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ABSTRACT
Consider networks in which all arrows are distinct and all cells are dis-
tinct. In this context, we obtain complete descriptions of the groups
of diffeomorphisms that preserve network dynamics in the following
sense: changing coordinates via the diffeomorphism transforms the
space of admissible maps to itself. Five distinct actions are consid-
ered: left, right, contact, conjugacy, and vector field. Key features are
the left core, right core, and core of the network. The core is a subnet-
workwith special combinatorial features, and it represents a partition
of the cells into all-to-all connected subnetworks that couple to each
other in a feed-forward manner. For the left/right actions, the group
consists of all diffeomorphisms that are admissible for the left/right
core, respectively. The contact action is a pair (B, �) where B is deter-
mined by the left core and� by the right core. For the conjugacy and
vector field actions, the group is generated by diffeomorphisms that
are admissible for the core togetherwithgraphautomorphismsof the
network; that is, permutations of the cells that map arrows to arrows
but need not preserve arrow type. The proofs are combinatorial for
the left and right actions, but require a mixture of Lie theory and the
structure theory of associative algebras in the other cases, together
with a nonlinear-to-linear reduction theorem.

1. Introduction

Dynamical systems associated with networks form a special class whose structure is deter-
mined by the network connections. The topology of the connections restricts the variables
that can appear in components of the ordinary differential equation (ODE), and a suitable
notion of ‘equivalent’ connections also requires the same coupling function to occur in cor-
responding components. These restrictions can be formalized in terms of admissible vector
fields, which informally are those vector fields that encode the network topology [1–3]. This
is achieved by associating a variable with each cell (or node) of the network and associating
coupling terms between cell variables with the arrows (directed edges). The corresponding
class of ODEs, which we call admissible, determines the general dynamical properties of
the network.

This paper was motivated by a question arising in biochemistry: the notion of home-
ostasis, where at an equilibrium of a system of ODEs, some variable remains approximately
constant when a parameter varies. The dynamical system viewpoint suggests that a formal

CONTACT Ian Stewart i.n.stewart@warwick.ac.uk
©  Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://dx.doi.org/10.1080/14689367.2016.1235136
mailto:i.n.stewart@warwick.ac.uk


DYNAMICAL SYSTEMS 81

definition of homeostasis should be invariant under appropriate coordinate changes. The
implications of this approach are discussed in [4,5]. Here we discuss, from a purely math-
ematical viewpoint, a more general question: which coordinate changes are appropriate
for network dynamics? By analogy with topological dynamics, they should preserve those
qualitative features of the dynamics that are relevant in an appropriate context. But they
should also preserve the key feature that distinguishes network dynamics from a general
dynamical system: the existence of distinguished variables corresponding to the cells of the
network. It is, therefore, natural to require the coordinate changes to preserve the space of
admissible vector fields [2,3].

Coordinate changes can act in several distinct ways. The main results of this paper char-
acterize the appropriate changes of coordinates (diffeomorphisms) for five important cases:
right composition, left composition, contact equivalence, conjugacy for maps, and vector
field changes. See Definition 2.4. Each type of diffeomorphism is useful in an appropriate
context. The first two are the simplest and play a key role in the analysis of the other three.
Contact equivalences are the most general equivalences that preserve zeros of mappings.
Conjugacy is natural for discrete dynamics (iterated maps). Vector field equivalence pre-
serves the entire phase portrait (and its projections to cell coordinates in the network case)
for continuous dynamics.

These characterizations solve a basic issue in network dynamics. The structure is richer
than might be expected, and depends on the network topology.

Rink and Sanders [6,7] have studied a related issue in connection with normal forms
for bifurcations in coupled cell networks. In particular, they provide examples of networks
in which strongly admissible diffeomorphisms (2.3) are not the only ones that transform
admissible maps to admissible maps. Their results explain many otherwise puzzling fea-
tures of network dynamics and bifurcations in terms of ‘hidden symmetries’ and semigroup
equivariance (see also [8]). The strongest implications of their techniques occur when the
network is homogeneous (all cells have isomorphic input sets), whereas our results require
the network to be fully inhomogeneous (distinct cells have non-isomorphic input sets).
In this sense, our results are complementary to theirs, addressing different but related
questions.

The definition of network-preserving diffeomorphisms can easily be extended to gen-
eral networks, where distinct cells may be input-isomorphic or when there are non-trivial
vertex symmetries (some cell receives several arrow-equivalent inputs). Self-loops and
multiple arrows can also be allowed. Characterizing network-preserving diffeomorphisms
for general networks seems to require new methods, and we do not discuss this problem
here.

This paper uses a large quantity of notation. A list of the main symbols, with references
to their definitions, is provided as an appendix at the end of the paper.

1.1. Outline of paper

Throughoutwework in the class of fully inhomogeneous networks, inwhich all arrow types
are different, and there are no multiple arrows or self-loops.

Section 2 recalls standard network formalism from [2,3], in particular, the notion of an
admissible map, specialized to fully inhomogeneous networks, where the formalism is sim-
pler. Five types of coordinate change are defined: right, left, contact, conjugacy, and vector
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field. The groups of network-preserving diffeomorphisms for these changes are defined.
The first main result is stated as Theorem 2.5, which characterizes left, right, and con-
tact network-preserving diffeomorphisms in terms of combinatorial properties of input
and output sets of the network. The second main result, Theorem 2.10, characterizes con-
jugacy and vector field network-preserving diffeomorphisms. This theorem involves the
finite group of graph automorphisms of the network, which is defined.

Section 3 contains the proof of Theorem 2.5, which is relatively straightforward. The
combinatorial statement is then reinterpreted in terms of the network structure by defin-
ing the left and right cores of the network, and their intersection, the core. Theorem 3.4
proves that the left (respectively right) network-preserving diffeomorphism of a network
are precisely the admissible diffeomorphism for its left (respectively right) core.

Section 4 deals with a technical issue: proving that the five groups of network-preserving
diffeomorphisms actually are groups. The difficulty is that the inverse of a network-
preserving diffeomorphism is not obviously a network-preserving diffeomorphism. This
fact is not required in any subsequent proofs, but we discuss it now because the question
is a natural one. We answer it using G-structures. This concept reduces the result to the
linear case, where it follows by finiteness of the dimension (see Remark 4.3). The proof for
the left, right, and contact actions is straightforward. For the conjugacy and vector field
actions we present a proof that assumes two results from the linear case: Theorem 6.2 and
Lemma 9.1.

This section also introduces a combinatorial structure that we call a shape. Shapes are the
basic objects employed in this paper; they characterize a fully inhomogeneous network (via
its adjacency matrix), its admissible maps (in terms of which cell variables occur in which
components), its linear admissible maps (their form as matrices), and the three cores of the
network. The proof of Theorem 2.10 is based on shapes of linear admissible maps, and of
network-preserving diffeomorphisms for various actions.

Further key properties of shapes and cores, needed later, are developed in Section 5.
Associated with any shape is a square matrix in which an asterisk ∗ denotes an arbitrary
entry and a zero 0 denotes a zero entry. Closed shapes, defined by a transitivity property,
correspond to cores. We prove that the set of matrices with a given closed shape is an asso-
ciative algebra, and the subset of invertible matrices of that shape is therefore a group;
indeed, a Lie group. We also describe how graph automorphisms act on shapes.

Section 6 outlines the algebraic strategy that we use to prove the linear version of the
problem, Theorem 6.2. This result is central to the paper, because the analogous nonlinear
Theorem 2.10 is a fairly straightforward consequence.

Sections 7–11 pass from the Lie group of network-preserving matrices to its Lie alge-
bra, analyze its structure and its relation to the core of the network, and introduce the
graph automorphisms gaut(G) and their properties. This part of the paper is technical and
algebraic, so we provide extra detail for readers less familiar with these techniques. The
Wedderburn–Malcev theorem [9–11] from the theory of associative algebras completes the
proof by decomposing any network-preserving diffeomorphism for the conjugacy action
into one that lies in the core, multiplied by a graph automorphism.

Finally, Section 12 completes the proof of Theorem 2.10 by reducing the problem from
nonlinear network-preserving diffeomorphisms acting on nonlinear admissible maps to
linear network-preserving diffeomorphisms (invertible matrices) acting on linear admissi-
ble maps.
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2. Network-preserving coordinate changes

We describe some basic concepts of the network formalism, specialized to the types of net-
works we consider in this paper. In [2,3] we defined a coupled cell network to be a directed
graph, whose arrows and cells may be classified into distinct types. Here we simplify the
discussion by assuming that all cells have distinct types and all arrows have distinct types.
Formally:

Definition 2.1: A network G is fully inhomogeneous if distinct arrows are inequivalent.

Throughout this paper we assume that G is fully inhomogeneous. All we actually need
is that distinct cells are not input-isomorphic. However, such a network is ODE-equivalent
to one in which all arrows differ (see [12]); that is, it defines the same space of admissible
vector fields (see below).

For simplicity we assume all cells are one-dimensional, but it is straightforward to
rewrite the theorems and their proofs for the general case in which cell c has phase space
R

nc, nc ≥ 1, at the expense of complicating the notation. We omit the details.
To each coupled cell network there is associated a specific class of vector fields (or equiv-

alently ODEs), which are said to be ‘admissible’. Informally, the cells of the graph are identi-
fiedwith systems ofODEs, and the arrows of the graph are interpreted as couplings between
those systems. In the general theory arrows of the same type determine identical couplings,
and the tail cells of the arrows determine which variables occur in the corresponding com-
ponent of the vector field. It is especially straightforward to describe admissible systems for
fully inhomogeneous networks, as follows.

