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0. Introduction

In this paper we investigate multiple steady-state solutions in a thermal-
chainbranching model proposed by Gray and Yang [12], [20]. Specifically we
study, from a qualitative point of view, how the number of solutions varies with
the concentration of the reactants. We employ new mathematical techniques (cf.
[10]) based on singularity theory; by virtue of these methods we obtain our
results analytically, without recourse to the computer. (The basics of the required
singularity theory are summarized in Section 2 of the present paper.) We
emphasize that these techniques may also be applied to analyze multiple steady
states in other models. Indeed reference [9] analyzed a single reaction in a
continuous-flow stirred tank in this way; the analytical methods led to the
discovery of certain bifurcation diagrams which had not been observed in the
numerical explorations. Our analysis proceeds by focusing on a sort of worst
case, here called the organizing center. Of course careful treatment of the
singularities in a problem is often required for solution on the computer, and our
analysis complements numerical methods quite neatly.

The thermal-chainbranching model provides a unified, mathematical treat-
ment of the three explosion limits in the reaction of H, with O, in a closed
container. Figure 1 summarizes typical experimental data for this reaction. For a
given mixture of hydrogen and oxygen initially at pressure P and temperature 6,
and immersed in a bath of the same temperature, the reaction will take place at a
slow speed or explosively fast according to whether (P, 8,) lies to the left or right
of the curve in Figure 1. Along the separating curve, P cannot be expressed as a
function of #,; in particular this implies that the overall reaction must contain a
number of elementary reactions. (Similar phenomena are seen in other reactions,
such as the oxidation of carbon monoxide (cf. [4], [7], [16]), the oxidation of
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Figure 1

phosphorous vapor (cf. [3]), or certain hydrogen-halogen reactions (cf. [1], [15]).)
The thermal-chainbranching model retains only four elementary reactions, pre-
sumably slow reactions—the hypothesis that fast reactions are in approximate
equilibrium may be used to eliminate them from the equations. However, even
after reduction the model still contains nine dimensionless parameters. Although
this paper was motivated by an interest in the explosion peninsula in the H,-O,
reaction, we do not attempt to adjust the parameters in the model to give the best
fit with data for this specific reaction. Rather we conduct a parameter explora-
tion, searching for the values which give the most interesting behavior.

The steady state approximation (i.e., neglecting the consumption of fuel) is
one of the hypotheses of the thermal-chainbranching model; thus the model
admits true equilibrium solutions. We study the number of such equilibrium
solutions as a function of the pressure P. Our main result is Theorem 4.2, which

lists the bifurcation diagrams we have shown to occur in the thermal-
chainbranching model. By a bifurcation diagram, we mean a graph of the
equilibrium temperature # against P, the other parameters, including #,, being
held fixed. We treat the pressure as a distinguished parameter because the
explosion peninsula concerns the lack of monotonicity of the explosion limit
curve with respect to this variable. No claim is made that bifurcation diagrams
not enumerated in Theorem 4.2 cannot occur—we have only explored a five-
dimensional subspace of the nine-dimensional parameter space. Even within this
five-dimensional subspace our methods indicate the presence of higher-order
singularities than those considered here—indeed in Section 3 our restrictions on
the parameter y, are related to such higher-order singularities.

In Figure 2(iii) we have shown a sample bifurcation diagram from the list of
Theorem 4.2. This diagram should be interpreted as in any equilibrium theory of
explosions; i.e., whether the reaction is subcritical (slow, a fizzle) or supercritical
(fast, an explosion) depends on whether the equations admit a low temperature
or high temperature equilibrium. (The intermediate temperature equilibria,
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shown as dotted, are typically unstable.) Thus in the figure there are three
explosion limits P;, and the reaction is subcritical in the two pressure ranges
0< P <P, and P, <P <P, Of course this corresponds with Figure 1 at an
intermediate temperature §,, as our labels suggest. The neighboring diagrams in
Figure 2 outline a possible mechanism for the changes in the topology of the
bifurcation diagram as the bath temperature 8, varies. Thus we propose that the
transitions (i) and (iv) occur by traditional bifurcation and isola formation,
respectively. Other mechanisms are certainly possible. For example, a bifurcation
as in Figure 3 could explain the three limit sections of the explosion peninsula.
However, to describe the formation and destruction of the peninsula would
require a longer sequence of diagrams than the one given in Figure 2. We note
that diagrams like those in Figure 3 do appear in the thermal-chainbranching
model. The relation of these two mechanisms is discussed in more detail at the
end of Section 4.

In Section 1, we present the equations of the thermal-chainbranching model
and non-dimensionalize them. Section 2 is a brief summary of the singularity
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the results of Sections 2 and 4. Section 4 contains the classification of all
bifurcation diagrams which occur as small perturbations of the singular bifurca-
tion problem appearing in the mode] and described in Section 2.

1. The Thermal-Chainbranching Model

The thermal—chainbranchmg model is described by the pair of ordinary

which neglects the consumption of fuel:

d
(1.1a) d—§=k,.+[(n— Dk — k, — k,]c,
(1.1b) %;Q = hki + [ hyky + bk, + hokg e — 1(6 — 6,).

It is supposed that concentration and temperature are uniform within the
reaction vessel; the term /(8 — 8,) represents a lumped parameter approximation
for heat loss at the boundary to a bath at temperature . The four terms R Ky,
k,, k, are (temperature and pressure dependent) reaction rates for the four
reactions included in this model—an initiation step, a branching step, and two
termination steps, one at the wall and one in the interior (g for gaseous). The
parameters 4, etc. are the corresponding heats of reaction, partially non-
dimensionalized. Briefly the effect of the four reactions may be described as
follows. In the initiation reaction fuel is converted into the active radical; in the
branching step one molecule of the active radical produces # such molecules; in
the termination steps the radical is eliminated from the system by the formation
of inert products. The concentration P of the fuel does not appear explicitly in
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(1.1), but it does occur implicitly in the various reaction rates, which we now
proceed to discuss.

