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Abstract. This paper discusses feed-forward chains near points of synchrony-

breaking Hopf bifurcation. We show that at synchrony-breaking bifurcations

the center manifold inherits a feed-forward structure and use this structure
to provide a simplified proof of the theorem of Elmhirst and Golubitsky that

there is a branch of periodic solutions in such bifurcations whose amplitudes

grow at the rate of λ
1
6 . We also use this center manifold structure to provide

a method for classifying the bifurcation diagrams of the forced feed-forward

chain where the amplitudes of the periodic responses are plotted as a function

of the forcing frequency. The bifurcation diagrams depend on the amplitude of
the forcing, the deviation of the system from Hopf bifurcation, and the ratio γ

of the imaginary part of the cubic term in the normal form of Hopf bifurcation

to the real part. These calculations generalize the results of Zhang on the
forcing of systems near Hopf bifurcations to three-cell feed-forward chains.

1. Introduction. This paper discusses several aspects of feed-forward chains near
points of synchrony-breaking bifurcations. Specifically, we consider the three-cell
feed-forward chain shown in Figure 1, the equations of which can be written as

ẋ1 = f(x1, x1, λ)
ẋ2 = f(x2, x1, λ)
ẋ3 = f(x3, x2, λ)

(1)

where x1, x2, x3 ∈ Rm and λ ∈ R is a bifurcation parameter. We examine the
dynamics near Hopf bifurcation of both this system and additionally of the same
system under the influence of a small amplitude sinusoidal forcing.

Figure 1. Three-cell feed-forward network

2000 Mathematics Subject Classification. Primary: 34C25; Secondary: 37G15.
Key words and phrases. Center manifolds, feed-forward networks, Hopf bifurcation.

2913

http://dx.doi.org/10.3934/dcds.2012.32.2913


2914 MARTIN GOLUBITSKY AND CLAIRE POSTLETHWAITE

This system has been considered in previous work first by [5], who observed

that the amplitude of periodic solutions grows at the surprising rate of λ
1
6 , rather

than the expected rate of λ
1
2 . They also observed in simulations that the branch

was stable. The existence of this branch in a generic synchrony-breaking Hopf
bifurcation was proved by Elmhirst and Golubitsky [3] using Liapunov-Schmidt
methods. In this paper, we are able to reproduce this result in a much simpler
fashion, by considering the center manifold of the system and using normal form
techniques. Our methods also allow us to prove that these solutions are stable when
they are supercritical.

The periodic forcing of systems near Hopf bifurcation has been well studied (see
Gambaudo [4] and the introduction to [11]). Zhang [10, 11] showed that three
small-amplitude periodic solutions were possible in the forcing of systems near a
point of Hopf bifurcation and classified the various ways multiplicity can occur. In
this paper, we also extend the results of Zhang by considering the existence of small
amplitude periodic solutions of a small amplitude sinusoidally-forced three-cell feed-
forward chain. We show that multiplicity of up to five solutions is possible near a
point of synchrony-breaking Hopf bifurcation and classify the ways that multiplicity
can occur.

Review of synchrony-breaking Hopf bifurcation. We assume that (1) has a super-
critical synchrony-breaking Hopf bifurcation at the origin. Specifically:

• We assume there is a synchronous equilibrium, which WLOG is at the origin;
that is, f(0, 0, λ) = 0.

• The Jacobian for system (1) at the origin has the form

J =

a+ b 0 0
b a 0
0 b a

 (2)

where a = f1(0) and b = f2(0), the subscripts refer to partial derivatives, and 0
denotes 0, 0, 0. It follows from (2) that the eigenvalues of J are the eigenvalues
of the m ×m matrices a + b and a with the eigenvalues of a repeated twice.
For ease of discussion we assume that the eigenvalues of a + b have negative
real part so that locally solutions to the first equation in (1) tend to x1 = 0.

• Synchrony-breaking bifurcations occur when the eigenvalues of a are critical.
We assume that the synchronous equilibrium is stable when λ < 0 and at
λ = 0 the matrix a has a pair of simple pure imaginary eigenvalues.

• We assume that there is only one independent eigenvector of J associated
to the critical eigenvalue of a, which is a nondegeneracy assumption on the
matrix b.

• Therefore, the equation ẋ = f(x, 0, λ) undergoes a Hopf bifurcation at λ = 0,
which we assume is supercritical.

It follows that the second equation ẋ2 = f(x2, 0, λ) undergoes a standard Hopf
bifurcation at λ = 0. The assumption that this Hopf bifurcation is supercritical
implies generically the existence of a unique family of periodic trajectories xλ2 (t) for

λ > 0 whose amplitudes grow at the rate of λ
1
2 . The third equation in (1) now has

the form

ẋ3 = f(x3, x
λ
2 (t), λ); (3)

of a system near Hopf bifurcation that is periodically forced by a function whose
frequency is near the Hopf frequency. This 1:1 resonance is caused by the fact
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that the eigenvalues of a are forced by network architecture to be double. So, as
discussed in [3], the λ

1
6 growth rate of small amplitude periodic solutions xλ3 (t) to

(3) is due to resonance.

Review of periodic forcing of systems near Hopf bifurcation. The issue that is most
often addressed in such small-amplitude forced systems is: How do the periodic
solutions of the forced system having the same frequency as the frequency of the
forcing vary with the forcing frequency? This problem is complicated by having
three small parameters: the deviation of the unforced system from Hopf bifurcation
λ, the small amplitude ε of the forcing, and the deviation of the forcing frequency
from the Hopf frequency ω = 1 − ωF . It is known that for many systems such as
the forced Duffing equation (see Bogoliubov and Mitropolsky [1]) there is a range
of forcing frequencies with multiple periodic responses. This behavior is captured
in the full truncated normal form:

f(z2, z1, λ) = (λ+ i− (1 + γi)|z1|2)z1 + z2 (4)

where γ ∈ R. In [6] it is shown that multiplicity occurs for λ < 0 when γ >
√

3
but not otherwise. In her thesis Zhang [10] (see [11]) gives a complete description
of the bifurcation diagrams obtained by plotting the amplitude of the periodic
solutions as a function of the forcing frequency ω. These diagrams depend on two
small parameters λ and ε; qualitatively, there are five different possible bifurcation
diagrams, which are included in the cell 2 diagrams in this paper. See Figures 5
and 7.