Given a fully inhomogeneous n-cell network, we associate to each cell a state variable
xi ∈ R for i = 1,… , n. If I = {i1,… , is} is a set of distinct indices between 1 and n, let

xI = (xi1, . . . , xis )

Without loss of generality we can assume i1 < ��� < is. Next we define input sets, output
sets, and admissible vector fields.

Definition 2.2: The extended input set J(i) of cell i is the set of all j such that either j = i or
there exists an arrow connecting cell j to cell i. The extended output set O(i) is the set of all
j such that either j = i or there exists an arrow connecting cell i to cell j.

For fully inhomogeneous networks, admissible systems have the form

ẋ1 = f1(xJ(1))
...

ẋn = fn(xJ(n))

(2.1)

where, in general, the fj are distinct.

Example 2.3: Consider the four-cell network G in Figure 1. Let x = (x1, x2, x3, x4) ∈ R
4.

The admissible maps F : R
4 → R

4, (that is, admissible vector fields) are those of the
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Figure . Example of a four-cell network. All arrows are different, but for simplicity this is notmadeexplicit
in the figure.

form

F(x) =

⎡
⎢⎢⎣

f1(x1, x4)
f2(x1, x2, x3)
f3(x1, x2, x3)
f4(x1, x2, x3, x4)

⎤
⎥⎥⎦ (2.2)

where the fj are distinct functions.
In a general dynamical system, the most natural coordinate changes are vector field

changes

F �→ (D�)−1
x F�(x)

where x = (x1,… , xn) is a coordinate system on phase space, � is a diffeomorphism on
phase space, and (D�)x is the Jacobian matrix of � evaluated at x. These changes preserve
all qualitative features of the dynamics, such as the topological type of attractors. There are
no special constraints on � other than smoothness and invertibility.

In equivariant dynamical systems, a context that is now well understood, a group of
symmetries acts on the vector field and preserves its structure [13]. The diffeomorphism�

is required to be equivariant. Such a coordinate change not only preserves the qualitative
dynamics, it also preserves the symmetries of states.

Coupled cell systems are loosely analogous to equivariant ones, but now the constraints
are imposed by the architecture of the network. One major difference is that the compo-
sition of two equivariant maps is also equivariant, but the composition of two admissible
maps need not be admissible. However, there is a subclass of ‘strongly admissible’ maps,
whose composition with any admissible map (in either order) remains admissible (see [2]).
For fully inhomogeneous networks,� = (φ1,… , φn) is strongly admissible if φj(x)= φj(xj);
that is,

�(x1, . . . , xn) = (φ1(x1), . . . , φn(xn)) (2.3)

This property has applications to several basic questions in network dynamics. The role of
strongly admissible maps is to provide coordinate changes that preserve particular features
of admissible maps.
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It is reasonable to ask whether the strongly admissible maps are the only coordinate
changes with such properties. We will show that for some networks, strongly admissible
maps are not the only such coordinate changes.

2.1. Five types of coordinate change

The precise characterization of network-preservingmaps depends on the network, and also
on the type of coordinate change concerned. We consider five types of coordinate change,
as follows.

Definition 2.4: Let F : R
n → R

n be an admissible smooth map, and let � : R
n → R

n be a
diffeomorphism.

(1) The right action of � transforms F into

G(x) = F�(x)

(2) The left action of � transforms F into

G(x) = �F(x)

(3) The contact action transforms F into

G(x) = B(x)F�(x)

where B(x) be an invertible n × nmatrix.
(4) The conjugacy action transforms F into

G(x) = �−1F�(x)

(5) The vector field action transforms F into

G(x) = (D�)−1
x F�(x)

Contact equivalence is used when studying the zeros of a map, or equilibria of systems
of differential equations. Vector field equivalence is a special form of contact equivalence,
and it preserves the dynamics.

2.2. Statements of the principal results

In each case in Definition 2.4, we ask for conditions on � that ensure that G is admissi-
ble for all admissible F. Such a � is said to be network-preserving in the relevant context.
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Specifically, we let G be a fully inhomogeneous network and define}

DL
G = {left network-preserving diffeomorphisms�}

DR
G = {right network-preserving diffeomorphisms�}

D�
G = {diffeomorphisms � that are simultaneously left and right network-preserving}

DC
G = {conjugacy network-preserving diffeomorphisms�}

DV
G = {vector field network-preserving diffeomorphisms�}

We often omit the subscript G when the network is clear. It is straightforward to show that
each of the above sets contains the identity diffeomorphism and is closed under composi-
tion; that is, it is a semigroup with identity. In fact, all of these semigroups are groups, and
DC

G = DV
G . Proofs of these statements rely on relations between the linear and nonlinear

settings. The contact action is closely related toD�
G and we do not define an explicit group

for the contact action.
The main results of this paper characterize these groups of network-preserving diffeo-

morphisms explicitly.
For right, left, and contact actions, this is straightforward. Define

R(i) ≡ { j ∈ J(i) : O( j) ⊇ O(i)} (2.4)

L(i) ≡ { j ∈ J(i) : J( j) ⊆ J(i)} (2.5)

�(i) ≡ L(i) ∩ R(i). (2.6)

Theorem 2.5:

(1) A diffeomorphism � = (φ1,… , φn) is left network-preserving if and only if

φi(x) = φi(xL(i)) ∀i (2.7)

(2) A diffeomorphism � = (φ1,… , φn) is right network-preserving if and only if

φi(x) = φi(xR(i)) ∀i (2.8)

(3) A diffeomorphism � = (φ1,… , φn), and an invertible n × n matrix-valued function
B with B(x) = [bij(x)], are contact network-preserving if and only if � satisfies (2.8)
and B satisfies

bi j(x) =
{
bi j(xJ(i)) j ∈ L(i)

0 j �∈ L(i) (2.9)

Theorem 2.6: The semigroupsDL
G ,DR

G ,D�
G are groups.

Theorem 2.5 is proved in Section 3 and Theorem 2.6 is proved in Section 4 (see Propo-
sition 4.6). Theorems 2.5 (1, 2) and 2.6 give a simple sufficient condition for � to be a
conjugacy or vector field network-preserving diffeomorphism, namely:
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Lemma 2.7: Let � be a diffeomorphism.

(1) � = (φ1,… , φn) is left and right network-preserving if and only if

φi(x) = φi(x�(i)) ∀i (2.10)

(2) If� is both left and right network-preserving, then� is conjugacy network-preserving.
(3) If � is conjugacy network-preserving, then � is vector field network-preserving.

In particular, (2,3) implyD�
G ⊂ DC

G ⊂ DV
G .

Proof: (1) follows directly from Theorem 2.5 (1,2) and (2) is straightforward. To prove (3)
let F(x) be admissible. Observe that

d
dt

�−1(I + tF )�(x)|t=0 = (D�)−1
x F(�(x))

Since the left-hand side is admissible, so is the right. Therefore vector field changes of coor-
dinates by � preserve admissibility. �

2.3. Graph automorphisms

Conditions (2, 3) of Lemma 2.7 state sufficient conditions for � to be network-preserving
for the conjugacy and vector field actions, but it turns out that these conditions are not
always necessary. Specifically, some networks have conjugacy (and vector field) network-
preserving diffeomorphisms that are not of the form (2.10), namely graph automorphisms.
We introduce this notion briefly here, and establish its properties in Section 9.

In the theory of coupled cell networks, a permutation of the cells that preserves all arrows
and their arrow types is called a symmetry of the network. Network symmetries preserve
solutions of any admissible ODE. Graph automorphisms are more general:

Definition 2.8: A graph automorphism of G is a permutation of the cells that preserves
all arrows but not necessarily their arrow types. The graph automorphisms form a group,
which we denote by gaut(G).

We can interpret graph automorphisms as permutation matrices acting on R
n. Graph

automorphisms transform solutions of any admissible ODE to solutions of an admissible
ODE; however, it need not be the same ODE.

Example 2.9: Let G be a three-cell unidirectional cycle. Admissible maps have the form

F(x) =
⎡
⎣ f1(x1, x2)

f2(x2, x3)
f3(x3, x1)

⎤
⎦
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Observe that

T =
⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦

is a graph automorphism of G. It can be verified directly that T is a conjugacy network-
preserving diffeomorphism. To see this, compute

T −1F(T (x)) =
⎡
⎣0 0 1
1 0 0
0 1 0

⎤
⎦

⎡
⎣ f1(x2, x3)

f2(x3, x1)
f3(x2, x1)

⎤
⎦

=
⎡
⎣ f3(x2, x1)

f1(x2, x3)
f2(x3, x1)

⎤
⎦ ≡

⎡
⎣ g1(x1, x2)
g2(x2, x3)
g3(x3, x1)

⎤
⎦

for suitable gj, which is admissible.

Our main result proves that the conjugacy and vector field network-preserving diffeo-
morphisms are generated by (2.10) and the graph automorphisms.