Few if any realistic reactions are as simple as (1.1}, but (1.1) can be a useful
approximation if fast reactions are eliminated from a realistic system through the
usual equilibrivm assumption. In particular, Gray and Yang [20] argue that, for
an appropriate parameter choice, (1.1) models the reaction of H, with O,, and
they propose a correspondence between certain slow, rate controlling reactions in
the set of reactions for the H,-O, reaction with the four reactions included in
(1.1). (See the appendix for a summary of the reactions used in formulating their
model.) We use their correspondence in formulating our hypotheses on the
reaction rates as follows. Assuming Arrhenius kinetics, the general forms of the
reaction rates in the thermal-chainbranching model are listed in Table I, where P
denotes the concentration of the reactants (the stoichiometry is fixed); for a gas
this concentration may be taken proportional to the initial pressure. The various
activation energies E;, etc. and pre-exponential factors Z, etc. are assumed
constant, and we suppose «, = ( throughout. The rate controlling reactions
proposed by Gray and Yang lead to the following values for the orders of the
various reactions:

(1.2) a=2 a=1 a=2

Henceforth we assume this. In particular, it is vital for the explosion peninsula
that the order of the branching reaction be intermediate to the orders of the two
termination reactions. After our non-dimensionalization below, (1.2) amounts to
assuming prescribed values for two of the nine non-dimensional parameters in
the full model.

TABLEI

k= Zexp{—E,/R# ) P™

ky = Zyexp{ — E,/RB} P
k,=Z. exp{—E,/R8} P>
k, = Zexp{—E,/RB}P%*

We assume that n>1 in (l.Ia), ie., that radical multiplication through
repeated branching is possible. Therefore with an appropriate rescaling of &, and
h, we may eliminate the factor n — 1 from (1.1a). _

Consider the equilibrium equations associated to (1.1), obtained by equating
the right-hand sides to zero. On solving the first equation for ¢ and substituting
into the second, we obtain the relation

(b, + Bk, + (B, — )k, + (B, + Bk
13) kf{ e 3] ~ 18— 0y
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To simplify this equation, we shall assume that
(1.4) hw+h,.=hg+h,-=0.
This has approximate validity for the H,-0, reaction assuming the mechanisms
of Gray and Yang’s model (described in the appendix), in that h; is large
convenience,

Let us introduce non-dimensional variables into (1.3) by defining

I'=RO/E, o= 3Z,/2,P-".

Then (1.3) may be rewritten as

(1.5) Ex(T)o’ - 36,(T)o? + Z6(Tyo=—2__
T_ TO

where we make the following definitions:

(1.6) Ty = R§,/E,
(L.7) Z2=9Z,Z2/22,
2 s
(1.8) a=27RZi(—Z—:) (hbun:,. h‘),
and
!:Sj(T)=exp{+yj/T}, J=123,
where
(1.9a) n=(E+E,~E,)/E,
(1.9b) Y, =1,
(1.9¢) vs=(E;+ E,— E,)/E,

Our final equation (1.5), defining T as a function of v, contains five auxiliary
parameters in addition to the bifurcation parameter v, namely 7, Z, a, ¥, and
¥s- This is reduced from the nine of the full model by assumptions (1.2) and
(1.4). Three of these five may be readily varied in an experiment——obviously Tyis
subject to control; Z includes the ratio of a surface reaction rate to a volume
reaction rate and may therefore be controlled by changing the vessel size or
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adding dilutants; a represents a ratio of heat produced to heat lost and may be
controlled by changing the vessel size or its insulating properties. The scaled
activation energies y, and y; can of course only be varied experimentally by
consideration of several different reactions simultaneously. We shall study (1.5)
when all the y; are approximately equal to 1; this is motivated by our original
interest in the H,-O, reaction where E; is much larger than any of the other
activation energies.

2. The Organizing Center
Let F(T,v;a, Ty, Z,v,, ) be the function defined by (1.5), i.e.,

(2.0) F=650"—36,0"+ Z&,0— T_“TO.

We shall show in Section 3 that there exist values of the parameters a, Ty, Z, vy,
v; such that the system of six equations

2.1 F=F,=F,=F=Fp,=F, =0

admits a simultaneous solution (7° 0%, where subscripts of F denote partial
derivatives. This fact is fundamental to our analysis.

To see the significance of (2.1), let us recall that we want to solve (1.5) for T
as a function of v. More specifically, we are interested in how the number of
values of T which satisfy (1.5) varies with v. At a point where Fr # 0 we may
conclude from the implicit function theorem that locally the equation F =0
defines T as a smooth function of v—in particular, there can be no contribution
to a change in the number of solutions. Thus the first case involving a possible
change in the number of solutions occurs at a point (T°,0°% where

F=F,=0.

Provided that F,, and F, are both nonzero, it can be shown rather easily that
(T° 0% is a limit point, i.e., for v < v° (or v > v’ respectively) there are two
values of T solving (1.5) which meet at T° as v—> v° and for v > v° (or v < 0°
respectively) there are no solutions near T° A hierarchy of cases of increasing
degeneracy suggests itself, and obviously (2.1) is fairly far down on the list.
Indeed because of its complexity, the general theory of [10] provides useful
guidance. (See also the summary of this material in [9], Section 2.)

Balanced against this complexity is the fact that we can analyze (1.5) with
local, analytic methods. Intuitively the reason for this is as follows. If the
parameter values are such that (2.1) cannot be solved, the association bifurcation
diagrams contain up to six limit points—see for example the diagrams of
Theorem 4.2. Choosing parameter values so that (2.1) admits a solution corre-



concepts of the singularity theory approach to bifurcation.
A bifurcation problem is defined as an equation

(2.2a) G(x,A) =0,

(2.2b) H(x, A)= T(x,)\) *G(X(x, A), A()\)),
where 7(0,0) - 0, X(0,0)= A(0) = 0, 3X(0,0)/9x >0, and dA0)/9A > 0. In
words, two bifurcation problems are contact equivalent if they differ only by a

change of coordinates,
For a bifurcation problem G(x, A), x is assumed to measure the state of a

(2.3) G(X,A) = P(x,A) T "
where

(2.4) P(x,A) = Ax® + 3Bx2\ + 3CxA%+ D)3
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and - - - indicates terms of degree four or higher. Associate to P the following
polynomial in one variable:

(2.5) p(z) = Az* + 3Bz* +3Cz + D.

