 

g: RW6 x R - R6 (0.1) 

is a Co map germ. Moreover, we assume that g commutes with the two-dimensional compact 
symmetry group F of the planar hexagonal lattice. In ? 1 we give a precise formulation of the 
action of F on 6 we consider. For the moment, we describe the relation between the Benard 

problem and g; the reader is warned that substantial work is needed to make this relation 

rigorous. Nevertheless, the form and complexity of the results we present here suggest that some 
such relation may well exist. 

The Benard problem describes - through the Boussinesq equations - thermal conduction and 
convection of a fluid contained between two parallel infinite planes. The motion is driven by a 

temperature gradient A between the upper and lower planes. The mathematically simplest form 
of the problem is based on the observation that the pure conduction solution loses stability as the 

temperature gradient A increases. Moreover, in many experimental situations, the new con- 
vection solution has the form of rolls or hexagons, the nomenclature being described at the 
end of ? 4. 

Observing that both rolls and hexagons may be described by functions in FAX, the space of 
functions that are doubly periodic with respect to the hexagonal lattice A, Busse (1962), Sattinger 
(1978) and others have noted that one can understand much of the structure of steady solutions to 
the Boussinesq equations, V, by restricting I to operate on >X. With this assumption one may 
study the solutions of 3 near the pure conduction solution by using a Liapunov-Schmidt 
reduction at the first eigenvalue, thus obtaining a mapping g between finite-dimensional spaces 
whose zero-set is in one-to-one correspondence with the solutions of . However, to perform such 
a reduction one must be able to compute - explicitly - the first eigenvalue AO of the linearization 
Y of^ around the pure conduction solution, the space of eigenfunctions of , and the beginnings 
of the Taylor expansion of g. Each of these steps is difficult; however, it is possible to give a 

plausible argument for what the form of the answer should be and this answer depends crucially 
on the existence of a symmetry group for this problem. We note here that Fife (1970) has shown 
that Y is Fredholm of index zero, and that Busse (I962) has completed these computations when 
the boundary conditions on the plane layer are free on top and rigid below. 

As is well known the operator I commutes with the Euclidean group of rigid motions in the 

plane and so the problem 1\FA commutes with the subgroup F of rigid motions leaving FA 

invariant. Suppose now that the kernel of Y contains plane waves in a single direction 0. 
Standard results imply that ker J is invariant under the group Fr; hence ker J must also contain 

plane waves in the directions 0+3n and 0 +4n. Thus ker9? is at least six-dimensional (note 
that one has two independent eigenfunctions for each direction of plane waves; namely, sine 
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and cosine). Sattinger makes the genericity assumption that dim ker Y is exactly 6. Then the 

Liapunov-Schmidt procedure guarantees the existence of the g(x,A) in (0.1) whose linear 
terms in x vanish. Moreover, as proved in Sattinger (1979), g must commute with the action of 
I' on kerY. 

Sattinger (I 978) studies two types of bifurcation problem g. First he observes that the symmetry 
conditions on g imply that there is precisely one quadratic term, q, in g(x, 0) that can possibly be 
non-zero. The two cases studied are the simplest bifurcation problem for which q is non-zero 
and the simplest one for which q is zero. We consider here essentially the same two cases using 
singularity theory. (In our analysis it will be necessary to assume that the reader has some 

familiarity with the results of Golubitsky & Schaeffer (I979).) We note that q is zero for the 
idlealized form of the Benard problem considered by Busse (1962). 

In his analysis, Sattinger considers only the lowest-order non-zero terms g of g explicitly and 

proves that if a non-trivial solution exists for the reduced bifurcation equations g = 0 then such a 
solution persists for the full equations g = 0. (Note that when q = 0, Sattinger's g includes the 
cubic terms of g.) An advantage of our approach is that we work directly with g. Hence we are 
able to show that there are solutions to g = 0 that are trivial in the reduced bifurcation equations 
g = 0, which were not observed by Sattinger. (To make this observation one must include terms 
of order four and five in the analysis.) This fact has also been observed by Dancer (I980) using 
methods similar to, but more refined than, those of Sattinger. 

The reason that we are able to work with g directly is that we view the space of all gs com- 

muting with r as a module over the ring of invariant functions and thus are able to give an 

explicit presentation for such gs. The results are given in ?? 2 and 3. 
The way that we find specific solutions to g = 0 is firmly rooted in singularity theory. We show 

that if one assumes certain non-degeneracy conditions on g then g may be transformed by an 

appropriate change of coordinates (called F-equivalence) to a relatively simple normal form. 
The normal forms are derived in ?? 8 and 9. In ? 8 we transform the 'lowest-order terms' ofg into 
this normal form and then in ? 9 show that the higher-order terms may also be transformed away. 
Once we have the normal form we use the theorem of?4 to find explicitly the solutions to g = 0 
for the various examples considered in this paper. The computations are described in ?10. 

We also perform in ? 5 (for several types of solutions), the linearized stability analysis of g 
to see whether solutions are (orbitally) stable. The method of computation depends crucially on 
the existence of the symmetry group F and some of the results are presented in Sattinger (I978). 
Also observe that one must show that these stability assignments are invariants of F-equivalence. 
This is not a priori obvious. However, it is true for the most important cases we consider here, and 
the relevant results are also given in ? 5. The computation of stability assignments for the normal 
forms is given in ? 10. Again we mention the results of Dancer (1980) for an alternative approach. 

The second important way in which our analysis differs from that of Sattinger is that we com- 

pute the universal unfolding of the two cases mentioned, thus enabling us to classify the possible 
bifurcation diagrams that can be obtained by small perturbation of the normal forms we present. 
I't is here that our most interesting contribution lies as we can prove that these perturbations have 
bifurcation diagrams of great complexity involving secondary and tertiary bifurcations and 

turning points. The unfolding results are given in ?9 and the computation of the bifurcation 

diagrams of both the unperturbed and the perturbed problems are given in ? 10. Sections 6 and 7 
contain technical results that are necessary in order to complete the singularity-theory analysis 
of ??8 and 9. 

Vol. 308. A 
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To give the reader a flavour of the results we prove, we show, in schematic form, in figure 1 two 

of the more interesting bifurcation diagrams, which occur as perturbations of the case where the 

quadratic term q is 0. Stable solutions are indicated by heavy black lines, and secondary bifur- 

cations and turning points by black dots. Here we use the notation T for the trivial solution, R for 

rolls, Hi and H2 for families of hexagons, A for triangles, FH for false hexagons and WR for 

wavy rolls. The terminology is explained in ?4; note that false-hexagon solutions might in an 

experimental situation be confused with hexagons. The A-axis is the horizontal one while the 

vertical axis is more or less the norm of the solution. 
The steady-state theory predicts in the case in figure 1 a a jump to hexagons and then a jump 

to rolls as A is increased, with hysteresis effects in both jumps as A is decreased. 

FH 
(a) /(b) 

HI Hl 

R R 

\ /R > H2 

TFH 

FIGURE 1. Sample results. 

An interesting fact about the families HI-and H2 is that they correspond to steady flows that 

are approximately equal and opposite. The possibility of two such families is well known (see 
Busse I979). That there is the mathematical possibility of a jump to one such solution and then a 

jump to the other - as is indicated in figure I b - seems not to have been known previously. This 

fact is similar to the results of Golubitsky & Schaeffer (1982) concerning the spherical Benard 

problem. 
An interesting observation involves the way that the transition between the two families of 

hexagons may be accomplished by using triangle solutions. This observation, made to us by Jim 

Swift, is presented in ?4. 
In ?11 we describe as best we can the relation between our work and the planar Benard 

problem. A final point worth a mention is that our results are proved for bifurcation problems 

involving the hexagonal lattice and not explicitly for the Benard problem. These results may 
therefore be useful in crystallography and in the study by Ermentrout & Cowan (I979) of visual 

hallucination patterns. 
1. GROUP-THEORY PRELIMINARIES 

In this paper we study bifurcation problems that commute with the action of a particular 

subgroup, F, of the Euclidean group - consisting of rigid motions on the plane - on a particular 

class, N, of doubly periodic functions. In this section we define the subgroup F, the class N, and 

the action of F on N. 
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Let A be the hexagonal lattice in the plane. More precisely, let w1 = (1, 0) and w2 = (cos n, 

sin -i). Then 
A = {nwl + mwln, m Z}. 

Let FA be the vector space of real-valued, smooth, Ai-periodic functions defined on R2. So 

3/(X) e A if f(X+ nw + mw2) = *r(X) Vn, meZ. 
Let Co be a rigid motion of R2 and let u: R2 -, R be a function. Then or acts on u by 

T,u(X) = u(o(X)). 

I)efine F to be the subgroup of the Euclidean group that leaves S invariant; that is y E r if 

T,(sYA) = FA 

One can define r more explicitly as follows. The Euclidean group consists of the orthogonal 
group 0(2) and translations. The subgroup of 0(2) that preserves FA is precisely D6, the group 
of symmetries of the hexagon. Observe that every translation preserves FA. However, the action 
of the group of translations on FA" is not faithful, as translation by an element of the lattice A. 
acts as the identity on EJ. So the translations acting on JA may be thought of as the action of 

the 2-torus T2 on JA. By a slight abuse of notation, we see that r = D6 + T2 and we may assume 
that r is compact. 

W3 W2 

W4 W1 

W5 W6 

FIGURE 2. Labelling of vertices of the hexagon. 

Let wl, ..., w6 be the vertices of the hexagon as given in figure 2. Let N be the subspace of FA 

generated by the six independent plane waves (sin) 4tnwj X) and cos (4nwj - X)) in the directions 

wj, j = 1, 2, 3, of the hexagon. (Note that the coefficient 4x1 is necessary so that the plane waves 
lie in ~A.) Denote complex conjugation by an overbar and observe that 

6 
N= {( belFA I - S Zj e4tiwg'x where ze C and r==)}. 

j=l 

Here X. Y indicates the usual dot product on R2. Observe that fr = r implies zj zj+ for 

j = 1, 2, 3. It is clear that one may identify N with C3; that is, one may identify 1r e N with the 

triple (zi, Z2, z3). Next, we describe the action ofF on N by its action on the coordinates (z1, Z2, Z3). 

It is not hard to show that the subspace N is invariant under the action of r on FA and that 
the induced representation of r on N is irreducible. In fact, one can show that the action of T72 

on N is equivalent to 

(S, t) (Zl, Z2, 3) =(ei'zl, ei(s+t)z2, eitz), s, te T2. (1.1) 

48-2 
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E. BUZANO AND M. GOLUBITSKY 

More explicitly, let a = awl + fw2, 
3 

(X) = z (zje4'iu'j x+Zje-4iwj x), 
j=1 

s = 2n(2a +/) mod 2n, t 2=(2n a-c) mod 2n. 

If one computes Talr and denotes the coordinates of T,7 by (s, t) ' (zi, Z2, Z3) then one obtains 

(1.1). The hexagonal group D6 acts on N by permuting the zis in exactly the same way as the 

group element permutes the vertices wi of the hexagon. The 11 non-trivial elements of D6 act 
on N by sending (zl, z2, z3) to 

(a) (Z2, Z3, z1), ( ( Z1, 2), (C) (Z1, Z2, Z3), 
(d) (Z2) Z3 Z) (e) (Z3 Z Z2) (f ) (Z Z Z2) 

(1.2) 
(g) (Z3 Z2, Z1). (h) (Z21 Z3) (i (Z1 Z3 Z2), 

(j) (Z3,2, Z1), (k) (Z2, Z1 Z3). 

Observe that D6 is generated (as a group) by the two elements 

(Z2, Z3, Z1) and (3, z2, zl). (1.3) 

2. THE RING OF INVARIANT FUNCTIONS 

Let F be the group defined in ? 1, which preserves SJ. As noted r acts on N, which we may 
identify with C3. Let z = (zl, Z2, z3) be in C3. Letf: C3 -> R be the germ of an invariant C? function; 
that is,fis defined on a neighbourhood of zero in C3, is C0 on that neighbourhood, and satisfies 

f(-yz) =f(z) for all y E F. Let gr denote the set of such germs and observe that r" is a ring (under 
the usual operations of addition and multiplication of functions). 

In this section we wish to describe 6r explicitly. Let ui = ziZi, i = 1, 2, 3, and let oj (j = 1, 2, 3) 
be the elementary symmetric polynomials in the ui; i.e. let 

0'1 = U1+U2 - U3, r-2 = Ul U2+ +l- U3 + U2U 3 03 = UlU2U3' 

Let q = 2Re(zlz2z3) = zlZ2z 3+z1z2z3. 
Then we have 

PROPOSITION 2.1. Letf(z) be in or. Then there exists a smooth map germ g: R 4-> R such that 

f(z) = g(-, q) (2.2) 

where oC = (o1y, (2, oC3). Moreover, iff is a polynomial then there is a unique polynomial g satisfying(2.2) 
Note. Proposition 2.1 implies that the ring of invariant polynomials in r" is itself a polynomial ring 
in the four variables r, q. 

Proof. A theorem of G. Schwarz (1975) states that if we prove the result for polynomials then it 
follows automatically for C? germs. Now a polynomial mapping C3 -> R has the form 

f(z) = E az,,,z (2.3) 

where a = (cs, x2, x3) and f = ((o, ,) and 3) are multi-indices. The fact thatfis real-valued means 

thatf(z) =f(z), so 
= a1, (2.4) 

Note that z- z is in r. Hencef(z) =<(z) implies that a,B = afl. It follows from (2.4) that the 
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The action of T2 in r was shown to be 

(s, t) z -> (eisz, ei(s+t)z2, eitz3). 

So f((s, t). z) = - a0, ei(a,fl)zaz. 

where o(c, f) = s[( + c ) - (fl + /2)] +t[( a) - ( +)]. 

The invariance conditions (for all s and t) imply 

a, = O if l-1 - i 2- a2 or a3-3 2-a. (2.6) 

It follows from (2.6) and (2.4) thatfhas the form 

f(z) = byU(ym + (r m) 

where y = (y1, 72, y3) is a multi-index and y = z12Z3. 

Next observe that y + y = q and that yy = u1 u2 u3. As ym + ym is symmetric in y and y, it may be 
written as a polynomial in y +y and yy. Hencef has the form 

f(z) = z Cym uyqm. (2.7) 
One may now check that q is invariant under that action of D6. Also D6 acts on (u1, u2, u3) as S3, 

the group of permutations on three letters. It follows thatf is a function of q and the elementary 
symmetric polynomials in the u-variables (c1, 0r2, o-3). This proves the first part of proposition 2.1. 

Now suppose that g(or, q) = 0 for all zeC3 and that g is a polynomial. Then g = 0. Observe 
that the image of z -> (o-, q) has a non-empty interior. (One may prove this by computing the 

Jacobian of this map and showing that the rank equals four at some point z.) Thus g vanishes on 
an open set and must be identically zero as it is a polynomial. [Q 

3. THE MODULE OF EQUIVARIANT MAPPINGS 

In this section we study smooth (germs of) mappings g: C -C3 that commute with the 
action of r. Let Er denote the set of all such mappings g and observe that Er is a module over the 

ring o(r. Our main result is 

PROPOSITION 3.1. Er is afree module over the ring gr with basis 

Z] U1 Z1] [uz1] Z2 Z3 U1 Z2 Z3 U Z2z3 

A >z U2. 2. 3 , Z23 U132 ? (3.2) 
2 2L Z3 U3 Z3] 3 z Z1 Z2J LU3 Zi Z2 U[Z3 (ZZ 

This proposition has the following interpretation for bifurcation problems. Suppose g: C x R-> 
C3 commutes with F; that is g(y 'z, A) = y g(z, A) for all y E r. Then g has the form 

g(z,A) = (Hlz1+K1z23, H2z2+K2zlz3, H3z3+K3zlz2), (3.3) 

where Hj = hl +h3 uj + h5u, Kj = k2 +k4u ? +k6uH (3.4) 

and the and k are invarinaiant functions. In particular hl = hs(cr, q, A) and k = kl(, q, A). Note 
that the subscripts on the hs and ks, which may seem arbitrary, have the following logic. The 

subscript refers to the degree of homogeneity of the term in (3.3) corresponding to the constant 
term in the invariant function. So h5(0) corresponds to the term (U2z1, u2z2, u3z3), which is of 

degree 5 in the z-variables. 
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Proof of proposition 3.1. A generalization of Schwarz's theorem given by Poenaru (1976) state 
that if we can show that the mappings in (3.2) constitute a free basis for the module of polynomial 
mappings g in Er then they form a free basis for Er over or. 

So let g: C3 - C3 be a polynomial mapping that commutes with F. We first must show that 

g is a linear combination of the generators in (3.2) with coefficients that are polynomials in &r. 

.LJ~et 
9g(z) 

= 
(g1(Z),g2(Z), 3(z)). 

