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AN INTRODUCTION TO CATASTROPHE THEORY AND
ITS APPLICATIONS*

MARTIN GOLUBITSKYf

Abstract. This article is divided into two parts. In the first we give a description of the basic theorems of
elementary catastrophe theory, along with heuristic explanations of why these theorems are valid. In
particular, the main ideas in Mather’s proof of Thorn’s classification theorem are presented.

The second part contains three applications of catastrophe theory to the buckling of beams, optics, and
convex conservation laws. In these sections we attempt to state the problems precisely, to show how
catastrophe theory may be used in a mathematically rigorous fashion, and to state what new information can
be obtained by the use of catastrophe theory.
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Introduction. During the past decade catastrophe theory, created by Ren6 Thom
in his book Structural Stability and Morphogenesis [32], has generated substantial
interest among both mathematicians and users of mathematics. Various comments
about catastrophe theory have ranged from "the first theory to explain how a con-
tinuous change of parameters can cause discontinuous phenomena" or "the type of
mathematics necessary to study qualitative problems in biology and the social
sciences" to "some nice observations surrounded by totally unwarranted specula-
tion." The truth, as usual, probably lies somewhere in between.

There now exist several expository articles describing catastrophe theory to the lay
audience ([37], [24], [29], [27], [54], and [30]) and several expositions concerned with
the technical theorems--first proved by John Mather [19]--which require relatively
large investments of time and energy for most mathematicians to absorb and appreciate
([5], [36], [35], [50], [60], [55], and [21]).

Our purpose, in the first part of this article, is to give concise but complete
descriptions of the basic theorems of elementary catastrophe theory along with
heuristic descriptions explaining why these theorems should be true. In the second part
we describe some applications which--we hope--will indicate some of the power and
limitations of this theory.

* Received by the editors August 12, 1976, and in revised form March 28, 1977.
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As a rule the theorems stated here are true while the motivating discussions
between these theorems are to be taken with a grain of salt; they are meant to
enlighten--not to prove. The exception is in 6 where we give a proof of Mather’s basic
result on finite determinacy [20]. The physically motivated applications included here
stand on firm mathematical ground; I have not attempted to describe examples from the
biological or social sciences.

One should keep two questions in mind.
1. What mathematical assumptions are there on the theorems of catastrophe

theory?
2. Assume that for a given application there is reason to believe that these

mathematical assumptions are valid. What type of information can one expect
to obtain by applying catastrophe theory?

We shall try to say more about these questions at the end of this article.
The mathematical ideas present in elementary catastrophe theory stem from the

pioneering works of Morse, Whitney [52], and Poincar6 [47]. Some of the simplest
examples of catastrophes--particularly the cusp--have been known to many
mathematicians in various guises for most of this century, e.g. [40], [41], [47], and [45].
The advantage of the theory as developed by Thom and Mather is to put these results
into a coherent framework which allows precise statements, complete classifications,
and possible generalizations of the known results. The person who has been most
instrumental in the classification of higher order catastrophes--a topic not covered in
this paperm is Arnol’d [2], [4], and [43]. There have been substantial contributions by
others, e.g. Siersma [28], Tjurina [50], [51], and Saito [49]. Christopher Zeeman has
been, aside from Thom himself, the person most active in trying to apply catastrophe
theory to a variety of problems in the biological and social sciences [39]. There are now
a number of researchers involved in trying to extend and test these applications and
there is no doubt that some of these suggested applications have been responsible for a
large part of the controversy surrounding catastrophe theory. In fact several articles
have appeared recently attacking these proposed uses of catastrophe theory (see
[63]-[65]).

I would like to thank Norman Weiss, David Sattinger, David Chillingworth,
Ridgway Scott, Edward Reiss, George Francis, David Tischler, Barbara Keyfitz, and
Hans Duistermaat for their detailed comments and, in particular, their detailed
criticisms of preliminary drafts of this manuscript. V. I. Arnol’d has helpfully corrected
several inconsistencies and omissions in the original bibliography. I would like to thank
Molly Scheff6 for providing the illustrations. In particular, I would like to thank John
Guckenheimer for patiently explaining various aspects of catastrophe theory to me
during the past several years.

PART A--THE THEORY

In one sense elementary catastrophe theory is a generalization of theorems about
critical points or singularities of Coo real-valued functions of n real variables to ones
about parametrized families of such functions. By C we mean that all partial
derivatives of all orders exist and are continuous. Thus a reasonable way to begin is by
describing part of the classical theory of singularities of Coo functions or Morse theory.

Unless otherwise indicated all functions in this paper will be assumed to be Coo.
A real-valued function of n variables will be denoted by: R" R. Such a function

has a singular point at p if

,Ox(p) =0.
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DEFINITION 1. f has a nondegenerate (or Morse) singularity at p if the Hessian
matrix

( f (p))(d2f)(P
\OxiOx

is nonsingular.
There are three basic theorems that we shall consider about Morse functions--

functions all of whose singularities are nondegenerate: two local and one global.
LOCAI THEOREM 1 (normal forms). Let 0 be a nondegenerate singular point for

f: R R. Then there exist coordinates x 1, , xn on some neighborhood of 0 in R such
that

f(x)= f(o)- +... +xb+ +... +

The number k is just the index of the Hessian matrix at 0 viewed as a symmetric bilinear

form.
Comments. 1) This normal form shows that Morse singularities are isolated for it is

easy to check that the only singularity of f(x)=-(x21+... + x2)+ x,+l+’" + x] is at
x=0.

2) We now know what all functions look like near a Morse singularity--at least if
we allow changes of coordinates. The qualitative shape of the function is determined by
the index k.

3) A change of coordinates on 11" at 0 may be viewed as a mapping in the following
way" suppose that one is given coordinates yl," ’, y, on 11"; then the new coordinates
x1," , x, are really functions xi xi(y). The mapping H(yl,. , y)= (xl,. ., x,) is
the desired one. We denote such a mapping by H: R" R". We shall only consider
smooth or C changes of coordinates; i.e. each x is a Coo function of y 1," , yn. By a

change in coordinates we also mean that the mapping H is invertible; i.e. we can solve
for each y in terms of x. Thus we assume that the Jacobian matrix (DH)y ((Ox/Oyj)(y))
has a determinant which is nowhere equal to zero; the inverse function theorem implies
that H is invertible and that the inverse H-1 is also Coo. The function H: 11" 11 which
represents a smooth change of coordinates is called a diffeomorphism on R".

DEFINITION. Two functions f, g: R" R are called right equivalent if there exists a
smooth change of coordinates, i.e., a diffeomorphism H: R" R and a constant K
such that f g H+K.

In this language Local Theorem 1 states that if f has a Morse singularity at 0 with
2 2 2

index k, then f is right equivalent to g(x)= -(x +. + Xk)+ Xk/a +" + X,. Moreover
this diffeomorphism H satisfies H(0)= 0. We will prove this theorem in 6 as a special
case of a more general theorem.

LOCAI TI-IEOREM 2 (local stability). Morse singularities are stable, i.e. if f has a

nondegenerate singularity atp with index k and g is a small perturbation off (in the sense
that g, dg, and dZg are nearf, dr, d2fon some neighborhood ofp) then g also has a Morse
singularity with index k at some point q near p. Moreover the only singularities which are
stable in this sense are Morse.

For example, f(x)= x3/3 has a degenerate singularity at 0; we show that this
singularity is not stable. Let g(x)= x3/3-ex. For e small g is a small perturbation
of f. When e < 0 g has no singularities, and when e >0 g has two nondegenerate
singularities (at x +ve). So the singularity type does change. See Fig. 1.

Note. Local Theorem 2 states that it is easy to test the stability of a singularity. Just
compute the determinant of the Hessian matrix and see whether or not it is zero.
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Exercise. Is the singularity of f(x, y, z)= x2 + xy y3/3 + yz + Z
2 at 0 stable?

Let C(Rn) denote the space of all C functions from R - R.
GLOBAL THEOREM (genericity). The subset M of C(R) consisting of Morse

functions is both open and dense.
Notes. 1) The fact thatM is open follows essentially from Local Theorem 2. What is

new is the density statement.
2) To make the statement of the Global Theorem precise, we have to describe the

topology used on C(R). The topology used is called the Whitney C topology. Since
its definition is somewhat technical we refer the interested reader to [11]. For our
purposes the salient feature is that if a sequence of functions fl, f2, converges in this
topology, then the sequence Dafl, Daf2,"" converges uniformly on any compact
subset of R where .D is any partial differentiation operator of any order.

3) In the statement of the theorem, R may be replaced by any C n dimensional
manifold (without boundary). For our purposes a manifold of dimension n (or an
n-manifold) X should be thought of as a subset of some Euclidean space R" such that:
for each x in X there is a C map H: R R" such that:

(i) H(0)- x,
(ii) the Jacobian map (DI-I)y has rank n at all points y in some neighborhood V of

0,
(iii) H(V)c X is an open neighborhood of x in X.
Examples. (a) R R" is an n-manifold.
(b) S1= unit circle in R2 centered at 0 is a 1-manifold. For example let x be the

point (0, 1) and V be the interval (- 1, 1); then H(s) (s, x1 s 2) is a possible choice for
H. Exercise" check that such a map H exists for each point on the circle S.

(c) S2 unit sphere in l3 and T2 torus (i.e. the set of points which are of distance
b from the circle of radius a in the xy-plane in Ra with b < a) are both 2-manifolds.

Stated extremely loosely, these theorems say that if one were to choose a C
function at "random" it would very likely be a Morse function and that locally Morse
functions behave predictably and stably. Thus, if one did not know to the contrary, one
might assume that in any physical situationwhere measurements can only be made
approximatelythe only observed (differentiable) functions would be Morse functions.

Thom points out--through elementary catastrophe theoryone way in which this
reasoning fails; namely, in many situations what is observed is not an individual function
but rather a parametrized family of functions. (In Part B we shall analyze several of
these situations.) It is then possible for a non-Morse function to appear as a single
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member of a "stable family." For example, as we saw before, f(x) x 3 is not stable at 0;
whereas we shall show that the parametrized family F,(x)=x3+tx is stable as a
parametrized family near 0. To make this notion of stability precise we need some
definitions.