Review of the forced feed-forward chain near Hopf bifurcation. The forced feed-
forward chain was previously considered by McCullen et al. [9]. They showed that
periodically forcing feed-forward chains near points of Hopf bifurcation can lead to
sensitive bandwidth filters. More precisely, they assumed that the f in (1) is in
truncated normal form for Hopf bifurcation with linear coupling; that is,

f(z2, z1, λ) = (λ+ i− |z2|2)z2 + z1 (5)

where z1, z2 ∈ C. They then assumed that the chain was forced by small-amplitude
periodic forcing in the first node by replacing the self-coupling by sinusoidal forcing;
that is

ż1 = (λ+ i− |z1|2)z1 + εeiωF t (6)

where ωF ≈ 1 is the forcing frequency.
McCullen et al. [9] also explored the forced feed-forward chain both numerically

and experimentally when λ < 0 is subcritical; that is, when the trivial equilibrium is
still (weakly) stable. Note that when λ < 0 the solution to the first forced equation
in (1) (that is, equation (6)) when ε is sufficiently small is periodic with amplitude
of order ε. It follows that the second equation in (1) is just an equation near Hopf
bifurcation that is being forced by small amplitude periodic solutions.

Main results. In section 2 we consider center manifolds of synchrony-breaking bifur-
cations in feed-forward chains and show that the dynamics on the center manifold
also has the structure of a feed-forward chain (Theorem 2.3). This result applies to
any synchrony-breaking bifurcation in the chain. In section 3 we consider specifi-
cally a synchrony-breaking Hopf bifurcation of a feed-forward chain. We show that
the truncated Birkhoff normal form can be assumed to be S1-equivariant (Theo-
rem 3.1), as is the case for the standard Hopf bifurcation, allowing us to recover
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the λ
1
6 growth rate result (Theorem 3.3). The proof of normal form is deferred to

Appendix A.
In the last sections of the paper we classify the bifurcation diagrams of amplitude

of response versus forcing frequency in both cells 2 and 3. This is accomplished
by first showing in section 4 that the periodic forcing of a system near criticality
is qualitatively the same as the periodic forcing of the center manifold equations
(Lemma 4.1).

Lemma 4.1 allows us to study the bifurcation on the center manifold in section 5.
This study is accomplished by using the S1-equivariance of the forced system to
see that in rotating coordinates periodic solutions become equilibria. Bifurcation
diagrams are then distinguished by computing (with a combination of analysis and
numerics) the singularity theory bifurcation and hysteresis varieties in both cells 2
and 3. We do not attempt to prove that the results are independent of terms of
order greater than 3 in the truncated normal form, though we believe that they are.
We also do not attempt to determine the stability of the periodic solutions that we
find. The calculations in [11] show just how complicated such a calculation may be
expected to be.

2. Center manifold of feed-forward system. We consider the three-cell feed-
forward system shown in figure 1. Equations for this system can be written as in
(1). As noted in the Introduction we assume that a+b has eigenvalues with negative
real part, so x1 → 0. We thus ignore the first cell and consider the system

(a) ẋ2 = f(x2, 0)
(b) ẋ3 = f(x3, x2)

(7)

where we have dropped the dependence of f on λ for convenience. The linearization
about 0 is then

J =

(
a 0
b a

)
We will now show that the flow restricted to the center manifold of (7) has the

same feedforward structure. This is proved in Theorem 2.3, but first we need two
lemmas.

Lemma 2.1. The flow of (7) can be written

Φt(x2, x3) = (φt(x2, 0), φt(x3, x2))

Proof. The feed forward structure of (7) implies that its flow has the form

Φt(x2, x3) = (φ̂t(x2), φt(x3, x2))

where
dφ̂t
dt

(x2)

∣∣∣∣∣
t=0

= f(x2, 0) and
dφt
dt

(x3, x2)

∣∣∣∣
t=0

= f(x3, x2).

Therefore,

dφt
dt

(x3, 0)

∣∣∣∣
t=0

= f(x3, 0) =
dφ̂t
dt

(x3)

∣∣∣∣∣
t=0

. (8)

Since (8) holds for all x3, it follows that

dφ̂t
dt

(x3) =
dφt
dt

(x3, 0)

Thus φ̂t(x3) = φt(x3, 0) and φ̂t(x2) = φt(x2, 0).
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We assume that the center subspace of a is the dimension n subspace Ec. It
follows that the center subspace of (7) is the 2n-dimensional subspace Ec⊕Ec. Let
π2(x2, x3) = (x2, 0) be the projection onto the first coordinate of Rm ×Rm.

Let Vc × {0} be a n-dimensional center manifold of (7)(a) in Rm × {0}. It
follows from Lemma 2.1 and the fact that Vc × {0} is flow-invariant for (7)(a) that
π−1

2 (Vc × {0}) = Vc × Rm is flow-invariant for (7). Therefore, we can choose a
2n-dimensional center manifold Wc for (7) in π−1

2 (Vc × {0}) and

π2(Wc) = Vc × {0}. (9)

Note that {0}× Vc is flow invariant for (7). More precisely, (7)(a) has 0 as a fixed-
point and (7)(b) on x2 = 0 is exactly the same equation as (7)(a). We can choose
Wc so that

{0} × Vc ⊂ Wc (10)

is a submanifold. This would follow directly if center manifolds were unique since
Wc ∩ ({0} ×Rk) would also be a center manifold with center subspace {0} × Ec.
However, center manifolds are unique once a cutoff function is chosen (see Carr [2])
and we can chose a cutoff function for Wc that is equal for {0} × Vc and Vc × {0}.

Lemma 2.2. The manifold Vc × {0} is a submanifold of Wc and Wc is a fiber
bundle over the base Vc × {0} with fibers isomorphic to {0} × Vc.

Proof. First, we show that

Vc × {0} ⊂ Wc (11)

We prove (11) by verifying that

Vc × {0} =Wc ∩ (Rm × {0}).

To verify this claim, define

V̂c =Wc ∩ (Rm × {0}).

and note that V̂c is a n-dimensional manifold. Also note that π2 is the identity on
Rm × {0} and hence π2(V̂c) = V̂c. Therefore,

V̂c = π2(V̂c) = π2(Wc ∩ (Rm × {0})).