Theorem 2.10: The groups DC
G and DV

G of all network-preserving diffeomorphisms for the
conjugacy and vector field actions are both generated by D�

G together with gaut(G) (so are
equal). Moreover,D�

G �DC
G , so

DC
G = D�

G .gaut(G)

Weprove Theorem 2.5 in the next section. The remainder of the paper is needed to prove
Theorem 2.10.

3. Left and right actions

The classification of network-preserving for right actions was given in [4]. For complete-
ness, we include that proof here. We begin with a technical lemma. Let

R̄(i) =
⋂

m∈O(i)

J(m) (3.1)

Lemma 3.1: R̄(i) = R(i).

Proof: If j ∈ R̄(i), then j � J(m) for every m � O(i), so in particular j � J(i). That is, m �
O(j) for every m � O(i), which implies O(i)�O(j) and j � R(i). Conversely, suppose j �
R(i). Then j � J(i) and O(i)�O(j). It follows that if m � O(i), then m � O(j). Or, if m �
O(i), then j � J(m). So j ∈ R̄(i). �

For the first three types of coordinate change, where the characterization is fairly easy to
prove, we have:
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Proof of Theorem 2.5 (1): Let� be a diffeomorphism satisfying (2.7) and let F be an admis-
sible map. We need to show that G = �F is also admissible. Observe that

G(x) = (φ1(F(x)), . . . , φn(F(x)))

The variables appearing in the ith coordinate are those in gi(x)= φi(FL(i)(x)). In particular,
if j � L(i), then the variables in fj(x) = fj(xJ(j)) are in the ith coordinate and these are the
variables in J(j). It follows from the definition of L(i) that J(j)�J(i); hence G is admissible.

Conversely, suppose G = �F is admissible whenever F is admissible. It follows that the
variables in gi(x)= φi(F(x)) must be in J(i). Note that F(x)= x is admissible; hence� is also
admissible. So the variables in φi must be in J(i). Suppose j � J(i) is a variable that actually
appears in φi; that is, φi is not independent of xj. Then the variables in φi(F(x)) can include
variables only in J(j). But these variables must be in J(i); so J(j)�J(i) and j� L(i). Therefore,
(2.7) is valid.

The condition ‘φi is not independent of xj’ can be rephrased as ‘�φi/�xj is not identically
zero.’ The above proof can be restated more formally in terms of partial derivatives that do
or do not vanish identically. �
Proof of Theorem 2.5 (2): Suppose � is right network-preserving. We capture the restric-
tions on � = (φ1,… , φn) as follows. First, let V(k) be the indices that the function φk

depends on. Fix j and let i � O(j). We claim that V(j)�J(i). It follows that

V ( j) ⊂
⋂

i∈O( j)

J(i) = R̄( j)

Let F= [f1,… , fn] where fk(x)= 0when k� i and fi(x)= xj. Since j� J(i), F is admissible; so
G = F� is also admissible. Writing G = [g1,… , gn], it follows that gi(x) = φj(x) = φj(xV(j))
and gk(x) = 0 when k � i. In order for G to be admissible, we must have V(j)�J(i).

Conversely, let � be a diffeomorphism satisfying (2.8) and let F = [f1,… , fn] be admis-
sible. Then let

G(x) ≡ F�(x) = ( f1(φJ(1)(x)), . . . , fn(φJ(n)(x)))

We need to show that G is admissible; that is, we need to show that gi(x) depends only on
variables in J(i).

We see that gi(x)= fi(φJ(i)(x)). This function can depend on a variable xk only if k ∈ R̄( j)
for some j� J(i) (or i�O(j)). Since i�O(j), it follows that R̄( j) ⊂ J(i). Therefore, j� J(i),
and G = F� is admissible. �
Proof of Theorem 2.5 (3): In contact equivalence, B and � are independent actions. Since
� acts by right action, the form of� follows from (1). Thematrix B acts by left equivalence;
so the form of each row follows from (2.7). �

3.1. Left and right cores

There are several alternative ways to state the conditions of Theorem 2.5. The following ver-
sion is useful for examples suited to hand calculation, and is also used in some later proofs.



90 M. GOLUBITSKY AND I. STEWART

Figure . A four-cell network and its cores: (a) network; (b) left core; (c) right core; (d) core. All arrows are
different, but for simplicity, this is not made explicit in the figure.

The main point of the theorem is that a network G has three distinguished subnetworks,
which determine certain classes of admissible maps.

Definition 3.2: Let G be a fully inhomogeneous network.

(1) The left core GL is the network whose cells are the cells of G and whose arrows are
the arrows j=⇒i in G that satisfy: for every diagram in G of the form

k
↓
j =⇒ i

there exists an arrow such that
k
↓ ↘
j =⇒ i

(2) The right core GR is the network whose cells are the cells of G and whose arrows are
the arrows j=⇒i in G that satisfy: for every diagram in G of the form

j =⇒ i
↓
k

there exists an arrow such that
j =⇒ i

↘ ↓
k

(3) The core of G is G� = GL ∩ GR.

Example 3.3: The network in Figure 1 shows that the left core, right core, and core can all
be different. The network and its three types of core are shown in Figure 2.

It is easy to prove that the core of the core is the same as the core; that is, (G�)� = G�.
The same goes for left and right cores, and there are other relations of this general kind.We
do not require such properties in this paper.

In the language of cores, we can restate Theorem 2.5 as:

Theorem 3.4: The left network-preserving diffeomorphisms are precisely the admissible dif-
feomorphisms for GL. The right network-preserving diffeomorphisms are precisely the admis-
sible diffeomorphisms for GR.

Proof: For right network-preserving admissible diffeomorphisms �, Theorem 2.5 implies
that φi depends on xj if and only if j � R(i). But j � R(i) if and only if k � J(j) implies
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J(j)�J(i). So k� J(i), whichmeans there is an arrow from k to i. That is, j=⇒i is in the right
core of G.

For left network-preserving admissible diffeomorphisms�, Theorem 2.5 implies that φi

depends on xj if and only if j � L(i). But j � L(i) if and only if k � O(i) implies O(i)�O(j).
So k � O(j), which means there is an arrow from j to k. That is, j=⇒i is in the left core
of G. �

Intuitively, in the right core case, the arrow from j to i corresponds to a condition about
which variables appear in a suitable component of �; similarly, the arrow from k to j cor-
responds to a condition about which variables appear in a suitable component of F (that is,
admissibility). The third arrow imposes admissibility on the composition �F, which is the
left action. The left core case is similar, but now the arrows compose in the reverse order.

4. Group property for network-preserving diffeomorphisms

4.1. G-structures

We now address a technical issue about diffeomorphisms. For each type of coordinate
change, we want the set of network-preserving diffeomorphisms to form a group under
composition. In fact, it does, but closure under inverses is not immediately obvious because
the space of admissible maps is infinite-dimensional. One standard way to deal with this
issue is to use a basic idea from the theory of G-structures (see for example [14]).

Definition 4.1: LetG be a Lie group with a fixed representation onR
n. TheG-structureAG

is the set of diffeomorphisms � : R
n → R

n for which (D�)x � G for every x ∈ R
n.

Proposition 4.2: The G-structureAG is a group.

Proof: This is a simple consequence of the chain rule for derivatives and the fact that
(D�)−1

x is also in G. �
Remark 4.3: The linear analog is even simpler. Let V be a subspace of n × nmatrices. Let
GV be the set of invertible n× nmatrices g such that gV�V. ThenGV is a Lie group. Clearly
GV is closed under composition. Moreover, if gv = 0 for some v � V, then v = 0 since g is
invertible. It follows that gV = V and hence that g−1V = V. So g−1 � GV and GV is a group.

4.2. Shapes

We use G-structures to prove that the sets of left, right, contact, conjugacy, and vector
field network-preserving diffeomorphisms are groups. To do so, we introduce the notion
of ‘shape’, a combinatorial object that arises in three closely related contexts: a network, its
admissible maps, and its linear admissible maps. Then we use the shape to define suitable
Lie groups GV.

Definition 4.4: Let G be an n-cell network and let C = {1, . . . , n} index the cells.

(1) A shape is a subsetS ⊆ C × C that contains all pairs (i, i) for i ∈ C. Its size is n = |C|.
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(2) The shape of a fully inhomogeneous network G is the set of all pairs of cells (i, j) such
that i = j or there is an arrow from cell j to cell i. We denote this by SG , omitting the
subscript when it is obvious.

(3) If S is a shape, the spaceMS consists of all maps F : R
n → R

n such that each com-
ponent fi depends only on variables xj for which (i, j) ∈ S .

(4) If S is a shape, the space LS consists of all linear maps inMS .

Informally, we say that the admissible maps (admissible linear maps) are those of shape
S = SG .

A key result, which we use repeatedly, is part (3) of the following theorem:

Theorem 4.5:

(1) Suppose that G has shape S . Then every admissible map has shape S .
(2) A linear map has shape S if and only if the corresponding matrix has shape S .
(3) A map F has shape S if and only if (DF)x has shape S for every x ∈ R

n.

Proof: (1) is a restatement of the definition of an admissible map. (2) Let L be a linear map
with matrixM. The matrix entrymij is zero if and only if Li(x) is independent of xj. (3) The
map F= (f1,… , fn) has shape S if and only if fi(x) is independent of xj whenever (i, j) �∈ S .
This happens if and only if �fi/�xj = 0 at all points x. But this is the (i, j) entry of (DF)x, so
F has shape S if and only if (DF)x has shape S for every x ∈ R

n. �

Theorem 2.6 follows directly from the next proposition.