We call G of type (2.3) non-degenerate if A # 0 and the polynomial p has no
multiple roots, i.e., p = dp/dz = 0 has no common solution. We shall show first
that under the assumption of non-degeneracy G and P are contact equivalent.
More specifically, we have:

: PROPOSITION 2.6. A non-degenerate bifurcation problem G of type (2.3) is
contact equivalent to

@7 H(x,XA) = x> — 3CxA> + 2DN%,
where

= (BY_C g 25D _3BC o BY
2.8) c—(A) € and 2D=7 3AA+2(A).

Note that dividing (2.3) by 4 and changing coordinates by x = x — (B/A)A
one can write the lowest-order terms of (2.3) in the form (2.7). The content of
Proposition 2.6, whose proof is sketched below, is that the higher-order terms
may also be eliminated by an appropriate change of coordinates.

If D 0, G is contact equivalent to

2.9) H(x,A) = x> = 3mA%x + 2\%,
where
(2.10) m= C/D?*"3,

this last equivalence being obtained by replacing A by A/|D|'/°. We shall
consider only the case of a “+” sign in (2.9).

H in (2.7) is degenerate precisely when C*= D? and thus degeneracy for
(2.9) occurs when m = 1. Moreover, observe that there is an obvious difference
between the zero set of H in (2.9) when m < 1 and m > 1. In the second case, the
zero set consists of three lines while in the first case it consists of one line (the
other two lines in H = 0 having become complex). When m = 1 the two lines
which are to become complex have merged, thus causing the degeneracy.

Following the usage of singularity theory, we call the parameter m a modal
parameter, since it cannot be scaled from (2.9) by a contact equivalence. As we
shall see in Section 4, m plays a distinguished role in perturbations of (2.9).
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Suppose that F jg the bifurcation Problem defined by (2.0), the values of the
Parameters g, T, Z, v, Y3 being such thay (2.1) has a solution (70, ©%). The cubic
terms in the Taylor serjeg of F around (T%8% haye the form (2.4) with
coefficients

.11 A=6lFTTT’ B"éFTTn’ C':leTw D*E’Fm’

where we identify x With 7— 70 , 4 A With p — ,,0 in (2.4), Now compute
from the Combination of (2.8) and (2.10), namely

2782~ 4,

2.12) m= :
(2B~ 34p8c 4D )3

Ur second tagk of this Section is tq describe 5 method for findjng all smaj)
Perturbations of the singylar bifurcation Problem thay We have jygt discussed.
The singulan'ty theory Ianguage Is ag follows: Given G(x,A), a k-parameter
family Fex, A, @) is called an unfoldz'ng of G if F(x, A, 0)= G(x,A). A universq]
unfolding of G is an unfolding £ of G which classifies Up 1o contact €quivalence

a smal] Perturbation of G; then there is 4 SMooth functjon a(€) such that, for
€ach sma|] & G, is contact €quivalent o Fe, @(€)). For e€Xample, we have the

following, Proposition whege Proof is given a¢ the end of the section.
ProposiTIon 2.13.
Flx,\a, g, V:0,€) = x3 _ 3Y(A2+ 67 + X +2(A% + g\ +8)
and
F(x,)\,a,b,c,d,e) =x3_ JexA? 4 2)3 4 ax® + px 4 A+ ¢

are each Universg] unfoldz'ngs of (2.9) where q, B, 8, ¢, a, b, ¢, dare near zero gng Y,
m.
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near (2.9) one need only analyze F =0 for fixed values of the five unfolding
- parameters. In Section 4, we shall describe the classification of the bifurcation
* diagrams given by the above function F.

The next proposition will allow us to verify in Section 3 that the five
parameters a, Ty, Z, 1, 73 provide a universal unfolding of (2.0) in the
neighborhood of parameter values where (2.1) is soluble. We state the proposi-
tion in terms of a general unfolding F(x,A,a) where a € R®, supposing that
F(:, *,a) is contact equivalent to (2.9) near (xo, Ao)- Given a function Q(x,A), let
j(Q) denote the vector in R '*:

(2‘14) (Q’ Qx’ Q?\S % Qxx? Qx)\’ % QM\! % Qxxx’ % Q:cx?\1 % QxJ\A’ —E‘" QM\?\)
evaluated at (xg, Ay, ap).

PROPOSITION 2.15. F(x,\, @) is a universal unfolding of F(x,\ ag) near
(X0, No) if the determinant of the 10 X 10 matrix J whose rows are given by

JF), J(Fo) J(F), J((x = x)Fe) J(A=Ao)Fy),

2.16
1 S J(Fy) J(F,) J(Es). J(F)

IS non-zero.

We shall now prove the various propositions stated above. The reader who is
not familiar with singularity theory or one of the papers [9], [10] will probably
want to skip the following material.

First we recall some notation. Let TG = {G, G,) be the ideal in &, gener-
ated by G and G,. Let TG = TG + 6,( G, ), where “+” means vector space sum
and &,(G,) denotes the vector space spanned by Gy, AGy,A’G), - - - . Let 9 be
the ideal of real-valued function germs f(x,\) which vanish at the origin. Note
that by Taylor’s theorem 9N is just the ideal generated by x and A. Then ok
denotes the ideal generated by homogeneous polynomials of degree k. The ideal
TG has finite codimension if TG D 9N~ for some k. We always assume that TG
has finite codimension. Note that if G and H are contact equivalent and
oMk c TG, then ONF C TH. (A similar statement holds for 7G and TH.)

The main technique used in proving contact equivalence is the following: let
G,(x,A) be a curve of bifurcation problems depending smoothly on z. Suppose
that TG, = TG, for 0 < ¢ = 1; then G, is contact equivalent to G.

