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We survey general results relating patterns of synchrony to network topology, applying the formalism

of coupled cell systems. We also discuss patterns of phase-locking for periodic states, where cells have

identical waveforms but regularly spaced phases. We focus on rigid patterns, which are not changed by

small perturbations of the differential equation. Symmetry is one mechanism that creates patterns of

synchrony and phase-locking. In general networks, there is another: balanced colorings of the cells. A

symmetric network may have anomalous patterns of synchrony and phase-locking that are not conse-

quences of symmetry. We introduce basic notions on coupled cell networks and their associated sys-

tems of admissible differential equations. Periodic states also possess spatio-temporal symmetries,

leading to phase relations; these are classified by the H/K theorem and its analog for general networks.

Systematic general methods for computing the stability of synchronous states exist for symmetric net-

works, but stability in general networks requires methods adapted to special classes of model equations.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953664]

Networks describe how dynamical systems interact. A cell,

or node, represents a component subsystem, and a connec-

tion represents an input from one cell to another.

Applications are widespread; they include gene regulation

networks, which organize the activity of genes in a devel-

oping organism; food webs, which describe the interac-

tions between predators and their prey in an ecosystem;

and neural networks, such as the brain. Networks often

display patterns of synchrony, in which clusters of cells

behave in the same manner. A related phenomenon, occur-

ring when the system oscillates periodically, is phase-lock-

ing: cells behave the same way, except for a time delay.

Coupled cell systems provide a general mathematical con-

text for studying networks, applicable to many different

real-world models; for example, animal locomotion and

the visual system. Symmetry leads to patterns of syn-

chrony, but other patterns may occur. The theory provides

a classification, for any network, of all possible rigid pat-

terns of synchrony and phase-locking: those that persist

when the model equations are perturbed. It also provides

methods for finding these patterns in a given model. A key

feature is the notion of a balanced coloring, which provides

consistent inputs to synchronous cells and classifies invari-

ant synchrony subspaces. Stability of a synchronous state

depends on eigenvalues of the Jacobian transverse to a

synchrony subspace. Systematic methods to compute

stabilities, based on irreducible representations, exist for

symmetric networks. For general networks, only special

types of model equation and network topologies (such as

feedforward) are understood in detail.

I. INTRODUCTION, EXAMPLES, AND OVERVIEW

This paper discusses four separate but related issues:

rigid patterns of synchrony for equilibria, rigid patterns of

phase-shift synchrony for periodic cycles, stability of

synchronous states, and the relation between these topics and

network symmetry. We discuss these issues from the general

viewpoint of coupled cell systems. This is a specific formal

setting for network dynamics, focused on general features

created by the network topology, rather than on more

detailed features of specific models or classes of models. We

survey some of the basic concepts and results in this area.

Roughly speaking, the pattern of synchrony associated to a

state x ¼ ðx1;…; xnÞ in an n-cell network is a coloring of the n
cells where two cells c, d have the same color only if xc¼ xd.

The pattern of synchrony for an equilibrium is rigid if perturb-

ing the network system moves the equilibrium, but does not

change its pattern of synchrony. A T-periodic solution xðtÞ
¼ ðx1ðtÞ;…; xnðtÞÞ has phase-shift synchrony in cells c and d if

xdðtÞ ¼ xcðtþ hcdTÞ;

where 0 � hcd < 1. The pattern of phase-shift synchrony for

x(t) is the set H ¼ fhcdg. This pattern is rigid if perturbing the

network system perturbs x(t) but does not change H. This paper

reviews the classification of rigid patterns and the subtle rela-

tionships with “balanced colorings” and “network symmetries.”

Synchronous behavior in networks of dynamical systems

(ordinary differential equations (ODE)) has been widely stud-

ied. It occurs when observations of distinct cells of the net-

work lead to time series that closely resemble each other. The

strongest form of resemblance occurs when the time series are

identical; at the other extreme, they may be distinct but signif-

icantly correlated.

More generally, sets of cells can synchronize in clusters:
here observations of cells in the same cluster give very similar

time series, but time series from cells in distinct clusters differ.

A partition into synchronous clusters is a pattern of syn-
chrony; see, for example, Refs. 7–9, 36, 38, and 39. Another

term is partial synchrony. These papers contain special cases

of a general combinatorial theorem that characterizes patterns
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of synchrony. We motivate and state this theorem in Section

II B in terms of “balanced colorings.”

Here, we give an overview of a general formalism for

network dynamics, coupled cell systems, developed over the

past decade, and describe some of the insights it provides

into patterns of synchrony. It is well known20,36 that there is

a close relationship between patterns of synchrony and net-

work symmetries, because symmetry-breaking naturally cre-

ates patterns. More surprising is the occurrence of patterns of

synchrony that have nothing to do with symmetry in the con-

ventional group-theoretic sense.24,27,42

Applications of symmetric coupled cell systems include

animal locomotion,10,12,22,23,37 binocular rivalry,13,15 and the

vestibular system.26,33 Applications of general coupled cell

systems include binocular rivalry14 and homeostasis.21

There are several reasons for developing such a theory.

One is to organize and unify the analysis of network dynamics

and typical behavior. Another is that in many applications,

especially in biology and neuroscience, accurate equations or

key parameters such as reaction rates are not known. It is

therefore useful to consider the behavior of entire classes of

models, to see what they have in common and how they dif-

fer. For example, the existence of a state with certain features

is often generic, but its stability is usually sensitive to changes

in the detailed model. General methods for calculating stabil-

ities are the most we can hope for.

A. Motivating examples

We now give a series of examples to illustrate general

phenomena that will be examined in greater generality later.

Example I.1.

A bidirectional ring of identical cells with identical cou-

plings is symmetric under the dihedral group D6, the symme-

try group of a hexagon. The methods of symmetric bifurcation

theory20,25 show that there are many typical patterns of syn-

chrony, associated with subgroups of the symmetry group.

Figure 1 shows the nontrivial types of pattern; we explain

their derivation in Section III. Here, cells with the same color

are in the same state, a convention we use throughout.

For simplicity, the network illustrated has nearest-

neighbor coupling, but the same catalog of patterns occurs if

longer-range couplings are permitted, provided they preserve

the D6 symmetry.

Example I.2.

In periodic dynamics, there is a further related phenom-

enon: cell states may be phase-locked. They then have the same

waveform, but with phase shifts. Figure 2 (left) shows a ring of

three identical FitzHugh-Nagumo neurons with unidirectional

coupling; Figure 2 (right) shows a typical periodic state in

which all cells have the same waveform, but successive waves

are phase-shifted by one third of a period, see Section III.

Example I.3.