Since π2(A ∩B) ⊂ π2(A) ∩ π2(B) for any A, B, it follows using (9) that

V̂c ⊂ π2(Wc) ∩ π2(Rm × {0})
= (Vc × {0}) ∩ (Rm × {0})
= Vc × {0}

Since Vc × {0} and V̂c are manifolds of the same dimension, it follows that V̂c =
Vc × {0}, thus verifying the claim.

Second, choose coordinates (z2, 0) and (0, z3) on Vc × {0} and {0} × Vc respec-
tively. We write Wc as a fiber bundle with base Vc × {0}. For each z2, define the
fiber over z2 as

Uz2 =Wc ∩ ({z2} ×Rm) = {z ∈ Wc : π2(z) = z2}.

Note that U0 = {0} × Vc.
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Since Wc is a fiber bundle, for each z2 there exists a mapping

ρ : (z2, {0} × Vc)→ Uz2 ,
so ρ(z2, z3) ∈ Uz2 . This mapping satisfies ρ(0, z3) = z3 (since U0 = {0} × Vc) and
ρ(z2, 0) = 0 (since the base is preserved).

Theorem 2.3. The dynamics on the center manifold Wc of (7) can be written on
Vc × Vc as

ż2 = g(z2, 0)

ż3 = g(z3, z2)

for some function g and coordinates z2, z3 ∈ Vc.

Remark 1. In previous work [5] we did not see how to prove that the ż2 equation
could be taken to be g(z2, 0). The improvement here is based on the center manifold
construction in Lemma 2.2. In other networks where a nilpotent Hopf bifurcation
occurs this conclusion is not valid. See Remark 2.

Proof. We coordinatize the flow on Wc with a mapping P : Vc ×Vc →Wc defined
by

P (z2, z3) = (z2, ρ(z2, z3)).

with ρ(0, z3) = z3. P is invertible and the inverse has the form

P−1(z2, z3) = (z2, σ(z2, z3))

where σ satisfies
σ(z2, ρ(z2, z3)) = z3

and in particular
σ(0, ρ(0, z3)) = σ(0, z3) = z3

Denote the flow on Vc × Vc by Ψt(z2, z3). Then

Ψt(z2, z3) = P−1ΦtP (z2, z3)

= P−1Φt(z2, ρ(z2, z3))

= P−1(φt(z2, 0), φt(ρ(z2, z3), z2))

= (φt(z2, 0), σ(φt(z2, 0), φt(ρ(z2, z3), z2))

Write the second coordinate of Ψt(z2, z3) as ψt(z3, z2) and compute

ψt(z3, 0) = σ(φt(0, 0), φt(ρ(0, z3), 0))

= σ(0, φt(z3, 0))

= φt(z3, 0)

Thus φt(z2, 0) = ψt(z2, 0) and we can write the flow on Vc × Vc as

ψt(z2, z3) = (ψt(z2, 0), ψt(z3, z2)),

which implies that the differential equations can be written as stated.

Remark 2. There are other feed-forward networks that have nilpotent double
eigenvalues that lead via Hopf bifurcations to equations of the form

ẋ2 = g(x2, λ)
ẋ3 = h(x3, x2, λ)

(12)

where g(0, λ) = 0 = h(0, 0, λ) and dg and dx3h have the same matrix a(λ) at
the equilibrium x2 = x3 = 0. This situation occurs in the network shown in
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Figure 2. In this case the two center manifolds Vc1 × {0} and {0} × Vc2 cannot
be naturally identified and the vector fields on these center manifolds cannot be
naturally identified. For example the Hopf bifurcation of the equation on the first
center manifold might be supercritical and on the second subcritical, which can
happen in the network in Figure 2. Nevertheless the results described here are still
valid; the center manifold for the feed-forward system is a fiber bundle parametrized
by Vc1 × Vc2 and the center manifold equations have the same form as (12); that is,

ż2 = ĝ(z2, λ)

ż3 = ĥ(z3, z2, λ)
(13)

where z2, z3 ∈ C and ĝ(0, 0) = ĥ(0, 0, 0) = i.

Figure 2. Three-cell feed-forward network with antiphase peri-
odic solution.

Remark 3. The center manifold arguments resulting in Theorem 2.3 (as well as
the normal form arguments in the next section summarized in Theorem 3.1) can be
iterated to apply to feed-forward chains of arbitrary length. A theorem about the
form of center manifolds in general feed-forward networks should be possible.

3. Hopf bifurcation normal form and solutions. The previous section dis-
cussed the form of the center manifold equations on a feed-forward network and
was applicable to any type of bifurcation. We now concentrate on Hopf bifurcation.
That is, we assume the center subspace Ec in cell 2 is two-dimensional, and the
linearization of the internal dynamics a has a pair of purely imaginary eigenvalues
at λ = 0. We rescale time so these are equal to ±i. Theorem 2.3 showed that on
the center manifold, the dynamics are given by

ż2 = g(z2, 0),
ż3 = g(z3, z2).

(14)

for coordinates z2, z3 ∈ C. Theorem 3.1 shows that we can transform (14) into
Birkhoff normal form such that the resulting system is S1 equivariant and Theo-
rem 3.3 uses this equivariance to prove the existence of a branch of λ

1
6 growth rate

solutions.
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Theorem 3.1. For any value of k, there exists a polynomial change of coordinates
which can transform (14) into the form

ż2 = pk(z2) + · · · (15)

ż3 = pk(z3) + qk(z3, z2) + · · ·
where pk and qk are polynomials of order k, qk(z3, 0) = 0, and · · · indicates terms
of degree at least k + 1. The truncated system

ż2 = pk(z2) (16)

ż3 = pk(z3) + qk(z3, z2)

is equivariant under the action of S1 given by

θ(z2, z3) = (eiθz2, e
iθz3)

Theorem 3.1 is proved using standard procedures of Birkhoff normal form theory;
the proof is contained in Appendix A.

Remark 4. Putting the center manifold equations (13) for the network in figure 2
into normal form works identically to the proof of Theorem 3.1 and those normal
form equations also have S1-equivariance.