First we will want to analyze the behavior of a given function on some (arbitrarily
small) neighborhood of a singularity, which we assume to be at 0.

DEFINITION 2. A germ of a function of R"- R at 0 is an equivalence class of
mappings in which two functions are equivalent if they are identical on some neighbor-
hood of 0. (Note that this neighborhood depends on the choice of functions.)

Let C(R") be the space of germs of infinitely differentiable functions of R" R at
0. Note that C(R") is a ring whose operations, addition and multiplication, are induced
from the standard operations of addition and multiplication of functions. We denote a
germ f in C’(R") by f: (R, 0)- R.

A k-parameter family ofgerms on R based atf or a k-parameter unfolding of f is
just a germ F in C’(Rk R") where F(0, x)=f(x) for x in R". We will also denote
F(t, x) by F,(x) for in Rk. In this way it is natural to think of F as a parametrized family
of germs Ft in C(R") with F0 f.

Note. In what follows we shall pass back and forth between a germ of a function and
the function defining that germ.

DEFINITION 3. Let Ft, G: (R", 0)- R be two k-parameter unfoldings of f. These
unfoldings are (right) equivalent if there is a k-parameter family of diffeomorphisms
(or changes of coordinates) H: (R, 0)R", a smooth invertible change of parameters

t(s) and a smooth germ K: (Rk, 0)- R such that

(1) Ho(x)=x and t(0)=0,

(2a) 6(x)= F,<(H(x))+K

or

(2b) G Ft() H +K.

Note. Definition 3 states that two unfoldings of the same functionf are equivalent if
each member of one family G is right equivalent to some member of the other family F
in some smooth bijective manner.

DEFINITION 4. A k-parameter unfolding F,: (R", 0)- R of f is (locally) stable (at
t- 0) if every nearby k-parameter unfolding G of f is equivalent to F,

By nearbyor small perturbationwe mean in some small neighborhood of F, in
the C topology of R" Rk R. Here is where our heuristic description of catastrophe
theory begins: there is no reasonable topology on the space of C germs, only on the
space of C functions. A tempting topology to use is the one given by Taylor series; i.e.
two C functions are close if all of the coefficients in their Taylor expansions are close.
The problem with this topology is that it is not Hausdorff, e.g. this topology does not
distinguish between exp (-1/x2) and the zero function.

Definition 4 can be made precise in the following way: for any (small) neighbor-
hood U U2 of 0 in R" Rk, there is a neighborhood V of Ft in the C topology on
functions on U U2 such that if G is in V, then F, and G are equivalent on U U2;
that is, there are diffeomorphisms H: U Ux (for all s in U2) and t: U2- U2 and a
smooth function K: U2 - R such that G(x)= F,(H(x))+K. For our purposes Defi-
nition 4 includes all of the essential ideas with much less technical detail. The reader is
asked to "believe" in the C topology on germs of C functions by equating the space
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of germs C0(R" x Rk) with C functions defined on some small fixed neighborhood
U1 U2 of 0 and using the C topology on this space of functions Coo(Ul U2).

The aim of elementary catastrophe theory is to determine the analogues of the
three theorems of Morse theory mentioned above in the context of unfoldings of a
particular function/. What Thom and Mather have done is to determine conditions on
the derivatives of f which insure the existence of and which give a local normal form for
a stable unfolding of f. They also show that when the parameter space or control space
Rk has dimension _<-5 then there is a finite classification of stable unfoldings (in a sense
to be described) as well as a global density or genericity theorem. When k _-> 6 both the
finite classification and the density theorems fail and for the same reasons.

Complete proofs of the theorems on Morse theory mentioned above are given in
11, Chap. II]. For a more comprehensive treatment of Morse theory see Milnor’s book
[22].

There is an extensive theory of singularities of mappings between manifolds of
arbitrary (finite) dimension which has also been developed by Thorn and Mather in
recent years. A description of this theory can be found in [11], [42], or [20] and [46].

In [53] Arnol’d has developed a theory of unfoldings for matrices. This theory
includes many of the ideas that occur in the theory of unfoldings for functions but in a
technically simpler situation.

1. Finite codimension of singularities. For what follows we shall need the concept
of a tangent space. LetXbe an n-manifold in Rp and x a point in X. The tangentspace to
Xatx is a vector subspace of Rp denoted by TxX and defined as follows" let c" R->Xbe
a smooth curve such that c(O)= x. Then dc/drlr=o is a vector tangent to the curve c at x.
TxX is the set of all such vectors.

Examples. 1) If X Rp, then TxX R’. To see this define for each vector v in Rp

the curve cv(r)= x + rv. This is the line through x in the direction v. Since (dcv/dr)]r=O
v, v is in TR".

2) Let X S2 be the unit sphere in R3; i.e. S2 {(x, y, z)s R3[x 2 + y2 + z 2 1}. Let
x =(1, 0, 0). A curve c" R->S2 with c(O)=x and c(r)=(cl(r), c2(r), c3(r))satisfies
C1(0)-- 1, c2(0)-- C3(0)-" 0, and c2 (r)+ c22 (r)- c (r)= 1. The tangent vector dc/drl=o
(c (0), c (0), c (0)) must satisfy

2c1(0)c ,(0)+ 2c2(0)c(0)+ 2c(0)c’(0)= O.

This implies that c(0)= 0. Thus the tangent vectors are all parallel to the yz-plane.
Intuitively this is clear.

Notes. 1) It should be reasonably clear that dim TX- dim X for all x in X.
2) If X is an n-manifold in Rp, then the codimension ofX is just dim Rp -dim X

p n. Recall that if W is a vector subspace of the vector space V, then V/Wdenotes the
quotient vector space and dim V/W=dim V-dim W. Therefore codimX=
dim R’/TxX for any x in X.

In the heuristics which follow, we shall replace Rp by the infinite dimensional
vector space C(R"). Given a germ f in C(R") we shall construct an (infinite
dimensional) manifold 7r in C(R"). We shall define codim f by codim (?r. Note that the
computation of codimension in Note 2) above which uses the idea of quotient space can
work even if both the manifold and the vector space are infinite dimensional. The
original definition of codimension would not work in this case.

The manifold 7r promised above is the set of all germs in C’(R") which are right
equivalent to f. That is

(2 {g s C(R")[::lh’ (R", 0)--> R" a diffeomorphism
and a constant K such that g f h + K}.
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DEFINITION 1.1. codim f codim ’r dimR C(R")/TrY?r.
An obvious question is "How does one compute codim f?" This is equivalent to

determining Trr. To compute Trr we choose an arbitrary smooth curve c: R r with
c(0)=fi Then dc/dt(O) is a tangent vector in TrOt. Such a curve must have the form
c(t)=fo ht +Kt from the definition of r. Also we may assume that ho(x)= x. What is
not obvious is that K, and ht(x) can be chosen to vary smoothly in both x and t.
Fortunately this can be shown. Let h,(x)=(h(x),... ,hT(x)) in the coordinates
x1," , x on R" at 0 and use the chain rule to obtain

d(O):dt
i=1 (X)

Algebraically dc/dt(O)has the form

Of (x)+’’’ + a.(x) Ofa(x)= al(X)0x (x)+K
for some smooth functions a l(x), , a (x) and some constant K. It can be shown that
for every function a of this form there is a curve c whose tangent vector at 0 is a. So

+...+a +KTfff a C(N)Ia aox
This set is clearly a vector subspace of C(N) which we shall denote by (OffOx}. The
subspace of Tfff in which K 0 is denoted by {OffOx). So we have that

codim dim C(N)/

for any germ : (N, 0) N.
Notes. (A) The subspace {OffOx} has the property that if g is in C(N) and a is in

{OffOx} then ga is also in {OffOx}. A vector subspace I of C(N) which satisfies this
property that ga is in I if a is in I is called an ideal. So (OffOx) is an ideal.

(B) If g is in C(N) with g(0) 0, then 1/g is also in C(N) since it is a C
function defined on some (small) neighborhood of 0.

(C) Suppose that an ideal I contains a germ g with g(0) 0. Then I= C(N).
Proof: Since 1/g is in C(N), the function germ g(1/g)= 1 is in L Now let be any
germ in C(N), then 1 is in I since I is an ideal. So I Co(N).

Example 1. Let : (N, 0)N be nonsingular. Then some OffOx(O) 0, so OffOx is
invertible in C(N). Hence {OffOx}= C(N) and codim= 0.

(D) The ideal (OffOx} is independent of the choice of coordinates made. Suppose
y 1, , y are some other choice of coordinates on N at 0. As observed in Comment 3)
after Local Theorem 1 the y’s are actually C functions of the x coordinates which we
denote by y y(x). Now apply the chain rule to obtain

oy (x +... +OX (y (X))
OXi Oy OXi

This calculation shows that (Of/Ox)c (Of/Oy). The reverse inclusion follows by using
the chain rule on the inverse change of coordinates.

In most elementary cases the computation of codimension involves nothing more
complicated than Taylor’s theorem. The useful form of the remainder term is given in
this context by"

THEOREM. Let f: (R", 0) R be a germ and let jkf be the kth order Taylor expan-
sion off at O. Let pl, , Pr be a basis for the homogeneous polynomials of degree k + 1.
Then there exist germs a 1," ", ar in C(Rn) such that f(x)
jkf(x) + al(x)pl(x) + + ar(x)pr(x) for x in some neighborhood of O.
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Example. Let pl(x, y) x 2-[- y2, p2(X, y) X 2, and p3(X, y) y2_ 2xy. These
homogeneous polynomials of degree 2 form a basis for such polynomials and Taylor’s
theorem asserts that given any germ m(x,y) we may write m(x,y)=
mo+ mix + mEy + al(x, y)(x 2 + y2)+ aE(x, y)x 2 + aa(x, y)(y2_ 2xy). The constants are
just the standard Taylor coefficients; namely, mo m(0), ml=0m/0x(0), and m2
Om/Oy(0).

Proof. It is sufficient to prove this theorem for those f which vanish to order k at 0;
i.e., jkf(x)=--O. For general f apply the theorem to f_jkf which does vanish through
order k.