Symmetry of the network is a common source of patterns

of synchrony, but not the only one. For example, the network

of Figure 3 has only trivial symmetry, but we prove in Section

III that the synchrony pattern shown by the different colors

can occur for both equilibria and periodic states. Moreover,

for suitable ODEs, there exist periodic states in which cells of

the three colors have the same waveform, but with phase

shifts 0; 1
3
; 2

3
of the period, much as in Figure 2 (right).

FIG. 1. Patterns of synchrony for equi-

libria in a 6-cell ring, induced by sym-

metry. The corresponding subgroup is

indicated at the center of each ring.

The trivial pattern (all cell states dis-

tinct) is not shown; it corresponds to

the identity subgroup.

FIG. 2. Left: Ring of FitzHugh-

Nagumo neurons with unidirectional

coupling. Right: Periodic oscillations

of the 3-cell ring exhibiting a 1
3
-period

out of phase periodic solution. Time

series show membrane potential in

cells 1 (thick solid), 2 (thin solid), and

3 (dashed).

094803-2 M. Golubitsky and I. Stewart Chaos 26, 094803 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  194.66.250.150 On: Sat, 25 Jun

2016 08:05:06



B. Overview

Section II introduces the setting of coupled cell net-

works and admissible ODEs, explained informally using

examples. The interplay between admissible maps and pat-

terns of synchrony motivates the concept of a balanced col-

oring, and key properties are stated, in particular, the

construction of a quotient network, in which synchronous

cells are identified in a manner that preserves their

dynamics.

Section III outlines fundamental ideas from symmetric

dynamics, specializing them to symmetric networks.

Subgroups of the symmetry group create natural invariant

subspaces that induce patterns of synchrony. We discuss

spatio-temporal symmetries of periodic states, and their rela-

tion to two distinct symmetry groups: spatial (pointwise) and

spatio-temporal (setwise) symmetries. We state the H/K the-

orem for general ODEs, which classifies possible spatio-

temporal symmetries. This theorem must be modified in the

context of networks, and the results are different when the

state spaces of cells are multidimensional Rk, one-

dimensional R, or the circle S
1

(phase oscillators). We dis-

cuss multirhythms, a type of resonance caused by symmetry.

Generalizations to arbitrary networks are stated.

Section IV gives examples of anomalous patterns of

synchrony and phase shifts, existing in symmetric networks

but not caused by symmetry.

Section V discusses stability of a pattern of synchrony

with respect to synchrony-breaking perturbations. We call

this transverse stability, because it concerns the dynamics

transverse to the synchrony subspace. It is best understood in

the symmetric case; for general networks, it depends on spe-

cific model equations.

Section VI discusses general networks, where rigid pat-

terns of synchrony—those preserved by small perturbations

of the admissible ODE—correspond to balanced colorings,

both for equilibria and periodic states. There is an analog of

the H/K theorem for rigid patterns of phase shifts, which are

induced by cyclic group symmetry on the quotient network

defined by synchrony.

II. COUPLED CELL NETWORKS

First, we sketch the formalism of Refs. 27 and 42:

coupled cell networks, with associated ODEs called coupled

cell systems. Here, the cells (nodes) of the network corre-

spond to state variables and the arrows (directed edges) indi-

cate couplings. Each arrow has a head cell (to which it

points) and a tail cell. A key feature is that arrows are classi-

fied into one or more types. Arrows of the same type couple

their inputs to their outputs in the same manner. There is also

a notion of cell type: roughly speaking, cells with the same

state space have the same type.

Associated with each such network is a class of admissi-
ble ODEs: those that respect the network structure and the

arrow types. We introduce these ODEs below.

Formal definitions can be found in Refs. 27 and 42, but

here we work with typical examples, starting with Example

I.3 (see Figure 3). Its network diagram has five cells and two

types of arrow, shown with solid and dashed lines (and dif-

ferent arrowheads for emphasis). All cells have the same

type and are drawn as circles.

Bidirectional arrows, as in Figure 1, should be inter-

preted as shorthand for two identical arrows, one in each

direction.

A network is path-connected or transitive if any cell is

connected to any other by some directed path (chain of

arrows linked head to tail). It is homogeneous if all cells

have the same number of input arrows of each type.

A. Admissible maps

We now associate with any network diagram a class of

maps (or vector fields), said to be admissible, which respect

the network topology and determine a class of ODEs coupled

together according to the network.

The state (or phase) space Pc of each cell c can be any

manifold; common choices are Rk for some k, especially

k¼ 1, or the circle S
1 for phase oscillators. For simplicity,

assume Pc ¼ R. Assign a state variable xc 2 R to each

cell c. By convention, the time-derivative _xc is some func-

tion of xc, together with the tail cells xd of all arrows with

head c. For example, cell 4 receives inputs from cells 1

(solid arrow) and 3 (dashed arrow). Therefore, the corre-

sponding component of a system of admissible ODEs takes

the form

_x4 ¼ f ðx4; x1; x3Þ; (2.1)

for an arbitrary (infinitely differentiable) function f. By con-

vention, the internal state variable x4 is written first.

Now consider another cell, say 1. This has internal vari-

able x1, and receives inputs from cells 4 (dashed arrow) and

5 (solid arrow). Therefore, cell 1 has the same input type as

cell 4: there is a one-to-one correspondence between the sets

of all input arrows that preserves arrow type. In the formal-

ism, this correspondence implies that the equation for _x1

involves the same function f, with variables inserted in a

manner that preserves arrow types. That is,

_x1 ¼ f ðx1; x5; x4Þ

with variables in the same order: internal, solid arrow,

dashed arrow.

FIG. 3. Pattern of synchrony given by x2¼ x4 and x3¼ x5 in an asymmetric

5-cell network with two types of arrow.
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In this example, all five cells have the same input type

(one solid arrow, one dashed), so the same f occurs for them

all. The resulting system of ODEs is

_x1 ¼ f ðx1; x5; x4Þ;
_x2 ¼ f ðx2; x1; x3Þ;
_x3 ¼ f ðx3; x2; x1Þ;
_x4 ¼ f ðx4; x1; x3Þ;
_x5 ¼ f ðx5; x4; x1Þ:

The map F : R5 ! R5 whose components are these five func-

tions defines a vector field on R5. We call F an admissible vec-
tor field, or more briefly admissible map, for the given network.

The associated system of ODEs is an admissible ODE.