Nakayama’s lemma is a useful algebraic tool for computing TG. Let § =
{p,q> be the ideal generated by p(x,)) and g(x,A). Let p’ and ¢’ be in the ideal
94 generated by xp, Ap, xg, Ag. Then the ideal {p + p’,q + ¢') equals §.

LemMa 2.17. _Let G be a nondegenerate bifurcation problem of type (2.3). Then
M*CcMTG C TG.
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_Proof:  Using a change of coordinates of the form x = X + AX> + BXA +
CA%, A =X + D)%, we may write G in the form

2.18) G(x,A) = x> —3mxA> + 202+ NA\* 4 - - -,
where + - - - indicate terms of degree five or higher and m % 1. Now define
(2.19) G(x,A) = x> = 3mxA2+ 203+ ¢(NA* + - - - ).

Note that
(2.20) TG, = (x> = 3mxA> + 2% + p', 3x> = 3m\ + ¢,

where p’ and ¢’ are in 9*. Consider the ideal
(2.21) § = (x* = 3mxA? + 20%, x* — mA?).
The homogeneous terms of degree four contained in § are

(2.22) x4 = 3mxA2 4+ 2xA3, XA = 3mxAP+ 224 x* — mx?\?,
’ XA — mxA3, x*A?— xA4
When m # 1, the polynomials in (2.22) form a basis for the homogeneous
polynomials of degree four. Noting further that the polynomials of (2.22) are
actually in 99, we see that M* C M ¢. Thus we may apply Nakayama’s lemma
to see that TG, = ¢ for all 7. Hence M* C M TG C TG.

We have, of course, proved more, namely Proposition 2.6, since T G, = TG0
for all t and G, = H in (2.9).

The results about the universal unfolding follow relatively easily from the
above calculations and the unfolding theorem. Denote the space of germs of
functions in x and A by &, ,. Let a = (a, - - - , o).

TueoreM 2.23 (cf. [10]). Let F(x,\, a) be a k-parameter unfolding of G(x,A).
Then F is a universal unfolding if
o =0} ‘

Knowing that 91* ¢ TG C TG means that a complementary vector space to
TG in &, , may be found among the polynomials 9, of degree at most three in x
and A. Also, TG N @, is spanned by the Taylor expansions up to degree three of
G, G,, xG,_, AG,, and G,. (The one other possibility, AG,, is already in the span
of these five generators.) One may check that these terms are linearly indepen-

0F

AF 9F
dar, |*=0

2
day.

’

(2.24) 6. =TG+ R[
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dent. Since dim %, = 10, one sees that there is a five-dimensional complement to
TG. For the canonical form (2.9) it is easy to check that 1, x, A, x\, and x\2 span
a complementary space to 7G as do 1, x, A, x% and x?\. This computation along
with Theorem 2.23 proves both Proposition 2.13 and Proposition 2.15.

3. Calculations for the Thermal-Chainbranching Model

The purpose of this section is to verify two facts promised in Section 2. First,
we show that there is a one-parameter family of bifurcation problems (we choose
y; as the parameter) which are contact equivalent to (2.9) in the thermal-
chainbranching model defined by (1.5). For this family the modal parameter m is
less than unity so that we are dealing with the one-root case. We find that m may
be either positive or negative depending on the choice of y,. In fact, the
physically reasonable choice of y; =1 leads to the value m = 0, which, as we
shall see in the next section, is distinguished by admitting a larger number of
perturbations. Some of the calculations are also simplified for this value. In any
case, the sign of m affects which perturbations are possible.

Second, we show that the five auxiliary parameters, a, T, Z, Yas Y3, form
universal unfolding parameters for the bifurcation problem described above
when m = 0 and hence that all the perturbations described in Section 4 actually
do occur.

Recall the function G defined by equation (1.5):

3.1) G Ti1,0, T Z, ¥4, 73) = 850° — 36502 4+ Z6 0 — -2
2 1 T_ T
0

—
= T—Tg"

TueoREM 3.2.  For any v, satisfying 0 < y5 <3 there are unique values of T, v,
and the other four parameters solving (3.3) below. Provided 0 < vy, < k, where

Fom L e d o qiny
2+3412

the bifurcation problem defined locally by G with these parameter values is contact
equivalent to (2.9) with m < 1.

Proof: We must solve the six equations
(3.3) G=Gr=G,=Grp=Gp, =G, =0,

and verify that the cubic terms are non-degenerate there. Observe first that
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G, = F, and that the three equations
(@) F,=36;0"—66,0+ Z&,=0,
(3.4) ~ (b) F, =66,0—66,=0,

(€) Fr=3650"—66;0+ Z6;=0,

imply that
(a) v=26,/6;
3 63

© T @r-n-v)=0

Thus from the three equations (3.4) we deduce the relations
(3.6) HAE )= =L E=35

both independent of v and 7, and equation (3.5a) expressing v as a function of
T. However for convenience below, we prefer to rewrite (3.4a), using (3.6), as

3.7) F,=3(8)%0 - 61%)'=0,

Next observe the equations G = G, =0 can be solved for a and T, as
functions of T

a=—F?/F,,

(3.8) 1
T—-T, il &

Finally we consider G, = 0. Note that by integrating (3.7) with respect to v
we have

_(@o-sy

(3'9) 5;/2

+6Y%65 172,

Let (T) = &3/%6; /2 = exp{3y, — v3)}/2T. Since the first term in (3.9) vanishes
at the organizing center, we have there

°

(3.10) F=%, Fp=9, Fp=9".
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n2
2a =5}r;_2(6}) =0

Grp = Frr — —22— :
5 T (T—TO)3 o

- we have used (3.8) and (3.10) to eliminate a and T,. On performing
differentiations, we find that (3.11) has a unique solution T in fact T=
¥, — ¥3) Which may be rewritten using (3.6) as

3.12) T=3-1.