As observed by Sattinger (1978) g is determined by g1. Using the group elements z - (Z2, Z3) Z1) 

and z - (z, z2, z2) in D6 one has 

g2(Zl, Z2 Z3) g= (Z2 Z3) ,1) (3.5) 

g3(Z1, Z2, Z3) -1 (Z3, Z2) Z1) - 

The remaining elements in D6 yield restrictions on g1 that may be summarized by: 

gl(z) = gl(z), (3.6 a) 

g1(Zl, Z2) Z3) = 91(Z1, Z3) Z2). (3.6 b) 

As g1 is a polynomial we may assume that it has the form 

g1(z) = ES a,zzf 

where a = (a1, c2, c3) and f3 = (1), /2, 3) are multi-indices. The identity (3.6 a) implies that 

a,a is real for all ac, f. We shall use the identity (3.6b) later. 
Next observe that, since g commutes with the action of T2, 

a, =O if oc1-fi1+ c2-,2 1, or cX2-f2+ c3--3 O' (3.7) 

Now let /2 - c = n. One has, using (3.7), that if a%p 0 then 

= (U8L UM2 uf3 yzl, n > 0, 
z^= \_ (3.8) 

u4 ua= U8 ya-n+) z z, n < 0, 

where Uj = zjj and y = zZgza as in ? 2. It follows from (3.8) that g1 has the form 

g1(z) = A(u, y) z1 + B(u, y) 2z3 (3.9) 

where u = (u, u2, u3) and A and B are polynomials. 
We now claim that any polynomial C(u, y) may be written in the form 

C(u,y) = D(u, q) + E(u, q)y (3.10) 

where q = y +y. To see this write 

C(, y) = 2[C(U, y) + C(, y) + -1 C(u, y) -Cu, y)]. (3.11) 

The first term in (3. 11) is symmetric in y and y and thus has the form p (u, y + y, yy). As yy = u1 U2 U3, 

one sees that the first term in (3.11) is a polynomial in the variables u and q. Moreover 

C(u y) -C(u,y) = Cn(u) (yn4-n) 
by Taylor's theorem and 

yn - _ y = (y-y) (yn- +yn-2+ ... + yn-y +yn-1) 

624 
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Now the second factor in (3.12) is symmetric in y and y and hence is a polynomial in u and q. 
Finally y - = 2y - q thus proving the claim. 

Using the claim (3.10) we may write 

gl(z) = a(u, q) z, +f(u, q)Z2Z3 (3.13) 

for suitably chosen real-valued polynomials c and 1f. 
We now observe that 

Oa(u, q) =3 (o., q) + q ( a (or, q) u + a ,(rr, q) ulU2 + c6(o, q) u2 

where again o, Or2, and (o are the elementary symmetric polynomials in the variables u,, u2, u3. 

Moreover the cis are unique. The result is given in Golubitsky & Guillemin (I974, p. 108, 
exercise B). We now apply identity (3.6 b) to gl,, which implies that a and ft in (3.13) are invariant 
under (Z2, Z3) -> (Z3, z2). It follows that a3, a. and O6 are identically zero in (3.14) and, with use of 

(3.5), that (3.2) gives a set of generators for the module Er. 
We complete the proof of proposition 3.1 by showing that the generators listed in (3.2) are free. 

First note that g, has the form H,z, +K,z2z3. Now suppose g, _ 0. Then we may view g, as a 

homogeneous linear system in (z,, zl) and (z2z3, z2z3) with coefficients H, and K,. As 

det [- 23] =-y 

one has that H, K, O0 on y Z y. By continuity one has H, K, = 0. As noted previously the 
ocis in (3.14) are unique. Hence H, _ 0 implies h, = h3 _ h5 = 0 with the notation given in (3.4). 
Similarly for K,. Thus the generators (3.2) form a free basis as there do not exist any relations 
between them. 

4. How TO SOLVE THE BIFURCATION EQUATIONS 

Equation (3.3) shows that a bifurcation problem commuting with the group r has the form 

g(z) = (H,z +K,z2z3, H2z2 +K2zlz3, H3z3 +K3z,z2) (4.1) 

where Hj = hl+uj h+uh5 + h, 
l3h+k+~. (4.2) 

Kj = k2+ Ujk4+ uk6 .j 

We suppress the explicit dependence of (4.1) on A until that dependence is needed. 
In theorem 4.4 we discuss three separate though intimately related issues. First we determine 

explicitly what symmetries a given solution z to g(z) = 0 may have. By definition, the symmetries 
of a solution z are given by the isotropy subgroup of z, denoted by Zz, and defined by 

z = {yeFjyrlz = Z}. (4.3) 

The calculation of 2, is aided by the following observation. If w and z lie on the same orbit 
of F then the corresponding isotropy subgroups are conjugate. So, to calculate the (conjugacy 
classes of) isotropy subgroups that are possible, one may choose specific representatives on the 
orbit and calculate the isotropy subgroup for that representative. 

The second issue is the explanation of how to solve the bifurcation equationsg = 0. The method 
we use is to restrict g to the specific orbit representatives alluded to. Finally, the third issue is to 
name the various orbit types in ways that are physically observable. 
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E. BUZANO AND M. GOLUBITSKY 

Let Zj = x + iyj, j = 1, 2, 3. We prove 

THEOREM 4.4. Each orbit of the action of on = (, intersects the nhalf-plane y = y3 = 0; 

Y2 > 0. A unique representative (x1, x2 + iy2, x3) for each orbit is given in the following table along with the 

(conjugacy class of) isotropy subgroup(s) associated with that orbit. In the last column we give the equations 
to which the system g(z) = O reduces at the representative point on the orbit. The nomenclature for the various 
orbit types is explained at the end of this section. 

nomenclature 

I Trivial solution 

II Rolls 

III Hexagons 
III+ 1-Hexagons 

g-Hexagons 
IV 

IVWR Wavy rolls 

orbit representative 
z= 0 

X2 = X3 = 2 = 0 

x > 0 

Y2 = 0 

X1 X2 = X3 > 0 

X1 = X2 = X3 < 0 

x1 = X3 > 0 

Y2= 0 

IX2/X11 > 2 

isotropy subgroup 

F 

S + 2 + Z2+ 

(1.1) (0, t) 
(1.2f, i,j) 

D6 

(1.2) 

(1.2c, g,j) 

equations 

H = 0 

Hl+xlK = 0 

Hl+ x2K = 0 
x[h3 + (x1 + ) h5 

+ X22k6] = k2 

Transition 

False hexagons 
Patchwork quilt 

Triangles 

i-Triangles 

Regular triangles 

g-Triangles 

Ix2/xll = 2 

0 < Ix2/xll < 2 

X2 = 

X1 = X3 > 0 

U1 = U2 

Y2 > 0; let 

0 < 0 < -n 

6 = -~ O 2W 

2 < 0 < X 

xI = X3 > 0 
U1 X U2 

Y2 > 0 

Y= 0 
U2 < U1 < U3 

Y2 > 0 
U2 < U1 < U3 

D3 
(1.2g) 
(1.2a, f) (0, 0) 
(1.2e, h) (0, 0) 

Z2 
(Z3, Z2, Z1) 

Z72 
(Z1, Z2 23) 

{1} 

H = 0 
K1 = 0 

H1 = 0 
K1 = 0 
h3 + (U+ U2) h5 = 0 
k4 +(U1+ 2)k6 = 0 

xlH + x2 x3K1 = 0 
x2H2 + xl xK2 = 0 
x3H3 + x x2K3 = 0 

h1 = h3 = h5 = 0 

k2 = k4 = k6 = 

Remarks. (a) There are two types of hexagonal solutions III given by x > 0 and x < 0. These two 

types correspond to different orbits of F with isotropy subgroup D6 and to different, physically 
observed, solutions of the Benard problems. See Busse (1978) where such solutions are denoted by 
1-(liquid) and g- (gas) hexagons. 

(b) Type IV and V solutions have different physically observable characteristics depending on 
the exact orbit on which the solution lies. It is likely that type VI, VII, and VIII solutions have 
a variety of observable characteristics depending on the exact orbit type. We have not attempted 
to analyse these solution types here. 

(c) An alternative choice of the representative of the orbit of type V is 

z = xl(ei', e-io', e0'), a' = , 

IVT 

IVF, 

IVrQ 
V 

VRT 

V- 

VI 

VII 

VIII 
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BIFURCATION ON THE HEXAGONAL LATTICE 

where 0 is as defined in the theorem. For this z one can check readily that the isotropy subgroup 
is D3, the non-trivial group elements being (1.2b, d, g, i, k). Note, that when 0 = 2n, z = x1 

(i, -i, i) and one obtains regular triangles. 

Proof. We begin by analysing the structure of the orbit space. Let z = (zl, Z2, z3) be in C3. By 
an appropriate choice of (s, t) E T2 we can 'rotate' z so that z, and z3 are real and positive; that 

is, Yl = y = 0 and x, x3 > 0. Applying the group element (.2c) to z allows us to assume that 

Y2 > 0. 
Note that the group T2 acts orthogonally on C3; in particular, the lengths of the zs are pre- 

served. The group D6just permutes the vectors, perhaps adding complex conjugations. Thus, the 

number of uis that are equal is an invariant of the group action. Now suppose u1 = u= t= u. 

f u = 0, then z = 0 and we have the trivial solution whose isotropy subgroup is F. Ifu - 0, then 

there are two possibilities. First Z2 is real; so z = (x, ?+ x, x). One can apply the element (n, n) of 

'r2 to show that (x, - x, x) and - (x, x, x) are on the same orbit. Thus, for z2 real one has two orbits 

of solutions + (x, x, x). These points have isotropy subgroup D6 and are the hexagons of type III. 

Secondly Z2 is not real (Y2 > 0). Then one obtains the type V orbits of triangles. One may check 

that the isotropy subgroup is D3, the one listed for type V. See also remark (c) following the 

statement of theorem 4.4. 

Now suppose that two of the uis are equal and the third is different. If U2 = u3 = 0 then one 

obtains the type II orbit of rolls with isotropy group S1 + Z2 + Z2. Now suppose that u1 = u3 0. 

If fz2 is real then one obtains the type IV orbits whose isotropy subgroup is 2 + Z2. If Z2 is not real 

one finds the type VI orbits whose isotropy subgroup is Z2, the non-trivial group element being 
reflexion across the w2-axis of the hexagon. Finally, we consider the case where all of the uis are 

distinct. By permuting the uis we may assume that U2 < ul < u3. Again there are two subcases. 

Z2 real and Z2 not real. In the first subcase we find the orbits of type VII whose isotropy subgroup 
is Z, the non-trivial group element being given by reflexion through the centre of the hexagon. 

Finally the case when z2 is not real leads to the orbits of type VIII. There are no non-trivial 

elements in the isotropy subgroup of orbits of type VIII. 

Next we consider the last column in the table, which gives the equations that determine 

whether or not g(z) = 0 has a solution of a given orbit type. For example, the unique repre- 
sentative of type II solutions that we have chosen is z = (x, 0, 0), One can see from (4.1) that 

g(x, 0,0) = (Hlxl, 0, 0). 

So the solution ofg = 0 is given by H1 = 0 as xl is assumed to be positive. Similarly, for orbits of 

type III we have chosen the unique representative z = (x, x, x), x K 0. From (4.1) one sees that 

g(x, x, x) = (Hx +Klx2, H1x +Klx2, Hx +Klx2). 

Thus the equation for determining solutions of type III is the one listed in the table. 
To find the equations associated with the remaining orbit types, we observe that (4.1) has a 

nice linear structure. In particular, if we order the six real coordinates as x1, X2, X3, Yx, Y2, y3 and 
assume that Yi = y3 = 0 then (4.1) becomes 

X1 X2X3 H1 

X2 X X3 H2 

X3 X1X2 H3 =0. (4.5) 0 x3Y2 K1 

Y2 0 K2 
o x1y2 K3 
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E. BUZANO AND M. GOLUBITSKY 

Note that the determinant of the matrix in (4.5) may be computed directly to be (x1y2x3)3. For 
orbits of types V, VI, and VIII this determinant is non-zero; so (4.5) reduces to 

H,=0, K,=0, j=1,2,3. (4.6) 

For solutions of type V note that u = u = u3 so (4.6) reduces to H1 = K1 = 0 as listed in 
theorem 4.4. For solutions of type VI u1 # u2 and u1 = U3, so equations (4.6) reduce to 

H H = KH = K2 = 0. 
An equivalent set of equations is 

H1 = K, = -H = K-K = 0, 

which (after division by u1 - u2, which is assumed to be non-zero) yields the equations in the 
theorem. Finally equations (4.6) themselves have the linear structure 

h 0 

k4 
Lk6 

where V is the Vandermondian matrix 
1U U1 

V= 1 u2 u2 
u 2 1 u3 u3 

whose determinant is (u1 - u2) (u1 - u) (u2 - u3). This determinant is non-zero for solutions of 

type VIII. It follows that (4.7) reduces to the equations listed in theorem 4.4. 
We have now analysed all of the orbit types except IV and VII. In these two cases Y2 = 0 

and equation (4.5) reduces to 
xlHI + X2X3K1 = 0, 

x2H2 + x1x3K2 = ), (4.8) 

x3H3 +xx2K3 = 0. 

For solutions of type IV x1 = X3 > 0, so H1 = H3 and K1 = K3. Equation (4.8) then has the form 

Hi+ X2K1 = 0, 2H2+ xK2 = 0. 

Multiply the first equation by x2, subtract the result from the second equation and divide by 
u1- u2 # 0 to obtain the desired result. For solutions of types VII, equations (4.8) are the desired 
result. D 

We now discuss the nomenclature used in the statement of theorem 4.4. Recall from ?1 that 
solutions to g(z) = 0 represent a linear combination of plane waves. In particular z = (z1, 2, z3) 

corresponds to 

(r(X) = 2Re ( ze4iwJ'x) (4.9) 

where X = (X1, X2) and the wjs are defined in ? 1. 
In reductions of the planar Benard problem using Liapunov-Schmidt, one finds (Busse I962) 

that 3b represents the vertical velocity component of the steady velocity field associated with a 

solution of the linearized Boussinesq equations. A key ingredient in the understanding of the 
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BIFURCATION ON THE HEXAGONAL LATTICE 

geometry (or symmetry) of the steady fluid flow is given by the locus of points in the plane where 
the velocity of this flow is horizontal; that is, points X = (X1, X2) where 

b (X) = 0. (4.10) 

Note that the set defined in (4.10) is invariant under the action of r. 
The b corresponding to solutions of type II has a most elementary form, #(X) = x, cos (47X1), 

since z, = (xl, 0, 0). The solution to (4.10) in this case consists of straight lines as in figure 3. In all 

the figures we shall draw the solutions within the hexagon; solutions outside the hexagon may be 

obtained by periodicity. 

FIGURE 3. Type II solutions: rolls. FIGURE 4. Type III solutions: hexagons. 

Solutions z of type III and IV satisfy z1, z2, z3 real and x, = x3. Thus the ,b in these cases have 
the form 5XA(X) = V(X)/xl = cosY1 +AcosY2 +cosY3 (4.11) 

where Yj = 4irwj.X and A = x2/xl. Observe that the translation X->X+?w2 transforms OA(X) 
to - _A (X). Thus the zero set of -A may be obtained from the zero set of A by a phase shift. 

Note, however, that the flow for 0-A is in the opposite direction from the flow for OA. In par- 
ticular, _-A corresponds to a flow pointing down where bA points up. See, for example, Busse 

(I978) for a discussion of such a situation. We now illustrate the zero sets for qA as A varies. The 

pictures were obtained with computer assistance. 
Solutions of type III occur when A = 1. Note that there are two kinds of type III solutions 

given by + 5i. As remarked, these correspond to reverse flows. The zero set of 51 is shown in 

figure 4. Note that the isotropy group D6 is obvious from the figure and that the closed curves 
inside each hexagon form a 'six-sided' smoothed out hexagon. 

Type IV solutions have more interesting behaviour. When A w 1 the zero set of 0 must be 

approximately the zero set of .51. On the other hand when A > 1 sA(X) is approximately 
cos (4tw2 X) and the zero set of A must be approximately rolls. We call the first case false 
hexagons and the second wavy rolls; see figure 5. Observe that the closed curves in (b) are elongated 
and not hexagon-like. Hence the term 'false hexagons'. On the other hand these closed curves are 

arranged on the same hexagonal lattice as those of figure 4. To distinguish between hexagons 
and false hexagons in an experimental situation might be extremely difficult. There should be no 

problem, however, in distinguishing hexagons, pronounced wavy rolls, and rolls. 
To complete our discussion for A > I we need to know at which value of A the transition from 

false hexagons to wavy rolls occurs. The value is A = 2, which follows from 

LEMMA 4. 12. The zero set bA (X) = 0 consists of non-singular curves unless A = 0 or A = + 2. 
The singular cases are pictured in figure 6. 
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E. BUZANO AND M. GOBULITSKY 

Proof. We need to show that if 
A= 0 and dqA = 0 

then A = 0 or A = + 2. Note that 

dOA = - (sin Y1 dY1 + A sin Y2dY2+ sin Y3dY3). 

Since Y2 = Y1 + Y3, and dY1 and dY3 are independent, one obtains 

sin Y1 = sin Y3, 

sin Y = - A sin (Y + Y3). 

(4.13a) 

(4.13b) 

FIGURE 5. Type IV solutions for A > 1: (a) wavy rolls (A > 2); (b) false hexagons (1 < A < 2). 

FIGURE 6. Singular zero sets of OA: (a) transition between wavy rolls and false hexagons (A = 2); 
(b) patchwork quilt (A = 0). 

From (4.13 a) it follows that either cos1 = - cos Y or cos Y = cos Y3. In the first case, 

OA = AcosY2 and cos Y = -cos Y1-sin2Y = -1. 

So A = 0 implies A = 0, which is one of the degenerate cases. 
Now suppose cos Y = cosY3. Then (4.13b) and 0A = 0 become 

sin Y =- 2A sin Y1 cos Y1, (4.14a) 

2cosY+A (cosY - sin2 Y) = 0. (4.14b) 

If sinY = 0 in (4.14a), then cos Y = ? 1, which implies - with use of (4.14 ) - that A = + 2. 