Proposition 4.6: The sets of left (DL
G), right (DR

G), and contact network-preserving diffeomor-
phisms are groups.

Proof: Let F be an admissible map of a fixed network G whose shape is S . Let GL
S be the

set of invertible n × n matrices that preserve LS under left multiplication. Because LS is
finite-dimensional, this set is a group. It is clearly a Lie group.

By Theorem 4.5 (3), a diffeomorphism � is left network-preserving, if and only if

(D�)x(S ) ⊂ S (4.1)

That is,� is a left network-preserving diffeomorphism if and only if (D�)x ∈ GL
S for all x ∈

R
n, where GL

S is the group of all invertible linear maps that are left network-preserving on
the space of linear G-admissible maps. Therefore,DL

G is a G
L
S-structure. By Proposition 4.2

it is a group.
The argument for the right and contact actions is similar, replacing left multiplication

by the appropriate actions of linear maps (or, for contact equivalence, pairs of linear maps).
By assuming some results from Sections 6–12 on network-preserving linear maps, we

can use a similar method to deal with the conjugacy and vector field actions. We give
the proof here as extra motivation for those sections. We emphasize that nothing in
Sections 6–12 depends onDC

G orDV
G being closed under inverses.
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Anticipating Definition 6.1, write �� for the group of all invertible matrices of shape
S�. Define � = ��.gaut(G). In Theorem 6.2 we prove this is a (Lie) group, equal to either
of the linear analogs ofDC

G andDV
G . �

Proposition 4.7:

(1) BothDC
G andDV

G equal the �-structureA� .
(2) The sets of conjugacy (DC

G) and vector field (DV
G ) network-preserving diffeomorphisms

are groups.
(3) DC

G = DV
G .

Proof: We prove (3). Then (1) and (2) are direct consequences. That is, we prove that DC
G

andDV
G both comprise all diffeomorphisms � such that

(D�)x0 ∈ � ∀x0 ∈ R
n (4.2)

First, consider DC
G . Let � ∈ DC

G and let x0 ∈ R
n. Let L be the space of linear admissible

maps for G. If L ∈ L, the map

F(x) = Lx − L�(x0) + �(x0)

is admissible (because L�(x0) + �(x0) is a fixed vector in R
n) and F(�(x0)) = �(x0).

Since � ∈ DC
G , the map �−1F� is admissible. By Theorem 4.5 (3), this is equivalent to

D(�−1F�)x0 ∈ L ∀x0 ∈ R
n (4.3)

Differentiate and use the chain rule to get

D(�−1F�)x0 = ((D�−1)F�(x0))(DF )�(x0)(D�)x0
= ((D�)�−1F�(x0))

−1(DF )�(x0)(D�)x0
(4.4)

Since DF = L and F(�(x0)) = �(x0), this becomes

D(�−1F�)x0 = (D�)−1
x0 L(D�)x0

By assumption, this is in L, so (D�)x0 ∈ �.
Conversely, assume (4.2). We must prove that � ∈ DC

G ; that is, �
1 −F� is G-admissible

for all G-admissible maps F. By Theorem 4.5 (3), this is equivalent to (4.3), and again we
deduce (4.4).

Since D�x0 ∈ � = ��gaut(G), we can write

D�x0 = M(x0)α(x0) M(x0) ∈ ��, α(x0) ∈ gaut(G) (4.5)

To complete the proof, we need one further result, Lemma 12.4. This implies (by conti-
nuity relative to x0) that in (4.5) we can assume α(x0) is independent of x0. Therefore

D�x0 = M(x0)α M(x0) ∈ ��, α ∈ gaut(G) (4.6)
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This time we do not have F(�(x0)) = �(x0), but the proof does not need this condition.
Observe that

((D�)�−1F�(x0))
−1(DF )�(x0)(D�)x0 = (M(�−1F�(x0))α)−1(DF )�(x0)M(x0)α

= α−1[M(�−1F�(x0))−1(DF )�(x0)M(x0)]α

Now A = M(�−1F�(x0))−1(DF )�(x0 )M(x0) ∈ L because M(y) is both left and right
network-preserving for all y ∈ R

n and (DF )�(x0) ∈ L by Theorem 4.5(3). Moreover,

α−1Aα ∈ L

by Lemma 9.1. This proves (4.3) and hence that � ∈ DC
G .

The proof forDV
G is almost identical, since the linearized equation (4.3) also leads to (4.4)

because D(�)y is linear, hence equal to its derivative. �

5. Further properties of shapes and cores

The results in this paper require more concepts related to shapes (Definition 4.4). We
require these concepts for abstract shapes; they are analogous to and motivated by specific
instances of shapes that have previously been discussed. Some features are therefore very
similar to earlier ones, but now they occur in a more general and more abstract context.
For completeness and clarity, we state the definitions and properties in detail.

Definition 5.1:

(1) The diagram of a shape S ⊆ C × C is the n × n symbolic matrix D = (dij) with
entries dij = ∗ if (i, j) ∈ S and dij = 0 if (i, j) �∈ S .

(2) A shape T ⊆ C × C is a subshape of a shape S ⊆ C × C if and only if T ⊆ S .
(3) If S is a shape and i ∈ C, the (extended) input set of i is

JS (i) = { j ∈ C : (i, j) ∈ S}

and the (extended) output set of i is

OS (i) = { j ∈ C : ( j, i) ∈ S}

We omit the subscript S when the shape concerned is clear.

5.1. Core shapes

Themain results of this paper depend on the notion of the core of a shape, which appears as
three variants: the right core, left core, and core. We have already defined cores for networks
(see Section 3.1); the definition for core shapes is essentially equivalent but focuses on the
key combinatorial features of the problem.

Definition 5.2: Let S be a shape. Define
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(1) The right core of S is the subshape

SR = {(i, j) ∈ S : OS (i) ⊆ OS ( j)} (5.1)

(2) The left core of S is the subshape

SL = {(i, j) ∈ S : JS (i) ⊇ JS ( j)} (5.2)

(3) The core of S is the subshape

S� = SR ∩ SL (5.3)

Note that all three types of core shapes contain the diagonal {(i, i) : i ∈ C}because shapes
contain the diagonal. In effect, we are using extended input and output sets. Recall that core
networks (see Definition 3.2) are subnetworks and do not contain self-couplings.

Example 5.3: Let

S =

⎡
⎢⎢⎣

∗ 0 0 ∗
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

⎤
⎥⎥⎦

This shape corresponds to the adjacency matrix of the network in Figure 2. Here

SL =

⎡
⎢⎢⎣

∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ ∗ ∗ ∗

⎤
⎥⎥⎦ SR =

⎡
⎢⎢⎣

∗ 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ 0 0 ∗

⎤
⎥⎥⎦ S� =

⎡
⎢⎢⎣

∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗

⎤
⎥⎥⎦ (5.4)

5.2. Closed shapes

In this subsection we define an important class of shapes related to cores, the closed shapes,
and prove some basic properties. Throughout, S ⊆ C × C is a shape and C = {1, 2, . . . , n}.
Denote the set of all n× nmatrices byM(n), and the group of non-singular n× nmatrices
by GL(n).

Definition 5.4: Let S be a shape. Then,

M(S ) = {M ∈ M(n) : M has shape S}
M∗(S ) = {M ∈ GL(n) : M has shape S} = GL(n) ∩ M(S )

The elementary matrices Eij (whose only non-zero entry is a 1 in position (i, j)) form a
basis forM(n). They satisfy

Ei jEkl = δ jkEil (5.5)
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where δjk is the Kronecker delta. The setM(S ) of all matrices of shape S is a vector space.
It has a natural basis: those elementary matrices Eij for which (i, j) ∈ S .

Next, we focus on a special class of shapes:

Definition 5.5: A shape S is closed if (i, j) and ( j, k) ∈ S implies that (i, k) ∈ S .

Equivalently, the following transitivity property holds:

S is transitive interpreted as a relation (5.6)

Closed shapes arise in the following context:

Theorem 5.6: For any shape S , the cores SL, SR, and S� are closed.

Proof: Since S� ⊆ S , transitivity follows from the diagrams in Definition 3.2 when all
arrows are in the appropriate core. It is also an easy consequence of the equivalent Defi-
nition 5.2. �

The key property of a closed shape is:

Lemma 5.7: A shape S is closed if and only if the product of any two matrices of shape S also
has shape S .

Proof: Suppose S is closed. LetM, N be matrices of shape S . Then

(MN)i j =
∑
k

miknk j

Suppose further that (i, j) �∈ S . The transitivity property (5.6) implies that for every k,
either (i, k) �∈ S or (k, j) �∈ S . Therefore, eithermik = 0 or nkj = 0, so (MN)ij = 0.

For the converse, observe that thematricesM of shapeS include all elementarymatrices
Eij for (i, j) ∈ S . Suppose that (i, j), ( j, k) ∈ S . By (5.5) and closure under matrix prod-
ucts, Eik has shape S . That is, (i, k) ∈ S . �
Example 5.8: The shape

⎡
⎢⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ 0 0 ∗

⎤
⎥⎥⎦

consists of all pairs

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3) (4, 1) (4, 4)

This shape is not closed, because (for example) (2, 1), (1, 4) ∈ S but (2, 4) �∈ S .
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Example 5.9: The subshape

⎡
⎢⎢⎣

∗ 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗

⎤
⎥⎥⎦

of Example 5.8 is closed.