The general recipe that associates to any network dia-

gram a class of admissible maps works in exactly the same

way. Choose a state space Pc for each cell c, with state vari-

able xc 2 Pc. Use the set of input arrows to c to define a com-

ponent _xc ¼ fcðxc; xTðcÞÞ of a system of ODEs, where xTðcÞ is

the vector of state variables for the tail cells of the input

arrows. If cells c, d have the same input type, require fd to be

equal to fc, provided the input variables are arranged so that

arrows of the same type correspond. These equalities of

functions imply various equalities among the cell state

spaces Pc, induced by input-equivalences. Cells with the

same state space are said to have the same cell type.

Suppose that cell c receives two input arrows of the

same type, with tail cells i, j. The recipe for inserting varia-

bles into fc can lead equally well to either

fcðxc;…; xi; xj;…Þ or fcðxc;…; xj; xi;…Þ:

To resolve this ambiguity, we require both of the above

expressions to be equal. That is: if c has two (or more) inputs

of the same arrow type, fc is symmetric in the corresponding

input variables. This is often shown by putting a bar over the

variables concerned. For example, the bidirectional ring of

Figure 1 has admissible ODEs of the form

_xc ¼ fcðxc; xc�1; xcþ1Þ

with subscripts taken (mod 6).

Three further features should be noted:

(1) Arrows can form self-loops with the same head and tail cell.

(2) Several arrows may have the same head and the same

tail.

(3) The state variable xc of each cell c is assumed to appear

as a distinguished variable in the corresponding fc. If

there are self-loops, it may appear elsewhere too.

We refer to these conventions as the multiarrow formal-
ism. Although multiple arrows and self-loops may appear artifi-

cial, this convention can be motivated both by applications

and by the internal requirements of the theory.27 Convention

(3) was originally assumed for pragmatic reasons: it makes

bifurcation theory simpler because the identity map is

admissible.

Remark II.1.

In this set-up, individual arrows do not correspond to

specific terms in the ODE. This differs from other

approaches, such as networks of nonlinear oscillators with

linear coupling,32,36 where (2.1) would be replaced by

_x4 ¼ f ðx4Þ þ ax1 þ bx3:

Instead, arrows specify which variables occur (perhaps non-

linearly) in which components of the ODE, and encode (via

input sets of arrows) when components of the ODE involve

the same function. They also encode symmetries of those

functions, induced by permuting input arrows of the same

type.

Special assumptions about the form of F are consistent

with the coupled cell formalism, but introduce extra structure

that may impose extra constraints on the dynamics.

B. Synchrony and balanced colorings

Throughout this paper, we employ a strong notion of

synchrony: time-series are identical. Weaker notions of syn-

chrony can also be considered in the coupled cell formalism,

but we focus here only on the stronger notion.

Definition II.2.

Let x(t) be a solution of an admissible ODE. Cells c, d
are synchronous on x(t) if

xcðtÞ � xdðtÞ 8t 2 R:

A pattern of synchrony is a partition of the cells into dis-

joint subsets, such that cells are synchronous on x(t) if and

only if they belong to the same part. (Alternatively, the pat-

tern of synchrony is the equivalence relation corresponding

to the partition.) For example, in Figure 3 the pattern of syn-

chrony is f1g; f2; 4g; f3; 5g.
Diagrammatically, a pattern of synchrony is often repre-

sented by coloring the cells so that synchronous cells have

the same color.

We now explain why the pattern of synchrony in Figure 3

is natural and typical. Suppose it occurs for some solution x(t)
of the admissible ODE. Then we must have

x2ðtÞ � x4ðtÞ x3ðtÞ � x5ðtÞ 8t 2 R:

Let y1 ¼ x1; y2 ¼ x2 ¼ x4; y3 ¼ x3 ¼ x5, and substitute to

obtain the restricted ODE

_y1 ¼ f ðy1; y3; y2Þ;
_y2 ¼ f ðy2; y1; y3Þ;
_y3 ¼ f ðy3; y2; y1Þ;
_y2 ¼ f ðy2; y1; y3Þ;
_y3 ¼ f ðy3; y2; y1Þ:

(2.2)

This system appears overdetermined (five equations in three

unknowns). However, the two equations for _y2 are identical,

and so are those for _y3. So we are left with a well-defined

reduced system

_y1 ¼ f ðy1; y3; y2Þ;
_y2 ¼ f ðy2; y1; y3Þ;
_y3 ¼ f ðy3; y2; y1Þ:

(2.3)

Any solution yðtÞ ¼ ðy1ðtÞ; y2ðtÞ; y3ðtÞÞ of the reduced

system can be lifted to yield a solution
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xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞ; x2ðtÞ; x3ðtÞÞ

of the original ODE, and this has the pattern of synchrony

{1}, {2, 4}, {3, 5}. This is the sense in which that pattern of

synchrony is natural and typical.

The corresponding synchrony subspace

D ¼ fx 2 R5 : x2 ¼ x4; x3 ¼ x5g

is an invariant subspace for any admissible map F; that is,

FðDÞ � D. The reduced equation is defined by the restriction

of F to D, projected onto R3 by mapping (x1, x2, x3, x4, x5) to

(x1, x2, x3). (We renamed this as (y1, y2, y3) for clarity.)

Self-consistency of the restricted ODE, hence existence

of the reduced ODE, is not automatic for an arbitrary pattern

of synchrony. For example, suppose we instead work with

the partition {1, 2}, {3}, {4, 5}. The first two components of

the restricted ODE (2.2) become

_y1 ¼ f ðy1; y4; y4Þ
_y1 ¼ f ðy1; y1; y3Þ

which are contradictory.

In Ref. 42, extended to the multiarrow formalism in Ref.

27, it is proved that the following are equivalent:

(1) The restricted ODE is consistent, so the reduced ODE is

well-defined, for all admissible F.

(2) The synchrony space D is invariant under all admissible F.

(3) The pattern of synchrony is a balanced coloring. That is,

if cells c, d have the same color, their input sets corre-

spond in a manner that preserves arrow types and assigns

the same colors to corresponding tail cells.

This theorem classifies all possible patterns of syn-

chrony that are robust—common to all admissible maps.

Each pattern exists in any network, for any “generic” admis-

sible map: solve the reduced ODE and lift.

The underlying intuition here is as follows. Suppose

that, by any sensible definition of synchrony, a pattern of

synchrony occurs that is not “accidental,” that is, does not

depend on very special choices of the admissible map. Then

corresponding input cells of synchronous cells, compared in

suitable pairs, are themselves synchronous. More succinctly:

synchronous cells have synchronous input patterns. If not,

differences in inputs would push them away from synchrony.

This intuition is good motivation, but it is insufficient to

prove theorems about patterns of synchrony.