Suppose now that sin Y, 7 0. Then cosY1 = - 1/2A and it follows from (4.14b) that 2A2 = -1, 
a contradiction. o 
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Finally we note that as A approaches zero the false hexagons become more and more rec- 

tangular until at A = 0 one obtains the patchwork quilt of figure 6. One can show that the lines 
in that figure cross at right angles. The case A = 0 does not appear as a solution of the bifurcation 

problems we consider in this paper. 
Our discussion of type V solutions begins with regular triangles. Here we follow remarks made 

to us by Jim Swift. Regular triangles occur at (real multiples of) the point z = (i, -i, i). See 
remark (c) after the statement of theorem 4.4. The plane wave corresponding to z is 

<(X) = sin (47wl * X) - sin (4tw2. X) + sin (4rtw3 X). 

Note that if w2 X = 0 then w1, X = - w3 * X since w2 = w1 + w3. It follows that 0(X) = 0 for all X 

perpendicular to w2. Since the solutions z have triangular (D3) symmetry it follows that 0 also 
vanishes on lines that have angle + -n with w2. These three lines (and their translations on the 

hexagonal lattice) are the only zeros of 0. The graph of this zero set is given in figure 7. The 
actual flow will have upwelling in one triangle and downwelling in the adjacent triangles. 

FIGURE 7. Regular triangles (0 = s) and triangles (0 < 0 < n, 0 # n). 

If one draws the zero set of a triangle solution near the regular triangle (say 0 < In) where 
Z2 = x1eio one obtains triangle-like curves for the zero set, as indicated by dashed curves in 
figure 7. Here one has upwelling inside the triangles and downwelling outside. If one takes 

6 > one obtains these triangle-like curves in the empty triangles in figure 7. For these solutions 
one has downwelling inside the triangles and upwelling outside. 

Finally observe that as 0 approaches 0 or n the triangle curve becomes more and more 
hexagonal; that is, they approach the D6 solutions III. Letting 0 travel from 0 to n, one obtains a 
mechanism for traversing between the two types of hexagonal solutions using steady-state 
triangular solutions V as intermediaries. As we shall see the bifurcation analysis admits this 

possibility. 

5. How TO COMPUTE LINEARIZED STABILITY 

The fact that g(z) in (4.1) commutes with the group F restricts the structure of the eigenvalues 
of dg, theJacobian ofg obtained by differentiation with respect to the z-variables. The restriction 
on the form of dg occurs in two distinct ways allowing one, for several solution types, to compute 
the eigenvalues directly from the entries of dg. 

First fix y e F and observe that 
(y.z) = .g(z) 

implies - with use of the chain rule and the fact that y acts linearly - 

(d).. =/ y.d). 51 
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Suppose that y Ze,, the isotropy subgroup corresponding to z. Then (5.1) implies that (dg), 
commutes with y, thus restricting greatly the form of dg. 

Second, let yt be a differentiable curve in F with yo the identity and assume that g(z) = 0. 
Since g vanishes on orbits of the action of F, one has 

g(ytz.) = 0. (5.2) 

Differentiating (5.2) with respect to t and evaluating at t = 0 yields 

(dg) v = 0 (5.3) 

where v = d(yt z)/dtlt=0. If yt is a curve in F that crosses XZ with non-zero speed, then v # 0 
and (dg)z has v as an eigenvector. 

.Using these observations, we shall also show that the signs of the eigenvalues computed in 
theorem 5.5 are invariants of the equivalence relation on bifurcation problems we consider in this 

paper (see proposition 5.24). For future reference we write (4.1) in real coordinates as 

g1 Hlx1 +- K1 (x2x3 +Y2Y3) 
g2 H2x2 + KH2(l x3 - y13) 

g(x,y) g3 H3x3+K3(2XlX2 +Y2) (54 
g~ HYl + Kl(x3y2 - x2y ) 
g5 H2Y2 + K2(Xy3 + X3y1) 

L g6 H3y3 + K3(X1Y2 - X21) 
where Hj and Kj are defined in (4.2). Using the types of arguments indicated, we prove the 

following. 
THEOREM 5.5. Suppose g(x, y) = O. Then the eigenvalues of (dg),, are asfollows. The roman numerals 

indicate the type of solution as defined in theorem 4.4. The multiplicity is given in parentheses following the 

eigenvalue. 
(I) hl(0, 0, A) (6); 

(II) A,D-E(2), D+E(2), 0 

where A = x aHl/axj, D = -u h - uh5, and E = xlk; 

(III) A-B (2), A+2B, 3a, 0 (2) 

where A = 8gl/axl, B = gl/x2g, and ca = -xxK,; 

(IV) A-C, 2c+e, 0 (2) 

where A = agl/axl, C = agl/ax3, cc = -x2K1, and e = H2. The remaining two eigenvalues are the 

eigenvalues of the 2 x 2 matrix rA + C 2D 
L B EJ 

where B = agllax2, D = ag2/axl and E = agd/ax. 

Remark. We have not been able to simplify substantially the calculation of eigenvalues for 
solutions of type V, VI or VII. For the bifurcation problems considered in this paper, only our 

inability to compute these eigenvalues for solutions of type V presents a problem. 

Proof. For all solutions considered in this theorem, we may assume that y = 0. As a result the 

group element (1.2c), (zl, Z2, 3), is in the isotropy subgroup. The matrix corresponding to this 

group element in the real coordinates is 
Q = [3 0] 
Q3 0 -4 I' 
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By our first observation in this section dg at a point y = 0 must commute with Q3. Hence dg has 

the form 

(dg)(xo) = [R S (5.6) 

where R and S are 3 x 3 matrices. 

(I) Compute directly that along the trivial solutions (dg)(O,O = h(0,,) I. Note this is a necessity 
as the only matrix commuting with r is the identity matrix I. 

(II) Let z be a solution of type II. The group element (z, z3, z2) is in EZ and corresponds to 

the matrix 

001 0 

Q6 = 0 -1 0o 
0 0 0 
0 001 

0 1 0 

So dg has the form (5.6) and commutes with Q6. Hence 

A B B 
C D E 

(dg)(x,0)= C E D (5.7) 
0 y 8 e 

-y e ? 

Now dg also commutes with the group elements of the torus, (zl, eitz2, eitz3), which corresponds 
to the matrix - 

c -S 
c -s 

Qt = 
0 1 

s c 

s c 

where s = sin t and c = cost. Thus dg has the form 

A 0 0 AOO 
OD E 0 
0 E D 

(dg)(,o) = (5.8) 

0 0 2D E 
0 E D 

L -< 

We now use the second observation preceding the proof of the theorem. Observe that if we 
differentiate the curve of group elements 

t (eitz,, eitz2, Z) (5.9) 

with respect to t and evaluate at t = 0 we obtain (iz1, iz2, 0). Evaluating this vector at z = (xl, 0,0) 
and writing the result in real coordinates yields the following eigenvector v for dg: 

= (0, , 0 x, 0, 0). (5.10) 

Hence cx = 0 in (5.8). One sees immediately that A and 0 are eigenvalues of dg. 
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We end this computation with the observation that the eigenvalues of the matrix [ D are 

D - E and D + E as the sum of these numbers gives the trace and the product gives the deter- 

minant. Both of these eigenvalues have multiplicity two as eigenvalues of dg. Now one computes 
A = 6g1/8x1, D = g2/ax2, and E = g2/0x3 explicitly using (5.4) and the fact that H1 = X = 

3 = y = 0 along solutions of type II. 

(III) Let z be a solution of type III. In real coordinates z is (x, x, x, 0, 0, 0). The group 
elements used in computing form (5.7) for dg are in D6, which is the isotropy subgroup of solutions 
of type III. So we may assume that dg has the form (5.7). In addition, dg must commute with 

the group element (z2, Z3, z1) whose matrix form is 

0 1 0 
001 0 
1 0 0 

1 = 0 1 010 
0 0011 

-1 0 0 
So dg has the form 

A B B 
B A B 0 

(dg)= (5.11) 

0 ft3x a3 
-/3/3 fcx 

Next we search for vectors in ker dg. One may compute quickly using the curve of group elements 

(5.9) and the curve, e t [-* (zl, eitz2, eitz3) 

that the following v1 and v2 are eigenvectors for dg: 

1 = (0, 0, 0, x,, 0,) 2 = (0, 0, 0, 0,) (512) 

Thus a = - ,. So the lower right-hand matrix in (5.13) has rank one with two zero eigenvalues 
and third eigenvalue 3a. Note that ac =x 8/iy = H, = - xjK, along solutions of type III. 

Finally, we claim that the eigenvalues of the upper left-hand matrix are A + 2B and the double 

eigenvalue A - B. This follows from 

AB B- 0 1 1 
B A B = B 1 0 +AIA BL+AI3 

B B Ai 11 0 

and the fact that the eigenvalues of L are - , - 1 and 2. 

(IV) The isotropy subgroup for solutions of type IV is generated by the group elements 

(1.2c) and (1.2 g). From the first element we assume that dg has the form (5.6). The second 

group element has the matrix form 

Q7 [ J] 

where r 0 1 
J=- 0 1 0. 

L1 0 0. 
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Both matrices R and S in (5.6) commute with J. The result is that 

A B C 
D E D 0 
C B A 

(dg)(x 0,o) = (5.3) 

0 6 e 6 

ry 3 _ 

A short calculation similar to the one in (III) shows that 

= (0, 0, 0, x, x2, 0), v = (0, 0, 0, 0, x2, X1) (5.14) 

are vectors in kerdg. As a result the lower right-hand matrix again has rank 1 with the only 
non-zero eigenvalue given by its trace 2a + e. Note that a = 6g4/y1 = H1 = -x2K1 and 
e = g5/y2 = H2. 

To find the eigenvalues for the upper left-hand matrix requires more work. Note, however, 
that the vector (1, 0, - 1) is an eigenvector with eigenvalue A-C while the vectors (1, 0, 1) 
and (0, 1, 0) span an invariant subspace for this matrix. The matrix restricted to this subspace 
gives the 2 x 2 matrix+C 2 

B E' 

This completes our discussion of the eigenvalues corresponding to solutions of type IV. o 
We recall that two bifurcation problems g(x, A) and h(x, A) are F-equivalent if 

g(x, A) = T(x, A) H(X(x, A), A(A)) 

where T(x, A) is a non-singular n x n matrix satisfying 

T(y x,A) y=y T(x,A) VyeF. (5.16) 

We assume in addition that T(0, 0) and (d,X) (0, 0) equal cI where c > 0. With this assumption 
it was shown in Golubitsky & Schaeffer (1982) that the linearized orbital stability for a solution 
to g = 0 is an invariant of F-equivalence if the signatures of the eigenvalues of dg is the same as 
those of Tdg for every such T. 

We now explain what we mean by the term linearized orbital stability for a solution z0 to g(z) = 0. 
Consider the system of ordinary differential equations 

i=g(z). 

If g(zo) = 0 then z0 is a steady-state solution for this system. It is well known that if all of the 

eigenvalues of (dg),o lie in the correct half-plane for stability (in this case the left half-plane) then 
solutions to this system, z(t), with initial conditions close enough to z0 will tend to z0 as t -oo. 
This is usually referred to as linearized stability. However, if g commutes with a continuous group 
then it is (virtually) impossible for a steady-state solution to be linearized stable. The reason for 
this lies at the heart of our analysis. Ifg(z0) = 0 then g(y * zo) = 0 for every y in F, that is g vanishes 
on the whole orbit Fr z. If dim r z > 0 then g vanishes on a surface containing z0 and dg must 
vanish on the tangent space to that surface. The calculation (5.3) shows that 

dimkerdg = dim ' 
zo = dim (F/Z'o) = 2 - dim Z'O 

where Z0 is the isotropy subgroup of z0. Thus linearized stability is impossible except at the 
trivial solution z0 = 0. 

Vol. 308. A 
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E. BUZANO AND M. GOLUBITSKY 

However, one can show that if all of the eigenvalues of dg that are not forced by the group 
action to be zero are in the correct half-plane for stability then any solution to this system, z(t), 
that has initial conditions sufficiently close to z0 will tend as t->oo to the orbit TFz0. In fact, 
slightly more is true since the group is compact and the rate of convergence to the orbit is 

exponential. One has that z(t) actually tends to a fixed point y - z0 on the orbit with, of course, 
y close to the identity in F. This situation we call linearized orbital stability. 

Finally, we note that the choice of which half-plane corresponds to stable eigenvalues and 
which to unstable eigenvalues is to some extent a matter of convention. It depends on whether 
one writes the system as i = g(z) or i +g(z) = 0. In this sense there is not much difference from 
the point of view of singularity theory between g(z) and -g(z). However, if one makes the two 

equivalent then one has to remember to keep track of which half-plane corresponds to a stable 

eigenvalue. 

PROPOSITION 5.24. The linearized orbital stability of solutions of type I, II, and III is an invariant of 
F-equivalence if det T > 0. In addition the signs of the eigenvalue A - C and the determinant of (5.1) for 
solutions of type IV are invariants of this type of F-equivalence. 

Proof. The basic observation is the same as in the proof of the main theorem: namely, if y is in 
the isotropy subgroup of the solution z then it follows from (5.16) that T commutes with y. 

(I) It follows that T is a positive multiple of the identity. So the result holds trivially for 
solutions of type I. 

(II) The preceding observation implies that along solutions of type II, T has the form (5.8). 
In particular, let 

a 0 0 
Ode 0 

T = . (5. 17) f 0 0 
0 Ode 

L 0 e d 

Multiplying by Tin (5.8) yields the new coordinates ofdg. Let A', D' and E' denote the non-zero 
entries of Tdg (recall that o = 0). Then 

A' = aA, D' = dD +eE, and E' = eD +dE. (5.18) 

So D'-E' = (d-e) (D-E) and D' +E' = (d+e) (D+E). As we may assume that a and d are 

positive and that e is as small as desired - by restricting the solution to a small neighbourhood of 
zero - we have proved the result for solutions of type II. 

(III) We use the same kind of argument as the one made for case II. Note that here both T 
and dg have the form (5.11). 

(IV) The first eigenvalue is an invariant in this case as (1, 0, - 1, 0, 0, 0) is an eigenvector for 
both dg and T. Finally, the determinant of (5.15) is an invariant of F-equivalence since T has 
the form (5.13) and is near the identity. Note that thevectors (1, 0,1,0, 0,0) and (0, 1, 0,0, 0,0) 

span an invariant subspace for T as well as for dg. L 
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BIFURCATION ON THE HEXAGONAL LATTICE 

6. EQUIVARIANT MATRICES 

The basic notion in the study of bifurcation problems commuting with a group F from the 

singularity theory point of view is the definition of when two bifurcation problems are equivalent. 
Recall again that g(x, A) and h(x, A) are F-equivalent if 

h(x, A) = T(x, A) g(X(x, A), (A)) 

with certain conditions holding on A, X, and T. In particular, Tis a square matrix satisfying 

T(yx, A) y = yT (x, ). (6.1) 

We call a matrix T satisfying (6.1) an equivariant matrix. Note that A is just a parameter in (6.1). 
Let Er denote the space of all mappings 

T: C3 x C3-C3 (6.2) 

that are CC, linear in the second variable and satisfy 

T(yz,yw) = yT(z,w) Vyer. (6.3) 

There is an obvious identification of the Ts in (6.1) with those in (6.2) satisfying (6.3). 
Observe that Er is a module over the ring of invariant functions gr. We make two calculations 

in this section. The first is to find an explicit set of generators for the module Er, the answer 

being given in proposition 6.6. The second calculation involves writing T(z,g(z)), where g(z) 
is equivariant, in terms of the generators for the module of gs, Er (see proposition 3.1). Here 

we use explicitly the results of the first calculation. 
The first observation we make is that Tis determined by its first component. Let z = (z1, z2, z3) 

and w = (w1, w2, w). Then write T= (t1, t2, t3). The action of the group elements (1.2g, h) 

implies ̂ iImpli~e~s~ t2(Z, w) = tl(Z2, Z1, Z3, W2, W ),) (6.4) 
t3(Z, ) = tl(Z3, Z2, Z, W3, W2, W1). 

The remaining equivariance conditions on t1 may now be summarized: 

t,(z, w) = t(z, w), (.2 c), 

tl(z, w) = tl(Z1, Z3, Z2W,, W 3, W),.2 

tl(z, w) = e-st(eiszl, eiz2e, z3, eiswl, eiw2, w3), T2, 

tl(Z, W) = tl(zl, , eitz , W, e itt w, ei tw3), T2, 

The group element inducing the equivariance condition is listed after each relation. 

PROPOSITION 6.6. The module Er is generated by the following 40 generators, listed by their first com- 

ponents, according to the degree of homogeneity in the z-variables. 
The following table has the following interpretation. Each of the basic generators should be 

multiplied by the terms on the right-hand side of the table. For example, T4, ulT,, and U2 T4 are 
all generators. Note that multiplication by u1 and u2 increases the degree of homogeneity by 
two and four respectively. Recall that y = ZlZ2Z3. 