Theorem 5.10: For any closed shape S , and in particular any core S�:

(1) M(S ) is an associative algebra over R.
(2) M∗(S ) is a group under matrix multiplication.

Proof: M(S ) is a real vector space. Since S is closed, by Lemma 5.7 it is an algebra.
The setM∗(S ) is closed under matrix multiplication and contains the identity. We have

to show that it is closed under inverses. The inverse of a non-singular matrixM is a polyno-
mial inM. Indeed, the Cayley–Hamilton theorem tells us thatM satisfies its characteristic
equation, so there is a polynomial

p(M) = Mn + an−1Mn−1 + · · · + a1M + a0I = 0

with a0 = ± detM �= 0. Here I is the identity matrix. Now

I = M(a−1
0 (−Mn−1 − an−1Mn−2 − · · · − a1))

soM has inverse a−1
0 (−an−1Mn−2 − · · · − a1). By Lemma 5.7, any polynomial inM has the

same shape asM, soM−1 has shape S . �

6. The linear case

As stated in the introduction, we first prove Theorem 2.10 in the linear case (made explicit
as Theorem 6.2). Then we reduce the nonlinear case to the linear one. To state it we
need:

Definition 6.1: Let S be a shape. Then ��
G is the group of all invertible matrices of shape

S�.

By ‘the linear case’, we mean the case where both the diffeomorphisms and the admis-
sible maps are linear maps on R

n. ‘Network-preserving’ is now restricted to this context.
By Remark 4.3, the network-preserving linear diffeomorphisms form a group for each of
the five actions. In the linear case, both vector field and conjugacy actions reduce to conju-
gacy, where a linear diffeomorphismM acts on a linear admissible map L to yieldM−1LM.
Henceforth we refer to this as the conjugacy action. The linear case of Theorem 2.10 is
therefore:
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Theorem6.2: The group�G of all network-preserving invertible linearmaps for the conjugacy
action is generated by ��

G and gaut(G). Moreover, ��
G ��G so

�G = ��
G .gaut(G)

6.1. Strategy of proof for Theorem 6.2

The remainder of the paper, except for Section 12, characterizes linear network-preserving
conjugacies. It is a technical exercise in two areas of algebra: Lie theory and associative
algebras. We sketch the main ideas here, and provide details in the following sections.

It is straightforward to prove that�� is a subgroup of �; indeed, a normal subgroup.We
will show that�� comprises ‘almost all’ of�, in the sense that�/�� is finite. Moreover, we
will prove that this quotient group is induced by gaut(G), in the sense that� = ��.gaut(G).
This is the most technical part of the paper.

Since� is a (real) Lie group, we can consider its Lie algebra Lie(�). This preserves admis-
sibility under the commutator action

adM(L) = [L,M] = LM − ML

By considering the shape S of the network, hence of L, a simple calculation proves that
adM(L) is admissible for all admissible L if and only if both LM andML are admissible (see
Theorem 7.6). So on the Lie algebra level the characterization reduces to the combination
of the left and right actions. By Theorem 2.5 (1,2), a matrixM is network-preserving under
the commutator action if and only if the shape ofM is the core S�. (This can also be proved
by a calculation with elementary matrices.)

This fact has several key consequences. First, M is itself-admissible. Second, a simple
property of the core shows that M can be put in lower block-triangular form by suitably
re-ordering the cells. Third, the matrices of shape S� form an associative algebraL� under
matrix multiplication.

When passing from a Lie group � to its Lie algebra Lie(�), a standard issue arises.
Namely, the Lie algebra captures only the local structure of the group near the identity.
Results can often be parlayed to the subgroup generated by a neighborhood of the identity,
which is the connected component �° of the identity. However, if � is not connected, as is
often the case, the other connected components are not addressed.

The group of graph automorphisms gaut(G), which is finite, deals with the other com-
ponents. It is easily proved to be a subgroup of�. To prove that no further type of network-
preserving matrix is required beyond graph automorphisms, we have to extract from the
definition of � enough permutation matrices to give gaut(G), and show that these together
with�� generate�. Themain technical problem is what do these group elements permute?
To be graph automorphisms, they should permute the cells C of G, but we need to define
them in terms of the algebra L�. It is obvious that elements of � act as automorphisms of
this algebra. Now, L� has block-triangular structure, so the natural objects to permute are
the diagonal blocks.
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The subalgebra of diagonal blocks is not invariant under the conjugation action of
network-preserving matrices, but this problem can be circumvented by appealing to a clas-
sical result, theMalcev–Wedderburn theorem (Theorem 11.1). This states that every finite-
dimensional associative algebra A over R has a semi-simple–nilpotent decomposition

A = N+̇S

where N is a nilpotent ideal and S is a semi-simple subalgebra (direct sum of simple alge-
bras). For L� the nilpotent part is the subalgebra of zero-triangular block matrices, and a
natural choice for S is the algebra of diagonal blocks.However, in the semi-simple–nilpotent
decomposition,N is unique but S needs not be. TheMalcev–Wedderburn theorem controls
the lack of uniqueness, stating that S is unique up to conjugation by an element exp (ν) (or
equivalently I + ν) where ν � N.

Appealing to this result lets us decomposeM � � as a product of an element of �� and
a permutation matrix π acting on the diagonal blocks. It is then straightforward to replace
π by an element of gaut(G), proving that

� = �◦.gaut(G)

This is the desired result.
We now spell out the details, which require some formal definitions and routine verifi-

cations, as well as the ideas sketched above.

7. Conjugacy action: linear case

In this section, we transform the linear version of the problem for conjugacy coordinate
changes into the corresponding question for the commutator action of the associated Lie
algebra, and solve the Lie algebra version.

7.1. Basic set-up and notation

Definition 7.1:

(1) Let LG denote the vector space of linear admissible maps for G.
(2) The group �G consists of all invertible matricesM such that for all L ∈ LG the con-

jugate

AdM(L) = M−1LM (7.1)

belongs to LG .

Remark 7.2: To avoid notational clutter, we consider a fixed but arbitrary fully inhomoge-
neous networkG and omit the subscriptG fromnowon. In particular,L = LG and� = �G .

Our goal is to characterize the Lie group �. The first step is completed in Corollary 7.8
where we show that �� ⊂ �. We begin by enumerating a basis for L in Lemma 7.3.
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Standard notation for coupled cell networks can be found in [1–3]. Write the set of cells
C of the network G as

C = {1, 2, . . . , n}

and let x = (x1,… , xn) be cell coordinates on network phase space R
n. Recall that for sim-

plicity we take cells to be one-dimensional throughout this paper.

Lemma 7.3: Let G be a fully inhomogeneous graph. Then the set of elementary matrices Eij

for which j � J(i) is a basis for L.

Proof: The linear map Fij = (f1,… , fn) corresponding to Eij satisfies fj(x)= xi and fk = 0 for
all k� j. Since all arrows inG are inequivalent, Fi j ∈ L. Thesemaps are linearly independent
and span the linear (admissible) maps in L. �
Definition 7.4: To avoid confusion between Lie and associative algebra structures, we use
gl(n) for the Lie algebra of all n × nmatrices under the commutator operation

[M,N] = MN − NM.

The notationM(n) now refers to the space of all n× nmatrices considered as an associative
algebra.

We first describe the connected component�° of the identity in�. To do this, we require
the following facts from Lie theory.

For any real Lie group G, there is a one-to-one correspondence between one-parameter
subgroups of G and tangent vectors in TIG, the underlying vector space of Lie(G). The
exponential map

exp : Lie(G) → G

is a local diffeomorphism near 0 and I. See Adams [15, Theorem 2.6] or Bröcker and tom
Dieck [16]. The image of exp generates the connected component �° of I, see Adams [15,
Proposition 2.16] or Bröcker and tom Dieck [16]. So

�◦ = 〈exp(Lie(�))〉 (7.2)

Note that in general exp (Lie(�) need not equal�°. The standard example is SL2(R), see
Adams [15] and Bröcker and tom Dieck [16].

7.2. Adjoint action

The next proposition is well known.

Proposition 7.5: The action of the Lie algebra Lie(�) on gl(n) corresponding to the conjuga-
tion action (7.1) of � is the commutator or adjoint

adM(F ) = [F,M] = FM − MF F ∈ Lie(�) M ∈ gl(n)

Proof: See Fulton and Harris [17]. �
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The key theorem about the adjoint action is:

Theorem 7.6: Let G be a fully inhomogeneous network. Then the following are equivalent:

(1) A matrix M satisfies [L,M] ∈ L for all L ∈ L; that is, L is adM invariant.
(2) A matrix M satisfies ML ∈ L and LM ∈ L for all L ∈ L.

Proof: As noted in Lemma 7.3 the space L has natural basis of elementary matrices Eij

where j� J(i). If the statement [L,M] ∈ L holds for each L= Eij, it holds for any admissible
L by linearity.