After rescaling time so that the Hopf frequency is 1 and explicitly including the
bifurcation parameter λ, the S1-equivariant normal form equations have the form

ż2 = p̂(|z2|2, λ)z2

ż3 = p̂(|z3|2, λ)z3 + q̂(z2, z3, λ)
(17)

where z2, z3 ∈ C, p̂, q̂ ∈ C, and

p̂(0, 0) = i
q̂(0, z3, λ) = 0

q̂(eiθz2, e
iθz3, λ) = eiθ q̂(z2, z3, λ)

(18)

Because of the S1-equivariance, periodic solutions will be rotating waves with
frequency near 1. That is, we can assume

z2 = ei(1+τ)tu2

z3 = ei(1+τ)tu3
(19)

where τ ≈ 0 and u2, u3 ∈ C. Substituting (19) into (17) yields

u̇2 = (p̂(|u2|2, λ)− (1 + τ)i)u2

u̇3 = (p̂(|u3|2, λ)− (1 + τ)i)u3 + q̂(u2, u3, λ)
(20)

Observe that steady-state solutions to (20) correspond to rotating waves periodic
solutions of (17). Moreover, if we set p = p̂− i, then we need to solve the equations

0 = (p(|u2|2, λ)− τi)u2

0 = (p(|u3|2, λ)− τi)u3 + q̂(u2, u3, λ)
(21)

where p ∈ C and p(0, 0) = 0.
The first equation in (21) is just the equation that is solved in standard Hopf

bifurcation. We assume that the Hopf bifurcation in cell 2 is supercritical where
the equilibrium is stable for λ < 0. Begin by writing p = pR + ipI . It follows that

τ = pI(|u2|2, λ)

Next, we assume the eigenvalue crossing condition and the Hopf condition

pRλ (0, 0) > 0 and pRu (0, 0) < 0 (22)
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where u = |u2|2. We can use S1-equivariance to assume u2 ≥ 0. It follows by
the implicit function theorem applied to pR = 0 that there is a unique branch of
solutions to pR(u2

2, λ) = 0. Moreover, that solution grows in amplitude at the rate

of
√
λ. Specifically,

u2
2(λ) = λr(λ)

where

r(0) = −p
R
λ (0, 0)

pRu (0, 0)
> 0.

It follows that

u2(λ) = λ
1
2 s(λ) (23)

where s(λ) =
√
r(λ) and s(0) > 0.

To solve the second equation in (21) we must be more explicit about the form of
q̂.

Lemma 3.2. Let q̂(z2, z3, λ) satisfy the S1-equivariance condition in (18). Then

q̂(z2, z3) = A(|z2|2, |z3|2, z2z3, λ)z2 +B(|z2|2, |z3|2, z2z3, λ)z3 (24)

where A,B ∈ C are unique and

B(0, |z3|2, 0, λ) = 0. (25)

Proof. It is known that the quadratic polynomials

|z2|2 |z3|2 z2z3 z2z3

form a Hilbert basis for the S1-invariant functions of C × C → C and that z2, z3

are generators for the S1-equivariant mappings of C × C → C over the ring of
S1-invariant functions. Thus we can write

q̂(z2, z3) = A(|z2|2, |z3|2, z2z3, z2z3, λ)z2 +B(|z2|2, |z3|2, z2z3, z2z3, λ)z3

for some functions A,B ∈ C. Note that

(z2z3)z2 = |z2|2z3 and (z2z3)z3 = |z3|2z2.

It follows that we can assume that A is independent of the Hilbert generator z2z3

and that B is independent of the Hilbert generator z2z3. No further reductions are
possible. So q̂ has the form (24). Also note that

q̂(0, z3, λ) = B(0, |z3|2, 0, λ)z3

so that (25) follows from (18).

We can use (25) to further specify the form of B. Specifically, we claim that

B(|z2|2, |z3|2, z2z3, λ) = C(|z2|2, |z3|2, z2z3, λ)|z2|2 + D(|z2|2, |z3|2, z2z3, λ)z2z3

(26)

To verify (26) note that (25) implies that each nonzero monomial in B has either a
|z2|2 factor or a z2z3 factor.

We can now summarize that the form of the second equation in (21) must be:

0 =
(
pR(|u3|2, λ) + i(pI(|u3|2, λ)− pI(u2

2, λ))
)
u3 +A(u2

2, |u3|2, u2u3, λ)u2+

C(u2
2, |u3|2, u2u3, λ)u2

2u3 +D(u2
2, |u3|2, u2u3, λ)u2u

2
3 (27)

where pR(0) = pI(0) = 0 and u2 = λ
1
2 s(λ) ≥ 0.
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Theorem 3.3. There exists a unique branch of stable solutions u3(λ) to (27) and

that branch has a growth rate of λ
1
6 .

Proof. Assume that the solution has the form u3(µ) where µκ = λ, for some κ.
Then to lowest order, u3(µ) is of order µ, and we can expand (27) in powers of µ
as follows

0 =
(
pR(µ2, µκ) + i(pI(µ2, µκ)− pI(µκ, µκ))

)
µ+A(µκ, µ2, µ

κ
2 +1, µκ)µ

κ
2 +

C(µκ, µ2, µ
κ
2 +1, µκ)µκ+1 +D(µκ, µ2, µ

κ
2 +1, µκ)µ

κ
2 +2

The lowest orders are 3 and κ
2 . These orders can balance only when κ = 6. When

κ = 6 we see that

0 =
(
pR(µ2, µ6) + i(pI(µ2, µ6)− pI(µ6, µ6))

)
µ+A(µ6, µ2, µ4, µ6)µ3+

C(µ6, µ2, µ4, µ6)µ7 +D(µ6, µ2, µ4, µ6)µ5 (28)

Write u3 = µy and u2 = µ3s(µ6). We now write (27) modulo terms of order µ6

and obtain

p(µ2|y|2, 0)µy +A(0, µ2|y|2, 0, 0)µ3s+D(0)µ5sy2 = 0 (29)

where D(0) = D(0, 0, 0, 0). Using Taylor series and dividing by µ3, we can simplify
(29) as

Σ(y, µ) = pu(0)|y|2y+A(0)s+

(
1

2
puu(0)|y|4y +Av(0)|y|2s+D(0)sy2

)
µ2 +O(µ4)

where A(0) = A(0, 0, 0, 0). Note that Σ(y, 0) = 0 can be solved for y0 as follows:

Σ(y, 0) = pu(0)|y|2y +A(0)s(0) = 0

Specifically,

|y|2y = − A(0)

pu(0)
s(0) = − A(0)

pu(0)

√
−
pRλ (0)

pRu (0)

If we write

− A(0)

pu(0)
= R̂eiϕ

then the unique solution will be given by Reiϕ where

R3 = R̂

√
−
pRλ (0)

pRu (0)
.