The proof consists of one observation followed by an elementary induction
argument. The observation is the following: Suppose that g(0)-0 then there are C
functions bi(x) such that g(x)-xlb(x)+.. "+xnb,,(x). To see this let q(s)=
g(sxl, , sxn) and note that

dq
(s) dsg(x)= g(x)-g(O)=q(1)-q(O)= -s

O---g (sx)+" + x,#(sx) ds xba(x)+" + x,b,(x),X10X OXn

where bi(x)= (Og/Oxi)(sx) ds.
Next we proceed by induction on k. For k 0 we assume that ]f(O) f(O) 0 and

let pl,’", p, be a basis for the homogeneous polynomials of degree 1. As noted
above we may write f(x)=xbl(X)+...+x,b,(x). Since each x is a homogeneous
polynomial of degree 1, xi may be written as a linear combination of the pi’s (with
scalar coefficients) and f(x) al(x)pl(x) +" + a,(x)p,(x) for some smooth functions
ai(x).

Now assume that the theorem is true for k 1 and assume that ]kf(o)= 0. As above
let pa,..., Pr be a basis for the homogeneous polynomials of degree k + 1 and let
ql," , qs be a basis for the homogeneous polynomials of degree k. Since ]k-if(o) is
also 0, we may by induction write f(x)= Cl(X)ql(x)+"" + c (x)q (x ). Next note that
since the Taylor series of f starts with terms of degree k + 1 and each qi has degree k, so
each ci must start with terms of degree 1. So ci(O) 0 for all and by our first observation
each ci may be written as a linear combination of the xi’s. Since each xiqi(x) is a
homogeneous polynomial of degree k + 1, it may be written as a linear combination of
the pi’s. Hence we may write [(x)= al(x)pl(x)+" + a,(x)p,(x) as desired.

Example 2. Let f: (R", 0)R have a nondegenerate singularity at 0. By the local
Morse Theorem 1, we can choose coordinates so that f(x)=f(O)+x21 +... +x2,,. Then
(Of/OX) (Xl, ", Xn). So (Of/Ox) Cc(Rn) and codim f= 0.

Fact. One can show easily enough that codim f 0 iff f is (locally) stable. So codim f
is a measure of the instability of f. (Recall Local Theorem 2.)

Note. For future reference we let denote the maximal ideal in C(R") consisting
of those germs which vanish at 0. The above theorem states that is precisely the ideal
generated by the coordinate functions x1,’’ ", x,. Also k is the ideal of functions
which vanish through order k- 1 and is generated by any basis for the homogeneous
polynomials of degree k.

Example 3. Let f(x, y)= x 3 + xy 2. Then (Of/Ox) (3x 2 + y2, 2xy). We claim that
any germ l(x, y)can be written in the form

l(x, y)= lo + llX q-/2Y + 13x 2 + a(x, y)(3x 2 + y2)+ b(x, y)2xy.
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To accomplish this we will need several applications of Taylor’s theorem. Since
pl 3x + y2, p2 2xy, and p3 x 2 form a basis for the homogeneous polynomials of
degree 2, we have that l(x, y) lo+llX +/2y +A(x, y)(3x2+y2)+B(x, y)2xy +
C(x, y)x 2. By expanding C(x, y)= 13 + D(x, y)x + E(x, y)y, we see that we need only
show that x 3 and x2y are in (OffOx). Clearly x2y is a smooth multiple of 2xy while
x 3 x(3x2 + y2)/3-(y/6)2xy. So the claim is true.

Our interest is in finding the dimension of C(R2)/(OffOx). Recall that two germs f
and g yield the same element in this quotient vector space iff f =g + h where h is in
in

The above claim implies that l(x, y) and llX +/2y + 13x 2 yield the same element in
this quotient vector space. So codim f <= 3. To see that codim f actually equals 3, we
must show that x, y, x 2 are independent in this quotient space. To rephrase this" is it
possible to find constants a, b, and cmnot all zero--and germs d(x, y) and e (x, y) such
that

(1.1) ax +by +cx2=d(x, y)(3x2 + y2)+ e(x, y)2xy?

The answer is no. To see this note that the right-hand side of (1.1) begins with terms of
order 2 (or higher) so a b 0. Next differentiate (1.1) twice with respect to x and
evaluate at 0 to obtain 2c 6d(0). Next differentiate (1.1) twice with respect to y and
evaluate at 0 to obtain 0 2d(0). So c 0 and codim f 3.

Note. This example also shows us how to find a set of germs which project onto a
a basis of C(R")/(Of/Ox).. In this case x, y, X 2 gives such a basis, although x, y, y2 would
do just as well.

Example 4. Let f: (R, 0) R be defined by f(x) xg(x)where g(0) - 0 and m -> 2.
Since Of/Ox x"-l(mg(x)+ xg’(x)) and the second factor is invertible in C(R)--since
it is nonzero at 0we have (Of/Ox)= (x’-). Let be in C(R), By Taylor’s theorem,
/(x)= lo + llX +" + 1,-2x"-2 + a(x)x’-l. Hence C(R)/(Of/Ox) is isomorphic to the
vector space with basis x, x2,..., x"-2 over R. So codim f m 2.

DEFINITION 1.2. f has finite codimension if codim f< oo and infinite codimension
otherwise.

Example 5. f(x)-e-1/ has infinite codimension since the Taylor expansion of
of f(x) at 0 is identically zero. So x, x x 3 are all independent in C(R)/(Of/Ox)

Exercise. Show that the germ xy in C(R:) has infinite codimension.

2. Stability of unfoldings. One very important concept in the study of singularities
is transversality. Let Vbe a vector space and IV a manifold in V. Let F: Rk --> V be a C
mapping and assume that F(0)= x in W.

DEFINITION. F has a transverse intersection with Wat 0 if every vector v in V can be
written in the form v w + (DF)o(r) where w is in Tx W, r is in R k, and (DF)o is the
Jacobian matrix of F at 0. In vector space notation we may write V TxW+ (DF)o(Rk).
We denote this by F W at 0.

Examples. (i) Let V R and let W be the x-axis. Let F: R-> R be defined by
F(t)= (t, t). ThenF Wat 0. If F(t) (t, t2) then Fdoes not intersect Wtransversely at
0.

(ii) Let V R3 and let W be the x-axis. Let F: R R3 be defined by F(t) (t, t, 0).
Then F does not intersect W transversely at 0.

Notes. (A) The reason why transversality is such a good concept comes from the
following theorem first proved by Thom [57]: If F W at 0 and G: lk

" V is another
C function near F then there is a point p in Rk near 0 with G(p) in Wand G Wat p.
This theorem can be used to prove Local Theorem 2. See, for example, [11].
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(B) Example (ii) demonstrates another useful fact about transverse intersections;
namely, if F W at 0, then k <_-codim W. The reason for this is simple’ dim (TxW+
(DF)o(Rk)) <-dim W+ k. So if F W at 0, then dim V<_-dim W/ k which implies that
codim W<_- k.

The basic result in elementary catastrophe theory is the following"
THEOREM 2.1 (local stability for unfoldings). Let Ft be an unfolding ]’or the germ

f= Fo. Then Ft is a (locally) stable unfolding off iffF7 at O.
Here again we reason by analogy with the finite dimensional case. An unfolding F

may be thought of as a mapping F: Rk C(Rn) defined by F(t) Ft. Since F(0) Fo-
r and f is r, it makes sense to ask whether or not F I’r at 0. The claim is that
stability for an unfolding is equivalent to transverse intersection. We shall now proceed
to give a "proof" of the sufficiency part of this theor.em using the implicit function
theorem. The only problem is that there is no implicit function theorem in this
generality. Fortunately there is a way around these ditiicultiesmthrough the notion of
finite determinacymwhich we shall discuss in 6. To reiterate, our "proof" is heuristic
and is given only as motivation.

The statement of the implicit function theorem that we shall use is"
THEOREM. Let ’" R"Rk-) Rp be a Coo mapping with (0)=0. Denote the

variables in R" by x and the variables in Rk by t. If the matrix (O/Ox) has rank p, then
there is a C function x" Rk - R" such that x(O) 0 and ,(x(s), s)-- 0 for all s near 0 in
Rk"

COROLLARY. Let E: R’-Rp be a Coo map with E(0)=0 and assume that
(DE)o (OE/Ox)o is onto (i.e., has rank p). Let G" Rk - Rp be Coo with G(0)= 0. Then
there is a Coo mapping x" Rk R" such that E(x(s))= G(s) for all s near 0 in Rk.

Proof. Define E(x, s)= E(x)- G(s) and apply the implicit function theorem.
We denote by Diffo(Rn) the space of germs of diffeomorphisms" which map

R" -* R". Now to proceed with the "proof" of Theorem 2.1, replace R" by Diffo(R")x
R Rk and Rp by C(R") in the statement of the corollary. Given an unfolding F of f
for which one wishes to determine stability, define E" Diff0(Rn) x R Rk --> C(Rn) by
E(H, K, t) F H+ K. Note that E(H, K, O) f H/K which is in 6r. In fact asH and
K vary with 0, E traces out all of 7r (by definition of 6r). On the other hand if we take
H- identity map (i.e. H(x)- x) and K 0, then E(id, O, t)= F so as varies E traces
out the image of the unfolding F. So we see that (DE)ia.o.o) is onto is equivalent to saying
the T,,t+(DF)o(R’) TC0(R). Thus (DE) a,o,o) is onto if[F? at 0. Next assume
that the corollary to the implicit function theorem above holds for these infinite
dimensional spaces and let G" Rk - C(R") be another unfolding of f near F. We need
to show that G is equivalent to F. Here we assume that F+ 6 at 0. Then by the
corollary there is a smooth map of Rk

--) Diffo(R") x R Rk defined by s-(Hs, Ks, s(t))
such that E(Hs, Ks, t(s))= G(s). By definition E(Hs, Ks, t(s))- Fs) Hs + Ks. So
G(s) Fts) Hs + Ks and G is equivalent to F as unfoldings of f if we can show that the
change of parameters s - t(s) is invertible; this follows rather easily from the fact that G
was assumed to be close to F, so is near the identity map on Rk.