Proof. As in proposition 3.1 it sufficies to prove this proposition when Tis a polynomial. As Tis 
linear in w we may write 

3 

Tl(z,w) = [aj(z) w+bj(z) j]. (6.7) 
~~~~~j=l=~1~ ~492 

49-2 
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degree basic generators multiply by 

0 T1 = w 1I, U1 u 

1 T2 = Z3 2 + Z2 W3 1, U, 

2 T3 2= zwIL, T4 = Zl(Z2w2+ Z3W3) 1, Ul, U 
T = zl (z2I2 + 3W3) 

3 T6 = W T, = 7 Z2123W 1 1u, U 

TS = 
2( ^2+^2^3) 

3 T = u2Z3w2++3Z2u3 Iz, U 

3 To0 = 2z3 w2+ z2zw3 1 

4 T 1 = Z1(U 2 22 + U3Z33) 1 u1 

T12 = zl(u3z2ii2+ 2Z3w3) 
4 T13 2z3w 1! 

5 T14 = z(u,z3w32+ 2u2w3) 1, U1 

T= U3Z2Z3 W2+ + U2 Z2 W3 

6 T17= 2z(uz2wS2+ 2zZ33) 1 
T18 = zl((U23iZ3i2+ Z33) 

7 T7-9 = Z(23Z3 i2 + 2w23) 1 
T20 = U2Z322 2 + U2Z21 W3 

We now translate the equivariance conditions (6.5) into the form of Tin (6.7) yielding 

aj(z) = a(z), bj(z) = bi(z), j = 1, 2, 3, (6.8a) 

a,(z) = a(zl, Z,z2), b1(z) = b(z 3, 2), (6.8b) 
(6.8b) 

b2(Z) = a3(z,IIZ3,2), b3(z) = a2(zl,3,Z2) 

aj(z) = aj(eisz1, eSZ2,z3), j = 1, 2, 

a3(z) = e-isa3(eisz, ez2, z3), (6.8) 

bl(z) = e-2isbl(eisz, eisz2,z3) Vs e R, 

a,(z) = a,(z1, eitz2, eitz3), 

aj(z) = eitaj(z, eitz2, eitz3)), j = 2, 3, (6.8d) 

b,(z) = b,(z, eitz, eiz3) Vt el. . 

From (6.8 b) one can compute b2 and b3 from a2 and a3. As a result, we have not given explicitly 
the restrictions on b2 and b3, which can be obtained from (6.8c, d). To prove the proposition we 

need to find explicit forms for the ajs and bl. 
Recall the notation of previous sections: u = (U1, u2, u3), uj = zZ and y = z12Z3. 

LEMMA 6.9. If (6.8) holds, the ajs and bL have theform 

a,(z) = a(u, y) + a2(u, ), 

a2(z) = a2(u, y) ZlZ2+ a2(u, Y)za, 

a3(z) = a31(U, y) z2Z2 + a32(U) Zx Z3+ a33((U, ) Z2Z3, 

bl(Z) = b1(u, y) 4 + b() ZlZ3 + ^13( , ) 

where the aks and bjks are suitably chosen polynomials. 

Proof. The proofs of the four cases are similar. We shall describe the results for a3 in detail, 

leaving the remaining cases for the reader. 
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BIFURCATION ON THE HEXAGONAL LATTICE 

Let a3(z) = A,z=zp, 

with use of multi-index notation ac = (al, c2 ca3) and 13 = (,12, i 3). Constraint (6.8a) states 
that A.a is real for all a, pf. Constraints (6.8c, d) imply that A,B = 0 unless 

al + 2 - - -f2- 1 = 0, (6.10) 

,2 + - a i-3 -#3 + 1 = 0, 

respectively. Let n = 82- a2. Then ca - ,f = n + 1 and aC -f3 = n L 1. There are three possi- 
bilities for zazf depending on the sign of n: 

zaf = uua2u3yn-1zz2, n > 0, 

zf = Ul lu2 u~, Zl3, n = 0, (6.11) 

z-Z u = uu6 u{.3(y) -n-1z2, n < 0., 

The form for a3 in lemma 6.9 follows directly from (6.11). l 
In proposition 3.1, see (3.10) and (3.14), we showed that polynomialsf(u, y) and h(u, q), where 

q = y +fy, have the form q = y , have the form 
f(,y) =fi(u, q) +f2(u, q) y, (6.12a) 

h(u, q) = h, + h2 u + h32 U+ h4 u2 + h5 2 - h6, (6.12 b) 

where each hj is invariant, i.e. hj = hj(o-, q), 

g(u, y) = g(u, q) +g2(u, q)y = g3(u,q) +g4(u,q)y. (6.12c) 

Note that the first equality in (6.12c) is analogous to (6.12a) and the second equality follows 
from y+y = q. 

From (6.12) and lemma 6.9 one can show that the aj(z)s and bl(z) are linear combinations of 
the following generators with coefficients in r', the ring of invariant functions: 

(al) U {1, y) 

(a2) U. {1, y} { 2 Z3} (6.13) 
(a3) U 2 YZl ZlZ3 Z2Z3 YZ2Z3 

(6,) U' 2 y z3 2 -z 2Z3- (ai) Uz {jl yz12, zz2z yz2 z(.3 

where U= {I, ul, u2, u,uu2, u}. The dot between sets in (6.13) indicates that one should take 
the set whose elements are all the products of two elements, one from each set. 

Now many of the generators listed in (6.13) are redundant. One can eliminate any generator 
involving y for a2, a3, and bl using the relations 

y1 Z2 = qz1Z2 -1 U2 Z3, 

yzU3= U3Z1Z2 = (Oi--U1-U2) Z1Z2) 

yz212 = q Z2-u1u2 Z3, 

yz2 3 = u2 U3 Zl 

yZ2 = qZ1-1 Z1 Z23, 

2 -2 
yZ Z3 = U2U3ZZ2Z3. 

We have shown that if the ajs and bL satisfy the symmetry conditions (6.8) then they have the 

special form indicated in the statement of the lemma. We have not shown that every polynomial 
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having this special form satisfies (6.8). In fact (6.8 b), which we have not used so far, adds restric- 

tions to a1 and b1. For example, we have shown that 

a1(z) = k +k2u1 +ku2 +ku2 +k5u2 -l2+k6u2 (6.14) 

where kj = hJi + hj2y and each hjl is an invariant function. Now compute 

al(zl, Za, z2) = kl +k2Ul +k3U3 +k4u +ks5UlU3 +k6U3 (6.15) = (6.15) 

where kj(z1, z3, z2) = hjl + hj2y is, in fact, invariant under the action of this group element. From 

(6.14) and (6.15) it follows that 

(u3 - u2) [k3 +k51 +k(u +U3)] - . (6.16) 

As u3 0 u2 one may solve for k3 in (6.16) and substitute for k3 in (6.14) to obtain 

a1 = k1+k2ul+k4u2-k6u2u3. (6.17) 

Observe that u2u3 = 2 = ul o'1+ u2 so we can write al in the form 

al(z) = k1 + k2u1 - k4u1 (6.18) 

A similar proof shows one need not include any multiple of u2 in the expansion of b1 either. 

We have shown that the following is a list of generators for the module Er: 

(al) {1, U1, U2}' {1, y}, 

(a2) U. {z1Z2, },) (6.19 

(a3) U (2 ZZ, ZZZ2}), 

(bl) { , ul, U2}' {z, zz2z3, z2z3-) 

We have in (6.19) 45 generators; we claim that five more can be shown to be redundant. To see 

this consider2 fm ), (6.0a ulz2z3= iqzz3-u3zz2 from (a3), (6.20a) 

u1z2z2 = qzlz2z3-u2u3zL from (b1). (6.20b) 

Recalling that one solves for b2 and b3 from a3 and a2 by using (6.8 b), one obtains the generators 
listed in proposition 6.6. l 

We now compute T(z, g(z, A)), modulo higher-order terms where g has the equivariant form 

(3.3): H + HlZ1 + Klz2.a 
g(z, A) = H22 +K2z1Z3 

H3z3 + K3z1Z2 

where Hj = hk +h3uj + h5uJ and Kj = k2+ k4Uj + k6 u. Let d denote the ring of C?-functions in the 

variables 0' 12, r ,, q and A. In ?3 we identified Er with the g module E = ()6 by the iso- 

morphism g -> (h1, h3, h5, k2, k4, k). With such an identification, the computations of T(z, g(z, A)) 
are summarized in proposition 6.21. 

In this paper we shall only need the computation of the 'lower-order terms' of the (z, g(z, A))s. 
Let - denote the maximal ideal in 6 generated by the coordinate functions crl, e2, cr q, A. 

Let X be the ideal generated by o 1 o-, , (, q, A. Let 9 be the submodule of E given by 

= - (tJs e w #,g Ti2 , ). 

In this paper we need only compute the generators 7} modulo terms in J(^. This we now do. 
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PROPOSITION 6.2 1. Modulo the submodule 4 - one computes Tj(z, g(z, A)) as (recall that hl (0) = 0) 

T1 (hl, h3, h5, k2, k, k6), 

T2 = (01 k2 + 20.2k4 + (O1 02 - 03) k6, - k2 - 2-1 k4 - 0 k6, 2k4 + 1 k6, 

2h^ + o'h + (-2 
- 22) h5, -h -h), 

T3 _ (o3h5 + qk2, h1 - c'2h5 + qk4, h3 + C h5 + qk6, - 03k6, - k2 + 0-2k6 - k4 - rlk6)? 

T4-(o11 h+ (C+ 1-- 2o2) h+(o3 - 31(2 + 20-3) h5+ 2qk2+ o1 qk4 - 22 qk6, -hl + 2h5- qk4, 
-h3 -clh5- qk6), t3k6 -2k2 - lk4 + r2k6, k4 + rlk6), 

T5 - (olhl + (o2 - 202) h3 + (o-13- 3r1r2 + 2-3) h5, - hi + r2h5, -h3- olh5, -T3k6, 
2k2 + o-1k4 + (o1 - o-2) k6, - k4 - o k), 

T6 (qhl + '2k2c + 3k4, qh3- o1k2+ 3 k6, qh5 + k2, - c3h5, - h + 2h5, -h3- 1rh5), 

T7 _ ("2k2 ( + o3k4) - C0l k2 + 03k6, k2, 3h5, hl - 2h5, h3 + lhs), 

Ts 

- 

(2qhl + olqh3- 2o2qh5 + 20'3k4 + ' 1o'2k6, - 2qh3 + olk2- r3k6, - qh 5-k2, o"3h5, 
- 2h1-crh3 +crh5, h 3 + 5 o' h5), 

Tg 5 (2c2k2 + (0-1 -cr-3) k4 - 2k6l -2clk2 - o-2k4 - 3k6, 2k2 + oL-k4-2C2k6, 

1h1 + (o(-2c- 2) h3 +(- 3o-1 2 + 23) h5, -h + -2 h5, -h3- C1h5), 

T1o - ( - 22k2 + (C3 - 0-10-2) k4 + 22k6, 2lk2 + k4 + 3k6, - 2k2 - ck4 + 22k6, 

cr1hi + (cr2 - 2c) h3 + (- 3 21 2 + 2o3) h5 + 2qk2 + o qk4 - 2cr qk6, 

- h1 + '2 h - k4, - h3 - r1 h5 - qk6), 

T11 (((o - 2c2) h + ( - 3c1, c2 + 2c-3) h3 + (3o 1 c3+ 2o- ) h5 + -1 k2 - 2o2 qk4 + 2o3 qk6, 
'2h3- 'r3h5-qk2, - h, -o'h3cr + 2h - qk, (r3k4 + a1 3k6, 

-c1k2 + r2k4- 20r3k6, k2 + o1k4- '2k6), 

T12 =(22 hl + (c1 c2- - a3) h3 - 2o2 h, - 2c1 h - Co h3 - 0-3h,5 2hl + Clh3 - 2c2 h5, 

20c3k4 + 01 r3k6, aojk2-3k -3 6 k2), 

T, 3- (-cr2 h1- s3 h3, o'lh - 3 h5) , h, qh + 2 k2 + c3 k4, qh3- r k2 + C3k6, qh5 + k2), 

T14 (2r2 qh3- r3qh5 - 3k2 + '1 '3k4 + 2c'2 '3k6, - cr2k2 - oak4, 2qh3- clk2 + 2c3k6, 
- 2-3 h3 - o h, 3 h, h t) 1), 

T15 = (((1 ('2 - 03) k2 - 2C k4 + 3C02 c3k6, - k2- -3k4, 01k2 - 2-22k4 + 203k6, 
- 20-2h + (- 3-1 0-2 + 2o-3) h3 + (3o-, -3 + 20-c) h5, -2h3 - 3h5, - h- ch3 + ho- ), 

T16 - ((0-3- 0-102) k2 + 2(C0'1c3 - 2Cr) k4 + o"2c?3k6, CT]k2 - 2cr3k4, -o lk2 - 22k4 + +3k6, 

2o2 h + (( cr02 - r3,) h3 - 2cr h5 + 1 qk2 + 2cr2 qk4 - 3 qk, 

- 

- cr3 - qk2, 
2h + or h3 - 202 h5 + 2qk4), 

T17 - (2 03 1 + (3o1 c3 + 220-) h3 - 50-2 c3^5 - 2-2qk2 + 2r3 qk, - c h3, 2 h3 - 3hi - qk2, 

3crk2 +1 o r3k4 - r 2 -c3k6, r2 k2 - 2-3 k4, olk2 - -2 k4 + '3 k6), 

T,18 (- T3h, + 2(c12 -01 -3) h3 - 2c3I ht5, 2c-3h3 202 h3 - Cr3h5, - 33k2 P1c 03k4 + 02 203k*6 

- '2k22- '3k4, -o'~ k2 + 0'3k6), 

T9 - ( - '3 qh3- ro' c3k2 - 2c 2c3k4 - cr k6, 2cr3k2, '2k2 - o'3k4, '3h1 - '1c 3h3 - 2cr33hs 

o3h3, - 2C3h5), 

T20 (22-k2 + Cr20r3k4 -0 k6, cr3k2, 2k2 '+o 3k4, 
- -3 h + 2(0Cr2 - r1ox3) h3 - Cr c3) h - 20-2 qk2 - 'a3 qk4, 2'3h3, 2c2h3 - cr3h - qk2). 
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The generators ul T7 and u Tj can be computed with use of thefollowingformula: 

ulTj (C3 15, 1- 125+, 13 + "1l5, 'r3m6, m2 - '2m6, m4 + ao m6) 

where Tj = (ll, 135, m, m4, m6). 

Proof. The proof is a long but straightforward calculation, which is outlined here. One 
substitutes the proper components of g into the generator T7 obtaining the first component f 
off = T(z, g). Then one puts f1 into the form (l + 13 ul + 15 u2) z + (mi2 + m2 4 u+ m u2) z2z3 trun- 

cating modulo the submodule c' Y. We have given the results of these calculations in the 

proposition in the form (l, 13, 
15, m2, m4, m6). 

The following identities are useful in these computations: 

u3 = 0'3 -21 + 1U, (6.22 a) 
4 = i3 + (c3 - 1 i 2) 1 + (o - 2) (6.22 b) 

5 = (1 
- 

2) -3 + (2 - 1 02 + 01 '3) U1 + (O1 -21 02 + O3) 2, (6.22 c) 

u2u3 = r o'u1 + u, (6.22d) 

U2U3 = 0"22-- 13 + (" 3 -- 1"2) u1 + U2, (6.22 e) 

U2 = 32- -2( C0-2 3 2 + (T3) - ((T2 (T3--O1 T 21 + cr1 3-3) Ul+ (1 2- 1 ?3) /u, (6.22f) 

u2 + 3 = O1- U1, (6.22g) 

U2 + u = o- -22- u1, (6.22 h) 

U3 + U = o3a- 3ro1r2 + 2c3 + r2u1-o- l,u (6.22i) 

U - + 4 

= 

1-4 2 + 2o-2 + (o2- 4o3)u12 ( 2-03) U2 (6.22j) 

u2 + = o + 40-2 3-51 5 cr-+ - 2-52 3 + (1r2 - a 1i- ) U1 

- (o -- 2Co1 f2 -+ 3) U, (6.22 k) 2 1 13 1'(6.221) 

(122 + -U32.) UU11 
2 

-8 (- 2) U1-0 lUl, (6.22 1) 

(U3 + U3) U1 = --T1c3 + (03 - 212 23) u (o-2--) Ui, (6.22 m) 

4(U + U4) U1 
= 

('2 
- 

?-2) 0-3 + (4+ "- 3Ca1(73 
- 

30-1 2 + 2o') U -(o 13-20-10-2 + 0-3) U2. (6.22 n) 

We illustrate the computation with T2 = z(u3z22w+u2z3w3). The first component f1 of 

f= Tl2(z, g) is (see proposition 6.6) 

fi = 
Zl[U3Z2(H2Z2 + K2z1Z3) + u2z3(H,3 Z3+K3z2Z2)] 

= 23(H2 + H3) zl + u1(u3K2 + 2K3) Z2 3 

= [2u2u3h + uu3(u2 + u3) h3 u ( + U2) h5] z 

+ [2u1(U2 + U3) k2 + 2u1u2u3k4 + u1 u2u3(u2 + u3) k6] z23 

= {2(C2- c11U + U1) h + (172- - u1 +1 u- c3) h3 
+ [(f1 

- 
22) 2- - 202) 1 Ul + (o2 - 22) u - 03U1] h5}z 

+ [(o1u1 - uI) k2 + 203k4 + (oC1 C3 - 03u1) k6] Z2Z3 

= [202h1 + (o1 h2- 3) h3- 2c h5 - (2o01h, +02h3 + 3h5) u + (2h1 + rlh3- 2-2h5) u] Z 

+ [2o3k4 + o1 o3k6 + (1 k2 - 3k6) u1 - ku] Z2z3. 
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Therefore, 

T12(ZI ) = (22h,^ + (o1 2 - 3) h3- 2o21,h 

-2CT h, - o1 h3 - o3 h5, 2h, + r h3 - 2r2 h, 23k4 + o010 3, ak2- r3k6, - k2). 

The computation of the other 19 generators Tj proceeds similarly. 
To end the proof we show how to multiply by u1. Suppose we want to compute u1 Tj(z, g) with 

j(z, g) = (1, 13 15, l 2, m4, m6). The first component off= Tj(z,g) C3 is given by 

fl- = (l + (l +13 15 U) Zl + (m2 + m4u1 + m6 u) Z2Z3. 

It follows that the first component of ulT(z, g) eC3 is given by 

Ulfi = l1UiZi + lz+l + lU2 Zl + m2lz2z3 +m4uz2z3 + m6u1z2z3. 

Using (6.22a) we obtain: 

Ulfi = -r315sz + (1 - a215) UlZl +1 (13 + ?a115) uz1 

+ o3m2Z23z + (m2 - -2m6) ulZ23 + (m4 + Crlm6) uZ2z3. 

Hence u1Tj(z,g) (ol35, -11 -r'2, 13 +Cr1, 3m6, m62 - 'm, m-6) + cm6) 

and the proof is complete. O 

7. GENERATORS OF THE TANGENT SPACE 

To find the normal forms for and to compute the universal unfolding of our bifurcation problem 
(see ? 9), we need the generators of the tangent space Pg. These generators are defined in complex 
notation as (see Golubitsky & Schaeffer 1982): 

g = -T(z, A) g + (6g) .fl Te E,fe Er} (7.1) 

where (8g) -f= (dzg) f+ (d2g) . (7.2) 

and g is the bifurcation problem (3.3). In the right-hand side of (7.2) we use the notation 
z w = z1w1 +z2w2+z3w3. In ?6 we discussed the identification of Er with E =- 6. Using this 
identification we consider Pg to be a submodule of E. We note here that for the calculations in this 
paper we need only compute the generators for rg modulo 9 where J9 is the submodule of 
E defined in ?6. 

PROPOSITION 7.3. The tangent space Fg is generated by 46 elements: those listed in proposition 6.21 and, 
modulo Al Y', thefollowing six generators: 

D, = 
(h, + 21, hl,l + 4o12h1,, + 6C3h1,,3 + 3qh1,q 3h3 + 2c 1h3,, + 40C2h3,, + 6C-3h3,,3 + 3qh, q, 

5h5 + 2C, h5,1 + 4a,2h5,,2 + 6oC3h5, , + 3qh5,q, 2k2 + 2Co k2, l + 4rk2,o,2 + 603k2,,3 + 3qk2,q, 

4k4 + 2C, k4, 1 + 4'2 k4, 2 + 6C3 k4, o3 + 3qk4, q, 6k6 + 2 o1 kG6,l + 4'2 k6, 2 + 6o'3k6, 3 + 3qk, q), 

D2 -- (5c03h5 + 2(o - 2C2) h,,,1 + 2(, 0-2 - 3C(3) hl,2 + 2c(r1 3hl,,3 + -1 qhl,q, 

h -5o2h5 + 2 (o, - 2or2) h3,,1- 63 h3,2, 3h3 + 5c1,h5- 4c2 h5, - 6oh5,o 2, 

a, k2 + 3ca3k6 + 2(02 - 2cr2) k2,(1 + 2 (c10-2 - 30-3) k2,c .2 + 2c, r3k2,3 + c1 qk2,q, 

- k+ + crk4 - 3r2k6 - 4c-2k4, -6 3 k4,2, k4 4+ck6 - 4o2k60 - 6'3k6, ,), 
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D3 - (3 03h + 5 1 3h5 + 2(2 - 31-2 + 3-3) hl, - 2(2o0 + 0-103) hl, 42 - 402oa3hl,, - 22r qhl,q, 
- 30-2h3 + 50-3h5 + 60-3h3,,l, hA + 3-1h3a- 50h5 + 6a3h5, l, 

(1 - 22) k2 + 3k4 + 3crl 03k6 + 6(03 - 
cl 2) k2,1- 2(272 + 01 o3) k2,2 

-40 2g 3k2,,3- 2o02qk2, q, - 32k4 + 30-3k6+ 60-3k4,, 

- k2 + , k4 - 50-2k6 + 6(-3k6,fl), 

D4 - (qh3 + k2 - 'ak6 + 3qhl,, + 2o1qh1,, + 0 2.qhl,3 + 2%2hl,q, 

2qh5- k2 + o1k4 + o2k6 + 3qh3,,l + 2c2h3,q, - k4 + 3qh5,,1 + 2-2hs, q 

hl + qk4 + 3qk2, l + 20 qk2,c2 + 02 qk2, + 20- k2,q 

h3 + 2qk6 + 3qk4,1 + 2-2k4, q h5 + 3k6, l + 22k6s, ), 

D5 (20-2k2 2 4 + o 0-Cl qhl,0l + 2o2,qh1,+2 + 3a3 qh1,13 + 6r3hl, q, 

qh3 - 201 k2 + 2a 3k6 + 6-3 h3,q, 2qh5 + 2k2 + 60-3h, q, 

3 h5 + 1 qk2,,l- + 202 qk2, , + 33 qk2,3, + 6o 3k2,q, 