It follows that y0 = Reiϕ.
We can now apply the implicit function theorem to solve Σ(y, µ) = 0 for y =

y(µ2). The determinant of the Jacobian DΣ(y0, 0) is obtained by computing
|Σy(y0, 0)|2 − |Σy(y0, 0)|2. We compute

Σy = 2pu(0)|y|2 and Σy = pu(0)y2

Therefore
det(DΣ)y0,0 = 3|pu(0)|2|y0|4 = 3|pu(0)|2R4 > 0 (30)

Finally, we compute the stability of the solutions (u2(λ), u3(λ)). Note that we
need to determine four Floquet exponents. Since the u̇2 equation is decoupled
we can conclude that one exponent is 1 and due to exchange of stability one has
negative real part. The other two Floquet exponents are determined by the u̇3
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equation. Since the periodic solutions are rotating waves we need only determine
the stability of the equilibrium to (21). To do this we compute the signs of the real
parts of the eigenvalues of DΣ. We show that these signs are negative at the origin
(since we were able to divide by µ3) and hence by continuity they are negative along
the branch. We have already computed the determinant in (30), so we need only
compute the trace at the origin. It is

tr(DΣ)y0,0 = 2Re(Σy(y0, 0)) = 4Re(pu(0)|y0|2 = 4pRu (0)R2 < 0

Since the determinant is positive and the trace is negative, the solution is stable.

Remark 5. We continue the discussion about the network in figure 2 given in
Remarks 2 and 4. If both solution branches are supercritical, then we can use
the same arguments as in Theorem 3.3 we can show the existence of a branch of
solutions whose amplitude growth of λ

1
6 .

4. Center manifold of forced systems. Consider the system

ẋ = f(x, λ) + εg(t) (31)

where the unforced system

ẋ = f(x, λ) (32)

is such that f(0, λ) = 0 and Df(0, 0) has a center subspace Ec. All other eigenvalues
of Df(0, 0) have negative real part. Equation (32) has an attracting center manifold
Wc which is tangent to Ec at (0, 0).

Lemma 4.1. Let x(t) be a small amplitude bounded solution to (31). Then {x(t)} ⊂
Wc.

Proof. The unforced equation can be decomposed into the flow onWc, and the flow
transverse to Wc. The flow transverse is contracting onto Wc, and on a bounded
neighborhood of the origin the rate of contraction has a minimum which is bounded
away from zero.

Consider the bounded trajectory x(t) for (31), and consider the rate of contrac-
tion onto Wc over the closure of that trajectory. Let −µc(x) be the rate at which
points on the trajectory converge to the center manifold and let µe(x) be the rate
at which due to forcing the solution is driven away from the center manifold. Note
that µe(x) depends on the amplitude ε of the forcing. Let µmin = minµc(x) > 0.
We can always choose ε small enough so that the minimum contraction µmin onto
Wc is greater than the maximum expansion due to the forcing. Therefore, the
trajectory x(t) must lie inside of Wc.

5. Solution branches in forced chains. In this section we consider a feedforward
chain with small amplitude forcing, and compute the branches of periodic solutions
with the same frequency as the forcing for a specific example. We do not prove that
the results for the example we consider are generic, although we believe that they
are.

The equilibrium in cell 1 is stable, and so small amplitude forcing of cell 1 will
produce a small amplitude periodic solution. For simplicity, we ignore this step, and
simply replace the coupling from cell 1 to cell 2 of the feedforward chain with small
amplitude periodic forcing of cell 2. We consider additive forcing, so we can apply
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lemma 4.1 and need only consider forcing the center manifold. By theorems 2.3
and 3.1 the normal form of the unforced system can be written in the form

ż2 = p̂(|z2|2, λ)z2

ż3 = p̂(|z3|2, λ)z3 + q̂(z2, z3, λ)

For ease of calculation we consider a cubic truncation of the internal dynamics,
and a linear truncation of the forcing term, and take a single sinusoidal forcing
term, that is, we consider the equations (after appropriate rescaling):

ż2 = (λ+ i)z2 + (−1 + iγ)|z2|2z2 + εeiωF t,

ż3 = (λ+ i)z3 + (−1 + iγ)|z3|2z3 + z2

We do not attempt to prove that the results are independent of terms of higher
order, neither do we compute the stability of solutions.

To begin, we change to rotating coordinates, that is, we write

zj = uje
i(ωF t−θj), j = 1, 2

to obtain

u̇2 = (λ+ iω)u2 + (−1 + iγ)|u2|2u2 − εeiθ1

u̇3 = (λ+ iω)u3 + (−1 + iγ)|u3|2u3 − u2ei(θ2−θ1)

where ω = 1− ωF . We set u̇j = 0 and solve

g(u2) ≡ (λ+ iω)u2 + (−1 + iγ)|u2|2u2 = εeiθ1

g(u3) = −u2ei(θ2−θ1)

which is equivalent to

|g(u2)|2 = ε2

|g(u3)|2 = |u2|2

where
|g(u)|2 = (λ2 + ω2)|u|2 + 2(ωγ − λ)|u|4 + (1 + γ2)|u|6.

Set δ = ε2 and Rj = |uj |2 and let

G(R;λ, ω, γ) ≡ (1 + γ2)R3 + 2(ωγ − λ)R2 + (λ2 + ω2)R

For solutions, we have to solve

G(R2;λ, ω, γ) = δ (33)

G(R3;λ, ω, γ) = R2 (34)

We consider R2, R3 as a function of ω for fixed λ, γ, δ. In order to construct bifur-
cation diagrams we find curves of hysteresis points and bifurcation points for fixed
γ in λ-δ space.