We shall now investigate certain implications of Theorem 2.1.
COROLLARY 2.2. There is a stable unfolding F off ifff has finite codimension.
Proof. Just consider note (B) above.
This corollary is analogous to Local Theorem 2 about Morse functions; namely, we

now have a reasonably computable method for determining the existence of a stable
unfolding for a given germ f. What is needed next is a method for finding this stable
unfolding when it is known to exist. This will be analogous to Local Theorem 1 for
Morse functions.
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THEOREM 2.3 (normal form theorem for unfoldings). Letfhave codimension k. Let
pl(x), pk(X) in C(Rn) project onto a basis of C(Rn)/(Of/Ox). Then

Ft(x)= f(x)+ tlp(x)+ + tkPk(X)

is a stable unfolding of t.

Proof. The fact that p,. , pk project onto a basis just means geometrically that
the k-plane spanned by pl,"" ,Pk in C(R") (i.e., all germs of the form
tlp(x)+ + tkPk(X)) is transverse to r. This follows since the vector space (OffOx) is

just Trr. So by Theorem 2.1 the given unfolding Ft is stable.
Examples. 1) Let f(x)= x ". As shown before x,. ., x "-2 projects onto a basis of

So

Ft(x)= X + tm_2xm-2 d- "F tlX

is a stable unfolding of x m.
2) In Example (3)after Taylor’s theorem we showed that f(x, y)=x3+xy2 has

codimension 3 and that x, y, x 2 project onto a basis in C(R2)/(Of/Ox). Therefore
Ft(x)-- x 3 -- xy 2

"3
t- tlX -" t2y + t3x

2 is a stable unfolding of f.
3) Let f(x, y)= x 3 + y3. Then (Of/Ox)= (x 2, y2). To find a stable unfolding for f we

must first compute the codimension of f. To do this we use Taylor’s theorem. Note that
2 2x y xy form a basis for the homogeneous polynomials of degree 2. So if rn (x, y) is a
C germ we may write re(x, y)= too+ mix + m2y + al(x, y)x 2 + a2(x, y)y2 + a3(x, y)xy.
In C(R2)/(OffOx),m is equivalent to mx +my+aa(x, y)xy. Again by Taylor’s
theorem we may write aa(x, y)as m3 + bl(X, y)x + bE(X, y)y. Finally we have that re(x, y)
is equivalent to mix + mEy + maxy in C(RE)/(cf/cx) and codim f <- 3.

Next we claim that x, y, xy project onto a basis. Suppose that mx + m2y + m3xy

0 in C(R2)/(Of/ix), that is, there are germs c and d such that

(2.1) mix + m2y + m3xy c(x, y)x 2 + d(x, y)yZ.
The right hand side of (2.1) clearly never has nonzero x, y, or xy terms in its Taylor
expansion. Thus m m2 m3 --0.

Putting this information together we see that codimf=3 and Ft(x,y)=
3 3x + y + tlX + t2y + t3xy is a stable unfolding of f.

Exercise. Show that a stable unfolding for the germ f(x, y)= x2y + ),4 is Ft(x, y)--
2 4 2x y+y +tlX+t2y+t3x2+t4y

For our next corollary to Theorem 2.1 we note that stable unfoldings satisfy a
universality property:

THEOREM 2.4. Let F be a stable unfolding of the germ f in C(Rn) with k
parameters. Let Gs be any other unfolding off with rn parameters. Then there exists a
smooth change of parameters t= t(s), an m-parameter family of diffeomorphisms
Hs" (R", 0) R", and an m-parameter set of constants Ks such that

Gs(x)= Ft<s) Hs(x)+ Ks.
(Note" H and K depend smoothly on the parameters s.)

Proof. This theorem is proved exactly as Theorem 2.1. Here we are not assuming
that G is near F so we cannot conclude that t= t(s) is an invertible change of
parameters. Since we do not assume that rn k this should come as no surprise.

Example. Let f(x)= x 4. As was shown in Example 1) a stable unfolding for f is
Ft(x)= x 4-+- tlX + t2x 2. Let Gs(x) be another unfolding of f, for instance x4+
sx sin (s2x)+sx2 which depends on three parameters. Theorem 2.4 guarantees the
existence of mappings Hs(x) g(x, s), K(s), and t(s) all smooth in x and s such that
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X
4 + S1 sin (s2x)+ sxz Y(x, S)4 + ta(S)Y(x, s)+ t2(s)Y(x, s)2 + K(s). Since Hs is a

diffeomorphism, we also have that (OY/Ox)(x, s)# 0 for any point (x, s) near 0.
So far in this section, we have concentrated on the problem "Given a germ f in

C’(Rn), find a stable unfoldingF of f." The reverse question is also of interest. Given an
unfolding Ft(x) of the germ f=Fo, is F stable? From Theorem 2.1 the answer is
straight-forward; F is stable if (DF)o(Rk)+T= C(Rn). We need only interpret
what (DF)o(Rk) is. Let ti(s) be the k-vector whose ith component is s and whose other
components are zero. Then Ft,(s)is a curve in C(Rn) and (d/ds)F,,l=o is a tangent
vector in (DF)o(Rk). The chain rule shows that this vector is just (OF/Oti)(x)lt=o. Clearly
these k vectors (for 1 =< <= k) generate (DF)o(Rk). So we have the following:

THEOREM (infinitesimal stability implies stability). Given a k-parameter unfolding
Ft off Fo. F is stable iff (OF/Otl) (x, 0), ., (OF/Otk) (x, O) project onto a generating set

for the vector space C(R)/(Of/Ox).
Example. Is

Ft(x, y)= x 3 + tl(X + 4xy2) + cos (/2)y 3 +sin (t2)xy + t3(y + 2y 3)

a stable unfolding of Fo(x, y)= x 3 + y3.9 To determine this we compute

and

OFt (x, y, 0) x + 4xy 2pl(x, y)= Ot---
OFt xp (x, y)= y, o)= xy

aFt "X 3p3(x, y)=-3 ,y, 0)=y+2y

In C(R2)/(x2, y2), Pl is equivalent to x and p3 is equivalent to y. As was shown in
Example 3) x, y, and xy project onto a set of generators of C(R2)/(x 2, y2), so Ft is a
stable unfolding of x 3 + ),3.

A few comments about the actual proof of Theorem 2.1 are in order. Mather’s
original proof used two basic theorems from analysis: the Thom transversality theorem
and the Malgrange preparation theorem. Proofs of these theorems can be found in 11 ].
These theorems were used in conjunction with a reduction of the problem to finite
dimensional manifold theory. This reduction uses the notion of finite determinacy
which we shall describe in 6. Detailed descriptions of Mather’s proof may be found in
[5], [36], and [35]. A nice proof of Theorem 2.4 in the case of f(x)= x4 (which avoids
introducing advanced algebraic structures) is given in [26].

3. The classification theorem. The question we ask in this section is "How many
different stable unfoldings are there with four or fewer parameters (control variables)?"
A reasonable question is "Why four?" There are two answers. First, in some
applications of catastrophe theory we think of the parameters as control variables for an
experiment; in some cases these control variables are just space and time. Second, this is
the number that Thom considered.

As we shall note later four may be replaced by five to obtain a similar answer but
not by six or more.

The universality theorem, Theorem 2.4, states that two stable unfoldings of the
same germ are for all purposes the same. So we may as well compute only a stable
unfolding for each germ f with the fewest number of parameters, that is, an unfolding
with codim f parameters. (This is the setting of Theorem 2.3.) Finally suppose that two
functions f and f’ are right equivalent, i.e. f’= f H+ K. If F is a stable unfolding of f,
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then it is easy to find a stable unfolding/:; for f’; namely, let F’t Ft H. For the purpose
of classifying stable unfoldings we shall consider Ft and F’t equivalent. With these
observations the problem of classifying stable unfoldings with four or fewer parameters
reduces to the problem of classifying all inequivalent germs in C(R")which have
codimension =<4. A main tool is the following:

RELATIVE MORSE LEMMA (Gromoll-Meyer [13]). Letfbe in C(R") and have a
singularity at O. .Suppose the rank of (d2f)(0) is n- I. Then it is possible to choose
coordinates x, , xt and y, , y,_ on R" at 0 and a germfl: (R, 0) R such that

f(XI," ,Xl, Yl," ", Yn-l)--fl(X.1," ,Xl)--(y 4r" d-yc)-’(y+ld- -["y2_l)n
where (dfl)(O) (d2fl)(O) 0.

The number k is again the index of the Hessian matrix at 0 viewed as a singular
symmetric bilinear form.

Notes. 1) This implies that codim f codim fl since

2) In so far as our classification of germs is considered we shall assume that the
germs f and fl are equivalent. This gives us a way to compare germs defined on different
numbers of variables. In terms of the singularities associated to these germs this process
makes good sense--we are lumping all singularities which differ by a nonsingular
quadratic term together into one class.

3) The full power of the Relative Morse Lemma is in an infinite dimensional
setting. See 13].

TI-IEOREM 3.1 (Thom’s seven elementary catastrophes). There are precisely seven
stable, universal unfoldings with <=4 control parameters. They are the unfoldings given in
Table 1.

TABLE

germ codimension Name ofCatastrophe

X Fold
-t-X 4 2 Cusp or Riemann-Hugoniot
x 3 Swallow’s tail

+/-x
6 4 Butterfly

x3 + xy2 or x3 + y3 3 Hyperbolic umbilic
x3_ xy 3 Elliptic umbilic

+/-(x2y + y’*) 4 Parabolic umbilic

Note. The reader may have noticed that there are in fact ten germs in this list if one
distinguishes between the + and the signs before x4, x6, and x2y + y4. In Thorn’s
classification these singularities are considered to be equivalent. On the other hand
these signs do make a difference if one is trying to minimize each member F of an

4
unfolding rather than just find the singularities. Clearly finding minima of germs near x
is different from finding minima of germs near -x4. In fact the stable unfolding of -x is
called the dual cusp catastrophe. More will be said in 5. Similarly for the others.

One main step in the proof of this theorem is the use of the Relative Morse Lemma.
Claim. If f(x, y, z) has a singularity at 0 with (d2f)(0) 0, then codim f>=6.
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To see this, note that the partial derivatives of [ begin with terms of degree 2 or
higher. Let [x, fy, fz be the terms in the Taylor expansion of , [, [z. of degree 2.

Then

codim f dimlC(R3)/(0)
-> dima C(II3)/((fx, fy, fz, all homogeneous polynomials of degree 3)+K)

->dima (polynomials of degree 2)/((fx, fy, fz)+K)

->10-4=6.