h, - 02 h5 + qk4 + 6o-3k4,, q3 + c-jh5 + 2qk6 + 63k6, q), 

D6 (2-3 qh5 + (0 1-2- 0-3) k + -l0 3k4 - 20-2qh1, - 3 ,-3qhl, 0, + 2- a3h1,q, 

- o k2 - 0-3k4, qh3 + -1k2--3k6, 

3 3h3 + O1 3 h52 + 2'3 qk6 - 2'2 qk2,,1 - 3'a3 qk2, , + 20-1 3 kk2,q 

- 2h3+ 03h5, h + 1 h3 - 0r2h5+ qk4) 

where a subscript after a comma represents partial differentiation. 

Proof. The generators are defined as 

Jg = { T(z, ) gl Tr Er} + {((g) .flfe Er}. 

The generators of the first submodule are listed in proposition 6.21. Here we have to compute 
the generators of the second submodule, which is generated by (6g)fi, ..., (6g)'f6, where 

f, ...,f are the generators (3.2) of Er. 
Again it suffices to compute the first component of (Sg) 'f), that is 

gl, zfjl +-gl, zfj2 + g1, z3f3 + g1,Z1f1 +gl,2fj2 + g1,3Jfj3- (7.4) 

where g, is the first component ofg EC3, andfik is the kth component offJ CC3. 

Recall that 
Hi = HlZ+Kxz2Z 

where H1 ='h + h3ul + h5u2 and K, = k2+k4u1+k6u. 

One may compute directly that 

gl,9l = HI + Hl,lzlZ + K,Z, Z2Z , 

gl,z= Hl, Zl + K l,z2z K z 

= H l, +,z 

gl1,2 = HI,2,zl + Kl, 2Z2Z3 

gl1,3 = H1,3Z1 + Kl,aZ2 3 + K12. 
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H1,i, 
= 

+1, (h2 + h53) ) 1 + H1, l u+(2 U3 Z1 + H, qZ2z, 

H, Z = H,-, Z2 + H1, ,2(U + U3) Z2 + H1, a3 U U3 2 + H, Zl Z3 

H,.3 = Hl,aZ3 +H (+ ,( U2) i3 + HI,a,3UlUZ3 + Hl,qzl, 

HI, j = H,zj, j = 1, 2, 3, 

Kr,Zl = (k4 + 2k6 1) Z1 +K 1,2(l + Ki,2(U2 + U3) Z +K1,cus U2u +K1,qZ2Z3 

Kl, z = Kl, 1Z2 + K1, 2(u1 + U3) Z2 +Kl, o.,al U32 +K1l, qZZ3, 

Kl,Z3 = K1,r 23 + ,Kl' a(U1 + U2) 3 +Kl, O.ul2Z3 +Kl, qZ12, 

K,~, = Ij,j = 1, , 3, 

Hl,j = hl,cj +h3,ojUl + h5,u2l,j = 1, 2, 3, 

Hl, q = hiq + h3,qU + h5,q , 

Kl,j = k2, + k4,,jul + k6, u,j = 1, 2, 3, 

Kl,q = k2,q + k4,qul + k6, qU 

fl= zl = z2 213 = Z3, 

f21= Ul Zl f22 = U2Z2,f23 = U3Z3, 

f31 U2z,f = UlZ3 f33 = u ,33 = 23, 

f41 = 2Z13,f42 = ZlZ3,f43 = Z1Z2, 

f51= UlZ2Z3,f52 = U2Z1lZ3,53 = U3Z1Z2, 

f61 = U1Z23, f62 = u2z1z3,f63 = uZ Z2. 

By substituting (7.5)-(7.8) into (7.4), using (6.22) and computing modulo af-'9 o 

compute the generators D1-D6. 
For example, we compute D4: 

g1, zlf41 + gl1, z242 + g1, Z3f43 + gl, 2,41l + g1, 2f42 + gl, za43 

= HlZ2Z3 + Kl(2 + u3) z1 + 2 Re (Hl,zlz2Z3 + Hl,02z1z3 + H1l,z,lz2) z 

+ 2 Re (K,,lz2z3 + K,, Zlz3 + Kl,,Z iz2) Z2Z3 

= [qh3 + cr k2- 3k6 + (2qh5 - k2 + alk4 + o2k6) , U-k4u] z1 

+ [hl + qk4 + (h3 + 2qk6) u1 + h5U2] Z2z3 

+ [3qH,,.1 + 2 qxH,. + o2'qqHH, + 2o2 HI,q] Zl 

+ [3qK1,,1 + 2o1 qKl 02 + -2qK ,.3 + 202K1,q] Z2Z3 

= [qh3 + oa1 k2-r3 k6 + 3qhl, 1 + 2o1 qhl, , + t2 qhl, 3 + 202 hl,q 

+ (2qh5 - k2 + o'1 k4 + '2k6 + 3qh3,, + 202 h3,) u1 

+ (- k4 + 3qh5, l + 2'2 h5, q) ul] z 

+ [h, + qk4 + 3qk+2, 2 + 2o2 qk2,0, + t2 qk2,03 + 2o2k2, q 

+ (h3 + 2qk6 + 3qk4,o,1 + 2f2k4,q) ul + (h5 + 3qk6,sa + 2'2k6sq) U2] Z2Z3 

where the last equality is modulo /.4 '. 
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8. CHANGE OF COORDINATES AND NORMAL FORMS 

One purpose of this paper is to show that under certain conditions bifurcation problems 
g(z, A) have (relatively) simple normal forms, which we denote by n(z, A). More precisely, we 
wish to find conditions on g such that g is F-equivalent to n: that is 

n(z,A) = T(z,A) g(Z(z,A),A(A)) (8.1) 
where T is a 6 x 6 matrix satisfying 

T(y ,z, A) = y T(z, A) 
and Z satisfies Z(y z, A) = y Z(z, A). 
The proof of such a normal-form theorem proceeds in two stages. First, one computes explicitly 
a r-equivalence of g that shows that g is r-equivalent to n + higher-order terms. Of course, one 
must decide in advance which are the higher-order terms and this depends on the particular 
form of g. Second, one uses standard theorems from singularity theory to show that n + higher- 
order terms is F-equivalent to n. We give the first stage of this process in this section and the 
second stage in the next section. 

We have identified bifurcation problems g that commute with the action of F to 6-tuples of 
invariant functions (hl, h3, h5, k2, k4, k6). As noted in ? 5 the Jacobian matrix dgg is just h,(0, A) I 
when z = 0. We assume that (z, A) = (0, 0) is a point of bifurcation and that the trivial solution 
z = 0 changes stability at (0, 0). Thus 

h,(0, 0) = 0 and h,, (0, 0) = 0. (8.2) 

Normally in the F-equivalence (8.1), see Golubitsky & Schaeffer (I979), we demand that 
A' (0) > 0. We relax that assumption here with the understanding that by doing so the orientation 
of A in the normal form can be reversed to obtain another example; that is, the bifurcation 

diagrams we draw in ? 10 may be read either from left to right or from right to left. On the other 

hand, we showed in ?5 that for the F-equivalence (8.1) to maintain the linearized stability 
assignment given to a solution one must assume that T(0, 0) and (d,Z) (0, 0) - which are both 

multiples of the identity matrix, say A1I and eI respectively - satisfy A,, e > 0. We relax this 

assumption in (8.1) with the understanding that we have postponed deciding whether the 

sign of the stable eigenvalue in the linearized stability analysis is + or -. 

Algebraically it makes sense to define the higher-order terms of g to be a submodule of E. 

Letting X& be the maximal ideal in gf and X be the ideal in o generated by c21, e2r, o3, q, A as 
defined by ?6, we define (42 , , ), 

9~ = (,r ~, , , ^), J (8.3) 
9P= (e^, , ,X J~, ,).) 

Note that ~ g ' 

where J is defined in ? 6. For example, we can write g modulo 9 as 

h, = cA +a, ,+a2 o2 + a3 s3 +a4q + a5 qo1, (8.4a) 
h3- o + bo+bl, (8.4b) 

h5 C, (8.4 c) 

k2 -/A + do+ + d, o- + d3o3 +d4q, (8.4d) 
k4 eo, (8.4 e) 

k6 -fo. (8.4f) 
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We now state the main result of this section, using the notation that the normal form n(z, A) 
is identified in &6 with (v1, v3, v5, w2, w4, W6) where the VjS and wjs are invariant functions. 

PROPOSITION 8.5. As stated in (8.2) we assume a o 0. 

(i) Assume do 7 0, al+bbo 0. (8.6) 

Then g(z, A) is F-equivalent modulo 9 to n (z, A) where 

n1 = (-A), 1,0, 1,0,0). (8.7) 

(ii) Assume do O, a1+bo = 0, a2+a5+b 0 . (8.8) 

'hen g(z, A) is F-equivalent modulo 92 to n2(z, A) where 

n = ( A + 0 C, 0, 0, , o0). (8.9) 

(iii) Assume do , b , 3a+b0 b 3alo ( o). (8.10) do = O , b O, 3a1+ bo ~ 0 O, eo. (.03a bo 

Then g(z, A) is r-equivalent modulo 9 to n3(z, A) where 

n3 = ( -+ao + d2r, I,0, brl + cq, 1, 0). (8.11) 

In the normalform the condition 3a, + bo : 0 becomes 

3a +1 0. (8.12) 
The constants a, b, and c are defined by 

a = a/^b0, 

b = e2[A1(e2dl +al) +A2e(2a1 +b)], (8.13) 

c = A1e5[(3a1 + bo) d4- (3d1 + eo) a4]/(3a1 + bo) 
where 

e = 2abo(3a1 + b)/[(2eoc +bofl) (3al + bo) - 3a4bo], 

A = [(2e, + bol) (3a, +bo) - 3a4bo]3/[2ab^(3al + bo)], 
(8.14) 

= a4/(3a, + bo), 

A2 = -A1(e2 + goC)/(2e+). 

Moreover, any further F-equivalence that maintains the form (8.11) leaves the values of a, b, c, and d 

unchanged. Therefore, one cannot scale the parameters a, b, c, and dfurther. 

Remarks. (a) We have not given an explicit formula for d in terms of the coefficients of g in 

(8.4) for two reasons. First it is a long and horrible expression and second we do not use the 

particular value of d for the results in this paper. 
(b) In the Introduction we described in general terms the two bifurcation problems we wished 

to study. The first was the simplest singularity when the quadratic term do = 0. This corresponds 
to (i) in proposition 8.5. Note that to study this example one has to assume in addition that 

a, + bo = 0. The second case was the simplest singularity when do = 0 and that is given in (iii). 
For completeness, we considered the case when do # 0 and a, + bo 0, which is given in (ii). 

We shall compute the general F-equivalence modulo 9 in two steps by considering separately 
the changes of coordinates in the domain and range. Let 

g'(x, A) = g(Z(z, A), A(A)) 

647 

This content downloaded  on Mon, 4 Mar 2013 22:33:40 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


E. BUZANO AND M. GOLUBITSKY 

be the change in the domain and 

g"(z, A) = T(z, ) g'(z, A) 

be the change in the range. In (8.4) we expanded g modulo ^93 explicitly. We can, of course, do 
the same for g' and g"; we indicate the corresponding coefficients by adding a prime and a double 

prime respectively to the coefficients found in (8.4). For example, g' is identified with the 6-tuple 
of invariant functions 

g' = (1113,1, , m2, m4, m6) (8.15) 

and 1. = c' modulo Y. Before proving proposition 8.5 we give the results of explicit computation 
of g' from g, and g" from g', deferring the outline of these computations until the end of this 
section. 

We identify the change of coordinates Z(z, A) with the 6-tuple of invariant functions 

Z (rl 3, r,r) 2 S4) ss6) (8.16) 
and use the notation 

= rl(O) 0 , = rl,1(0), 0 = r3(0), = s2(0), (8.17) 

0= 5s2,1(0), = S4(0), y = A'(o) 0. j 

LEMMA 8.18. The computation ofg'from g modulo 9 yields thefollowing. Note that we have only computed 
those coefficients that we shall need explicitly. 

a' = yea, (8.19 a) 

at = e3a, + edo, (8.19b) 

a = c(g2 - 4e0) a, + e5a2 + 2e3 a4 + e2bo + 2 (et - 0g) do, (8.19c) 

a4 = 36e2al + 64a4 + e62bo + 2do, (8.19 d) 

a5 = c2(20 + 3r) a1 + e5a5 + (0 r ) do +e3d, (8.19e) 

b = e3bo - cdo, (8.19f) 

b = e20a + e(3ey - _2) bo+ e5b - (2elt + r + es) do - e3dl + e3e0, (8.19g) 

o 

= e(3e0 + g2) bo + e5o + (2e - 0,) do - 63e0o, (8.19h) 

/3' = y + ye, 2, (8.19i) 

d = e2do, (8.19j) 

di = 6e2,a +e(0 + 21/) do +4dl, (8.19k) 

d4 = 3ea2a1 + e3a4 + ec2bo + 3e3d1 + 5 e + 0, (8.191) 

eo= ebo - (e0 + 2) d + 4eo. (8.19m) 

We now compute g" from g'. Recall the notation for g' E (9)6 given in (8.15). 

LEMMA 8.20. The generalformulafor g" modulo is given by 

22 

g" = Tg' = 2 Aj Cj (8.21) 
j=1 
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where Aj e R are arbitrary except that Al 7 0, and 

C1 = (1, 13, 15, m, m4, m 6), 

C2 = (Co1m2 + 2o'2m4 - 3m6, --m2 - 2o1lm4, 2m4, 211 + o13 - 2o215, - 13 - 1), 

C3 = ('3 15, 1 13, 0, m2, 0) 

C4 = (o111 + (-2 202) 3 + 3315, 0, 0, 0, 3m2, 0), 

C5 = (0, 00,3, m6, 0, m4), C6 = (o-3m4, 0, 0, 0, 0, 0), 

C7 = (0, 0, 0, -315, , 13), C8 = (0, 0, 0, - 2ol213 + 3-315, , 0), 

C9 = (o13, 0, 0, 0, 0, 0), Clo = (0, 0, 0, 0313, 0, 0), (8.22) 

C11 = (0, 0, 0, o3m4, 0, 0), C12 = (o'1l1, OCll3, 0, olm2, 0, 0), 

C13 = (-qm2,0, 0,0, 2m2, 0), C14 = (0, 1m2, -m2,0,0), 

C15 = (o1m2, 00, 0, 0, 0, ), C16 = (C3m2, 0, 0, 0, 0, ), 

C17 = (0, 0 00, o2m2, 0, 0), C18 = (0, 0, 0, 03m2, 0, 0 ), 

C19 - (0,0, 0, 0, 0, 2), C20 = (0, 0, , O,qm2, 0,0), 

C21 = (om2, - 1m2, , 0, 0, ), C22 = (0, , 0m, Am, 0,). 

We can now use this lemma to compute the coefficients of g" in terms of those of g' using the 

notation corresponding to (8.4): 

" = Axa', (8.23a) 

a = Ala + A2dO, (8.23 b) 

a = A aI + 2A2e' -2A4bo + A5 do, (8.23 c) 

a3 = Ala -A2f + (A + A4) A + A6e +Agb +A6d', (8.23 d) 

a4 = A1 a -A13 d, (8.23e) 

ag = Al a + A+2d + A4(a + b0) + Aa12 a+ A21 d', (8.23f) 

b = Ab-A 2do, (8.23g) 

b. = A b + A12 b-A2(d + 2e;) +A3 a + (A14 -A21) d (8.23h) 

ca = A1co +2A2e[ +A3b - A4do, (8.23i) 

f/" = A/ '+ 2Az' + A22do, (8.23j) 

d = Aldo, (8.23k) 

d = Adl + AA2(2al + b) +A 2dO (8.231) 

d2 = Ald2 + 2A2(a2 -c c) - 2A8b + A17d, (8.23m) 

d' = A d3 + 2A2a3 + Af + (A7 + 3A8) c + Alle + Alo b + A8d, (8.23n) 

d4 = A1 d4 + 2A, a4 + A20 d (8.23 o) 

eo = Ale - A 2b + (A3 + 3A4 + 2A13) d, (8.23p) 

f0' = 
AlfO- Ac + Ae +A,b + Al,d (8.23q) 

We shall sketch the proofs of lemmas 8.18 and 8.20 and the calculations (8.23) at the end of 
this section. 
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E. BUZANO AND M. GOLUBITSKY 

Proof of proposition 8.5. Recall that A1, y, and e are non-zero constants. 

(i) We need only compute g" modulo 1 in this case. The coefficients ofg in (8.4) that can be 
non-zero modulo 91 are (8 24) 

, al, a, a, a, b, o , e, (8.24)A 1 

Note that do # 0 implies do # 0. Thus one can choose A, A, A, A, A, A, and A^ respectively 
so that (8.25), , , al = a2 = aC = 'e =fo = O. (8.25) 

Note that A2 = -A1x/do. 

With use of (8.23) for the first equality and (8.19) for the second it follows that 

a" = A1a' = A1yeaz, 

bg = Al(a' + b0) = A.e3(aL + bo), (8.26) 

do' = A1do = A1e2do. 

As a, + bo 7 0 one may choose y so that a" = - 1, e so that bo = 1, and A1 so that do = 1. 

(ii) For this case we need only compute g" modulo g2. The coefficients of g in (8.4) that can 
be non-zero modulo g2 are a5, bl, and those listed in (8.24). As before, one can show that the 
coefficients listed in (8.25) are zero since we still assume do # 0. Note that the assumption that 

a, +bo = a' + b = 0 implies that now b' = 0. In addition, one can choose A21 so that b = 0. 
It follows that: = Aa' = 

o~" = A,z' = AIyeoq 

a" = Al(a' +bI -+c) = A,5(a5 +b + c), (8.27) 

do" = ALd; = A,e2do. 

Since a5 b + c0 + 0, one can choose , e, and A1 so that az" = -1, a5 = 1, and do = 1. 

(iii) The assumptions that bo 0 0 and do = 0 suffice to show, using (8.19f), that b'o 0. As a 

result, one can choose A4,A A1, A, A8, A, AL, A appropriately so that 

a = a3" = bl = c = d2 = d3 =fO = 0. 

Here one uses the corresponding equations in (8.23). Next observe, using (8.19a), that a = 0 

implies a' =A 0. So one can choose A2 in (8.23j) so that /" = 0. One can also change coordinates 
so that a' = 0. To do this, note that do = 0 implied do = 0. Then (8.23e) and (8.19d) imply 

a4 = A1e2[(3a + bo) +e2a4]. (8.28) 

Now the assumption that 3a, + bo : 0 allows one to choose C so that a' = 0. 
In the statement of the proposition we claimed that there were three coefficients that could be 

scaled to unity. In particular, we claim that it is possible to choose ac" = - 1, bo = 1, and ej = 1. 

Using (8.19) and (8.23) one shows = 
ALyea, (8.29a) 

bo = Ale3bo, (8.29 b) 

eo = Ale4[eo- fbo/2a- 3a4b0/2(3a + bo)]. (8.29c) 
In deriving (8.29c), one uses.the facts 

A2 = -Alf'/(2a'), (8.30a) 

= -e2a4/(3a + bo). (8.30 b) 

One can now choose y so that and A so that ba = 1. Since the third factor in (8.29c) is 

assumed to be non-zero one can choose c so that e' =g1. 
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We have now found a change of coordinates that puts g into the normal form n3. Note that we 
have used the following notation in (8.11): 

a = a", d = al, b = d ', c = d. 
Using (8.19) and (8.23) one can compute the values of a, b, c, and d explicitly from the original 
coefficients ofg. We have recorded the results for a, b, and c in (8.13) and (8.14). 