In Sections III and VI, we show that balanced colorings

also classify typical patterns of synchrony for equilibria and

for periodic states, where “typical” means that the patterns

are structurally stable. That is, they persist if F is perturbed

slightly (while remaining admissible).

Algorithms to compute balanced colorings have been

devised.1,30 Balanced colorings are essentially the same as

clusters,8,9,36 and many existence results in the literature can

be explained in a unified manner using balanced colorings.

In Ref. 7, it is observed that invariant subspaces may be

nested inside each other, leading to hierarchies of such sub-

spaces. In general, this behavior is characterized by the

lattice of invariant subspaces, which is dual to the lattice of

balanced colorings.40

C. Quotient networks

As f varies over all functions, the reduced system (2.3)

gives precisely the admissible ODEs for another network,

with three cells (one for each color), as in Figure 4.

To form this 3-cell network, take one cell of each color.

For each of these cells, copy its input set from the original

network, matching all colors of tail cells. Balance is pre-

cisely the condition that this can be done consistently.

This construction, the formation of a quotient network,

is valid for any balanced coloring. The admissible maps for

the quotient network are precisely the restrictions to the cor-

responding synchrony subspace of admissible maps for the

original network. Conversely, any admissible map on the

quotient network is the reduced map for an admissible map

on the original network—it can be lifted. Again, these results

are proved in Refs. 27 and 42.

The term “quotient” is used here because the network

diagram is obtained by identifying cells and copying input

sets. This is a quotient by an equivalence relation. The

reduced maps are restrictions of the original maps—more

precisely, projections of restrictions in which redundant

coordinates are removed.

III. SYMMETRY

Patterns of synchrony arise naturally when the network

has symmetry. In this section, we establish some basic

results and give illustrative examples. We consider both

equilibria and periodic states, and describe patterns of phase

shifts as well as synchrony.

A. Equivariant ODEs

Before specializing to networks, we recall some basic

concepts from symmetric (“equivariant”) dynamics.20,25 Let

C be a finite group acting linearly on a finite-dimensional

vector space V. A map F : V ! V is C-equivariant if

FðcxÞ ¼ cFðxÞ 8x 2 V:

Consider the corresponding equivariant ODE

dx

dt
¼ F xð Þ: (3.1)

FIG. 4. Quotient network for the pattern of synchrony in Figure 3.
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If x(t) is a solution, so is cxðtÞ for any c 2 C

d

dt
cx tð Þ ¼ c

d

dt
x tð Þ ¼ cF x tð Þð Þ ¼ F cx tð Þð Þ: (3.2)

Recall that an orbit of C on V is a set of the form fcv0 : c 2
Cg for some choice of v0. In this language, Equation (3.2)

states that solutions occur as group orbits. Conversely, this

property of solutions implies equivariance of F.

Let xðtÞ � x0 be an equilibrium. Then cx0 is also an

equilibrium, but need not equal x0. We therefore define the

isotropy subgroup of x0 to be

Cx0
¼ fc 2 C : cx0 ¼ x0g:

This is the symmetry group of x0. We say that x0 breaks sym-
metry from C to Cx0

. Conversely, given a subgroup R � C,

we define its fixed-point subspace to be

FixðRÞ ¼ fx : rx ¼ x 8r 2 Rg:

More generally, we can define the isotropy subgroup of a so-

lution x(t) to be

CxðtÞ ¼ fc 2 C : cxðtÞ ¼ xðtÞ 8t 2 Rg:

A basic result is:

Theorem III.1.

For any subgroup R � C, the space FixðRÞ is invariant
under F.

Proof. Let x 2 FixðRÞ, and let r 2 R. Then

rFðxÞ ¼ FðrxÞ ¼ FðxÞ

so FðxÞ 2 FixðRÞ. �

Although the proof is trivial, the result provides a

method for finding solutions x(t) of the ODE that break sym-

metry to any given R. Namely: restrict the ODE to Fix(R)

and solve. Usually Fix(R) is smaller than V, a bonus.

Solutions found by this method need not be asymptoti-

cally stable. Symmetry methods can be employed to simplify

stability computations, but stability is a separate issue,

addressed in Section V.

B. Network symmetries

We now specialize the equivariant theory to symmetric

networks. Most of the equivariant results still apply when the

system is admissible for a C-symmetric network, where now

C is a permutation group acting on the cells. In a symmetric

network, all admissible maps are equivariant, but equivariant

maps need not be admissible because admissible maps sat-

isfy extra constraints.3,4

The symmetry group of a network is the group C of all

permutations c of its cells that preserve the arrows, in the

sense that for any pair of cells c, d the number of arrows

from c to d of a given type is the same as the corresponding

number for arrows from cðcÞ to cðdÞ.
Orbits for permutation actions are defined to be sets of

the form fcðcÞ : c 2 Cg for some choice of cell c. The orbits

partition the set of cells. The permutation action of C on cells

induces an action on state variables by xc 7!xc�1ðcÞ.

Theorem III.2.

Consider a network with symmetry group C, and any
subgroup R � C. Then a solution x(t) that lies in Fix(R) has
the pattern of synchrony determined by the orbits on R on
cells.

Proof. If c 2 FixðRÞ then c ¼ rðcÞ for all r 2 R, hence

also c ¼ r�1ðcÞ since also r�1 2 R. Thus

xrðcÞðtÞ � xcðtÞ 8t 2 R

so x(t) is synchronous on each orbit of R. �

Such a pattern is automatically balanced, but this can

also be proved directly.

Figure 1 is an example. The choice of R is shown at the

center of each picture, and the corresponding pattern of syn-

chrony is shown by shading synchronous cells identically.

The notation for the subgroups is determined by

p ¼ ð14Þð25Þð36Þ;
j ¼ ð26Þð34Þ;
f ¼ ð123456Þ:

Generators are included in parentheses (for example, Z2ðpÞ)
where the conjugacy class of the subgroup is ambiguous;

otherwise the symbol indicates the isomorphism type of the

subgroup. For example, Z3 is the cyclic subgroup of order 3

generated by f2. Notice that different subgroups may gener-

ate the same pattern.

C. Spatio-temporal symmetries

The above method applies to synchronous solutions of

any type: equilibrium, periodic, even chaotic. But it

addresses only spatial (pointwise) symmetries of the solu-

tion: those valid for all time. Periodic states also have tempo-
ral symmetries; for example, by definition a periodic state is

symmetric under phase shifts that are integer multiples of the

period. Combining the two leads to spatio-temporal symme-

tries, which are fundamental for periodic states.

Example III.3. We discuss Example I.2 in more detail.