So if codim f =< 5, we can assumemusing the Relative Morse Lemma--that f is a
function of either 1 or 2 variables. In the previous examples we completed the case of 1
variable. More work is necessary to complete the classification whenf f(x, y). See 6.

Notes. 1) A similar classification can be carried out when codim f <- 6. In codimen-
sion 5, four new singularities and thus four new stable unfoldings make their appear-
ance (Table 2). See [4], [28], or [36].

TABLE 2

germ stable ,unfolding

x x + tsx + t4x4 + t3x3 + t2x2 + tlX
x2y + y5 x2y 4-y5+ tlX +t2x2+t3y + t4y2+tSy
xay4 x 4- y4 4- tlX 4- tEy 4- ray 4- t4xy + tsXy

2) In codimension 6 three new singularities are found. (See [4], [28], or [21].) In
codimensions ->7 an infinite number of new singularities make their appearance. We
shall discuss how this happens in the next section along with an explanation of why this
implies that there are an infinite number of inequivalent stable unfoldings with 6
parameters.

4. Density and modnli. In this section we shall describe the global theorem on
unfoldings which was promised before.

A globally defined, Coo, k parameter family of Coo functions of R" --> R is a Coo
function F: R" Rk --> R defined on all of R" Rk. As usual we think of F(x, t) as Ft(x).
Let Coo(R"; Rk) denote the space of all such unfoldings F.

DEFINITION. Let Ft be in COO(Rn; Rk) with x0 in R" and to in Rk. On a small
neighborhood of (Xo, to) in R" Rk, F defines a germ of an unfolding of Fro at Xo. Ft is
locally stable at (Xo, to) if the germ Ft is a stable unfolding of Fro at Xo in the sense
described in the previous sections.

Ft is locally stable if it is locally stable at all points (x, to) in R" Rk.
THEOREM 4.1. The subset S of Coo(R"; Rk) consisting of locally stable unfoldings is

both open and dense if k <-5.
Notes. 1) As in the case of the Global Theorem about Morse functions the fact that

S is open follows essentially from the local theory (Theorem 2.1). What is new is the
density statement and the fact that some restriction on the number of parameters k is
necessary.

2) The topology used on C(R"; Rk) is again the Whitney Coo topology. Also one
may replace both R" and Rk by manifolds X" and Tk respectively as long as
dim Tk k <-_ 5.
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At this point, it is worthwhile for the reader to review the discussion after the
Global Morse Theorem in the Introduction.

One should keep in mind the goals of our analysis of unfoldings. They are to find a
complete listmpreferably finite--of the (locally) stable unfoldings and to show that the
(locally) stable unfoldings are generic. The first few sections dealt with the former; now
we comment on the latter. It is this genericity or density of the stable unfoldings which
makes the whole project (potentially) useful. This theorem states that if we are given a
parametrized family of mappings (with less than six parameters) then for all practical
purposes we can assume that locally it looks like one of the members on our list.

The proof of this theorem works because there is a finite classification of locally
stable unfoldings when k -< 5. (The main tool is the Thom transversality theorem. See
[11].) When k_->6 this theorem is no longer true; the reason is the appearance of
moduli--a one parameter family of inequivalent singularities.

Conceptually the simplest case of moduli is the following: Let f,,: (R2, 0) -> R be the
germs defined by

f,,, (x, y) xy (x + y)(x my) for m > 0.

Claim. ,f,, is not equivalent to f,, for ml 7 m.
To see this we need the concept of the cross-ratio.
Let L1, L., L3, L4 be lines passing through the origin in the xy-plane. Let M

(1 -<_ _-< 4) be the slope of line Li. Then the cross-ratio is

(M1 M2)(M3 M4)CRr (M1 M3)(M2 M4)"
Let A be any nonsingular linear transformation of 12 R2. Four new lines A (Li) are
obtained in R2. It is an easy calculation to check that

CRA(L) CRr
so that the cross-ratio is invariant.

Now to return to the germs f,,. The zero set,f,!(0), off, consists of four lines which
yield four lines in ToR2 and a cross-ratio. Should f-,1 be equivalent to f,-2, then there
would exist a germ of a diffeomorphism h :(R2, 0)- (R2, 0) with f,,1 f,,. h. Clearly
h’f(O)-f(O), so the linear map (dh)(0): ToR2--> ToR2 would take the four lines
defined by f,, to the four lines defined by f,,. Thus if fll is equivalent to f,,, then the
two cross-ratios defined would have to be equal. This is obviously not true if m m2.

What we have constructed is a/-parameter family of inequivalent germs called
moduli. The codimension of each germ with m 0 happens to be 8. Thus we know that
the finite classification of stable unfoldings breaks down when the number of control
variables is >_-8. In fact, moduli begin to appear in codimension 7. An example is given
by

f,, (x, y, z)= x 3 + y3 + z 3 mxyz.

See [28].
Next, we give a picture of why the existence of moduli of codimension 7 insures that

locally stable unfoldings are not dense in C(li", R) when k _-> 6. Let f,,: (ll", 0)- R be
an example of moduli where each f,, has codimension 7, that is codim Tf,. in Co(R") is
7.

Let M U.7. These strata . fit together to give a submanifold tYM of
codimension 6. See Fig. 2. Let Ft be an unfolding on 6 parameters such that F intersects
?M transversely at the point F0 f. See Fig. 3. Ft is not locally stable at 0. For if F,
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FIG. 2

were stable, then F+ 7r which cannot happen since dim Image F 6 < 7 codim 6.
(See Note (B) in 2.) On the other hand, any unfolding near F will intersect 6t. (See
Note (A) in 2.) So there is a neighborhood of F which consists of unfoldings which are
not locally stable. Thus the density theorem is false for k -> 6.

Image F

FIG. 3

Finally note that this does not contradict Corollary 2.2. For there still does exist a
stable unfolding of f on 7-parameters whose image can be pictured as in Fig. 4. For this
F, F 7t- and is hence a stable unfolding.

FIG. 4

5. The geometry of the cusp catastrophe. In the next part, we shall describe some
applications of catastrophe theory which use the geometry of the cusp or
Riemann-Hugoniot catastrophe explicitly; so we present this geometry now.
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First, the names of the elementary catastrophes are derived in the following
fashion: Let ’: (Rn, 0) R be a germ of finite codimension with stable unfolding F in
C(Rn; Rk). The catastrophe surface is the union of all singular points of members of
the family; that is,

0]
For stable unfoldings Sr is always a k-dimensional manifold in R" x Rk. (See [36].) Let
7r: R" Rg Rk be projection onto the control space, i.e., 7r(x, t)= t. Let zrt r[St. 7rt
is called the catastrophe map; the names for the elementary catastrophes are derived
from the geometric form of 7rtwalthough some imagination is helpful!

For example, let f(x)=x3/3. Then a stable unfolding is Ft(x)=x3/3-t-tx. So
St ((x,-x2) R R) zrt is the projection of the parabola St into the t-axis. The
singularity of 7rt at 0 is called the ]’old singularity ;.the unfolding of x3/3 is also called the
]’old catastrophe. See Fig. 5.

t

FIG. 5

In the case of the cusp catastrophe f(x)= x4/4, the stable unfolding is F.o(x)=
xa/4-x2/2 + ax. So St {x3-flx + ce 0}. To graph St in a/x space, note that for
/3 0, a -x 3. When/ > 0, a =/x x 3 has two singularities and when/ < 0 none. See

/3<0

/3>0

FIG. 6
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Fig. 6. The surface of singularities St is then as in Fig. 7. The projection zr into c/ space
has singularities which project to the cusp curve /3 27 2=q-a Thus the unfolding of
f(x ) x4 is called the cusp catastrophe.

FIG. 7

We now give a more detailed description of this catastrophe. For (a,/) in the
interior of the cusp zr-l(a,/) has three points and F.o(x) has three singularities--two
local minima and one local maximum. For (a,/) outside the cusp, zr- (a,/) consists of
one point and F,,.o(x) has one singularity--a minimum. For (a,/) on the cusp,

-1
7rt (a,/3) consists of two points and F,o has two singularities--a minimum and an
inflection.

Consider the points Ai (i, 3), -3 <- <- 3 (as in Fig. 8)and the graphs y FA,(X) (as
in Fig. 9).

So traveling in control space along the line/ 3, the family of functions goes
through the following stages:

(-3) one relative minimum

FIG. 8
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Ao

A1 A3

FIG. 9

(-2) formation of a new singular point
(-1) formation of a second relative minimum
(0) a position where both relative minima have equal values
(1) the new relative minimum becoming the absolute minimum
(2) the first relative minimum dying
(3) a return to one relative minimum.

Note. The unfolding of -x4 is Ft(x)=-x4-x2+ax which is the dual cusp
catastrophe. If we try to find the minima of each Ft we see that for controls (a, fl) outside
of the cusp there are no minima while inside there is precisely one minimum. In this
sense the qualitative behavior of the cusp and the dual cusp catastrophes are quite
different. Similarly for the butterfly.
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Finally we observe that if one is attempting to find the absolute minimum of F,o,
then there is a problem at the points where the relative minimum values coalesce. (See
point A0.) The Maxwell set of a catastrophe is the set of control points where the
corresponding function has (at least) two distinct relative minima with the same
minimizing value. In the case of the cusp catastrophe, the Maxwell set is the ray a 0,
/3 > 0. Thus for any equivalent unfolding the Maxwell set is a smooth curve emanating
from the origin.

A more complete description of minimization for catastrophes is given in [7]. The
cusp picture had previously been discovered by Whitney [52] as a stable singularity of
R2- R2. See [11] or [52].

6. Finite determinacy. So far our description of elementary catastrophe theory
has been given in terms of infinite dimensional manifolds; e.g. Co(R") and (7. For the
theorems described here to be proved in the fashion outlined, one needs some form of
an inverse function theorem. The way that these theorems have actually been proved is
through the concept of finite determinacy.

DEFINITION 6.1. Let f: (R", 0)- R be a C germ. f is finitely determined if there is
an integer such that if g is also in C’(R") and the Taylor series of g agrees with that off
to/th order at 0, then g is right equivalent to f. Such a germ is called l-determined.