The values of the other variables at the organizing center may be obtained by

back substitution into (3.5) and (3.8).
To complete the proof of Theorem 3.2, we must calculate the third derivatives

of G at the organizing center. Labeling these derivatives as in (2.11), we find

L=y
e

D=53’

where T is given by (3.12). Note that A > 0 provided 0 < y; < k. On substitution
into formula (2.12) for the modal parameter, we obtain

1/3
3. sl il As ,
(3.13) m [ o 1)2 }

where

We claim that m = 1; for s =0 this is obvious from (3.13), and if s <0 we may
use the inequality [25|=1+ s? to compare the numerator and denominator.
Finally, m is positive or negative according to whether y; > 1 or y; < 1, respec-
tively. This completes the proof of Theorem 3.2.
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The second task of this section is to show that the five parameters a, T, Z,
v;,» and y; provide a universal unfolding for G at the points satisfying (3.3). This
involves evaluating a 10 X 10 determinant of the form (2.16) for each value of y;.
When vy, = 1 this determinant simplifies because m = 0 and the two coefficients
B and C also vanish. An explicit calculation of the determinant in this case yields
the value 2'"' x 3%' X ¢'®; in particular it is non-zero. Of course by continuity it is
non-zero in a neighborhood of y, =1, which proves that the five physical
parameters do indeed provide a universal unfolding of G near this point.

Computer calculations of the determinant for other values of y, indicate that
it is non-zero for 1 < y, < k but that it changes sign at values of y; somewhat
smaller than 1. This suggests that additional physical effects may be expected for
y; < 1, but we do not pursue this further here.

4. Perturbations of the Organizing Center

Our purpose in this section is to classify all stable bifurcation diagrams which
occur as small perturbations of a non-degenerate, one-root cubic which may be
put in the normal form (see Section 2):

(4.1) G(x,A) = x> —3mA%x + 22> = 0,

where — oo < m < 1. The parameter m cannot be scaled from (4.1) by a contact
equivalence and is called a modal parameter. (The form G(x,A) = x3—3m\%x —
2A°% =0 can also occur; however, replacing A by —A will change this form to
(4.1). Studying this problem separately is not necessary.) We shall show (in two
different ways) that the values m = 0 and m = — oo are distinguished. Our main
result is the following theorem. The reader should note that in the bifurcation
diagrams of this theorem the horizontal axis A corresponds to o, the inverse
pressure; this explains the reverse orientation of the case LLLR compared to
Figure 2(iii) in the introduction.

THEOREM 4.2. (a) Fix m < 1. Then the eleven (stable) bifurcation diagrams
shown in Figure 4 occur as small perturbations of (4.1).

(b) If 0 < m < 1, then precisely three other stable bifurcation diagrams, pictured
in Figure 5, may occur as small perturbations of (4.1).

(c) If — oo < m <0, then precisely three other stable bifurcation diagrams may
occur as small perturbations of (4.1), as shown in Figure 6.

(d) The seventeen bifurcation diagrams listed above occur as small perturbations
of (4.1) when m = 0. Note that here one must perturb m.

To clarify the notation in this theorem and to explain why m =0 and
m= —co are distinguished, we recall the idea of “paths through the cusp”
discussed in Sections 4 and 8 of [10].
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SINGLY COVERED

TRIPLY / COVERED
A= B

Figure 7

Consider

(4.3) x3—3A4x +2B =0,

which is the standard cusp surface pictured in Figure 7. The cusp curve 4> = B?
divides the A4, B-plane into two regions; one which is triply covered by the cusp
surface while the other is singly covered.

Letting

(4.4) AA)=mA* and BQA) =X\’
we obtain a path in the 4, B-plane which is also a cusp curve except where m = 0
and m = — co. See Figure 8.

The universal unfolding (2.13) of (4.1) shows that all small perturbations of
(4.1) may be realized (up to contact equivalence) by paths

(4.5) AN =y(AN*+8A+¢€) and BA)=A'+BA+a,
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m=-w
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A = B?
A

Figure 8

where a, 3, 8, € are near 0 and vy is near m. Moreover, as was discussed in Section
4 of [10], the number and order of intersections of the path (A (A), B(A)) with the
cusp curve 4> = B? completely determine the types of bifurcation diagrams
which can occur as small perturbations of (4.1). Since A(A)*= B(\)* is a
polynomial of degree six in A, there are at most six intersections. By order we
mean the order (as A increases) in which the path crosses the left-hand (L) nappe
or the right-hand (R) nappe of the cusp curve. This sequence is given in Theorem
4.2 for each of the diagrams.

The actual proof of Theorem 4.2 proceeds along a different tack. The reader
should be warned that the calculations involved are long and somewhat tedious.
Therefore, we shall give a detailed outline of our methods showing the essential
ideas. The interested reader should be able to fill in the omitted details if he or
she so desires.

In order to describe how our proof of Theorem 4.2 proceeds, we recall a
result from [10]. Let F(x,\, a) be a universal unfolding of (4.1) depending on five
parameters a. Define 2 = % U I, where

% = {oz € R®| there are xy, Ay with F= F, = F, =0 at (xo,)\o,a)}
and

% = (& € R’| there are xo,A, with F = F, = F,, = 0at (xp, A, ) }.

THEOREM 4.6. Suppose a and [ are in the same connected component of the
complement of Z in R®. Then F(-,-,a) and F(-,+, B) are contact equivalent and
thus the bifurcation diagram associated with F(-,+,a) =0 for a & 2 is stable.

This theorem states that the connected components of the complement of =
give an enumeration of the stable bifurcation diagrams which can be obtained
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from (4.1) by a small perturbation. For relatively simple bifurcation problems the
delineation of X is straightforward (see [10], Section 4, for examples). The direct
computation of = for (4.1) seems complicated (see, however, [22]). Instead,
observe that the points a in 3 correspond to bifurcation problems Fy-, -, a)
which are singular at at least one point (xg,A). Moreover, points a in the
intersection of (B ) with (9C) as well as points in self-intersections of (%) and (90)
correspond either to higher codimension singular bifircation problems or to
bifurcation problems with degeneracies at several points. We call the latter
singularities multi-local. Our general approach is to classify the local and multi-
local singularities which occur for a in = and then perturb these problems to find
the stable diagrams. Since = bounds each component of R°~Z, this is an
exhaustive (and exhausting) method. Several simplifications are possible and we
shall describe them shortly.