5.1. Results from a single cell. We recap the results for a single forced cell,
that is, solutions R2 of (33). These calculations are described in detail in [10, 11]
and are based on the singularity theory construction of hysteresis and bifurcation
varieties, as described in [7, Chapter III, §5]. These varieties divide parameter
space into regions of qualitatively similar bifurcation diagrams. Parameter values
where bifurcation diagrams have vertical tangents are called hysteresis points and
parameter values where bifurcation diagrams are not smooth curves (such as when
bifurcation diagrams contain crossed branches) are called bifurcation points. More
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Figure 3. Bifurcation and hysteresis phenomena. Adapted
from [7, Chapter III, §5].

specifically, S-shaped curves that lead to multiplicity of solutions are formed at
hysteresis points. New components (such as the spawning of an isola) and the
rearranging of components (such as happens at perturbations of transcritical bifur-
cations) occur at bifurcation points. In Figure 3 we show sketches of solutions at
points of bifurcation and hysteresis, along with solutions after a small perturbation.

5.1.1. Hysteresis points. Hysteresis points are found by solving

G(R2;λ, ω, γ) = δ (35)

GR(R2;λ, ω, γ) = 0 (36)

GRR(R2;λ, ω, γ) = 0 (37)

(plus some more conditions on various derivatives being non-zero). It can be shown
that in δ-λ space there are two hysteresis curves at:

λ =

(√
3

2

√
3− γ

(1 + γ2)1/3

)
δ1/3

λ =

(√
3

2

√
3 + γ

(1 + γ2)1/3

)
δ1/3

Note that if γ <
√

3 then the coefficient of δ1/3 in both of these equations is positive.
If γ >

√
3 then the first is negative, and the second is positive.

As part of the calculation, we also find (which is useful in the following) that at
hysteresis points, the following conditions are also satisfied:

(ωγ − λ) = −3

2
(1 + γ2)2/3δ1/3 (38)

(λ2 + ω2) = 3(1 + γ2)1/3δ2/3 (39)

5.1.2. Bifurcation points. Bifurcation points are found by solving

G(R2;λ, ω, γ) = δ

GR(R2;λ, ω, γ) = 0

Gω(R2;λ, ω, γ) = 0
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There are two curves of bifurcation points in δ-λ space. The first is given by
δ = 0 for λ > 0. The second bifurcation curve occurs at

λ =
3

22/3
δ1/3

5.2. Results for third cell. We now compute the solutions R3 in the third cell.
We suppose that the equation G(R2;λ, ω, γ) = δ has been solved in the second cell,
then we can think of the input R2 into the third cell as a function R2(λ, ω, γ, δ).
The equation for R3 in the third cell is thus:

G(R3;λ, ω, γ) = R2(λ, ω, γ, δ).

We again proceed by computing curves of hysteresis and bifurcation points in δ-λ
space.

5.2.1. Hysteresis points. Hysteresis points occur when

G(R2;λ, ω, γ) = δ (40)

G(R3;λ, ω, γ) = R2 (41)

GR(R3;λ, ω, γ) = 0 (42)

GRR(R3;λ, ω, γ) = 0 (43)

Equations (41) to (43) are equivalent to equations (35) to (37), with δ and R2

replaced by R2 and R3 respectively. Thus we have already solved these, and we can
substitute these solutions into (40). That is, we have

(1 + γ2)R3
2 + 2(ωγ − λ)R2

2 + (λ2 + ω2)R2 = δ (44)

where

(ωγ − λ) = −3

2
(1 + γ2)2/3R

1/3
2 (45)

(λ2 + ω2) = 3(1 + γ2)1/3R
2/3
2 (46)

(from (38) and (39)) and R2 is given by

λ =

(√
3

2

√
3± γ

(1 + γ2)1/3

)
R

1/3
2 (47)

Substituting (45) and (46) into (44) gives

(1 + γ2)R3
2 − 3(1 + γ2)2/3R

7/3
2 + 3(1 + γ2)1/3R

5/3
2 = δ (48)

At leading order, we only need the final term on the left hand side, that is

3(1 + γ2)1/3R
5/3
2 = δ

substituting for R2 from (47) gives

25

33/2

(1 + γ2)2

(
√

3± γ)5
λ5 = δ

that is,

λ =
33/10

2

(
√

3± γ)

(1 + γ2)2/5
δ1/5 (49)

So this gives two additional curves of hysteresis points. If γ <
√

3, both have
positive coefficient, that is, both curves lie in the right-hand side of the λ-δ plane.
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If γ >
√

3, one has positive coeffient and one negative, so there is one curve in the
right-hand side and one in the left-hand side of the λ-δ plane.

5.2.2. Bifurcation points. Bifurcation points occur when

G(R2;λ, ω, γ) = δ (50)

G(R3;λ, ω, γ) = R2 (51)

GR(R3;λ, ω, γ) = 0 (52)

Gω(R3;λ, ω, γ) +R2ω(λ, ω, γ, δ) = 0 (53)

Equation (53) can also be written as

Gω(R3;λ, ω, γ) +
Gω(R2;λ, ω, γ)

GR(R2;λ, ω, γ)
= 0

We assume that in the limit of small λ, solutions to these equations are of the
form

δ = δ̂λαδ , R2 = R̂2λ
αR2 , R3 = R̂3λ

αR3 , ω = ω̂λαω

This leads to the following set of equations:

(1 + γ2)R̂2
3
λ3αR2 + 2γω̂R̂2

2
λ2αR2

+αω − 2R̂2
2
λ2αR2

+1 + R̂2λ
αR2

+2

+ω̂2R̂2λ
αR2

+2αω = δ̂λαδ

(1 + γ2)R̂3
3
λ3αR3 + 2γω̂R̂3

2
λ2αR3

+αω − 2R̂3
2
λ2αR3

+1 + R̂3λ
αR3

+2

+ω̂2R̂3λ
αR3

+2αω = R̂2λ
αR2

3(1 + γ2)R̂3
2
λ2αR3 + 4γω̂R̂3λ

αR3
+αω − 4R̂3λ

αR3
+1 + ω̂2λ2αω + λ2 = 0

(γR̂3
2
λ2αR3 + ω̂R̂3λ

αR3
+αω )(3(1 + γ2)R̂2

2
λ2αR2 + 4γω̂R̂2λ

αR2
+αω

−4R̂2λ
αR2

+1 + ω̂2λ2αω + λ2) + (γR̂2
2
λ2αR2 + ω̂R̂2λ

αR2
+αω ) = 0

One possible scaling is

αδ = 5, αR2
= 3, αR3

= 1, αω = 1

At leading order, the equations become (dropping the hats)