The main result is due to Mather [20]; the proof that we give is taken from [5].
THEOREM 6.2. A germfin C(R") isfinitely determined ifffhasfinite codimension.
Note. The equivalency of the notions of finite codimension and finite determinacy

plays a central role in the development of catastrophe theory. Because of this we shall
give a complete proof that finite codimension implies finitely determined as well as the
basic idea for the reverse implication.

Proof (sufficiency). Assume that the germ f has finite codimension. Let denote
the maximal ideal in C’(R"). (The reader may want to refer to the Note after Taylor’s
theorem, 1.) We claim that f has finite codimension iff there is an s such that
/lsc (Of/Ox). For suppose that ///s (Of/Ox) for all s. Then choose by induction
homogeneous polynomials p of degree s so that p is not in / +span (pl," , p-l).
The set pl, p2," is independent over R in C (Rn)/(Of/Ox), and codim f= oo.. So
we may assume that s-1 c (Of/Ox) and show that f is s-determined.

If A and B are subspaces of C(R"), then AB denotes the subspace consisting of
all germs of the form alb +. + a,b, where each ai is in A and each bi is in B. It is not
hard to show that l(Of/x) consists of all germs of the form al(Of/Ox)+...+
a,(Of/Ox,) where a(0) 0 for all and thatks /k/,. SO our assumption that f has
finite codimension implies that /’ c /(Of/Ox).

LEMMA 6.3. If rill yPl (Of/Ox), then f is s-determined.
Proof. Let g be a germ whose Taylor expansion at 0 agrees with the Taylor

expansion off at 0 to order s, then g -f is in /+1. Let ft f+ t(g -f). We will show that
there is a one parameter family of diffeomorphisms yt" R" R" varying smoothly in x
and which satisfy for 0 _-< _-< 1,

(i) y,(0)= 0, and
(ii) ft yt f on some neighborhood of 0 in R". Clearly this will prove the theorem

by evaluating at t- 1.
The following trick first used by Moser [23] is an embryonic form of "infinitesimal

stability implies stability." Differentiate (ii) with respect to to obtain

(6.1) "-- (’}/, (X )) -[-
i=1 X/(’’(X’" 0t

(x)= 0,
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where 3’t (3’, 3’7) in local coordinates. Next evaluate at y-;l(x) to obtain

/’
(x --ff o.(6.2) (g-f)(x)+i

Suppose we can find functions v(x, t) satisfying

(a) vi(O,t)=O, and
Oft (x)vi(x, t)= 0.(b) (g-f)(x)+i=l

Then we can solve the ODE’s

-t(x)
vi(3"t(x), t)

for the desired diffeomorphism 3’,. Note (a)implies that 3",(0)= 0. With this 3", (6.1)can
be integrated to 1 on some small neighborhood of 0 to prove the theorem. Thus we
have reduced the problem to finding the v’s.

Let ql, , qr be a basis for the polynomials homogeneous of degree s. Since g-f
is in ,s+l we can write (g-f)(x)= Y’,=x a(x)qr(X) with ar(0)= 0. We will show that
each q may be written as a linear combination of the functions (OfffOx)(x). Then the v’s
needed to solve (a) and (b) are easily constructed. Since q is in/ and = tt(Of/Ox)
we can write

q(x) ,Ex= bi(x)-xi(X)=" i=lE b,i(x) xi(X)- Oxi
(g-f)

where br. (0) 0. Since g -f is in ///s+l, (O/Ox)(g -f) is ins and is a linear combination
of the qr’S. SO we have

q(x)=,Elb,i(x)-xi(X)+ Y’, c,o(xlqo(x),
0----1

where cr.o(0)= 0. Writing these N equations in matrix form yields

K(x, t)= (I- tC(x))Q,

where Q is the vector of q’s, C is the matrix (cr.o), and K is the vector with coordinates

=1 br.(Oft/Oxi). Since C(0) 0 we can invert the matrix I- tC for x near 0 and obtain in
coordinates that each q is a linear combination of the functions (OfffOxi)(x) and the
proof is complete.

COROLLARY 6.4. fff in C0(R") has codimension k, then is l-determinedfor some
<- k + 2. (See [36, Lem. 3.1].)

Note. This corollary proves and generalizes Local Morse Theorem 1.

Proof. Assume that f is not (k +2)-determined. The last lemma implies that
,////k+l g2 (of/Ox). We use this fact to show thatf> k. Clearly ///s (Of/Ox) for 1 <_- s -< k + 1
since +1 / for such s. Thus there is a polynomial p, homogeneous of degree s,
which is not in (;ff/Ox)+span (px,’", ps-1) for each s-<k + 1. These polynomials are

independent in C (R")/(Of/Ox), so codim f_>-k + 1.
We now give a sketch of the proof that finitely determined implies finite codimen-

sion. Suppose that f is k-determined and let g be any homogeneous polynomial of
degree k + 1. For each real number let f, f+ tg. Since the Taylor series for ft agrees
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with the Taylor series for f through order k, we have that

(6.3)

for some germ of a diffeomorphism Ht" (R", 0)--> (R", 0). Now suppose that Ht can be
chosen to vary smoothly in and that H0 identity. Then we could differentiate (6.3)
with respect to and obtain at 0,

O/ (x OH (x)+. + Of (x ) (x)g-X O
)

O

where Ht (H,. , H’) in coordinates. Thus g is in (Of/Ox) and since g was arbitrary
we have :ItTM c (Of/Ox). As was shown above this implies that/has finite codimension.

There is indeed a technical problem in showing that Ht can be chosen to vary
smoothly. To accomplish this task requires some knowledge about the actions of finite
dimensional Lie groups. The reduction to finite dimensions is ettected through the use
of finite determinacy.

We now give some examples to illustrate the strength of Lemma 6.3.
Examples. 1) The germ f(x, y)=x2y+yTM is (k + 1)-determined when k-_>2.

Using Lemma 6.3 we must show that .////k+l C,/(of/Ox--(X, y)(2xy, xE+(k + 1)yk)
(X 2, xy 2, X 3, y k/l) A. To demonstrate this inclusion we need to show that xy k+X- is in
A for all between 0 and k + 1. This is clearly true by inspection.

2) The map germ f(x, y)= x 3 +xy2 is 3-determined. (We showed previously that
codimf= 3.) Since (c3f/c3X)=(3x2+y 2, 2xy), g//[(c3f/c3X)=(3X3+Xy 2, 3x2y +y3, 2x2y,
2xy 2) which is easily seen to be ///3. So Lemma 6.3 implies that f is 3-determined. The
same calculation shows that x3_ Xy2 is also 3-determined.

We can now sketch a proof of Thom’s classification theorem, Theorem 3.1. Our
proof follows [5] and [35]. From the preliminaries of 3, we may assume that f f(x, y)
has codimension <-4 and that the Taylor expansion off at 0 begins with terms of order 3.
Let P(x, y) be the terms in the Taylor expansion of f at 0 homogeneous of order 3. If
P=-0, then codimf_->7. So P0. Note that P(x, y)=yaQ(x/y) where Q is a poly-
nomial of degree 3 in one variable. We may factor Q over the complex numbers to
obtain

P(x, y)= (alx + by)(a2x + b2y)(a3x + b3y).

Since Q has odd degree it must have at least one real root, so we assume that a and b
are real. There are four cases:

(I) The vectors (ai, bi) are pairwise independent and real,
(II) P(x, y)= (alx / bly)(aEx + bEy)2 with (al, bl) and (a2, bE) independent,

(III) P(x, y) (ax + bly)3,
(IV) P(x, y)= (alx + bly)(aEx / bEy)(tiEX + bEy) with (a2, bE) not real. One then

shows, by linear changes of coordinates, that P(x, y) has one of the following forms"
(I) P(x, y) x (x y)(x + y) x 3 xy 2,

(II) e(x,y)=x2y,
(III) P(x, y) x 3,
(IV) P(x, y)= x (x 2 + y2)= x 3 + xy2.

Since (I) and (IV) are 3-determined, f is equivalent to P by a change of coordinates in
these cases. A calculation shows that if P satisfies (III), then codim f _-> 5. So we are left
with the hardest case (II). Since x2y does not have finite codimension, it is not finitely
determined. So there is a largest k for which f is equivalent by a change of coordinates
to x2y through order k. Suppose lot has the same Taylor expansion at 0 as x2y
through order k. Then one constructs a change of coordinates/x such that fo/z has the
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same Taylor expansion as x2y +/- y,+l through order k + 1. Example 1) shows that
xZy +/- yk.+ is (k -b 1)-determined. So f is equivalent to this germ. Next one checks that
the codimension of xZy +/- yk+l is >4 if k > 3. So the only possibility is xZy +/- y4 which is
equivalent to +/-(xZy q- y4).

PART BmTHE APPLICATIONS

In this part, we shall sketch several applications of catastrophe theory. Our purpose
will be to describe how catastrophe theory is used rather than to fully describe the end
results. The reader is referred to the actuaI papers in which these applications appeared
for the details.

7. The buckling beam (Zeeman [38]). The buckling or Euler beam problem is
rather easy to understand and, perhaps because of this, is a basic problem in the classical
theory of bifurcations. The problem is as follows" given a beam and a force b applied to
the ends (see Fig. 10), what are the possible steady-state shapes? For b sufficiently small

<]b

FIG. 10

the beam contracts uniformly but boes not bend. If b is increased past some critical
point bo the beam buckles into one of two positions shown in Fig. 11.

Either

or

FIG. 11

If one analyzes the differential equations for the beam problem, one finds that for
b < bo there is a unique solution which is the straight beam while for b > bo but not too
large there are, in fact, three solutionsmthe unbuckled state remains as a possible
solution. What distinguishes amongst these solutions is the (potential) energy function.
The two buckled states have minimum energy and are the preferred physical states. See
[251.