Finally, one shows that an arbitrary F-equivalence (modulo 9) that maintains the normal 
form (8.11) leaves the values of a, b, c, and d unchanged. This is a long but straightforward 
calculation involving all the formulae in (8.19) and (8.23). F 

We now sketch the proofs of lemmas 8.18 and 8.20. These are both long but straightforward 
calculations. 

Proof of lemma 8.18. Our aim is to compute the general change of coordinates of g given by 
g(Z, A) modulo ?. We use capital letters to indicate the various quantities in the variables 
Z, A. For example Uj = Zj Z and Z. = U1 + U2 + U3. One can then write the first coordinate of 

g (Z, A) modulo 9 as 

(ocA + ajli + a2Ez + a3?Z + a4 Q + azl))Z + (bo + blZ') UZZ + I co U Z1 

+ (ftA+ +d +d1' + d2Z2 + d33 +d4 Q) Z2Z + e U1Z2Z3 +fo U Z2Z3. (8.31) 
Observe that in (8.19) we do not compute the coefficients a, d2, d', andfO. We showed in the 

proof of proposition 8.5 that the explicit calculation of these coefficients was not necessary. As a 

result, we do not have to keep track of any coefficients involving or3. Moreover, we showed in 

(8.4) that when computing modulo Y we need not keep track of any coefficients involving .2, 
u1fu, or Yu2 except for or and rl u,. These observations simplify the calculations substantially. 

The reader should find the identities (6.22) useful. We find 

U1 = + C +e4q + [62(2e - _2) o1] ul + (2E0 + 2) U2, 

U2 64U1, 

U2 + U3 = 62- ~4eC2 + 2e q + 2e(0 + ) + [(2 - 2e) 1 - 62 U1- (2 + 2e0) u,U 

' = e2o 1+ (2-4eO) 4 ' 2 + 3ecq + 2e(O + o) 2r, 

2 = U1(U2 + ) + U U2U - 4 (8.32) 

3 = u, U2 U3 o, 

Q = 2 Re (Z Z2Z3) - 2e62, + e3q, 
E2 = 64fcr, 1, 1' 
A - yA. 

Next, we calculate modulo Y. As discussed we also ignore any terms of the form cr3Z1, Cr2Z2Z3, 

.3zs2z3 and uaz2z3. These terms correspond to the coefficients a', d2, d 'andfo respectively. We 
obtain 

U Z1, {6e2 - + e2gq + e[e2 + (3e - 
C2) l] u1 + (3e0 + -2) U2} Z + (e62q + c62Ul) Z2Z3, 

U2Z, - e65Uz1, 
Z Z 3 [eCcrj + 2 (e,u - 0) o'2 + g2q + (0g + g + 6O) -2 U - (2e, + #C + 6) Cl1 ul 

Z2Z3b ~ r 7 Y 1 b (8.33) 
+ (2e/t - Og) u2] z1 + [62 + C(O + 2) o-1 - (CO + g2) U1] Z2 3, 

u1Z Z3 -C3(ol u1- U2) z1 + 3(gq + eUl) Z2Z3, 

U2Za3 O. ^^Z 4 0. 

Vol. 308. A 
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E. BUZANO AND M. GOLUBITSKY 

Finally one substitutes theresults of (8.32) and (8.33) into (8.31) to obtain the formulae (8.19). l 

Proof of lemma 8.20. The general form of a F-equivalence T(z,g(z,A)) is given, modulo the 
submodule X , in proposition 6.2 as 

20 
Z sij T (z)), 

j=l 
(8.34) 

where each sj has the form aj + bj ul + C U2 and the ajs, bjs, and cjs are invariant functions. In this 
lemma we wish to find an expansion of T(z, g(z, A)) modulo the submodule M as 

22 
E AjCj, 

j=l 
where the Ajs are real numbers. 

Observe that we first identify g with the -tuple of invariant functions (11, 13, 15, m2, m4, m6) 

rather than (hl, h3, h5, k2, k4, kg) as in proposition 6.21. The first step in the proof of this lemma is 
to write out all of the terms in (8.34) modulo 9 and then observe that the only terms that can 

possibly be independent are Tj (j = 1,..., 12). T14, T, T17, ulTl ulTi AT1, T) 2T1 qTj and 
or T2. An equivalent set of vector-space generators is given by Cj (j = 1, ..., 22). We do not claim 
that the Cjs are the most natural choice; they are the ones we have used. The relations between 
the Cjs and the Tjs are given by 

C1 = Tx, 

C3 = (T5 - T4 +2T3 +4U ), 

C5 = {(T4- T5- 2T + 2u, T), 

C7 = 2(T7 - T), 

Ci = Tri - u2 Ti, 

cl = -(T + u2 T3), 

C13 = (T5- T4 + ul T - T3), 

C1 = 2(2T8- 2T7 + T - T1o + 2qT1), 

C17 = 2T, 
C9 = 1(52 T - 3T11-T12), 

C21 = o1' 2 

C2 = T2, 

C4 = T5 +U1T, 

C6= 1(2T6 +2T7- T,+ T10- 2qT), 

C= -(T -T6 T+ T + To- 2qT1), 

Clo =4 (T5 - T4), 

C12 = o1T1, 

C14 = (- T - 7T7 + 6T8 + 2T9 - 2T10 + 4qT1), 

C16 =- (T4 + T5) 
C = T. 

18 17, 

02 = qT1, C20 = T1. 

C22 = A)tT1 

9. DETERMINACY AND UNFOLDING 

We now show that the normal forms nl, n2 and n3 of proposition 8.5 are 91, Y2 and ?-deter- 

mined where li, Y2 and Y are the submodules of 6 defined in (8.3). More precisely, we show 

that any map germ nj +p where pe gj is F-equivalent to nj. Moreover, we compute the co- 

dimension and a universal unfolding for each of the normal forms nj. 
Our main result is the following: 

THEOREM 9.1. Let g(z, A) = (h, h3, h5, k2, k4, k) be the bifurcation problem defined in (8.4) with a t 0. 

(i) Ifg satisfies (8.6), then g is F-equivalent to 

(9.2) n(z, A) = (-A, 1, 0, ,1, 0,0). 

Moreover, codim i n, = 0; hence all small perturbations of n1 are F-equivalent to n,. 

(8.35) 
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BIFURCATION ON THE HEXAGONAL LATTICE 

(ii) f g satisfies (8.8) then g is F-equivalent to 

n2(z, A) = (-A+ , 0, 0, 1, 0, 0). (9.3) 

Moreover codim n2 = 1 and a universal unfolding is 

f2(z, A, a) = (-A+, a, 0, 1,0,0). (9.4) 
where a is near 0. 

(iii) If g satisfies (8.10) and 

al+bo 0 , 2al+b0 0, (3dl+eo) a # (3a,+bo)fl, () 

(3a, + bo) d4 (3d1 + e) a4 
then g is F-equivalent to 

n3(z, ) ( - A + ac + do1, 1 0, br + cq, 1, 0). (9.6) 

where the modal parameters a, b, c are defined in (8.13). (We did not compute d explicitly as it appears to be 

a topologically trivialparameter.) The modalparameters satisfy 

a :- 1, -,i, -i; b ? -?1, c : 0. (9.7) 

Moreover codimr n3 = 5 (though the topological codimension is 1) and a universal unfolding is 

f3(z, A, a, I, g, d, e) = ( - A + ar1 + do,2 1, , , - e+ Zl + cq, , 0) (9.8) 

where d, 1, , d are near a, b, c, d respectively and e is near zero. 
The determinacy results proceed in two steps. First one uses proposition 8.5 to show that g is 

I'-equivalent to ns +p where p E 2j. Next one shows that P(nj +p) = -(nj) for all pE i where 

'(g) is the submodule defined in (7.1). Finally one applies theorem 1.13 ofGolubitsky & Schaeffer 

(1979), which states that if P(nj +p) = P(nj) for all p e j then nj +p is F-equivalent to nj for all 

p e j. Once P(nj) has been computed, one can compute a universal unfolding straight- 
forwardly. Let r(nj) = P(nj) + '{n,A} (9.9) 

where ', is the ring of germs of C- functions in the variable A. Let Q be a vector subspace of E 

satisfying F(nj) Q Q = E. 

Then codim nj = dim Q. Moreover, if {q, ..., ql} is a basis of Q then 

f(z, , a) = g(z, A) + E j qj(z, A) 
j=1 

is a universal unfolding of g. (The reader is referred to ? 1 of Golubitsky & Schaeffer (I979) for 
more detail.) 

The computation of P(nj) uses 

NAKAYAMA'S LEMMA. Let A and B be submodules of E where A isfinitely generated. If A c B + .- A, 
then A c B. 

Here X1 is the maximal ideal in 8. 

Proof of theorem 9.1 

(i) We must show that F(n, +p) = r(n,) for all p E 1. Let Y, be the ideal in 6 generated by 
A2, , o Ar2, o2, -3, and q. Define the submodule .9 of E by 

=1 ( s,, of, f,'). (9.10) 
We claim 

r(n +p) = .21 9 {(-A, 1,0, 1,0,0), (a), -1,0,0,0,0), (-A, 3,0,2,0,0)} (9.11) 
50-2 
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for all Pe 9. It follows from (9.11) that F(n p +p) is independent of p, so F(nl +p) = F(n,). 
Thus n1 +p is F-equivalent to nl. It is easy to see that dim E/1 = 5. Moreover, the vectors 

nl,, Anl, A satisfy 

nl, -(- 1, 0, 0, 0, 0, 0) mod 1, An1, -(-A, 0, 0, 0, 0, 0) mod 1. (9.12) 

Using (9.11) and (9.12) one sees that F(nj) = E (see (9.9)). Hence codim,rn = 0. 
We sketch the proof that (9.11) holds. We first show that Q1 c F(n, +p) + -J 2 and hence 

by Nakayama's lemma that 1 c F(n1 +p). Note that the module 91 is generated by 19 generators: 
six in the first coordinate, five each in the second and fourth coordinates, and one each in the 

remaining coordinates (see (9. 10)). Using the notation of propositions 6.2 1 and 7.3 and observing 
that 21 c P one computes the 19 generators modulo '. 21: 

{(l, A} T, {(l, 2, c3, q, A}. {l, D U1T, Ul T, T 1T2, uT2, T3, T5, T7. (9.13) 

(We again use the notation that the product of two sets is the set of pairwise products with one 
factor from each set.) It is then a relatively easy computation to show that (9.13) is a set of 

generators for the module J1 (modulo X4' * 2). Next one shows that T1, T2, and D, form a (vector 
space) basis for F(nl +p) modulo 21, thus proving (9.11). 

(ii) We must show that F(n2 +p) = F(n2) for all p E 2. Let Y2 be the ideal generated by 
Ao1r, A2, Ao-, 02, (^3 and q and recall that /f is the ideal generated by o2, 72) 03, q and A. Define the 
submodule 92 of E by 

~2 = (2, ,, ,, , ) ) (9.14) 
We claim 

r(n, +p) = ~ ? R{( - A + 2, 0, 0, 1, o, o), ( 0, - 1, 0, 0, 0, 0), 

(o', -o1, ,0, 0, 00), (0, -o, 1, 0, 0, 0), (A + 3a2o, 0, 0, 0, 0, 0)} (9.15) 

for all p E g2. It follows from (9.15) that f(n2 +p) is independent ofp, so r(n2 +p) = F(n2). Thus 
n2 +p is r-equivalent to n2. It is easy to see that dim E122 = 8. Now the vectors n2,A, An2,A satisfy 

n2, ;= ( - 1, 0, 0, 0, 0, 0) mod 2, An2. A (-A, , 0, 0, 0, 0) mod 2. (9.16) 

Using (9.15) and (9.16) one sees that 

E = F(n2) 0 R {(O, 1, o, o, o, o)}. 

Thus codim n2 = 1 and a universal unfolding of n2 is given byf2 in (9.4). 
We now sketch the proof that (9.15) holds. We begin by showing that 2 c F(n2 +p) + A'22 

and hence by Nakayama's lemma that 22 c P(n2 +p). Note that the module 2 has 23 generators: 
six in the first coordinate, five each in the second, third and fourth coordinates, and one each in 
the last two coordinates. Using propositions 6.21 and 7.3 along with the observation that 

22 c 9 one computes the 23 generators modulo '*.2 

{A, , , q}{T, r , TT8}, {, ul, U} 2 T,, {: , o1}D1, or, T2, T4, T5, T6?T8, {o1, u}rT6. (9.17) 

One then shows that (9.17) is a set of generators for the module 22 (modulo `& 29). Finally 
one shows that there are five independent terms in F(n2 +p) modulo -2: 

TT, T2, r-T2 T6, Di. 

These terms span the same vector subspace as the right-hand summand in (9.15). 
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(iii) We must show that f(n3 +p) = f(n3) for all p E 3P. Let Y3 be the ideal in gf generated 
by o"3, quadratic terms involving (2, q and A, and c. More precisely Y3 is generated by the 
11 generators 

rl1, 102 C, r1 A q , rr1 A, o22q, r 2qA, q2, qA, A2, A 03. 

Let Y4 be the ideal in ' generated by O21, -,, and the quadratic terms in a,, q and A. So Y3. is 
generated by the eight generators 

0o2, o1 q, o-x A, q2, qA, A2, o', (3. 

Recall that X is the ideal generated by A, r, c2, 3, and q. Define the submodule 23 of E by 

93 = (3 -4, `) * (9.18) 

A simple count shows that there are 35 generators for the submodule 23. Also, dim E/3 = 14. 
We claim 

f(n3 +p) =23 -@ R {T T, r T2 T, , ul T, D1, D4} (9.19) 

using the notation of propositions 6.21 and 7.3. Moreover, modulo 23, one has 

T1 (- Aaor + dor-, 1, O, bor + cq, 1, 0), 

cl - (ac2, 0, 0, 0 0), 

T2 (bcr + 2o2, -(b + 2) o1, 2, -2A + (2a + 1) o,, , 0), 

T5 ((a + 1) - 2, - a, - 1, 0, 0, 0), (9.20) 

ul T,_ (0, aoC, 1, 0, 0, 0), 

D, = (-A+3aro +5dcr, 3, 0, 4bo + 5cq, 4, 0), 

D4 ((3a + 1) q + bo2, ( 1- b), - , - A+ ac + (3b + 1)q, 1, 0). 

From (9.20) one sees the right-hand side of (9.19) is independent ofp and hence rF(n3 +p) = F(n3) 
for all p and n3 +p is F-equivalent to n3. Now the vectors n3 , A An3, satisfy 

n3, - (-1, 0, 0, 0, 0, 0) mod (9.21) 
\ (9.21) 

An3, (-A, 0, 0, 0, 0,0) mod 3.J 

Hence r(n3) = 1(n3) R {n3, An3, A). One sees that codimrn3 = 5. It is a straightforward 
calculation to show thatf3 as defined in (9.8) is a universal unfolding of n3. 

We now give a sketch of the calculations needed to prove (9.19). The first step is to show that 
c3 C P(n3 +p) + 4'. 9a and hence by Nakayama's lemma that 9a c P(n3 +p). To do this compute 

the following 35 generators of P(n3 +p) modulo 93: 

{P? U2, A, q} T1, {A, i , (2r G3, q}l T1, U1 T, T3-u1T1, {A, o1} T2, T4-T5, {Tq, 2, A), C1T5 T T 

{1, u1, u2}T7, {1, u1}T8, {1, )T9, TO , T1, {A, q, r1}D, {, 1}D4, D5. (9.22) 

This computation leads to a 35 x 35 matrix which, if we assume the non-degeneracy conditions 

(9.7), is non-singular. This calculation is extraordinarily tedious; however, since the matrix is 

relatively sparse, the calculation can be done by hand. Finally, one shows that modulo 23 the 
elements in (9.20) constitute a (vector space) basis for F(n3 +p) thus yielding (9.19). 

- 
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10. ANALYSIS OF THE NORMAL FORMS 

In this section we use the results of the previous sections to draw schematic bifurcation diagrams 
for the three normal forms considered in this paper. The examples are A(z, A), B(z, A), and 

C(z, A) which are defined respectively by 

h = -A, h3 = 1, h5 = O, k2 = 1, k4 = O, k6 = 0, 

i = - A + o2, h3 = a, h, = O, k = 1, k4 = O, k6 = 0, 

h= = -A+ao +doa , h, = h5 = O, k2 = bcr +cq-e, k4 = 1, k6 = 0 

where the following non-degeneracy conditions hold: 

a+1 # O, 2a + 1 O, 3a+1 O, 3b+1 : 0 and c 0. (10.1) 

We have chosen the coefficient of A to be - 1 for all the examples. To do this we needed to use 

the coordinate change A - - A. With this in mind, one can read all of the bifurcation diagrams 
'backwards' obtaining a new set of examples. In addition, to arrive at the normal forms above, 
we had to consider g(z, A) equivalent to -g(z, A). Clearly, this makes no difference when con- 

sidering the zero set ofg. It does, however, change the linearized stability assignments associated 

with a given solution (see ? 5). In the subsequent bifurcation diagrams we have given many of 

the linearized stability assignments as, for example, 3 + 1 -. This notation indicates that dg 
on the gven solution has three positiven eigenvalues, one negative eigenvalue, and two zero 

eigenvalues (as the number of eigenvalues must be six). The equivalence of g with -g may be 

interpreted as a choice of whether the sign of the stable eigenvalue is to be considered as 

+ or -. We also use the change of coordinates z -z, which has the effect of interchanging the 

solutions III+, IV+ and V+ with the solutions III-, IV- and V- respectively. 

Analysis of example A (the codimension 0 case). 

Using theorem 4.4 one finds a unique representative for each orbit of solutions to A = 0. The 

results are 
(II) Ax2,x=x > 0, 1 (10.2) 

(III) A = X+X2, X = X1 = X2 = X3 ? 0. 

There are no solutions of type IV-VIII located near the origin. The stability assignments for the 

solutions listed in (6.2) can be computed by using theorem 5.7. The eigenvalues for dA are 

given by: 
(II) 2x2, -x+x2 (twice), x+x2 (twice), 0, (10.3) 

(III) - 2(x + x2) (twice), x + 2x2 (twice), - 3x, 0 (twice).J 