To start, observe that if « € £ and (x05A0), * + + , (X, A) are singular points of
F(-, -, ), then the following holds:

PROPOSITION 4.7.  The parameters o form universal unfolding parameters for
each of the local bifurcation problems F(-, -, a) near (x,,\,) simultaneously.

In particular 2’;=,codim(F(-, ,a) near (x;A)) is at most 5. Moreover,

perturbations of F(-,+,a) can be found by perturbing F(-, +,a) arbitrarily near
each (x;,A,) and connecting the end points of the branches. For a bifurcation
problem G(x,\) defined near (0, 0), let rank G = n if the Taylor expansion of
G(x,0) at 0 starts with terms of degree n. Observe that if F(x,A, «) is a universal
unfolding of G, then the rank of F (x,A, @) localized near (x,,A,) is at most equal
to the rank of G. Note that the rank of G in (4.1) is three.
_ Finally, for a bifurcation problem G(x,)), the codimension / of the ideal
TG = (G, G,) is the maximum number of (possibly degenerate) limit points (e,
simultaneous zeros of G and G,) which can occur in a small perturbation of G
(cf. [8], [10]). (If the corresponding bifurcation diagram is stable, then G, - G,
# 0 and, in a neighborhood of a limit point, G is contact equivalent to x2 + A)
Proposition 4.7 also implies that, for multi-local singularities, 3*_ /. = /. For
(4.1), I =6. It is also the case that each ;= 2. Thus no more than three local
singularities can occur in a small perturbation of (4.1).

The first step in our proof of Theorem 4.2 is to identify which local
singularities can occur as small perturbations of (4.1). Each local singularity
G(x,A) may be classified by a sequence of equalities and inequalities on the
partial derivatives of G at the singular point. We call the conditions of equality
the defining conditions for the singularity and the conditions of inequality the
non-degeneracy conditions. For singular bifurcation problems of low codimension
and rank, these two numbers define the singularity. In the notation of the
following theorems, S refers to a singularity of codimension ¢ and rank r.
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THEOREM 4.8. The following is a complete classification of local bifurcation
problems G(x,\) of codimension less than or equal to 4 and rank less than or equal
to 3.

Singularity | Normal Form Defining Conditions Non-Degeneracy Conditions

S 1 x**A G=G,=0 G- G#0
St 2 x2+A? G=G,=G,=0 det(d’G) =0
S3 3 WEN G=G, =G (4G )(v,v,0) #0,
= det(d’G) =0 where (d2G )v =0
87 4 x2£A G=G,=G,=del(d’G) (d*G)(v,0v,0v,0)
S i — 2
—dG(v,v,u)—O, —6(d36(v,0,%)) =0
S 5 x*+A* G= G, = G, =de(d’G)
= (d*G)(v,v,v)
= (d*G )(v,v,0,v)
3 31\
" 6((d G)(v, 0, o )) =0
s 2 2**X G=6G, =G, = Goex * Gy =0
5 3 *+Ax G=G,=G,=G, =0 Grye* Gy %0
53 4 2N G=G,=G=Gu=Gy=0 Gy Gy#0

We shall not need the non-degeneracy conditions for S7 so these are not
included.

COROLLARY 4.9.  The multi-local singularities which could occur in the unfold-
ing of (4.1) subject to the limitations in codimension, rank, and limit points discussed
above are:

Total codimension Possible Singularities
1 8882
2 87,280, 8F + 82.52,38}
3 57,382,282+ S}, 82 + 283,353, 83,
S;+ SLS7+ 88,83+ 82,83+ 87
4 53,87 + 8,83+ 87,83+ SL,83 + 52,

28,87+ 5283,
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It is now necessary to analyze which of the multi-local singularities listed in
Corollary 4.9 actually occur as small perturbations of (4.1). There are several
tricks which simplify the calculations involved.

Observe that the universal unfolding of (4.1) consists of the cubic term (4.1)
plus four of the six lower order terms. Also, it is much easier to calculate the
defining conditions for a given singularity at the origin rather than at an
arbitrary point (x,,Ao). Trick one is that if we add the two remaining lower-order
terms to the unfolding of (4.1), i.e.,

(4.10) F(x,A) = C(x,X) + ax’ + bxA + A’ + dx + eA + f,

then we may assume that the desired singularity is based at the origin. Indeed,
these two extra parameters may be thought of as translation parameters, and
translation (x,A)—> (x — Xo,A — Ag) does not change the cubic terms C in (4.10).
As a result one may specify the cubic terms up to contact equivalence and also
require that one singularity be at (0,0) in (4.10). As we are working with a cubic
with one real root, we may—by a rotation—assume that x = 0 is the zero set of
C. Further scalings show that

4.11) C(x,A) = x> — 3Bx?A + xA’
is an alternative to (4.1) in (4.10).

ExampLE. Does S? occur in the unfolding of (4.1)? Answer: No. We may
assume from the above discussion that S2 occurs at the origin and that the cubic
terms in (4.10) are (4.11). The defining conditions for S7 imply thatd=e = f=0
in (4.10) and that the quadratic terms are a(x + ZA)’. Moreover, v = —¢d/dx +
9/d\. Since (d*G)(v,v,0) = (d’C)(v,v,v) at (0,0), we see that —¢ is a root of
C(x,\) =0 and thus ¢ = 0. Since (d°G)(v,0,9/8x) = Gy, =2 # 0, we see that
the defining conditions for S are never satisfied.

Another observation is that two local singularities cannot occur for the same
value of A in a multi-local singularity (when rank is at most three). For suppose
(X0, Ao) and (x,,A) are singularities for the same value of . Then, at the very
least, F = F, =0 at both (xq,Ag) and (xo,A,). Fixing A, and a we see that the
unfolding of (4.1) is a cubic polynomial in x. Specifying F = F, = 0 at two points
implies that the cubic polynomial is identically zero, an impossibility.