The time series in Figure 2 (right) are generated by a model

in which each cell is a FitzHugh-Nagumo neuron, with

voltage-coupling. Let vi denote the membrane potential of

cell i, let wi be a surrogate for an ionic current, and suppose

that a; b; c are parameters with 0 < a < 1; b > 0; c > 0. The

coupling adds a voltage term to each cell equation, giving

the system

_v1 ¼ v1ða� v1Þðv1 � 1Þ � w1 � cv2 _w1 ¼ bv1 � cw1

_v2 ¼ v2ða� v2Þðv2 � 1Þ � w2 � cv3 _w2 ¼ bv2 � cw2

_v3 ¼ v3ða� v3Þðv3 � 1Þ � w3 � cv1 _w3 ¼ bv3 � cw3:

(3.3)

The symmetry group of the network is the cyclic group Z3

generated by the 3-cycle (123), acting on pairs (vj, wj) by

permuting the indices cyclically.

When a ¼ b ¼ c ¼ 0:5 and c¼ 0.8, a numerical simula-

tion shows that the origin is a stable equilibrium for the full

six-dimensional system. In this state, the cells are synchro-

nous. In contrast, when a ¼ b ¼ c ¼ 0:5 and c¼ 2, the
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system has no stable equilibrium (synchronous or not).

Instead, it is attracted to a stable periodic state in which suc-

cessive cells are one third of a period out of phase, Figure 2

(right). This figure shows the pattern for the vj; a similarly

phase-locked pattern occurs for the wj. Such a pattern is

called a discrete rotating wave,25 phase-shift synchrony,20 or

rosette phase locking.28

This periodic state has spatio-temporal symmetry. If the

period is T, and we set xðtÞ ¼ ðvðtÞ;wðtÞÞ, it satisfies the

phase relationships

x2ðtÞ ¼ x1ðt� T=3Þ x3ðtÞ ¼ x1ðt� 2T=3Þ

and the solution x(t) is invariant if we permute the labels

using the 3-cycle q ¼ ð123Þ and shift phase by T/3. That is,

qxðtþ T=3Þ ¼ xðtÞ:

Thus x(t) is fixed by the element ðq; T=3Þ 2 C� S
1
, where

S
1

is the circle group of phase shifts modulo the period.25

D. Pointwise and setwise symmetries

Spatio-temporal symmetries can be defined in a similar

manner for periodic states of any symmetric dynamical sys-

tem; in particular, any admissible ODE for a symmetric net-

work. However, there is an alternative approach, which

generalizes to chaotic states too—indeed, to states given by

any dynamical attractor, in any reasonable sense of that

term.

Associated with any attractor A are two subgroups of C,

its setwise and pointwise symmetries

HA ¼ fc 2 C : cA ¼ Ag
KA ¼ fc 2 C : cjA ¼ id g:

Clearly KA / HA, so the quotient group HA=KA is defined.

If A is an equilibrium then it is a single point, so HA ¼
KA ¼ RA and HA=KA ¼ 1. An obvious necessary and suffi-

cient condition for a given HA to occur is that it should be an

isotropy subgroup of C.

If A is a periodic cycle, the quotient group HA/KA can be

identified with phase shifts. To see how, suppose that x(t) is

a solution of the ODE defining the periodic cycle. If c 2 HA

then cxðtÞ is also a solution. But c fixes A setwise, so

fcxðtÞ : t 2 Rg ¼ fxðtÞ : t 2 Rg. There exists / 2 S
1 such

that cxð0Þ ¼ xð/Þ. Now

cxðt� /Þ ¼ xðtÞ 8t 2 R

because both sides satisfy the same ODE and have the same

initial condition at t ¼ /, so by uniqueness of solutions of

ODEs they are identical. But this equation determines a

spatio-temporal symmetry. Since KA acts trivially, the action

of HA factors through KA giving an action of HA=KA. If HA is

finite (as it must be for networks) then HA=KA is a finite sub-

group of S
1, hence a cyclic group Zk for some k.

Example III.4.

In Example I.2 HA ¼ Z3 and KA ¼ 1. Let v(t) be a T-

periodic solution to (3.3) and that q ¼ ð123Þ generates the

group HA ffi Z3. Then qvðtÞ is also a periodic trajectory,

differing only by time-translation. That is, qvðtÞ ¼ vðtþ hÞ
for all t. Applying the permutation q ¼ ð123Þ three times

(which gives the identity) implies that 3h � 0ðmod TÞ.
Hence either h ¼ 0; T

3
; 2T

3
. But h 6¼ 0 by assumption. The

other two yield rotating waves, which travel in opposite

directions in the sense that 2T
3
¼ � T

3
modulo T.

Figure 5 shows the trajectory of v(t) in R3, viewed from

a point very close to the main diagonal. The periodic cycle is

shaped like a curved equilateral triangle, revealing the set-

wise Z3 symmetry.

An important feature of symmetry-induced phase shifts

in periodic states is rigidity: if the vector field is slightly per-

turbed by an equivariant perturbation, the phase shifts remain

unchanged (as a fraction of the period).20 Rigidity is not typi-

cal of phase shifts in general dynamical systems.

E. H/K theorem

A pattern of phase shifts is similar to a pattern of syn-

chrony, but phases are also taken into account. Cells whose

states are phase-related with phase difference 0 (that is,

cells in the same KA-orbit) are synchronous. But other pairs

of cells (those in the same HA-orbit but not in the same

KA-orbit) have the same waveform but different phases. We

do not formalize this notion here. The pair (HA, KA) deter-

mines the pattern of phase shifts, up to a slight ambiguity

in the assignment of a phase to a generator of the group. So

it is natural to ask for a classification of the possible pairs

(HA, KA).

For general dynamical systems, this is provided by the

H/K theorem of Ref. 11. Let NCðKÞ denote the normalizer of

K in C, let Cx denote the isotropy subgroup of x 2 RN , and

define a subset of RN by

LK ¼ [
c 62K

FixðcÞ \ FixðKÞ ¼ fx 2 FixðKÞ : KˆCxg:

FIG. 5. Setwise Z3 symmetry of periodic trajectory of three coupled

Fitzhugh-Nagumo neurons.
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Theorem III.5. Let C be a finite group acting on RN

and let H � K be subgroups of C. There exists a hyperbolic
periodic solution for a C-equivariant vector field on RN with
spatial symmetries K and spatiotemporal symmetries H if
and only if

(a) K is a normal subgroup of H and H/K is cyclic.
(b) K is an isotropy subgroup of C.

(c) dimFixðKÞ 	 2, and if dimFixðKÞ ¼ 2 then either
H¼K or H ¼ NCðKÞ.

(d) H fixes a connected component of FixðKÞnLK .