The bifurcation diagram for example A is given in figure 8. Observe that no physical problem 
could be described completely by using a local analysis ending with example A. The reason is 

that every non-trivial solution branch in this example represents an unstable solution. 

Analysis of example B (r-codimension 1). 

In this example a is an unfolding parameter, which is assumed to be near zero. We shall 

analyse the three cases a = 0, a > 0, a < 0. 
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Using theorem 4.4 one solves B = 0 explicitly as 

(II) A=ax2+x4, x>0, ( 
(III) A =x+ ax2 + 9x4, x O. 

There are no solutions at type IV-VIII located near the origin. The eigenvalues for dB along the 
solutions listed in (10.4) are given by 

(II) 2ax2+ 44, -x-ax2 (twice), x - ax2 (twice), ( l (10.5) 
(III) - 2x + 2ax2 (twice), x + 2ax2 + 36x3 (twice), - 3x, 0 (twice).J 

The bifurcation diagram for example B with a < 0 is given in figure 9. The bifurcation diagram 
for a > 0 is the same as figure 8. Again the local analysis does not yield a physically interesting 
problem. 

3+2_- ---?---II 

3+2 - 

I I 6+ 6- I 6+ + 6- I 

FIGURE 8. The bifurcation diagram FIGURE 9. The perturbed bifurcation diagram 
for example A. for example B; a < 0. 

Analysis of example C (r-codimension 5, topological codimension 1). 
For this normal form the parameters a, b, c, and d are modal parameters while the parameter e 

is a true unfolding parameter. We shall present the bifurcation diagrams associated with each 

region of the modal parameter space defined by the non-degeneracy conditions (10.1). We first- 

present the diagrams at the organizing centre (e = 0) and then the perturbed diagrams when 
e > 0 and e < 0. 

Using theorem 4.4 one may compute the solutions to C = 0 explicitly as: 

(II) A = (a + 1) x2 + dx4, x > 0, 

(III) A = -ex + (3a + 1) X2 +(3b +1 ) X3 +(2c + 9d) X4, X 0, 

(IV) A= (2a +) + (a i) x + x d(21 + 2, x > 0, (10.6) 

where bx 1 + (2cx1 - 1) x2 + 2bx -e = 0, 

(V) A = (3a + 1) x2 + 9dx, x > 0, 

where x2 = el(3b + 1 + 2cx2), Ix21 < xl. There are no solutions of type VI-VIII located near the 

origin for this example. The eigenvalues for dC along the solutions listed in (10.6) can be com- 

puted by using theorem 5.7 and are given by 

(II) 2(a + 1) X + 4dx3, ex-x2 - bx3 (twice), - ex- x2 + bx3 (twice), 0, 

(III) 2(ex + X2- 3bx3-2cx4) (twice), 3[ex- (3b + 1) x3- 2cx4], 
-ex + 2(3a +1)x2+ 3(3b +1)x3+ 4(9d+2c)x4, 0 (twice), 

(IV) 2(x1-x), --x2-2x1-3x x2, 0 (twice). 
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One may now draw the bifurcation diagrams for the unperturbed problem (e = 0) (see 
figure 10). The axes on this figure - and the subsequent figures - are A and the norm of x. (Using 
the norm leads to what seems to be a simpler representation of the solution set. However, the 
reader should be warned that these diagrams are schematic: they convey only the way the various 
branches connect, though they do present faithfully the ordering of the various intersections. 
Please recall this remark when using figures 11-14.) We make several observations about 

figure 10. 

II (i) IV (ii) 

IV U II 

III+ 22 III 2+2- \ +4- 

III-3 III 1- 

I6+ 6- 6+ 6- 

(iii) IV (iv) IV 
u 

1+4 I X / II /+ II 

III+ 2+2- //1+ //3-III+ 

III- =, _/^ 
4 II+ 

I 6+ 6-6 6+6- 

FIGURE 10. The bifurcation diagram for example C when 3b+ 1 > 0, e = 0 and 
(i) a < -1, (ii) -1 < a < --, (iii) - < a < -?, (iv) -? < a. 

Remarks 

(i) The effect of the modal parameter a is clearly important; one can see geometrically the 

necessity of the non-degeneracy conditions on a in (6.1) as the various branches turn from 
subcritical to supercritical when a is varied. 

(ii) The effect of the modal parameter b is subtler. There are two parts to the branch of 
solutions of type III, given by x > 0 and x < 0 respectively. Changing the sign of 3b + 1 inter- 

changes the stability assignments of these branches. In general we shall draw the bifurcation 

diagrams for 3b + 1 > 0 as 3b + 1 < 0 leads to a similar set of figures. 
(iii) To see the effect of the modal parameter c one must look at the perturbed bifurcation 

diagrams (e # 0). 
(iv) These bifurcation problems are more interesting from the physical point of view as the 

possibility of stable rolls and hexagons exists. These stable solutions are indicated by a heavy 
black line on the figures. 

(v) Observe that we have only computed four of the six eigenvalues for solutions of type IV 
as these are the only eigenvalues given directly by theorem 5.5. However, the two non-zero 

eigenvalues given in (10.7) (IV) have opposite signs; hence these solutions are unstable. We have 
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indicated this fact on the figure by the symbol u. (The reader should note that we have only 

proved that the sign of one of these eigenvalues is an invariant of F-equivalence (see proposition 

5.24). Therefore, it is possible that some g(z, A) with normal form (C) would have stable type IV 

solutions. However, for a variety of reasons, we view this as improbable.) To see that this remark 
is true, observe from (6.6) (IV) that 

= (1/2b) {1 - 2cx2,- [ - (4c + 8b2) X2 + 4c2x4 + 4be]-}. (10.8) 

(We are only interested in the solution branch of the quadratic equation where x2 = 0 when 

x, = 0 as this is a local analysis.) Now when e = 0, one has the estimate 

x2 2bx. 

So one can see that the first eigenvalue in (10.7) (IV) is positive while the second is negative. 
We continue with the analysis of example C for e # 0. The results of this analysis are given in 

figures 11-14. The reader will find it useful to inspect these figures before reading the detailed 

calculations described below. Several remarks are necessary in order to understand these figures. 
But first please remember that these diagrams are schematic. 

Remarks 

(a) Solution branch V is drawn as a vertical line, which is accurate only when c = 0. In fact 
this branch of solutions tilts when c # 0, and the slope of this branch depends on the sign of c 

(see fact 3 below). 
(b) Bifurcation points and turning points are indicated by black dots. Other intersections on 

the figures are the result of projecting the bifurcation diagrams into two-dimensional space; 
these intersections do not occur in the actual solution set. 

(c) Stable solutions are indicated by heavy black lines. Of course, to speak of stability, one 
has to choose whether the signature of the stable eigenvalue is + or . We have made this choice 
in the various diagrams so as to give the most interesting physical interpretation, a steady-state 
theory being assumed. 

(d) For each range of values of a there are four qualitatively different bifurcation diagrams 
corresponding to the choices of signs of e and 3b + 1. The differences in the cases correspond to 
whether or not type V solutions are present and which type III solutions (x > 0 or x < 0) have 
the turning point. We draw all the cases in figure 11 and only the case 3b + 1 > 0, e > 0 in 

figures 12-14. 

(e) The bifurcation diagrams are topologically equivalent for each region of the modal 

parameter a with the exception of the region - 1 < a < - 1. In this region two additional 

degeneracies occur. First, it is possible for the A-value, A3, of the intersection of branches III 
and IV to be either positive or negative, depending on the sign of 3a + 2 (see fact 4 below). 
Second, it is possible for the secondary bifurcation or branch II to occur at a A-value either 

greater than or less than the A-value of the turning point on branch III. This happens at a = - 

(see fact 10 below). 
(f) The u on the unbounded part of branch IV indicates that for the normal form C the two 

real eigenvalues of dC have opposite signs. However, we have shown only that the sign of one of 
these eigenvalues is an invariant of F-equivalence. Thus it is possible, though highly unlikely, 
that there is a g(z, A) that is r-equivalent to C with the unbounded portion of branch IV stable. 

The detailed analysis that leads to figures 11-14 involves a number of (almost unrelated small) 
facts, which we now give. 
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IV\ 
(i) \ 

2?2- III 

5-5- 

31 2+3- I-+ 
1+3- +3- 

6+? ^^^^^^j_r 6- 6+ 6- I 

(iii) 
IV 

III+ 

4- V 4- 
5- II 

3+?^1- \2?6+3-J- 2+3- 
1+3- 1+3- 

6? C >/ 6- 6+ 6- 

FIGURE 11. The perturbed bifurcation diagram for example C when a < -1 and 
(i) 3b+1 > O,e > 0; (ii) 3b+1 > 0, e < 0; (iii) 3b+1 < 0, e > 0; (iv) 3b+1 < 0, e < 0. 

IV, 

III- 

I 

II 

6+ 6- / 6- 6 6- 

FIGURE 12. The perturbed bifurcation diagram for example C when 3b+ 1 > 0, e > 0 and 
(i) -1 < a < -, (ii) - < a < -, (iii) - < a < -. 6 3 
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Fact 1. The turning point along branch III occurs for x e e/2(3a + 1). This fact is immediate 

from (10.6) (III). 
Fact 2. Solution branch V exists precisely when sgn e = sgn (3b + 1). This branch begins and 

ends at a secondary bifurcation with branch III. 
The existence statement may be read directly from (10.6) (V) as x2 > 0. Moreover, branch V 

is parametrized by x2 with Ix21 < xl. Let Ab be the A-value at which x2 = -x and A1 be the 

A-value at which x2 = x1. We showed in ? 4 that a solution where x, = - x = x3 > O0 lies on the 

same orbit as solutions of the form x1 = X2 = X3 < O0. So both Ab and Af are the A-values of second- 

ary bifurcations of branch V with branch III. 

3+1- 

2+2- 

\^ ~1+4 - I 

III+- 3+2-/ \ 3+1- 

I 1+3- U IV 
6+ 6- 

FIGURE 13. The perturbed bifurcation diagram for example C when -i < a < -, 3b +1 > 0 and e > 0. 

3+1- iii+ 

4+ 

34--1+ 

31 3+1- 
2 3 +2/. III- 

6+ 6- \ S- IV 

FIGURE 14. The perturbed bifurcation diagram for -? < a, 3b + 1 > 0 and e > 0. 

Fact 3. Branch V is monotonic in A and sgn (Af - Ab) = - sgn [(3a + 1) ce]. Moreover, one has 
the estimate that to first order 

Af I Ab (3a+ 1)e/(3b + 1). (10.9) 
The monotonicity may be obtained from (10.6) (V) by observing that x2 is monotonic in x2 

(for x2 near 0) when b, c and e are fixed and that A is monotonic in x2 (for x2 near 0) when a 
and d are fixed. 

Next, by using the defining conditions for Ab and Af (namely, x2 = ? x1) one can compute 

f Ab= I 3 / 91 1 
f- b =b + 2cx 3b 1 - 2cx [(3a+l)e de2 3b+ 1+2cx 3b + -2cx) 

Now the results are valid only for e small and x1 small. Hence 

A,-Ab -4c(3a+ 1) exl/(3b +1)2 

and sgn (Af - Ab) = -sgn [c(3a + 1) e]. 
51-2 
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Finally observe that, when x2 = x1, the second equation in (10.6) (V) yields the estimate 

x e/(3b + 1). 

The first equation gives the estimate (10.9). 
Fact 4. Branch IV begins with a secondary bifurcation with branch II, whose A-value is A2, 

and has a secondary bifurcation with branch III (whose A-value is A3 and whose xl-value is x5), 
and branch IV is monotonic in A. Moreover 

A2 (a + 1)e\,A3 (3a +2)e2 , X5 -e. (10.10) 

Observe that branch IV is parametrized by x, > 0; one can solve for x2 as in equation (10.8). 
Moreover, xl = x3 along such solutions; so when x1 = 0 two of the z-coordinates are zero. We 
showed in ?4 that such solutions lie on the same orbit as those of type II. When xl = 0 

2 = [1 - (1 + 4be) /2b -e, 

yielding the estimate for A2 in (10.10). 
We next show that there is precisely one intersection of branch IV with branch III. Type III 

solutions occur when x2 = x2. From the second equation in (10.6) (IV) one obtains at such a 

point 2 + 3bx -x -e = 0. (10.11) 

From the implicit function theorem there exists a unique solution to (10.11) satisfying the 

estimate x2 - e. From the first equation in (10.6) (IV) one obtains the estimate for A3 in (10. 10). 
Note that sgnx2 = -sgne. When x2 > 0 one has a solution x= X2 = x3 > O. When x2 < 0 one 
has a solution that is on the same orbit as xl = X2 = X3 < 0. Hence the secondary bifurcation with 

solutions of type III has an xl-value given by the estimate for x5 in (10.10). 
Finally, we show that branch IV is monotonic in A by computing (usirg implicit differenti- 

ation) aA/ax1 = 2x,[(2a + 1)+ 0(xl) 
+ O(x2)]. 

In fact one sees that the slope of branch IV has the same sign as sgn (2a + 1). 
Fact 5. The secondary bifurcations on branch V occur at A = O(e), see (10.9), while the 

secondary bifurcations associated with branch IV occur at A = O(e2), see (10.10). Hence, the 

bifurcations on branch V occur further from the origin than the ones on branch IV. 

Fact 6. The value of x at the turning point of branch III satisfies 

-e+2(3a + 1)x +3(3b+ 1)x2+4(2c+9d)x3 = 0. (10.12) 

The A-value of that turning point, AT, is 

AT -e2/4(3a + 1). (10.13) 

One obtains (10.12) by computing aA/8x in (10.6) (III) and finding, therefore, that 

x e/2(3a + 1). 

Substituting this estimate for x in (10.6) (III) yields (10.13). 
One now has enough information to sketch the bifurcation diagrams in figures 11-14 with the 

exceptions noted in remark (e). Before resolving the difficulties associated with figure 12 we 

discuss the stability assignments given on all the figures. 
Fact 8. The bifurcation problems considered here are perturbations (given by e) of those in 

figure 10. Thus the stability assignments on the branches in figures 11-14, which are far from the 

origin, are the same as those on the corresponding branches in figure 10. 
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Fact 9. The eigenvalues listed in (10.7) change signs only at black dots on the figures. In 

(10.14) we list the points where each eigenvalue changes sign. We use the term constant to 
indicate that the given eigenvalue does not change sign and we ignore the zero eigenvalues. The 

ordering of the eigenvalues is exactly the same as given in (10.7). 

(II) constant, constant (2), intersection with IV (2). 

(III) intersection with IV (2), intersection with V, turning point. (10.14) 

(IV) intersection with III, constant. 

We have not attempted to find the eigenvalues of type V solutions. Computing the stability 
assignments for solutions of type IV seems to be a difficult task; moreover, we have not shown 
that the stability assignments for type IV solutions are invariants of F-equivalence. 

Fact 10. Recall that AT is the A-value of the turning point on branch III and A2 is the A-value 
of the intersection of branches IV and II. Then AT- A2 changes sign at a 6 - - and a 2- and 
is negative in the interval (-5 , -). 

Recall that A2 (a + 1) e2from (10.10) while AT -e2/4(3a + 1) from (10.13). Thus AT-A2 = 0 
when 