Now suppose that (x,,Ao) and (x;,A;) with Ag = A, are local singularities for
the same a. We can assume that (xy,Ao) = (0,0). By a linear contact equivalence
x—>x + b\ we can assume that x, =0. Scaling A allows us to assume that
(x1,A;) = (0, = 1). Of course, these coordinate changes alter the form of the cubic
terms, but sometimes this is a preferable alternative. When two singularities are
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specified, the cubic terms may be assumed to have the form
(4.12) C(x,A) = x* + Bx2\ + yxA? + 8A°
along with the assumption that C has one real root.

ExampLE. The multi-local singularity S7 + S? cannot occur in the universal
unfolding of (4.1).

Proof: Assume that S occurs at (0,0) and S} occurs at (0, 1). (S7 could
occur at (0, —1) but sending A—> —A reduces that case to the above.) The
defining conditions for S7 imply that (4.10) has the form

(4.13) F(x,A) = x> + BxA + yxA2 + 8A% + a(x + cA)*.
By calculation, F = F, = F, = 0 at (0, 1) implies
(4.14) 8+ac’ =0, y+2ac=0, and 36+ 2ac’=0.

Thus y = § = 0, which implies that the cubic terms of (4.13) are x* 4+ Bx*\ which
has zero as a double root. Hence S7+ S} cannot occur when (4.1) is non-
degenerate.

Note that in the above proof we only used the defining conditions of
S2+ S%; thus 257 and S7 + S; cannot occur. Calculations of the same type as
those in the two examples above show:

PROPOSITION 4.15. The multi-local singularities which do occur in the univer-
sal unfolding of (4.1) for m #0, m # — o0 and m < 1 are:

Total Codimension Multi-local Singularites
1 St 8¢
3 8128282+ 8. 85287
3 S2,82+28},83,82+ S},

S3+ 82,87+ S

Note: The multi-local singularity S5 + S; occurs when m =0 and 2S;
occurs when m = —oo and these are the only codimension four singularities
which do occur. This is the second way in which m =0 and m = — oo are
distinguished values for the modal parameter m.
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The second step in the proof of Theorem 4.2 is the observation that to find
the stable bifurcation diagrams in the unfolding of (4.1) one need only look at
small perturbations of the multi-local singularities of total codimension three.
The proof of this statement proceeds as follows: one shows that each connected
component of a singularity of codimension one or two has in its boundary a
singularity of higher codimension. The calculations involve showing that among
those bifurcation problems satisfying the defining conditions for a given multi-
local singularity there are those which do not satisfy the non-degeneracy condi-
tions.

We consider two examples. The defining conditions for S} are G = G, = G,
— 0. We may take the universal unfolding of (4.1) to be '

(4.16) F(x,\) = C(x,A) + ax’ + bx + A+ d.

The three defining conditions allow one to find b, ¢, and d as functions of x, Al
m, and a. Thus the defining condition for § 2 will give a connected set in R®. The
trivial observation that problems of higher codimension occur in this set proves
our assertion.

As a second example consider 2S7. We can assume that the two S;’s occur at
(0,0) and (0, 1) and that F is given by

(4.17) F=C(x,A)+ax?+ bxh+ cA* + dx + ek + f= 0,

where C is as in (4.12). Now G=G, = G, =0 at (0,0) and (0,1). Thus
a=d=f=0and

(4.18) S+c+e=0 y+b=0 28=0
Consequently,
(4.19) F=x3—bxA2—(c+ e’ + bxA + A2+ ed=0.

The non-degeneracy conditions are given by F,,. # 0 which is always satisfiec
and

(4.20) F,= —2bxA—3(c+ e\ + bx +2cA+ e #0
at (0,0) and (0, 1). That is
(4.21) e+=0 and c+2e+#0.

Thus, there are at least four connected components of 28] type singularities a
each borders on a more degenerate problem (obtained by setting one of t
non-degeneracy conditions to zero).

The other calculations used to prove the second step are similar.
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There are two parts to the third step in the proof of Theorem 4.2. First one
calculates—for fixed values of the modal parameter—the various curves in
parameter space along which each of the six codimension three singularities
listed in Proposition 4.16 occurs. They are given in

ProposITION 4.22.

a). 52 F=x*—38x2\+ xA + ax?,

(b) SF+28 F=x—-3mxA2+2\%-1 bmx2 + bxA + b(m® — 4A?/6m,
(c) §; + S} F=x3—Bx®A + yxA2 + yx)\

(d) S5+ 87 F=x>=3mxA?+ 2A° + bxA — (2b/3m)A%,

() S;+ 87  F=x—(AF 1)(ax?+ 2ackx + ac’A?),

D S5 F=x=3mx\>+ 2\ + A2

The second part of this third step is to graph the actual singular bifurcation
diagrams which occur in Proposition 4.22. Care must be taken in (a), (c), and (e)
to find the modal parameter m as this puts restrictions on the two free parame-
ters present. The bifurcation diagrams are shown in Figure 9.

The calculations involved in finding these diagrams are all elementary though
those for case (e) are by far the most difficult. As a sample we describe the
calculations for case (b)

We assume that S} is at (0,0) and the two S} singularities are at (x;,A,) and
(x3,A,) with A} % A,. Thus

(a) F= X2 = 3mxA® + 20% + ax® + bxA + A2 =0,
(4.23) (b) F,=3x>—3mA>+ 2ax + b =0,
(¢) Fo=6x+2a=0,

at (x;,A;). From (4.23c) we see that x, = x, = — 1 a. Substituting in the first two
equations yields:

(a) 2}\3+(ma+c))\2 ab}\+ S =0,,

(4.24) b i
2 —_— =
(b)y A )\+ om 0.
Moreover these equations should have both A, and A, as roots. As a result,
(4.24b) is a factor of (4.24a) which implies

(4.25) Ca=- %bm, = %(m3—4).