Part (d) arises because of certain geometric obstacles

associated with LK. The proof shows that in the “if” part of

the theorem, which asserts the existence of suitable periodic

states, the periodic state concerned can be made asymptoti-

cally stable. This theorem does not assert that periodic states

with given H, K occur for any admissible map, which is

obviously false. It provides a complete catalog of the combi-

nations that exist for some admissible map.

Analogs of this theorem for symmetric networks are

examined in Ref. 17, for three distinct cases, in which cell

state spaces are: Rk for any k (coupled systems); R (coupled

equations); S
1 (coupled oscillators). The key point is that

these classifications are different. In other words, the state

spaces of cells affect which patterns of phase shifts are possi-

ble. The results can be summarized as follows:

Systems: (a, b) as above. Change (c) to “if dimFixðKÞ ¼ 2

then H ¼ K ¼ C.”

Equations: (a, b, d) as above. Change (c) to

“dimFixðKÞ 	 2, and if dimFixðKÞ ¼ 2 then H¼K.”

Oscillators: (a, b, d) as above. Change (c) to “if

dimFixðKÞ ¼ 2 then H ¼ K ¼ C; if dimFixðKÞ ¼ 2 then ei-

ther H¼K or H ¼ NCðKÞ and NCðKÞ ffi Z2.”

These differences have two causes. Network symmetry

groups are permutation groups, with special features, and the

topology of cell state spaces imposes geometric constraints.

Again the proofs show that in the “if” part of the theorem the

periodic state concerned can be made asymptotically stable.

A similar classification for coupled systems given by path-

connected networks was proved earlier.29

F. Multirhythms

Symmetry can sometimes force a kind of resonance, in

which some cells oscillate with a frequency that is a rational

multiple of that of other cells. The overall state is periodic,

but individual cells have different periods. A simple example

arises for the three-cell network of Figure 6. This has Z2

symmetry, generated by r ¼ ð13Þ which fixes cell 2. By the

H/K Theorem there can be a periodic state with

H ¼ Z2;K ¼ 1. This has spatio-temporal symmetry gener-

ated by ðr; T=2Þ 2 Zþ 2� S
1: that is, swap cells using r

and shift phase by half a period. This symmetry requires

cells 1 and 3 to be half a period out of phase with each other;

but because cell 2 is fixed, symmetry requires it to be half a

period out of phase with itself. Therefore, such states have

the form

ðxðtÞ; yðtÞ; xðtþ T=2ÞÞ yðtÞ ¼ yðtþ T=2Þ

implying that cell 2 oscillates with twice the frequency of

cells 1 and 3. Such states can be found in simulations: we

call them multirhythms. Unlike standard resonances, they

arise because of symmetry. More elaborate examples are

given in Ref. 20, showing in particular, that it is possible for

the minimal period of every cell to differ from that of the

system as a whole; this occurs, for example, when symmetry

leads to a 2:3 resonance.

IV. ANOMALOUS PATTERNS

When a network has symmetry, it is easy to imagine that

its behavior is typical of symmetric dynamical systems with

the same symmetry group. In fact, this assumption is often

incorrect. If so, we call the behavior concerned anomalous.

The reason is that although admissible maps are always

equivariant, the converse can be false. In particular, equivar-

iant maps need not depend on the correct input cells. Even

when this restriction is added, admissible maps may obey

extra constraints.

Figure 7 is a case in point. It has three cells, and is ho-

mogeneous, with each cell receiving two inputs. (It is not

path-connected, but that can be remedied by adding more

arrows and the results do not change significantly.) The fig-

ure shows three 2-colorings. Each is balanced, and the corre-

sponding quotient network is shown below the original.

The 3-cell network has Z2 symmetry, given by the per-

mutation (12). The only nontrivial (not all identical or all dif-

ferent) pattern of synchrony predicted by the symmetry

group is {1, 2}, {3} as in (a). However, there are two more:

FIG. 6. 3-cell network supporting a multirhythm state.

FIG. 7. Patterns of synchrony induced

by symmetry (a) and by anomalous

balanced colorings (b) and (c).
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{1, 3}, {2} (b) and {1}, {2, 3} (c). (To check balance in

these two case, note that each grey cell receives one grey

and one white input, and so does each white cell.) In case (a)

the quotient is asymmetric. Both (b) and (c) have quotient

networks with Z2 symmetry.

Consider periodic states, and to avoid dimension restric-

tions in the H/K theorem assume all cell phase spaces have

dimension 	2. By the H/K theorem, the Z2 symmetry of the

original network predicts a synchronized state of the form

ðxðtÞ; xðtÞ; yðtÞÞ

and a multirhythm state of the form

ðxðtÞ; xðtþ T=2Þ; yðtÞÞ where yðtþ T=2Þ ¼ yðtÞ:

For the pattern of synchrony (b), the Z2 symmetry of

the quotient predicts periodic states of the forms

ðxðtÞ; xðtÞ; xðtÞÞ ðxðtÞ; yðtÞ; xðtÞÞ ðxðtÞ; xðtþ T=2Þ; xðtÞÞ:

In the third state, cells 1 and 2 are half a period out of phase;

but instead of cell 3 having twice the frequency, it is syn-

chronous with cell 1.

Pattern (c) gives similar results but with cells 1 and 2

interchanged.

Example IV.1.

A pattern of synchrony in a symmetric network, not

given by the orbits of a subgroup, is shown in Figure 8, and

was discussed in Ref. 24. Here, the longer range arrows have

the same type as the short range ones.

Example IV.2.

Example IV.1, although a valid network, is slightly arti-

ficial because arrows unrelated by the symmetry group are

given the same type. Figure 9 shows a pattern of synchrony

on a 64-cell network, defined on a square lattice (mod 8).

The symmetry group C is generated by translation in both

directions and the symmetries of the square. The figure

shows only nearest-neighbor connections. However, if these

are supplemented by longer-range connections, in any man-

ner, subject only to the condition that all arrows in the same

C-orbit are included and have the same arrow-type, the pat-

tern shown is balanced but is not the fixed-point set of a sub-

group of C.3,4

Example IV.3.

The Z3 symmetry of the left-hand network of Figure 10

predicts, via the H/K Theorem, a rotating wave multirhythm

of the form

ðxðtÞ; xðtþ T=3Þ; xðtþ 2T=3Þ; yðtÞÞ; (4.1)

where y(t) has triple the frequency of x(t). On the other hand,

the 2-cell quotient predicts a pattern of the form

ðxðtÞ; xðtþ T=2Þ; xðtþ T=2Þ; xðtþ T=2ÞÞ: (4.2)

Both are possible with suitable state space dimensions and

initial conditions. But only the first is evident from the sym-

metry of the left-hand network.