Condition (1) is valid if and only if

[Ei j,M] ∈ L 1 ≤ i ≤ n and j ∈ J(i) (7.3)

Fix (i, j) so that j � J(i). By Lemma 7.3 Eij is admissible, so Ei j ∈ L. Let

M =
∑
k,l

mklEkl,

then

MEij =
∑
k,l

mklEklEi j =
∑
k,l

δlimklEk j =
∑
k

mkiEk j (7.4)

and

Ei jM =
∑
k,l

mklEi jEkl =
∑
k,l

δ jkmklEil =
∑
l

m jlEil (7.5)

The commutator [Eij,M] is the difference between these expressions.
Observe that, except for Eij, the Epq that occur in the sums (7.4) and (7.5) are all distinct,

hence linearly independent. However, since Ei j ∈ L, this term is irrelevant to (7.3).
It follows that [Ei j,M] ∈ L for a given choice of (i, j) if and only ifMEij ∈ L and Ei jM ∈

L. So (1) implies (2). It is obvious that (2) implies (1), so they are equivalent. �
Definition 7.7: Let G be a network of shape S . Define

L� = MS� ⊆ L

to be the subspace of linear maps of shape S�, as defined in (5.3).

Corollary 7.8: Let G be a fully inhomogeneous network of shape S . Then

(1) the set of all matrices M satisfying Theorem 7.6 (1) or (2) is L�;
(2) the group of all invertible matrices M satisfying Theorem 7.6 (1) or (2) is ��.
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Proof: These statements follow from Theorem 7.6 and the linear version of Theorem 2.5,
rewritten in ‘core’ terminology. Indeed,

S� = SR ∩ SL

The corollary can also be proved directly from (7.4) and (7.5). �

Remark 7.9: A core network G�, or equivalently any network corresponding to a closed
shape, has a highly constrained structure. Every network decomposes into transitive com-
ponents, connected together in a feed-forward manner (see [18]). By Definition 3.2, each
transitive component ofG� is clearly all-to-all connected.Moreover, if there exists an arrow
connecting a cell in one transitive component G�

1 to a cell in a distinct transitive compo-
nent G�

2 , then every cell in G�
1 is connected to every cell in G�

2 (in the same direction).
Figure 2(d) is an example.

8. Lie-theoretic details

Recall from Definition 7.1 and Remark 7.2 that L denotes the space of linear admissible
maps forG and� denotes the group of invertible linearmaps preservingL under the conju-
gacy action. Further, recall fromDefinition 6.1 that�� is the group of all invertiblematrices
of shape S�. That is,

�� = GL(n) ∩ MS� ⊆ �

In this section we establish key properties of ��.
Matrices with a given closed shape have some strong properties:

Theorem 8.1: The space L� is an associative algebra under matrix multiplication.

Proof: Closure under vector space operations is clear. LetM,N be such that [M, L] ∈ L for
all L ∈ L and [N, L] ∈ L for all L ∈ L. By Theorem 7.6 (1, 2),ML, LM,NL, LN ∈ L for all
L ∈ L. Now

[L,MN] = (MN)L − L(MN) = M(NL) − (LM)N ∈ L

and we are finished. �

Remark 8.2: For similar reasons, bothLR andLL are also associative algebras undermatrix
multiplication. Their intersection is L�.

Theorem 8.3: By suitably permuting cells, the matrices of L� can simultaneously be put in
the form

⎡
⎢⎢⎢⎣
M(n1) 0 0 . . . 0

∗ M(n2) 0 . . . 0
...

...
...
. . .

...
∗ ∗ ∗ . . . M(np)

⎤
⎥⎥⎥⎦ (8.1)
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Although we show ∗s below the diagonal, actually subdiagonal blocks are either completely
general, or completely 0, as specified by the closed shape.

Proof: As in Remark 7.9, decompose the set of cells C of G into transitive components with
a feed-forward structure induced by the arrows of G. The set of transitive components is
partially ordered by the existence of connecting arrows. Reorder C to be compatible with
this partial order. Each transitive component is all-to-all connected, by definition, so each
diagonal block is a full matrix algebraM(nj).

The off-diagonal blocks are arbitrary matrices of the correct size, for the following rea-
son. If there is an arrow from any cell in transitive component i to a cell in transitive com-
ponent j � i, the transitivity condition implies that there is an arrow from every cell in
transitive component i to every cell in transitive component j. �
Example 8.4: This structure is visible in Figure 2(d). The transitive components are {1},
{2, 3}and{4}. The corresponding shape S� is stated in (5.4), and this has block-triangular
structure (with four zeros below the diagonal). Note that it is not triangular: the block in
positions {2, 3} has an entry above the diagonal.

Definition 8.5: The group	 is the subgroup ofL� consisting of block-diagonal matrices:

	 = GL(n1) ⊕ · · · ⊕ GL(np)

Theorem 8.6: The group �� is generated by exp (Lie(�)) and 	.

Proof: Order cells as in Theorem 8.3 and group entries according to transitive components.
Now �� consists of all block matrices of shape

⎡
⎢⎢⎢⎣
GL(n1) 0 0 . . . 0

∗ GL(n2) 0 . . . 0
...

...
...
. . .

...
∗ ∗ ∗ . . . GL(np)

⎤
⎥⎥⎥⎦ (8.2)

where some of the ∗ blocks may be identically zero, according to the shape S�. Otherwise
every block can be any possible matrix (non-singular for the diagonal blocks).

First, we deal with subdiagonal blocks. The space of all subdiagonal blocks is a nilpotent
associative algebra N. If ν � N, then I + ν ∈ �� is in the image of exp ; that is, I + ν =
exp (μ) where μ = log (I + ν), which converges since ν is nilpotent.

The diagonal blocks are provided by 	. Since I + N and 	 generate ��, the result is
proved. �
Corollary 8.7: Let � be the group of conjugacy action network-preserving invertible matrices
for G, and let �° be the connected component of the identity in �. Then

�◦ ⊆ exp(Lie(�))

In particular, the matrices in �° have the same shape as those in exp (Lie(�)).

Proof: The matrix exp (M) is a convergent power series in M, so it is in the associative
algebra Lie(�). By (7.2) the image of exp generates the connected component of the identity
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in �. The rest is supplied by the strongly admissible (that is, diagonal) network-preserving
(linear) diffeomorphisms, as explained in Theorem 8.6. Note that inverses are taken care of
since (exp (M))−1 = exp ( − M) has the same shape asM. �
Corollary 8.8: The matrices in 〈�°,	〉 are precisely the non-singular matrices with the same
shape as those in exp (Lie(�)).

Another direct consequence of Theorem 8.6 is:

Corollary 8.9:

�� = 〈�◦, 	〉

9. Graph automorphisms

Nowwe establish some basic facts about network symmetries, needed for the proof of The-
orem 6.2. Recall that a graph automorphism of G is a permutation of the cells that pre-
serves arrows, but not necessarily arrow types. The graph automorphisms form a finite
group gaut(G), which we interpret as n × n permutation matrices acting by conjugacy as
in Lemma 9.1.

Recall from Definition 6.1 that the group of all non-singular matrices of shape S� is
denoted by ��. By Corollary 8.9, �� = 〈�◦, 	〉 where 	 is the group of non-singular
block-diagonal matrices.

Example 2.9 shows that the discrete group�/�° need not be trivial. This network hasZ3

symmetry provided we ignore differences in the arrow types. The new shapes are translations
of the diagonal shape by the two non-trivial elements of Z3.

This disjoint decomposition is too neat to be general, but we will prove that the only
missing generators for the network-preserving matrices are the graph automorphisms of
G. More precisely, � = �◦.gaut(G).

Lemma 9.1: Let π be a permutation of C with permutation matrix P. Then π is a graph
automorphism of G if and only if

P−1LP = L (9.1)

Proof: Let S be the shape of L. Define a matrix A by

ai j =
{
1 if (i, j) ∈ S
0 if (i, j) �∈ S

Then A is the adjacency matrix of G if we ignore arrow types.
If (9.1) holds, then P−1AP ∈ L. Since the entries of P−1AP are all 0 or 1, and the number

of 1’s is conserved, we must have P−1AP = A. Therefore, π ∈ gaut(G).
The converse is similar. The condition π ∈ gaut(G) is equivalent to

j ∈ J(i) ⇐⇒ π( j) ∈ J(π(i)) i ∈ C (9.2)
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Let (i, j) ∈ S . Then

P−1Ei jP = Eπ(i),π( j)

which has shape in S by (9.2). Since the Eij spanL, we have P−1LP ⊆ L. But dimL is finite
and the mapM�→P−1MP is linear and one-to-one, so P−1LP = L. �
Lemma 9.2: Interpreting permutations as the corresponding permutation matrices,

gaut(G) ⊆ �

Proof: Let π be a graph automorphism of G with associated permutation matrix P. The
automorphism condition can be phrased as (9.2). So the permuted shape is S with both
rows and columns permuted by π . That is, ifM has shape S then so does P−1MP. Therefore
P � �. �

We now proceed towards the proof of Theorem 6.2. By definition, γ � � if it preserves
L under conjugation, that is, γ −1Lγ = L. We now show that the conjugation action also
preserves L�, the set of all matrices of shape S�.

Lemma 9.3: If γ � � then γ −1L�γ = L�.

Proof: By Theorem 5.6 the shape S� is closed. Theorem 5.10 then implies that L� is an
associative algebra.