R2(1 + ω2) = δ (54)

(1 + γ2)R3
3 + 2(ωγ − 1)R2

3 + (1 + ω2)R3 = R2 (55)

3(1 + γ2)R3
2 + 4(γω − 1)R3 + (ω2 + 1) = 0 (56)

(γR3
2 + ωR3)(1 + ω2) = −ωR2 (57)

Eliminating R2 from (57) and (55) gives

(1 + γ2)R3
3 +

(
2(ωγ − 1) +

γ

ω
(1 + ω2)

)
R2

3 + 2(1 + ω2)R3 = 0 (58)

which simplifies to become

(1 + γ2)R2
3 +

(
3ω2γ − 2ω + γ

ω

)
R3 + 2(1 + ω2) = 0 (59)

Eliminating R2
3 from (56) and (59) gives

R3 =
−5ω(1 + ω2)

2ω(ωγ − 1) + 3γ(1 + ω2)
(60)
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Figure 4. The figures show bifurcation and hysteresis curves in
λ-δ space for γ = 0.4 < γ? (left) and γ = 4 >

√
3 (right). The

values of γ used for computation were far from γ? and
√

3 so that
the individual curves can be easily distinguished in the figure. For
γ? < γ <

√
3 the picture is the same as the left hand figure except

that the right most red and blue dashed curves are the other way
around. We do not show this figure as the curves would be too
close to distinguish. Solid curves represent bifurcations/hysteresis
in both cells, dashed curves are just for cell 2. Blue curves are
hysteresis curves, red curves are bifurcation curves. The six curves
divide the plane into seven regions each of which has a different
bifurcation diagram when solutions are plotted for Rj against ω.
These diagrams are shown in Figures 5, 6 and 7.

Substituting for R3 in (56) gives an equation for ω implicitly in terms of γ. After
simplification we find

(ω + γ)(25ω3 + 15γω2 + 13ω + 3γ) = 0 (61)

The solution with ω = −γ corresponds to the solution δ = 0 which was previously
computed. It can be shown that the cubic bracket has only one real root, regardless
of the value of γ. The cubic can be solved numerically for ω as a function of γ,
which then gives R3, R2 and δ as functions of γ using (60), (57) and (54). Numerical
simulations show that this bifurcation curve is in the right-half of the λ-δ plane.
Numerical solutions also show there is some γ? ≈ 1.15 such that the bifurcation
curve lies below both hysteresis curves if γ < γ?, and above the right-hand hysteresis
curve if γ > γ?.

5.3. Schematic pictures. We plot the resulting bifurcation and hysteresis curves
for fixed γ in λ-δ space, showing examples in Figure 4. The curves are plotted
numerically so that we can show the numerical solution of the bifurcation curves
for cell 3. Note that because the hysteresis and bifurcation curves for cell 2 have
δ ∼ λ3 these lie above (for small enough λ) the hysteresis and bifurcation curves for
cell 3, which have δ ∼ λ5. The curves are thus shown in the limit of small λ. The
six curves divide the plane into seven regions.
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Figure 5. Each subfigure shows a schematic of a bifurcation
diagram for each of the seven regions of the δ-λ plane, for γ < γ?.
In each subfigure, Rj is plotted against ω, for j = 2 (cell 2, left
column) and j = 3 (cell 3, right column). The seven regions are
shown in Figure 4, and the numbers label the regions from left to
right.

For each of the seven regions, we show schematic plots of amplitude of solution
against ω in each cell are sketched schematically in Figures 5, 6 and 7. Notice that
there is the possibility of multiplicity of up to five solutions in cell 3.

Appendix A. Proof of Theorem 3.1. This appendix contains the proof of Theo-
rem 3.1. Recall that Theorem 2.3 showed that on the center manifold, the dynamics
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Figure 6. Each subfigure shows a schematic of a bifurcation
diagram for each of the seven regions of the δ-λ plane, for γ? <
γ <
√

3. In each subfigure, Rj is plotted against ω, for j = 2 (cell
2, left column) and j = 3 (cell 3, right column). The numbers label
the regions from left to right in the δ-λ plane.

are given by

ż2 = g(z2, 0),
ż3 = g(z3, z2).

(A.1)

for coordinates z2, z3 ∈ C. We now show that we can perform a series of near-
identity transformations to put the system into Birkhoff normal form such that the
resulting system is S1 equivariant.

It is clear that transformations of the form(
z2

z3

)
→
(
p1(z2)
p1(z3)

)
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Figure 7. Each subfigure shows a schematic of a bifurcation
diagram for each of the seven regions of the δ-λ plane, for γ >

√
3.

In each subfigure, Rj is plotted against ω, for j = 2 (cell 2, left
column) and j = 3 (cell 3, right column). The seven regions are
shown in Figure 4, and the numbers label the regions from left to
right.

do not change the structure of equations (A.1). Since the first equation in (A.1)
is independent of z3, we can thus make transformations of this type (following the
standard Birkhoff normal form transformations for Hopf bifurcation) so that the first
equation is in the standard Hopf normal form. We assume these transformations
have already been done up to some order k ∈ N, that is, we can write g(z2, 0) =
p(z2) + . . . , where p(z2) = p̃(|z2|2)z2 and . . . refer to terms of order greater than k.

The following lemma shows that we can make coordinate changes only to the z3

coordinate and preserve the structure of the equations.
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Lemma A.1. Let Φt(z2, z3) be the flow for (A.1) and let P be a near identity
change of coordinates of the form

P (z2, z3) = (z2, ρ(z3, z2))

where ρ(z3, 0) = z3. Then the flow Ψt = P−1ΦtP is also associated to a system in
the form (A.1).

Proof. It follows from the assumption that Φt(z2, z3) is the flow of (A.1) that Φt
has the form

Φt(z2, z3) = (φt(z2, 0), φt(z3, z2))

To verify the lemma we must show that Ψt has the form

Ψt(z2, z3) = (ψt(z2, 0), ψt(z3, z2)) (A.2)

To verify (A.2) compute

Ψt(z2, z3) = P−1Φt(z2, ρ(z3, z2)) = P−1(φt(z2, 0), φt(ρ(z3, z2), z2))

Since P maps the plane (z2, ·) it follows that P−1 must also. Therefore, P−1(z2, z3) =
(z2, σ(z3, z2)) where

σ(ρ(z3, z2), z2) = z3

To see this compute

P−1P (z2, z3) = P−1(z2, ρ(z3, z2)) = (z2, σ(ρ(z3, z2), z2))

Hence

Ψt(z2, z3) = (φt(z2, 0), σ(φt(ρ(z3, z2), z2), φt(z2, 0)) (A.3)

Suppose

Ψt(z2, z3) = (at(z2, z3), bt(z3, z2)).