This gives the form of F in Proposition 4.22(c). The non-degeneracy conditions
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are G, det(dZG) #0 at (0,0) and G,,, * G, # 0 at (x;,A). Now G, (0,0) =
while det(d 2G)00) = +(1 = m%) > 0. Note that both eigenvalues of (d*G) have
the same sign so that, near (0,0), G is contact equivalent to x2+ A% =0 (as long
as b = 0). This explains the point in the bifurcation diagrams. Since G, = 6, we
need only compute G, at (x;,A). In fact,

(4.26) GA=3—n:(1—m3) at” (AN

Thus G is contact equivalent to x> = A near (x,,A;), where the *+ sign is just the
sign of G,. This information is sufficient to draw the bifurcation diagrams.

The final step in the proof of Theorem 4.2 is to perturb each of these singular
bifurcation problems to obtain the stable perturbations of (4.1). For example in
case (d) a pitchfork S and a hysteresis point S; appear. From previous
calculations (cf. [9], [10]) we know that the pitchfork perturbs into four stable
diagrams and the hysteresis into two. See Figure 10.

One now uses the fact that all local perturbations are possible to split case (d),
b > 0,0 < m < 1, into the eight stable diagrams given in Figure 11.

If one breaks each of the diagrams in Figure 9(a)—(f) into their stable
perturbations and keeps track of the intersection sequences which appear, one
completes the proof of Theorem 4.2(a)—(c).

Clearly, when m =0, a small perturbation will make m either positive or

}J—jlz

(2) (3) (4)
PITCHFORK POSSIBLE STABLE PERTURBATIONS
HYSTERESIS
Figure 10
(1) LR (2) LRLR LRRL
,252 e
[
(4) LRRLLR {5) LL (6) LLLR
(7) LLLR 8) LLLRLR

Figure 11
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M<O W>D

Figure 12

negative and thus yield all the diagrams in parts (a)-(c) as small perturbations.
To see that no new diagrams are obtained, one observes that the singularity
S} + S; occurs as a subcase of case (f), i.e., as

(f) F=x>+2\%+ c\?

with associated bifurcation diagrams as shown in Figure 12. Finally note that all
possible stable bifurcation diagrams obtained by perturbations of those in Figure
12 have been obtained previously.

We end this section by commenting briefly on possible sequences of bifurca-
tion diagrams which might explain the explosion peninsula along the lines of
Figure 2. For example, a sequence which includes Figure 3 would have to be
more complicated than the sequence given in Figure 2. However, from the proofs
given in this paper it would be impossible to choose between these sequences.

In Theorem 2.16 of [10] it was shown that for any universal unfolding
F(x,\, ) there exists a variety £ in parameter space R* (the space of a’s) such
that connected components of R“~ZX correspond to bifurcation diagrams of a
given qualitative type. In general, the determination of X is difficult, but some
examples are calculated in [10]. One can think of the explosion peninsula as a
(continuous) one-parameter family of bifurcation diagrams depending on T;
that is, the explosion peninsula may be identified with a curve in parameter
space. In order to determine which sequence would seem most reasonable (from
a mathematical point of view) one would need to know how X is contained in R’
for our organizing center. I. Stewart has recently calculated X in the case m <0
and concluded that the sequence shown in Figure 2 is the one most likely to
occur; see [22]. However, his preliminary calculations for the range 0 < m < 1
(private communication) indicate that here a sequence including the diagram of
Figure 3 is a more likely explanation of the explosion peninsula.

A further problem is to try to relate the physical parameter values of the
H,-O, reaction to this model. In order to accomplish this, one would again have
to know the geometry of Z.

Appendix

Identification of the Thermal-Chainbranching Model with the Mechanism
of the H,-O, Reaction

We outline briefly the correspondences that Yang and Gray make in the
application of their model in [20]. Some attempts to catalogue the complete set of
elementary reactions for this reaction appear in [4], [5], and [16].
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There are several versions of the initiation step, with Semenov [18] suggesting
H, + 0,->H + HO,
and Dainton [3] preferring
H,+ M—>2H + M,

where M represents either a hydrogen or an oxygen molecule, while Gray and
Yang follow Lewis and von Elbe’s [16] mechanism, using a series of initiation
steps which depend on achieving a steady-state concentration of H,0,. What is
important for our purposes is that any of these mechanisms leads to a rate of
production of H which is proportional to P? since it is assumed that [H,], [O,]
and a fortiori [M] are proportional to their partial pressures and hence to [A] in
the general reaction. Thus o; = 2.

There is substantial agreement (cf. [4], [3], [7], [16], and [17]) that the
chainbranching of hydrogen atoms is accomplished via a series of three reactions

k

(A.1) H, + OH— H,0+ H,
kl

(A2) 0, + H= 0H+0,
‘ .

(A.3) H, + 0> OH+ H,

of which the middle one is rate-determining (the slowest). If one considers
reaction (A.2) followed by (A.3) to convert the O radicals to H and OH, and
then by (A.1) to convert the OH to H, one obtains an overall reaction

(A4) H + 3H, + 0, 3H + 2H,0.

Hence, in the branching step, n = 3, while the rate k, is determined by the rate,
k,, of (A.2). Thus a;, = 1.

The two mechanisms responsible for destruction of the free radicals are
recombination at the wall and a trimolecular reaction in the interior. The first,
represented as

B
H + Wall 3 2 H,

is supposed to be thermally neutral (y,, = 0), although k,, depends on the size and
shape of the container as well as the material with which it is coated (cf. [4]).
Lewis and von Elbe [16] argue that the gaseous termination mechanism is

k
H+0,+ M—SHO,+ M,
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followed by further reactions of the hydroperoxyl radical HO,. Again M is some
stable species and hence the reaction rate is proportional to P?; that is, a, =2.

Thus, when the model is applied to the combustion of hydrogen, the con-
stants a; are fixed. Values of the v; depend on which model is used, though E; is
large (E,/R > 50,000°K) in all versions. The accepted value of E,/R is about
8000°K, while E, is zero or slightly negative. Thus, when v, is normalized to be 1
in equation (A.2) the other two activation energies, v, and y, in (A.1) and (A.3),
are approximately 1.2. This justifies the consideration, in Section 3, of an
organizing center near y, = y, = 1.
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