For a given b, we describe the solution to the buckled beam by a function f(s) where
s is the arclength along the beam and f(s) is the vertical displacement of the point s to
the horizontal. Let x be the maximum displacement of f. Then the classical nonlinear
theory leads to the bifurcation diagram in Fig. 12 where each point on the b-axis
represents a straight beam and each point on the parabolically shaped curve (actually an
elliptic function) represents a buckled solution with force b and maximum deflection x.
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bo

FIG. 12

The following has been known for some time" if you change the buckling beam
problem by one of the following"

1) Assume that the central axis of the beam is slightly curved with the maximum
amplitude given by a which is small but positive;

2) Assume that a small load a is hung from the center of the beam (see Fig. 13);
then the bifurcation diagram is qualitatively shown by one of the two cases indicated by

FIG. 13

<b

the dotted lines in Fig. 14. Since real beams tend to have the imperfections suggested
above, one should not be surprised that actual measurements also yield bifurcation
diagrams qualitatively similar to those with the dotted lines.

FIG. 14

The use of catastrophe theory in this problem will be to explain mathematically the
qualitative differences between the idealized buckling beam problem and the "real"
experiments.

Now we shall be more precise. For convenience, we assume that the beam has
length 7r. The space of possible solutions consists of those f: [0, 7r] R such that:

1) /isC.
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2) f(O)-f(rr)-0 (since the ends are supported).
3) f"(0)=f"(rr)= 0 (since there is no bending moment at the ends).
The method of solution is to minimize the energy function V on the space of

possible solutions ’. If f is in , then the energy function used in this model is

’l /,/"(s)2
v(f)=

1-f’(s)
b(1-4 -f’(sy) ds

where Ix is the modulus of elasticity per unit length. The solution to this variational
problem was given by Euler in terms of elliptic functions in 1744; namely,

THEOREM. The bifurcation point is bo Ix. For b slightly greater than Ix the solution is
f(s)= x sin (s)+..., where the constant x is just the first coefficient in the Fourier
expansion off or the first harmonic.

This first harmonic is the key to applying catastrophe theory to this problem. The
space - is infinite dimensional; to use catastrophe theory we must reduce this problem
to a finite dimensional one. (The reader is referred to Chillingworth [8] for an
alternative approach. There the reduction to finite dimensions is accomplished by use of
the Relative Morse Lemma.)

The observations about x are:
1) The first harmonic x agrees to first order with the maximum vertical displace-

ment parameter described above. Thus, using this x does not qualitatively change the
bifurcation diagram.

2) Define V: R R by V(x)= energy assigned to x sin (s)= V(x sin (s)). if f is a
critical point of V: ff R, then the first harmonic x off will be a critical point for V. This
can be seen by perturbing f to f+ sin (s) and differentiating with respect to t. Since f
solves the variational problem V, this differentiation is zero and implies that
(d/dx)V(x) 0. The classical theory of the buckling beam states that the reverse is also
true; if (d/dx)V(x)= O, then there exists a solution to the buckling beam problem
whose first harmonic is x.

The way that we shall use catastrophe theory is to reduce the problem of
minimizing V to that of minimizing V. Since V depends on the force b, so does V. So in
fact V is a 1-parameter family of functions. Choose coordinates so that Ix 1/zr and
b =Ix + fl/zr. A computation yields

X2 +
1 3/3X4 -[- higher order terms.
64

Note that when x and fl are small dVa/dx 0 yields the graph in Fig. 15, that is, the
standard bifurcation diagram. (Compare with Fig. 12.)

The unfolding theorem tells us that to fully describe the functions in a parametrized
family near x4+ we need two parameters. So qualitatively (in the mathematical
sense) there should be another parameter. Moreover the unfolding theorem guarantees
that we can change coordinates so that

Q’,,O (X) X4/4--X2/2 +

x

FIG. 15
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FIG. 7’

FIG. 16

This parameter c can be added physically by either of the methods mentioned at the
beginning of this section; e.g. a load or imperfection. The full bifurcation set is then
(d/dx) V,o 0 which was discussed in 5, Part A. See Fig. 7’. Cutting this surface by
the plane c =Co>0 (Fig. 16)yields the bifurcation diagram given in Fig. 14(b).
Cutting this surface by the plane c a0 < 0 yields the other bifurcation diagram. (See
Fig. 14(a).)

Thus what catastrophe theory does in this problem is give a mathematical method
for describing observed changes in the bifurcation diagram (Fig. 12)when the idealized
problem is perturbed. The theory also shows that to fully describe the bifurcation set
(Fig. 7’) only one new parameter a is needed.

Note added.in proofi A deeper question is to describe all possible perturbations of
the original bifurcation diagram (Fig. 12) as planar diagrams. Theorem 2.4 guarantees
that this is equivalent to the geometric problem of choosing curves in (c, ) space and
cutting the cusp surface above these curves. As we saw Figs. 12 and 14 can be obtained
from the curves a 0 and a0. By use of techniques of singularity theory similar to
those of catastrophe theory this problem has been solved in [66]. The full description of
all possible perturbed diagrams is more complicated than has been indicated here.

Hunt and Thompson [34] have given examples of bifurcation problems which
exhibit each of the elementary catastrophes along with ideas about how this sort of
analysis can be useful in engineering problems. These methods stem from ideas of
Koiter [16]. Other examples are found in [27].
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8. Asymptotic expansions of oscillatory integrals. (Arnol’d [3] and Duistermaat
[9]). One method for finding an approximate solution to the reduced wave equation for
large frequencies is the classical WKB method. The reduced wave equation is

(8.1) Au+,u =0,

where

02 02 02

and u is a component of the electromagnetic field. The basic idea is to assume that the
approximate solution u u(x, ) has the oscillatory form u(x, A )= a(x, e ix(x) where
b is the phase and a is the amplitude. We assume that a has an asymptotic series in A
(i.e., a formal Taylor series expansion at oo), so

a(x)+. .+a,(x)a (x, a ) ao(x ) + +....

Then one can compute the asymptotic expansion of Au + 2u. The WKB method is
simply to equate the coefficient of a-" for each n to zero. The first term yields the
eikonal equation"

(8.2) IVbl2 1,

while the higher order terms yield equations called transport equations. The distinctive
feature of these equations is that the eikonal equation is an equation in the phase
function b alone and that once b is found the higher order transport equations can be
solved recursively for the ai(x)’s, (i =0, 1,...) by standard methods of ordinary
differential equations.

Thus the key to finding approximate solutions to the reduced wave equation for
large , is finding a solution to the eikonal equation for b. Then enough of the a’s can be
found to obtain a good approximate solution for large .

It turns out that solving for b locally is well understood and falls in the domain of
the classical Hamilton-Jacobi theory. This theory defines lines known as light rays along
which the phase b is determined. The problem is that the solutions b may not exist
globally in x-space. Mathematically the light rays may intersect yielding inconsistent
information for b. Such intersections are called caustics. Physically this happens for
instance when light caustics form on the bottom of a wine glass.

One remedy for this situation is to generalize the class of functions u considered as
possible solutions. A standard and reasonable class to consider is generalized sums of
oscillatory solutions; namely, oscillatory integrals.

u(’x’A)= Ia" a(x, a,A)e id(x, )A dol,

where for fixed x, A the amplitude a has compact support (so that this integral makes
sense). The object will be to repeat the WKB method in this more general setting.

Physically whereas the original formulation assumed that light takes a unique path
from one point to another, this more general setting allows light to travel along multiple
paths corresponding to various reflection and diffraction patterns. The introduction of a
allows one to sum the various contributions to u over the various paths.

Now we assume that a (x, a, A ) has an asymptotic expansion in ,
a (x, a, A)= ao(x, )+

a,(x,a)ax(x,a)+. .+
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and try to compute the asymptotic expansion of Au + h 2u. This is where our problem
starts; in order to do this we need to know how to compute an asymptotic series for an
oscillatory integral.

First we describe a preliminary result. Suppose that ai(x, a) all have compact
support on some small neighborhood of (Xo, a0) and that (04/Oai)(Xo, ao) 0 for some i.
Then by use of integration by parts one shows that the asymptotic expansion of
u (x, a, h) vanishes to infinite order; that is,

u (x, a, A )- O(A -N) for arbitrarily large N.

Thus, to compute the asymptotic expansion of u (x, a, h ), we can use a partition of unity
argument to localize the support of all the ai(x, a)’s in some small neighborhood of
(Xo, ao) where (04/Oa)(Xo, a0)=0 for all i. This process is called the method of
stationary phase.

Next, we consider this generalized phase function &(x, a) as a germ of a
3-parameter unfolding 4x(a) for x near Xo and a near ao. The comments above state
that 4xo has a singularity at a0. Catastrophe theory is used to answer the following
question: "Can one put the unfolding 4, in some normal form and then use this normal
form to actually compute the asymptotic expansions for the oscillatory integrals?" The
answer is yes--as long as one assumes that the unfolding b, is (locally) stable. Since the
number of control parameters is 3-< 5, the density theorem, Theorem 4.1, states that
this is a reasonable hypothesis.

Now in order to put b into a normal form using catastrophe theory, we must be able
to change 4 by an arbitrary parametrized change of variables H,(a). This can be
accomplished by nothing more complicated that what is allowed under the standard
change of variable theorem for multiple integration. (Note this changes the amplitude a
but we need to compute the asymptotic expansions for arbitrary a so no problem
arises.)

Thus catastrophe theory tells us that we need only compute the asymptotic
expansions when n 2 and the phase function b(x, a) has one of the five forms:

3 2
C1 XIOI -t- 02,

4 2 2
O1 X10 1B X20l -k- 0 2,

3 2 2
O X10 X20 X30l q" 02,

0131 q- Ol -I- X Ol X2012 X3011012

3 2 2
O XlO2 XIOI X202 X30 2.

The first form yields the classical Airy function (1838). See [1]. These asymptotic
expansions are computed in the papers of Arnol’d and Duistermaat along with a much
more detailed description of the theory sketched here.

These methods can be used to describe various phenomena of light near caustics as
well as to analyze and solve other linear partial differential equations. Much of what has
been described has been known to mathematicians and physicists for quite a while in the
nature of special cases; what is gained by the infusion of catastrophe theory is"

1) a unified treatment of a theory which was up until now an unsatisfactory mix of
special cases;

2) a list of all the special cases which need to be treated.
A word of warning; we have assumed at a crucial point that the phase function

4x(a) is a stable unfolding. When b is unconstrained, this is a reasonable, almost
necessary, hypothesis. On the other hand in many applications, one may need to assume
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that bx has symmetry (e.g. spherical symmetry); in these cases bx is no longer stable and
the theory (as developed so far) breaks down.