Recently, Pecora et al.36 studied a special space of ad-

missible systems for a special class of networks with one

FIG. 8. 6-cell network with a balanced coloring not determined by

symmetry.

FIG. 9. 64-cell network with a balanced coloring not determined by symme-

try, even when extra group orbits of arrows are added. Arrows omitted; fig-

ure wraps round onto a torus.

FIG. 10. Left: Multiarrow network with Z3 symmetry. Right: Quotient with

Z2 symmetry.
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type of node and one type of bidirectional coupling.

Examples IV.1 and IV.2 fall into their class and show that

even in this restricted case there can exist clustering forced

by balanced colorings but not forced by symmetry. Their

extensive calculations on many natural and randomly gener-

ated networks were done using discrete algebra software and

show that many networks have clustering forced by

symmetry.

V. STABILITY

In applications, an important issue is not just the

existence of a state of some particular type, but its

stability.7,20,25,38

In symmetric systems, there is an extensive interplay

between symmetry and stability, because symmetry imposes

strong constraints on the structure of the Jacobian matrix,

which can be exploited in calculations.25 In the absence of

symmetry, the network topology still constrains stability, but

the relationship is complicated and results are less system-

atic. The theory for bifurcations, which describe what hap-

pens when a state loses stability, is in some respects more

satisfactory, because loss of stability is assumed as a hypoth-

esis; the theory focuses on the implications of this assump-

tion rather than the conditions under which it is valid.

A. Transverse stability

We begin with generalities about the stability of a pat-

tern of synchrony (or partially synchronous state), which

splits the cells into synchronized clusters.

Consider an admissible ODE

dx

dt
¼ F xð Þ (5.1)

for some network. Suppose that x(t) has some pattern of syn-

chrony. Here, x(t) can have any kind of dynamics, such as

equilibrium, periodic, or chaotic. Equivalently, xðtÞ 2 D
where D is the corresponding synchrony subspace. Assume

D is defined by a balanced coloring, as justified in Section

II B and Theorems VI.3 and VI.4.

Then D is invariant under any admissible ODE; in par-

ticular, it is an invariant subspace for any specific model con-

sistent with the network topology. Moreover, x(t) is a

solution of the reduced system on D.

Stability of x(t) therefore decomposes into two compo-

nents: the dynamics on D and that transverse to D. Stability

on D is determined by the stability of x(t) relative to the

reduced system of ODEs dy
dt ¼ GðyÞ, whose variables repre-

sent clusters. (For chaotic states, we interpret “stable” as: the

closure of x(t) is an attractor of the reduced system.)

Intuitively, stability for G is about the effect of synchrony-
preserving perturbations.

More interesting, and important in applications, is stabil-

ity transverse to D. This corresponds to stability under syn-
chrony-breaking perturbations, which change both the

dynamics and the pattern of synchrony. The issues here are

more complex, especially in the chaotic case. Moreover, we

must distinguish between the transverse stability of D itself

(all transverse eigenvalues have negative real part at every

point of D) and the transverse stability of a given state x(t)
(all transverse eigenvalues have negative real part at every

point x(t)).
For example, consider an equilibrium u 2 D. This is

(linearly) stable if all eigenvalues of the Jacobian DFju have

negative real parts. Because D is invariant, DFju also leaves

D invariant. Therefore, its eigenvalues decompose into two

sets: those whose eigenvectors lie in D, and the others

(“transverse eigenvalues”). The problem is therefore to com-

pute these eigenvalues.

B. Stability in symmetric networks

For symmetric networks, there is a systematic theory

based on the representation of the symmetry group C on

phase space, derived in detail in Ref. 25 for compact Lie

groups (in particular, finite ones, the main case relevant to

networks). This theory applies when D ¼ FixðRÞ for a sub-

group R. Section III explains its implications for the exis-

tence of specific patterns of synchrony. We sketch how the

same framework can be used to analyse stability.

By Theorems III.1 and III.2, such a subspace is invariant

and is given by a balanced coloring (the R-orbits).

(However, it is worth noting that symmetric networks may

have balanced colorings, hence invariant subspaces that are

not the fixed-point subspace of any subgroup. Examples IV.1

and IV.2 illustrate this.)

Phase space decomposes as a direct sum of irreducible

representations of R. Isomorphic irreducibles combine to

form isotypic components. The isotypic component of the

trivial representation is Fix(R), and each isotopic component

is invariant under DFju. So the eigenvalues of DFju can be

found by considering its restriction to each isotypic compo-

nent. More concretely, this decomposition puts DFju into

block-diagonal form, and we compute the eigenvalues and

eigenvectors for each block. This is equivalent to the

approach taken in Ref. 36.

A similar approach applies to periodic states near Hopf

bifurcation, where stability is governed by Floquet expo-

nents. Here, the calculations require reduction of the system

to Poincar�e-Birkhoff normal form and exploit spatio-

temporal symmetry.25

This method is effective for computing transverse eigen-

values of DFju. For example, it is used in Ref. 14 to analyse

a model of binocular rivalry, a type of visual illusion, in

which distinct images are shown to each eye. Even in the

symmetric case, stability depends not only on network topol-

ogy, but on the detailed model. One plausible symmetric

model for rivalry predicts that perceived states are unstable;

a slight modification predicts they are stable.15

For chaotic states, transverse stability of an attractor

A � D depends on the averages of transverse eigenvalues

with respect to invariant measures on A, especially Sinai-

Ruelle-Bowen (SRB) measures.5,6,44 Intuitively, the dynamic

transverse to A may be attracting at some points and repel-

ling at others, and the overall effect depends on this average.

The details are complicated because invariant measures are

not unique and SRB measures are seldom known to exist.44
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Typical phenomena include riddled basins,2 where the

basin of attraction of A has a fractal structure; on-off inter-

mittency and blowout bifurcations,35 where the attractor to-

pology changes discontinuously; chaotic saddles, where the

transverse dynamic is repelling;34 and bubbling,5,6 where the

state repeatedly loses its pattern of synchrony and then

regains it.

C. Stability in the absence of symmetry

For general networks without symmetry, the formalism

does not provide a comparable degree of control over trans-

verse eigenvalues. It can be shown that every balanced color-

ing defines a pattern of synchrony that occurs stably for

some admissible ODE, but the analogous question for peri-

odic states is less well understood. In particular, it is not

known whether there exists a stable periodic solution for ev-

ery pattern of phase-shift synchrony (see Section III E).

There are three main cases for which stability can be

characterized effectively:

(1) Analysis of special models involving specific admissible

maps F. See, for example, Refs. 7 and 38.