It follows from (A.3) that at is independent of z3 and at(z2) = φt(z2, 0). It also
follows that

bt(z3, 0) = σ(φt(ρ(z3, 0), 0), 0) = σ(φt(z3, 0), 0) = φt(z3, 0) = at(z3)

as needed.

In the proof of Theorem 3.1 we use coordinate changes of the type described in
Lemma A.1 to transform the center manifold equations into Birkhoff normal form.

Proof of Theorem 3.1. First, write g(z2, 0) = h(z2). Then this implies that we can

write g(z3, z2) = h(z3) + ĥ(z3, z2) where ĥ(z3, 0) = 0. We have assumed that we
have already made coordinate transformations so that h(z2) = pk(z2) + . . . , where
pk is an order-k S1-equivariant polynomial, that is pk(z2) = p̃k(|z2|2)z2.

We now seek to find a further series of near-identity transformations of the form(
z2

z3

)
→
(

z2

z3 + Pk(z2, z3)

)
(A.4)

where Pk is a polynomial of order k, and Pk(0, z3) = 0, to transform the equations
into the desired form. We follow the standard procedure of Birkhoff normal form
theory (see [8] for more details).

Proceeding by induction, we make a succession of coordinate changes to eliminate
terms of successive orders. We thus assume that g(z2, z3) has the form

g(z2, z3) = fk(z2, z3) + hk(z2, z3) + . . .
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where fk consists of terms up to order k − 1 which cannot be removed, and hk are
terms of order k. The linear part of (A.1) is

L =

(
α 0
β α

)
where α(z2) = iz2 and β(z2) = β1z2 + β2z̄2. Let Pk be the space of homogeneous
polynomial mappings of degrees k on C2 which satisfy Pk(0, z3) = 0 for each Pk ∈
Pk. Let Pk ∈ Pk and write

P̃k =

(
0

Pk(z2, z3)

)
Then computation of the adjoint of P̃k, defined below, allows us to compute which
terms can be removed by coordinate transformations of the form given in (A.4).
The adjoint is defined as:

adL(P̃k)(z) = LP̃k(z)− (dP̃k)zLz

where z = (z2, z3)T , and (dP̃k)z2(z2) = (dP̃k)z2z2 + (dP̃k)z̄2 z̄2. Computing, we find
(dropping the dependence of Pk on z2 and z3 for clarity):

adL(P̃k)(z) = LP̃k(z)− (dP̃k)zLz

=

(
α 0
β α

)(
0
Pk

)
−
(

0 0
dPkz2 dPkz3

)(
α 0
β α

)(
z2

z3

)
=

(
0
iPk

)
−
(

0 0
dPkz2 dPkz3

)(
iz2

iz3 + β1z2 + β2z̄2

)
=

(
0

A(Pk)

)
where

A(Pk) = i(Pk − dPkz2z2 + dPkz̄2 z̄2 − dPkz3z3 + dPkz̄3 z̄3)

− (β1dPkz3z2 + β2dPkz3 z̄2 + β̄1dPkz̄3 z̄2 + β̄2dPkz̄3z2) (A.5)

Note that A(Pk)(0, z3) = 0, so A(Pk) is a linear map Pk → Pk. The terms which
can be eliminated from the center manifold equations by the transformation (A.4)
are those in the subspace A(Pk) ⊂ Pk.

We now find the form of all possible terms of polynomials in A(Pk). Consider
Qk ∈ Pk, where Qk = zα1

2 z̄α2
2 zα3

3 z̄α4
3 , for αj ∈ N. We will show that Qk ∈ A(Pk)

so long as (1 − α1 + α2 − α3 + α4) 6= 0. Note that Qk(0, z3) = 0 implies that at
least one of α1 and α2 are greater than zero. We also assume here that β1β2 6= 0
but the other cases can be dealt with similarly.

Write α̂ = (1− α1 + α2 − α3 + α4) and assume α̂ 6= 0. We compute

A(Qk) = i(1− α1 + α2 − α3 + α4)zα1
2 z̄α2

2 zα3
3 z̄α4

3

− (β1α3z
α1+1
2 z̄α2

2 zα3−1
3 z̄α4

3 + β̄1α4z
α1
2 z̄α2+1

2 zα3
3 z̄α4−1

3

+ β2α3z
α1
2 z̄α2+1

2 zα3−1
3 z̄α4

3 + β̄2α4z
α1+1
2 z̄α2

2 zα3
3 z̄α4−1

3 ) (A.6)

First consider the case α3 = α4 = 0. Then

A
(
Qk
iα̂

)
= Qk

so we immediately see that Qk ∈ A(Pk).
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Next consider the case α3 6= 0, α4 = 0. We proceed by induction on α3. Assume
that for α3 > 1 we have found q13, q23 such that

A(q13) = zα1+1
2 z̄α2

2 zα3−1
3

A(q23) = zα1
2 z̄α2+1

2 zα3−1
3

Then

A
(

1

iα̂

(
Qk +

1

β1α3
q13 +

1

β2α3
q23

))
= Qk

so Qk ∈ A(Pk). For the first step in the induction process, that is, for α3 = 1, we
have q13 = 1

iα̂z
α1+1
2 z̄α2

2 and q14 = 1
iα̂z

α1
2 z̄α2+1

2 . Similar computations by induction
also apply for the cases α4 6= 0, α3 = 0 and α3, α4 6= 0.

Therefore the only terms which cannot be removed are those for which (1−α1 +
α2 − α3 + α4) = 0. These terms are precisely those of the form

h2(|z2|2, |z3|2, z2z̄3, z3z̄2)z2 or h3(|z2|2, |z3|2, z2z̄3, z3z̄2)z3

for polynomials h1, h2, that is, terms which are equivariant with respect to the
action of S1.
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