Recently Po?naru [48] and Bierstone [44] have proved theorems which should
help to classify stable unfoldings in the presence of the action of a compact Lie group.
Wassermann ([58], [59]) has done some work in this direction.

Some interesting examples are given by M. V. Berry in [62].
9. Convex conservation laws (Schaeffer [26]). A conservation law states that a

change of a physical quantity in time over a region G in space is equal to the flux of that
quantity across the boundary of G. An excellent survey of this subject is given by Lax
[17].

To be more precise, let

u(x, t)- density of the physical quantity at time t,

U, ox, .,etc. =flux,

unit outward normal on the boundary of G.

Then the conservation law is

d u(x, t)& . ds,
G

where ds is surface area. If u and [ are differentiable, then we may apply the divergence
theorem to obtain

(9.1) u + divt 0.

We look at one of the simplest forms of a conservation law; namely, assume that
(a) x is 1-space variable,
(b) [ (u); i.e. flux depends only on density,
(c) is C and convex; i.e. "(u) e > 0.

These conservation laws tend not to be physically interesting in and of themselves, but
they are useful as model equations for more complicated situations. For example see
[61, p. 76] for a model of trac flow. Aside from this, these equations do present some
mathematical interest.

Assuming the above, we see that the differential equation (9.1) is

We also assume C initial data u(x, 0)= (x).
The following example demonstrates the problem. Let/(u)= uZ/2. Then try to

solve
Ut + UUx O,

U(x, O)= 6(X),

where (x) is nonnegative with compact support. See Fig. 17.
Assuming that u is a smooth solution to the given PDE one can set up an associated

ODE called the characteristic equation which is quite useful in solving the original PDE.
Let

--;-7.(t) u(x(t), t) and x(0)=Xo.
at
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Xo

+ ,I I/Illf

! /

P

FIG. 17

x

To solve the characteristic equation differentiate with respect to to obtain

dEx dx
dt2 Ux-+ U UxU + Ut O.

So (x (t), t) is a straight line called a characteristic. Since the slope dx/dt is constant, u is
constant along characteristics; in fact, u(x(t), t)= U(Xo, 0)= 4 (x0). This yields the curve
shown in Fig. 17.

As is shown in Fig. 17 u is constant and positive along the characteristic emanating
from x0 while u is identically zero along the characteristic emanating from x. Since
these characteristics collide at P we have a contradiction and the assumption that u is
smooth is false.

From the geometric point of view, what is happening is the following. Think of
u 4(x) as a wave; the characteristic equation states that this wave moves to the right
with speed proportional to its height. So eventually (by Stage 3 in Fig. 18) the wave
breaks over itself and there are several possible values for u at a given point (x, t). In fact
the geometric surface traced out by this wave is just Fig. 19. One might hope that
catastrophe theory applies.

There is an important analytic theorem which indicates how catastrophe theory
could apply.

THEOREM (Lax). Let F(x, t, u)= t(uf’(u)-f(u))+(x-f’(u)t) where cI)(y)=
Yo ok(x) dx. Let u(x, t) be the point where the global minimum ofF(x, y, .) occurs. Then
u (x, t) is the unique weak solution to (9.1) which also satisfies the entropy condition. See
[18].

Notes. 1) Since the solution u is in general not smooth for all time t, we must look
for discontinuous or weak solutions to the integral form of our original conservation
law. Of course at those points where the weak solution is in fact smooth it must satisfy
the PDE (9.1). This theorem guarantees the existence of a weak solution as well as
providing a method for computing it.

2) It should not be difficult to see that there are many possible weak solutions to
the given conservation law with fixed initial data. Since physically relevant solutions
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Stage 3

FIG. 18

tend to be unique some extra condition on the PDE is required and this is the entropy
condition. To describe this conditon would require a certain amount of technical detail
and since it is not really germane to our discussion we refer the interested reader to Lax
[17].

This theorem states that in order to find the weak solution u, we must analyze the
surface

d
F,,(u)= 0,
du

where Fx,,(u)= F(x, t, u). (Note geometrically we are just describing the surface in Fig.
19.) This is precisely the situation of catastrophe theory. Since Fx.t is a 2-parameter
family of functions, we know that generically it can do no worse than vanish to 4th order
and still be locally stable.

Let ow Schwartz space in C(Ii)= C functions which vanish to oe order at oe. A
subset P of 6e is residual if it is the countable intersection of open dense subsets of.

U

FIG. 19
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THEOREM (Schaeffer). For a residual set o] initial data c in 5, the corresponding
weak solution u given by Lax satisfies the following regularity assumptions:

1) u is smooth off a finite union of smooth curves F in the (x, t) halfplane;
2) Across each curve y in F, u has a jump discontinuity. These curves are called

shocks.
3) At most two shock curves intersect at a point and one shock emanates from this

collision.
The method of proof is to analyze the local behavior of the minima of Fx,t(" ). The

idea is as follows: let

F2 { (x, t)lFx,t has exactly one absolute minimum at Uo and

02F" 0},uu(X, t, Uo)

I’ (x, t)lF,, has exactly two absolute minima at Uo and ul,

02F 0},and (x, t, ui

F(oc)= (x, t)lFx, has exactly three absolute minima at Uo, Ul,

02F }and u2 and-uz(X, t, ui) 0

(x, t)lF,, has exactly one absolute minimum at Uo and

OZF OnE. }Ou
(x, t, Uo)= 0 but -U-Tu4 (x, t, Uo) 0

The first step is to show--using transversality theorythat for each initial data in
some residual subset in the (x, t) half-plane is the union of 1-’2, I’1, loC), and For); that is,
each point (x, t) is included in precisely one of these four sets.

The second step is to analyze the local structure of the Lax solution near a point in
each of the F’s.

Case 1-’2:1-’2 is an open subset of R and the Lax solution is C on 1-’2. This requires
only the implicit function theorem.

Case F: F is an at most countable collection of smooth curves across which the
Lax solution has a jump discontinuity. These curves are the shock curves. Again, only
the implicit function theorem is needed.

Case Fot): It is in the analysis of the Lax solution near points in this set that
catastrophe theory is used. If (Xo, to, Uo) is in F(or), then (O3F/c3u3)(Xo, to, Uo) ince
Fxo,o( ) has a minimum at Uo. So Fxo,o(U)= K(u Uo)4 + higher order terms, and hence
factors through the cusp catastrophe (Theorem 2.4). Shock curves start at such points
(which are isolated) and are just the Maxwell sets described in 5. As was shown there,
these curves emanate smoothly from (Xo, to).

Case F(oC): This set consists of collision points of shock curves; some computations
are necessary to show that two shocks collide at such points and that it is not the case
that one shock bifurcates into two.

Here the application of catastrophe theory enables one to describe rather explicitly
the qualitative behavior of "most" solutions even though the set of all solutions has no
such qualitative description.
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This theorem has been extended in [12], using more results from the theory of
singularities, to conclude that residual can be replaced by open dense.

Unfortunately, the results described here rely heavily on Lax’s theorem so there is
little likelihood that these methods will yield any new information about more compli-
cated conservation laws.

Other authors have obtained similar results using different techniques, in particu-
lar, Guckenheimer [14] and Jennings [15].

Summary. In this article I have charted a rather conservative course through the
material and applications of elementary catastrophe theory. With regard to the choice
of material I have tried to present only that part of the mathematics which is needed to
understand the possible uses and the necessary assumptions of the theory. These
assumptions aremof course--important. Catastrophe theory can only be applied
rigorously to problems which come naturally equipped with a C parametrized family
of functions; moreover these functions should not be restricted by symmetry or other
requirements. The applications have been chosen to meet these criteria. The potential
function for the buckling beam, the phase functions from optics, and the Lax functional
for convex conservation laws all present opportunities for the rigorous application of
elementary catastrophe theory.

The theorems are about two concepts--stability and genericity. The stability
results are the normal form Theorem (2.3) and the universality Theorem 2.4. In each of
the applications, these theorems allow qualitative results to be obtained by computing
with a specific model. For convex conservation laws the model gives the structure of a
solution near the formation of a shock; for the buckling beam the model gives the
qualitative nature of the bifurcation diagram near the idealized problem; and for
oscillatory integrals the models allow the explicit computations of asymptotic series. In
each example the genericity result (Theorem 4.1)permits the investigation of "almost
all" situations to be accomplished by the inspection of a finite number of cases. This is
most apparent in the oscillatory integrals example.

There has been no argument about the beauty of the mathematics with which
Thom and Mather have presented us. The nature of the ideas has an appeal to
mathematicians which suggests its applicability. I believe that the examples described
here along with similar problems which have been recently investigated give ample
support to the claim that catastrophe theory is rigorously applicable. But like any other
tool it does have its limitations.

Much of the discussion between proponents and opponents of catastrophe theory
centers on the question of just how universal is the catastrophe theory approach to
applications. The answer may well depend on how broadly one interprets the term
"catastrophe theory." If one interprets this term broadly to include the general
techniques and spirit of elementary catastrophe theory then there are many people who
believe that deep qualitative insights are to be discovered about a variety of problems.

It is in this vein that many of the suggested applications of catastrophe theory--
particularly in the biological and social sciences---should be viewed. Thom has
described seven local models which aremat least in the category of unfoldings with four
or fewer parameters--stable (they will not disappear under small perturbations) and
complete (generic). These models give pictures which may well appear in many different
situations. To the extent that these models give a realistic picture of certain standard
arguments they should be incorporated into our language as linguistic models [33]. The
list of--seemingly a thousand and one--different uses of the cusp catastrophe is just one
example of this process in action.
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More concretely, when Zeeman [37] attempts to describe the various stages of the
disease Anorexia Nervosa in terms of pictures given by the butterfly catastrophe and
finds that the treatment suggested by this model and the actual treatment reinforce each
other, is it blind luck? This application of catastrophe theory may not be rigorous as it is
difficult to describe which parametrized family one is analyzing but still it may be useful.
Such applications are neither less scientific nor less realistic than the statistical approach
given by linear regressions. The world may not be a butterfly but then it’s probably not a
plane either!

These sorts of applications of catastrophe theory are intellectually interesting and
fun though they are not yet convincing. Only the future will tell whether this pictorial
approach to modeling given by catastrophe theory (or some generalization)will be
useful.
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