(2) Exploiting special features of small networks, constrain-

ing the form of the admissible maps and their Jacobians.

(3) Feedforward networks, where general results exist

because the Jacobian is block-triangular and its eigenval-

ues are those of the diagonal blocks.

It also seems likely that some general principles apply in

cases where admissible maps lift uniquely from a quotient

network. However, this idea has not yet been studied in

detail.

D. Bifurcations

Bifurcation theory is closely related to stability: indeed,

local bifurcation occurs when a state loses stability as a pa-

rameter varies. Indeed some areas of application traditionally

use “instability” to mean bifurcation. Again, there is a com-

prehensive theory for symmetric systems, hence also sym-

metric networks. However, it is important to recognize that

symmetric networks do not always behave like generic sym-

metric ODEs, because the network topology imposes con-

straints on the variables that occur in the ODE.

In some ways, the situation is more satisfactory than for

stability, because there are general phenomena that occur for

specific types of stability loss. For example, in Hopf bifurca-

tion, an equilibrium loses stability when a pair of complex

conjugate eigenvalues crosses the imaginary axis, creating a

bifurcating branch of periodic states. The cause, and the

resulting behavior, are well understood, but the conditions

for it to happen depend on the eigenvalues of the Jacobian.

Network topology has implications for Hopf bifurcation.

For example, in standard Hopf bifurcation, the amplitude

along the bifurcating branch typically grows as k1=2 for a

bifurcation parameter k. But in a three-cell feedforward

chain, the third cell can have an amplitude that grows as

k1=6.16,24 Anomalous growth rates also occur for generic

steady-state bifurcation at a simple eigenvalue in some mul-

tiarrow networks.41

VI. RIGID PATTERNS OF SYNCHRONY

We now extend the main results about patterns of syn-

chrony in symmetric networks to general networks, again

concentrating on equilibria and periodic states. Some analo-

gous results are known, and others can plausibly be conjec-

tured, for more complex dynamics, such as quasiperiodicity

and chaos. We do not discuss these ideas here.

A. Rigidity

Virtually any partition of the cells of a network can be a

pattern of synchrony by making a special choice of the ad-

missible vector field. To avoid “accidental” patterns of this

kind, we require a form of structural stability. First, recall

Definition VI.1. Consider an ODE

dx

dt
¼ F xð Þ x 2 Rn: (6.1)

(a) An equilibrium x0 of (6.1) is hyperbolic if the Jacobian

(derivative) of F has no eigenvalue on the imaginary

axis.

(b) A periodic state x(t) of (6.1) of period T is hyperbolic if

it has no Floquet exponent on the imaginary axis.

Hyperbolicity implies that after a small perturbation of

the vector field, in case (a) there exists a unique equilibrium

~x0 near x0; while in case (b) there exists a unique ~T -periodic

orbit ~xðtÞ near x(t) in the C1 topology, with ~T near T.31 Thus

we can speak of “the perturbed equilibrium/periodic cycle.”

Now we can define the key concept of rigidity:

Definition VI.2.

Suppose F in (6.1) is admissible for a network.

(a) The pattern of synchrony for an equilibrium or periodic

cycle of (6.1) is rigid if, for all sufficiently small per-

turbations, the perturbed equilibrium or periodic cycle

has the same pattern of synchrony.

(b) A pattern of phase shifts for a periodic cycle of (6.1) is

rigid if, for all sufficiently small perturbations, the per-

turbed periodic cycle has the same pattern of phase

shifts (as fractions of the period).

Rigidity is not typical of phase shifts in general dynami-

cal systems. However, in a symmetric ODE, the pattern of

synchrony for an equilibrium or periodic cycle determined by

the orbits of its isotropy subgroup is also rigid. The pattern of

phase shifts for a periodic cycle determined by the H/K
Theorem is rigid.18–20

In the equilibrium case, we can classify rigid patterns of

synchrony27

Theorem VI.3.

Let x0 be a hyperbolic equilibrium of an admissible
ODE (6.1). Then the pattern of synchrony for x0 is rigid if
and only if it corresponds to a balanced coloring.

In the periodic case, we can classify rigid patterns of

synchrony and rigid patterns of phase shifts, subject to a

mild technical condition. This result combines the results of

Refs. 18 and 19 with a theorem of Ref. 43. It is an analog for

general networks of the H/K theorem, in which K becomes a
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balanced coloring and H/K acts on the corresponding quo-

tient network.

Theorem VI.4.

Let x(t) be a hyperbolic periodic cycle of an admissible
ODE (6.1). Suppose that the network is path-connected, and
all cell equivalent cells are input equivalent. Then:

(1) If the pattern of synchrony for x(t) is rigid, it corresponds
to a balanced coloring.

(2) If the pattern of phase shifts for x(t) is rigid, then the
quotient network corresponding to the pattern of syn-
chrony has a cyclic symmetry group, and the pattern of
phase shifts is that of a rotating wave induced by this
symmetry group.

(3) Conversely, any pair consisting of a balanced coloring and
a cyclic group of symmetries of the quotient network deter-
mines a pattern of synchrony and a pattern of phase shifts.

Part (2) is remarkable because it deduces a global con-

clusion, cyclic symmetry, from local comparisons of phase

shifts. It is a consequence of the rigid phase shift theo-

rem,18,19 which states that, subject to technical conditions,

phase-shifted cells have inputs related by the same phase

shift.

Example VI.5.

Consider the network of Figure 3 (left). This has a rigid

pattern of phase shifts of the form

ðxðtÞ; xðtþ T=3Þ; xðtþ 2T=3Þ; xðtþ T=3Þ; xðtþ 2T=3ÞÞ:
(6.2)

On the quotient, the pattern of synchrony for this state is

{1}, {2, 4}, {3, 5} which is balanced. The quotient network

is shown in Figure 3 (right), and this has Z3 symmetry. The

pattern of phase shifts is that of a rotating wave with

ðH;KÞ ¼ ðZ3; 1Þ. This explains the periodic state described

in Example I.3.

Example VI.6.

Different patterns of phase shifts on the same network

may arise from different balanced colorings and different

quotient networks. Figure 10 is an example. Pattern (6.1)

comes from the Z3 symmetry of the 4-cell network, with a

trivial pattern of synchrony whose quotient network is the

same as the original. Pattern (6.2) comes from the Z2 sym-

metry of the 2-cell quotient network, corresponding to a non-

trivial pattern of synchrony for the 4-cell network.

It is not possible to explain both patterns using the same

symmetry group, because that would have to contain Z6,

which is not the symmetry group of any network with four or

fewer cells.
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