~~~~when a1a+l = -1/4(3a+1) 

or 12a2+ 16a+5 = (6a+5) (2a+ 1) = 0. 

This information allows one to complete the figures. 

11. RELATION WITH THE BEINARD PROBLEM 

As we indicated in the Introduction, there is an intimate relation between the mathematical 
idealization of the planar Benard problem through the Boussinesq equations and bifurcation on 
the hexagonal lattice. Five pieces of information are needed to make this relation rigorous. First 
one has to specify boundary conditions on the upper and lower bounding planes. Second one 
has to show why solutions to the Boussinesq equations with the given boundary conditions are 

doubly periodic with respect to the hexagonal lattice. Third, even if the second step is valid, one 

mrust show why the kernel of the linearized Boussinesq equations is exactly six-dimensional. 

Fourth, assuming that this kernel is six-dimensional, one has to compute the Liapunov-Schmidt 
reduction. Finally, one should discuss the stability analysis not in terms of linearized orbital 

stability but in terms of stability for the partial differential equation, the Boussinesq equation. 
We discuss these points in order. 

The specific boundary conditions imposed on the mathematical model depend on the 
exact experiment. For the standard planar Benard problem there are two experimentally 
mnotivated sets of boundary conditions that are common. First, one imagines that the fluid rests 
on some surface and that rigid boundary conditions are appropriate below. On the upper plane, 
however, one has two standard choices. Either there is a free surface on top as in Benard's 

original experiment or the fluid is contained between two fixed surfaces and rigid boundary 
conditions are also appropriate on the upper plane. As was pointed out to us by F. H. Busse these 
cases are quite different, depending on whether the boundary conditions on the top and the 
bottom are the same (the symmetric case) or not (the non-symmetric case). 

The reason that these cases are different mathematically is that the group of symmetries of the 

problem changes. In the symmetric case the additional symmetry is given by reflecting about the 
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midplane of the system; that is one sends X3 to h -X3 where h is the thickness of the fluid layer 
and X3 is the height above the lower boundary plane. The Boussinesq equations commute with 
this symmetry in the symmetric case. This symmetry appears in the analysis on the hexagonal 
lattice. as follows. If g(z, A) is the function obtained by Liapunov-Schmidt then 

g(-z,A) = -g(, A). (11.1) 

The reader may recall that we showed that there is precisely one quadratic term in g denoted by 
k2(0) that may be non-zero. We studied in this paper the two cases (examples A and C of ?10) 
where k2(0) is non-zero and k2(0) is zero. In the symmetric case (11.1) implies that k2(0) = 0. 

However, it also implies that the coefficients of all the even-order terms in g are zero. This 
information is sufficient to show that the non-degeneracy conditions that define normal form C 

fail, and the analysis presented here is not appropriate in the symmetric case. In a paper now in 

preparation Golubitsky et al. (I983) analyse the symmetric case showing that the results do change 
dramatically when this extra symmetry is added to F. Thus, in this paper, we have been studying 
implicitly the non-symmetric case where the boundary conditions on the upper and lower planes 
are different. 

The second point that one should show in relating the Benard problem to the hexagonal 
lattice is that, of necessity, solutions to the Boussinesq equations are doubly periodic with respect 
to the hexagonal lattice. In any technical sense, this implication must be false. However, since 
in many physically observed situations one finds hexagons and rolls, it is not unreasonable to look 
in the class of doubly periodic functions for solutions, and any solutions found in this class will 
indeed be solutions to the Boussinesq equations. One point worth mention is that it is not clear 
whether the hexagonal lattice is forced since the Boussinesq equations commute with the full 
Euclidean group in the plane (such a relation would be an extraordinarily powerful observation 

involving spontaneous symmetry breaking) or is due to the fact that experiments are never 

performed on the infinite plane. 
Even if one assumes double periodicity there is a problem in trying to decide which lattice is 

relevant. For example, cellular convection in squares fits most naturally on a square lattice. We 
note here that one of the goals in Sattinger (I978) is to find a mechanism for selecting by stability 
assignments between various lattices. In this paper, we have assumed the hexagonal lattice; 
one could perform a similar study for bifurcation problems with respect to any planar lattice 
and then, perhaps, use Sattinger's ideas to select between the lattices. 

The third point we wish to discuss concerns the dimensionality of the kernel of the linearized 

Boussinesq equations. As we described in the Introduction, the hexagonal lattice and its sym- 
metries force a six-dimensional kernel. It is possible, however, that in some manifestation of the 
Benard problem one could find a twelve-dimensional kernel occurring at the first eigenvalue for 
the Boussinesq equations on the hexagonal lattice. However, the generic situation is a six- 
dimensional kernel and the more degenerate situation might occur as some parameter in the 

Boussinesq equations is varied. Such a degeneracy would be found, presumably, at an isolated 
value of that parameter. It follows that any local bifurcation analysis performed near such a 

degeneracy would have to take this higher-dimensional kernel into account. We do note that 

Kirchgassner (I979) has begun the study of such a degeneracy and has shown that one can expect 
new types of solutions to appear when the kernel is twelve-dimensional. In this paper we study 
only the six-dimensional kernel and note that our techniques would - in theory - be applicable 
to the higher-dimensional cases though there is every reason to believe that the calculations 
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involved would be very difficult. Such an application would presumably have to await further 
advances in the theory. 

A fourth component in the connection between the fluid problem and the mathematics is the 
actual performance of the Liapunov-Schmidt reduction. With double periodicity, the first step 
would be the verification that the kernel dimension is six. This is true under reasonable hypo- 
theses. Busse (I962) has performed part of this reduction for the case of free boundary above and 

rigid boundary below, assuming that the kernel is six-dimensional. In particular, he has verified 
that for a Boussinesq fluid the quadratic term k2(0) mentioned is zero. By the term Boussinesq 
fluid we mean that: (i) there are no surface tension effects; and (ii) the viscosity and thermal 

conductivity of the fluid are independent of the temperature. Unlike the case of symmetric 
boundary conditions, these assumptions do not constrain the even-order terms in g(z, A) to be 
zero. Thus, our analysis - more precisely, normal form C of ? 10 - seems to apply to this case. 
To prove this point rigorously one would have to compute higher-order terms in the Taylor 
expansion of g(z, A) to find the exact values of the modal parameters as indicated in proposition 
8.5 (iii), in particular equations (8.13). In Busse's work and in the work of Schluter et al. (I965) 
the third-order terms have been computed. To compute explicitly the higher-order terms is 

extremely complicated. 
The computations of the third-order terms indicate that the specific form of example C that is 

relevant is the one where the rolls solutions are stable supercritically. From figure 10 one can 
see that the only case where that situation occurs is when the modal parameter a < - 1. In this 

paper, we assume that the higher-order non-degeneracy conditions are satisfied so that normal 
form C is appropriate. 

Of course, in any real fluid there will be surface temperature effects and the viscosity will have 
some temperature dependence. We assume that these effects are small though non-zero. In the 
terms of ?10 we assume that the unfolding parameter e for example C is non-zero. This implies 
that the relevant bifurcation diagrams are those of figure 11, read from right to left. Certain 
observations can be made about this collection of diagrams. First, for small parameter ranges 
hexagonal solutions will be stable. Second, there will be hysteresis effects in the (implied) jumps 
between the trivial pure conduction solution and the hexagon solutions, and between the 

hexagon solutions and the roll solutions. Thus even though no stable hexagon solutions exist in 
the idealized problem they should exist for a small range in the Rayleigh number (A) near 

criticality and should be observable if the model is correct. Third, regardless of the sign of 3b + I 

there is a sign of e for which triangle solutions exist. In any given context one must compute the 

signs of e and 3b + 1 to determine whether triangle solutions do exist. Whether or not triangles 
and wavy rolls can be stable has not been decided by our analysis. There is, however, heuristic 
evidence that indicates that they could be stable for one sign of the modal parameter c when 
a > -3. 

The last point we make in discussing the relation between the Benard problem and bifurcation 
with respect to the hexagonal lattice is the question of stability of given solutions. In ?5, we 

computed the linearized orbital stability for rolls and hexagon solutions. Schliiter et al. (X965) 
have shown by a perturbation calculation that whether or not a given solution is stable with 

respect to periodic perturbations with the correct boundary conditions may be determined by 
whether or not it is stable to perturbations in the six-dimensional kernel. This is exactly the 
information that we compute. Presumably, their results can be made rigorous by using the centre 
manifold theorem. This to our knowledge has not been done. However, if it can be done then one 
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can use a result of Schaeffer & Golubitsky (98) that states that the mapping g(z, A) obtained 

by the Liapunov-Schmidt reduction and the vector field along the centre manifold obtained 

from the centre manifold theorem are (Ck)r-equivalent. Next one uses proposition 5.24 to show 

that the stability assignments we have derived for the igenrolls and hexagon solutions are accurate 

for the original partial differential equation. No such correspondence can be made at this point 
for the solutions of type (IV) or (V). Moreover our analysis does not rigorously imply stability 
of a given solution to a more arbitrary perturbation. 

In summary, there is strong evidence that normal form C of ?10 represents the most likely 

description of bifurcation behaviour of steady-state doubly periodic solutions to the Boussinesq 

equations in the non-symmetric case where the boundary conditions on the upper and lower 

boundaries are different. Moreover, the classification of the different types of possible bifurcation 

diagrams given in figures 11-14 represents a complete classification of the steady-state solutions. 

It is interesting to know whether each of these types of behaviour can actually be observed in 

experiments. As mentioned in the Introduction the most interesting non-standard example, 

figure 14, allows for a transition from hexagons of one type to hexagons of the other type through 
either a jump or a smooth transitiones through triangles (as described at the end of ?4). 

The main ways in which our analysis is incomplete concern the stability of type IV and V 

solutions and the possibility of periodic solutions. We note that the 2 x 2 matrix listed in theorem 

5.5 (IV) can have complex eigenvalues. Thus it is possible in theory for a Hopf bifurcation to 

occur along solution branch IV, implying the existence of time-periodic solutions to the Bous- 

sinesq equations. The reader should contrast this possibility with the results of theorem 5.5 (II) 
and (III) where we show that all of the eigenvalues of dg along solution branches of rolls and 

hexagons are real. Thus there is no possibility of a Hopf bifurcation along these branches. We 

have made little progress in rigorously determining the eigenvalues of dg along branches of type V 

solutions, though such a determination may be possible in the future with general observations 

about the nature of spontaneous symmetry breaking. 
Our motivation for studying bifurcation on the hexagonal lattice lies in the work of David 

Sattinger. Our work began as an exercise to recover Sattinger's results by using a mixture of 

singularity theory and group theory. However, as we became more involved in the mathematical 

problem, the beautiful complexity of the planar Benard problem was forced upon us. In trying to 

understand this relation between the mathematics and the physical problem we have sought 
advice and information from several persons including Fritz Busse, John Guckenheimer, Edgar 
Knobloch, David Schaeffer, and Jim Swift. We are grateful to each of them for the help and 

perspective they have given us and hope that the exposition of the relation between the hexagonal 
lattice and the Benard problem given here has profited from their advice. Finally we wish to 

thank Norman Dancer and Jim Swift for pointing out several errors made in the original manu- 

script. In particular, the observation that type V solutions have D3 symmetry is theirs. 
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