We claim that γ −1L�γ = L� for all γ � �. To prove this, let L ∈ L�. By Theorem 7.6,
this is equivalent to both LM,ML ∈ L for allM ∈ L. Therefore,

γ −1Lγ .γ −1Mγ = γ −1LMγ ∈ L
γ −1Mγ .γ −1Lγ = γ −1MLγ ∈ L

The mapM�→γ −1Mγ is linear and one-to-one from L into L. By finiteness of dimension
it is also onto, hence bijective. So for fixed γ the elements γ −1Mγ run through L if M
runs through L. Therefore,γ −1Lγ ∈ L�, so γ −1L�γ ⊆ L�. A similar dimension argu-
ment now proves that γ −1L�γ = L�. �

Next, we summarize some key results, two of which have already been proved.

Theorem 9.4:

(1) 〈��, gaut(G)〉 ⊆ �

(2) �◦ ⊆ �� ⊆ �

(3) ����

Proof:

(1) By Theorem 7.6, �� ⊆ �. Lemma 9.2 shows that gaut(G) ⊆ �.
(2) �° is the image of exp , so it lies inside ��. We already know that �� ⊆ � by part

(1).
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(3) Lie theory implies that in general, �°��, but in the non-compact case the quotient
need not be abelian, so we argue differently. Let L ∈ ��, so equivalently L ∈ L� and
L is non-singular. By Lemma 9.3 γ −1Lγ ∈ L�. It is clearly non-singular, so γ −1Lγ ∈
��. Therefore ����.

�

The main step remaining to prove Theorem 6.2 is to show that � induces a permutation
of the cells. Then it is routine to prove that this permutation is a graph automorphism, by
using the structure of L�.

10. Algebra structure ofL�

Theorem8.1 shows thatL� is an associative algebra overR.Wenow establish somedetailed
structural features.We need these in Section 11 to apply theMalcev–Wedderburn theorem,
which is the key step in proving that �/�� is determined by gaut(G). This in turn is cru-
cial for the nonlinear case. The basic ideas are routine, but the entire proof rests on them,
so we define the structures involved precisely. We sketch some simple proofs to make the
description self-contained.

We need some notation:

Definition 10.1: A block is a subset of C × C of the form Ci × C j where Ci and C j are subsets
of C. Partition C into transitive components C1, . . . , Cp for a closed shapeS . Define the block
subspace

Bi j = {M ∈ MS : mkl = 0 ∀(k, l) �∈ Ci × C j}

That is, the entries ofM ∈ Bi j are arbitrary in the block formed by Ci × C j, and zero every-
where else.

Clearly,

MS =
⊕
i, j

Bi j

Definition 10.2: LetA be a finite-dimensional associative algebra over R.

(1) The nil radical N ofA is the unique maximal nilpotent ideal ofA.
(2) A subalgebra S ⊆ A is semisimple if its radical is zero.
(3) AWedderburn decomposition ofA is a semidirect product

A = N � S (10.1)

where S is a semi-simple subalgebra.
(4) The unipotent subgroup ofA is U = I + N.
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Remark 10.3: The Wedderburn decomposition of an associative algebra is valid over any
field of characteristic zero. Indeed, there always exists a semi-simple subalgebra S satisfy-
ing (10.1) [9–11], but in general it is not unique (see Theorem 11.1). The unipotent sub-
group is a group because N being an ideal implies closure under products, and for all ν �
N we have

(I + ν)−1 = I − ν + ν2 − ν3 + · · · (10.2)

which terminates because N is nilpotent.

Using (5.5), we see that

Bi jBkl = δ jkBil (10.3)

Definition 10.4: InMS� let

N =
⊕
j<i

Bi j S =
⊕
i

Bii (10.4)

The following result is well known for block-triangular matrices and it is easy to prove
by the same reasoning for matrices of given closed shape. We state and prove it for com-
pleteness.

Theorem10.5: Use the above notation and let ni be the size of transitive component i. Then

(1) S is semi-simple, isomorphic to

⊕
i

Mni

(2) N in (10.4) is the nil radical of L�.
(3) L� has a Wedderburn decomposition L� = N � S.
(4) The invertible elements of L� are precisely those in

N ⊕
⊕
i

GL(ni) = U �

⊕
i

GL(ni)

Proof:

(1) is obvious.
(2) For k = 1, 2,… , let

Tk =
⊕
j≤i−k

Bi j

Then, using (10.3),

T1 = N Tp = {0} TkTl ⊆ Tk+l
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Therefore, Np�Tp = {0}, and N is nilpotent.
Further, N is an ideal, because

NS ⊆
⊕
j<i

Bi j

⊕
k

Bkk ⊆
⊕
j<i

Bi jB j j ⊆
⊕
j<i

Bi j = N

again using (10.3).
To show that N is maximal, we prove the equivalent fact that L�/N is semi-simple.
This follows since N�S = {0} so L�/N ∼= S.

(3) Clearly L� = N ⊕ S (as vector space). Since N�S = {0} and N is an ideal, this is a
semidirect sum.

(4) This is a consequence of the more general result in Lemma 10.6.
�

Lemma 10.6: IfA = N � S is a Wedderburn decomposition, then

(1) ν + σ (where ν � N, σ � S) is invertible if and only if σ � S∗, where S∗ is the group
of invertible elements of S;

(2) the invertible elements ofA are precisely those in U	S∗.

Proof: (1) Let α � U. Then α is invertible by (10.2). If σ � S∗ then σ is invertible by defi-
nition. Therefore ασ is invertible.

Conversely, suppose that ν + σ is invertible, where ν � N, σ � S. Let the inverse be
μ + τ with μ � N, τ � S. Then

I = (ν + σ )(μ + τ )

= (νμ + σμ + ντ ) + (στ )

Here νμ + σμ + ντ � N and στ � S. But I � S so στ = I. Therefore σ � S∗ and σ−1 = τ

exists in S∗. Now

ν + σ = (I + νσ−1)σ ∈ US∗

The subgroup U is normal, because

σ−1(I + ν)σ = σ−1σ + σ−1νσ ∈ I + N = U

for all σ � S∗.
Finally, we claim that U�S∗ = {I}. Suppose that ν � N and I + ν � S∗. Since I � S∗, we

have ν � S∗. So ν � N�S = {0}, and

U ∩ S∗ = {I} + 0 = {I}
�

Recall that we write M(n) for the associative algebra of all n × n matrices. Theo-
rem 10.5(3) has established aWedderburn decomposition for L�, and this is what we now
exploit.
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By Lemma 9.3, each γ � � acts on L� by conjugation

AdγL = γ −1Lγ

Clearly Adγ is an algebra automorphism of L�. Since automorphisms preserve the nil
radical,

γ −1Nγ = N

for any γ � �. It follows that γ also acts via Adγ on L�/N ≡ M(n1) ⊕ · · · ⊕ M(np).
Each direct summandM(nk) is a semi-simple associative algebra, so these are precisely

the minimal ideals of M(n1) ⊕ · · · ⊕ M(np). Therefore, this action of γ permutes these
summands. That is, � induces a permutation of the transitive components: for each γ � �

we have

AdγM(ni) ≡ M(nπγ (i)) (mod N) (10.5)

where πγ is a permutation of the transitive components {1,… , p}.
Because the elements of U = I + N are unipotent, they lie in the image of exp , hence

in �°. Conjugation by elements of U acts trivially on the diagonal blocks M(n1) ⊕ · · · ⊕
M(np) (mod N), in the sense that the unipotent elementsmap each diagonal block to itself
setwise (the identity permutation on blocks).

11. Wedderburn–Malcev theorem

We now complete the proof of Theorem 6.2 for the linear case. The final idea needed is the
Wedderburn-Malcev theorem [9–11], which states:

Theorem 11.1 (Wedderburn-Malcev): Let A be a finite-dimensional associative algebra
(with identity) over a field of characteristic zero (in our case, R). Let N be its nil radical,
which is an ideal. Then

(1) there exists a semi-simple subalgebra S such that A = N	S;
(2) if S1, S2 both satisfy (1), then there is an invertible element α � U such that

S2 = α−1S1α

Remark 11.2: The result is often stated with α � A rather than U, but we can (and will)
take α � U, the subgroup of unipotent elements. A proof is given in Curtis and Reiner [10,
Section 72].

Nowwe can remove the (mod N) in Equation (10.5). For technical reasons we need the
following standard result.

Lemma 11.3: An invertible matrix M satisfies

M−1BiiM = Bii ∀i (11.6)
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if and only if M ∈ B11 ⊕ · · · ⊕ Bpp (that is, M � S).

Proof: Equation (11.6) is equivalent to

BiiM ⊆ MBii ∀i

WriteM as a block matrix with respect to the transitive components:

M = [Mij] i, j transitive components

Fix i and let E be the identity matrix in block Bii. Then

EM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
Mi1 Mi2 · · · Mip

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with non-zero entries only in row i. On the other hand, MBii is the set of all MQ where
Q ∈ Bii, which are of the form

MQ =

⎡
⎢⎢⎢⎣
0 · · · 0 M1iQ 0 · · · 0
0 · · · 0 M2iQ 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 MpiQ 0 · · · 0

⎤
⎥⎥⎥⎦

with non-zero entries only in column i. Since EM = MQ, it follows that Mij = 0 if j � i.
Since this holds for all i,M � S as claimed. �
Proposition 11.4: Let γ � �. Then there exists μ = (I + ν) � U such that

(γμ−1)−1S(γμ−1) = S

Proof: Consider the blocksBii, isomorphic toM(ni), down the diagonal. InDefinition 10.4,
we defined

S = B11 ⊕ · · · ⊕ Bkk

By 10.5, the subalgebra S is a semi-simple complement to N. If γ � �, we know that

S1 = γ −1Sγ

is also a complement. The Wedderburn–Malcev theorem implies that there exists μ =
1 + ν � U such that

S1 = μ−1Sμ
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Figure . Example of a three-cell network with graph automorphism ( ).

Therefore

(γμ−1)−1S(μγ ) = γ −1μ−1Sγμ−1

= μS1μ−1

= S
�

Proposition 11.5: The group � is generated by �� together with gaut(G).

Proof: Let γ � �. The blocks Bii are distinguished subalgebras of S. Namely, they are its
unique minimal ideals. Therefore, any automorphism of S permutes the diagonal blocks
setwise.

Lift π to any permutation ρ of C that induces the same permutation on the blocks. Then
ρ−1γ = ρ−1πμ fixes each diagonal block, individually, as a set. By Lemma 11.3 it therefore
lies in the corresponding GL(nj), and this lies in �� by definition. Therefore

ρ−1γ ∈ ��

so

γ ∈ ρ−1�� ⊆ ��.Sn

where Sn is the group of all permutation matrices.
It remains to replaceSn by gaut(G). Since�� ⊆ �, a product δθ , with δ ∈ �� and θ ∈ Sn

conjugates L to itself if and only if θ does. By Lemma 9.1, this is the case if and only if
θ ∈ gaut(G). �

This completes the proof of Theorem 6.2.

12. Proof of the nonlinear case

Finally we prove the nonlinear case, Theorem 2.10, by reducing it to Theorem 6.2. This
requires some tactical maneuvers.

12.1. An example

As motivation, consider the three-cell network G of Figure 3.
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The core shape S� for G is the same as the shape for G, because the transitivity prop-
erty 5.6 holds. This shape is

S� =
⎡
⎣∗ 0 0

∗ ∗ 0
∗ 0 ∗

⎤
⎦

There is one non-trivial graph automorphism π = (12) with permutation matrix P and
corresponding shape T given by

P =
⎡
⎣1 0 0
0 0 1
0 1 0

⎤
⎦ T =

⎡
⎣∗ 0 0
0 0 ∗
0 ∗ 0

⎤
⎦

The shape T does not lie in S�. The group gaut(G) is cyclic of order 2, and

�� ∩ gaut(G) = 1

The group � = ��.gaut(G) is the union of two shapes: S� and (using notation defined
more generally below) S�π , where

S�π =
⎡
⎣∗ 0 0

∗ 0 ∗
∗ ∗ 0

⎤
⎦

These shapes have non-zero intersection, namely

S ∩ S�π =
⎡
⎣∗ 0 0

∗ 0 0
∗ 0 0

⎤
⎦

However, this intersection contains no non-singular matrices.

12.2. Permutations of shapes

An analogous result holds in general, and it is needed to complete the reduction from the
nonlinear case to the linear case. The example motivates:

Definition 12.1: Let S be a shape and let π ∈ Sn be a permutation of C. Define the shape

Sπ = {(i, π( j)) : (i, j) ∈ S}

The next result is clear.

Lemma12.2: LetS be a shape and letπ ∈ Sn be a permutation of C. Let P be the permutation
matrix corresponding to π . If M has shape S then MP has shape Sπ .
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It is easy to construct networks G where �� ∩ gaut(G) > 1. To deal with this possibility
it is convenient to choose a transversal (that is, a set of coset representatives) T to �� ∩
gaut(G) in gaut(G).

Recall that M∗(S ) is the set of non-singular matrices of shape S . Translating the defi-
nition of � = ��.gaut(G) into shape notation, we clearly have:

Lemma 12.3: With the above notation,

� =
⋃
π∈T

M∗(S�π) (12.7)

Proof: We use T here because it is clear that π ∈ �� ∩ gaut(G) implies S�π = S�. The
rest is routine. �

The crucial result in the reduction from the nonlinear case to the linear case, which we
need for a continuity argument, is: �
Lemma 12.4: If π �= ρ ∈ T then

M∗(S�π) ∩ M∗(S�ρ) = ∅

Proof: Multiplying on the right by ρ−1 and setting α = πρ−1 this becomes:

If α �∈ �� ∩ gaut(G) then every matrix in (S�) ∩ (S�α) is singular. (12.8)

To prove (12.8), assume for a contradiction that M is a non-singular matrix in (S�) ∩
(S�α). Order the cells C so thatM is block-triangular, as in (8.1). The shapeS has the same
block-triangular form. Partition the cells into subsetsK1,… ,Kp corresponding to this block
structure. Let Bij denote the block matrix occurring in rows Ki and columns Kj.

It is clear that every element of gaut(G) also belongs to gaut(G�), because the definition
of the coreG� is preserved by graph automorphisms. Therefore the (right) action ofα maps
each Ki to some unique Kj, where 1 
 j 
 p. That is, α preserves this partition. We prove
inductively that α fixes every block setwise.

The structure of G� is described in Remark 7.9. In particular every block, including
those off the diagonal, either consists entirely of ∗s or consists entirely of 0s.

The right action ofα permutes the columns of thematrix. Sinceα preserves the partition,
it permutes columns of blocks, and preserves rows. If α does not fix the top left block B11

then it must move some other block B1j to that position. However, all such blocks are zero.
NowM is triangular and also lies in Sα. So B11 = 0 andM is singular.

The only alternative is that α fixes K1 setwise. Now α permutes all the other sets K2,… ,
Kp. Delete the rows and columns corresponding to K1; inductively the same argument
proves that α fixes all Kj setwise. The permutation matrix corresponding to α is therefore
block-diagonal, so α ∈ ��, contradiction. �

12.3. Proof of Theorem 2.10

We deduce Theorem 2.10 from Theorem 6.2 by passing to the Jacobian.
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Proposition 4.7 states that DC
G = DV

G are equal to the �-structure A� , where � =
��.gaut(G). It remains to prove that

DC
G = D�

G .gaut(G)

The chain rule shows that if � ∈ D�
G .gaut(G) then � ∈ A� , which we know equals DC

G .
That is,

D�
G .gaut(G) ⊆ DC

G

Wemust prove the reverse inclusion.
If � ∈ DC

G = A� then D�x0 ∈ � for all x0 ∈ R
n, so

D�x0 = M(x0)α(x0)

forM(x0) ∈ ��, α(x0) ∈ gaut(G).
Lemma 12.4 implies that, by continuity, we may choose α ∈ gaut(G) so that α(x0) = α

for all x0 ∈ R
n. Therefore

D�x0 = M(x0)α

so

D(�α−1)x0 = D�x0α
−1 = M(x0) ∈ �� ∀x0 ∈ R

n

which implies that �α−1 ∈ D�
G by Theorem 4.5(3). Therefore

� ∈ D�
G α ⊆ D�

G .gaut(G)

as required. �
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Appendix: Notation

We list the main notation used in this paper in order of appearance, with a reference to the
section or subsection containing a definition.

Symbol Meaning Definition

G fully inhomogeneous network § 
C set of cells of network G § 
DL

G left network-preserving diffeomorphisms § .
DR

G right network-preserving diffeomorphisms § .
D�

G left and right network-preserving diffeomorphisms § .
DC

G conjugacy network-preserving diffeomorphisms § .
DV

G vector field network-preserving diffeomorphisms § .
J(i) extended input set of cell i § .
O(i) extended output set of cell i § .
R(i) {j� J(i): O(j)�O(i)} § .
L(i) {j� J(i): J(j)�J(i)} § .
�(i) L(i)�R(i) § .
gaut(G) group of graph automorphisms of G § .
R̄(i)

⋂
m∈O(i) J(m) § 

GL left core of G § .
GR right core of G § .
G� core GL ∩ GR of G § .
AG G-structure of Lie group G § 
S shape, subset of C × C § .
SG shape of G § .
MS space of all maps of shape S § .
LS space of all linear maps of shape S § .
JS (i) extended input set of i for shape S § 
OS (i) extended output set of i for shape S § 
SR right core of shape S § .
SL left core of shape S § .
S� core of shape S § .
M(n) space of n× nmatrices overR § .
GL(n) group of nonsingular n× nmatrices overR § .
Eij elementary matrix § .
M(S ) set of matrices of shape S § .
M∗(S ) set of invertible matrices of shape S § .
��
G group of invertible matrices of shape S� § 

adM adM(L)= [L,M]= LM−ML § 
Lie(�) Lie algebra of Lie group � § 
�° connected component of the identity of Lie group � § 
AdM conjugacy action AdM(L)=M−LM § .
LG vector space of linear admissible maps for G § .
�G group of all invertible matrices leavingLG invariant (conjugacy) § .
L abbreviated notation forLG § .
� abbreviated notation for �G § .
�� abbreviated notation for ��

G § .
gl(n) Lie algebra of all n× nmatrices overR under commutator § .
M(n) associative algebra of all n× nmatrices overR § .
L� space of linear maps of shape S� § .
LR space of linear maps of shape SR § 
LL space of linear maps of shape SL § 
	 subgroup ofL� consisting of block-diagonal matrices § 
Bi j block subspace § 
N nil radical of associative algebraA § 
U unipotent subgroup of associative algebraA § 
G� core subnetwork of network G § 
Sπ {(i, π( j)) : (i, j) ∈ S} for permutation π § .
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