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In the Taylor-Couette experiment on fluid flow between counterrotating cylinders, there is a bicritical point where the 
onset of instabilities to Taylor vortex flow (a steady-state bifurcation) and spiral vortex flow (a Hopf bifurcation) meet. The 

nonlinear mode interactions near this bicritical point are analyzed, exploiting the role of symmetry in the bifurcation theory. 

and with emphasis on the relevance to experiments, for a range of radius ratios 0.43 i n i 0.9X. The mechanism of the pattern 

formation is elucidated, and several new flow patterns and transitions are predicted, including wavy vortices, bistability, 

hysteresis, and up to 7 quasiperiodic Rows. 

Introduction 

Since the seminal work of Taylor [I], investigators have sought to explain the intriguing variety of 

patterns observed in the Taylor-Couette experiment, that is, in the flow of a fluid contained between two 

concentric and independently rotating cylinders. (A comprehensive survey and bibliography of both 

theoretical and experimental work is given by DiPrima and Swinney [2]). The recent experimental study of 

Andereck et al. [3] provides a detailed map of the flow patterns (or states) observed as the rotation speeds 

of the two cylinders are varied quasistatically for a fixed radius ratio n = 0.883, see fig. 1. If the two 

cylinders are rotated in the same direction, then the more complex flow patterns are observed only for 

large values of the Reynolds numbers; however, in the case of counterrotating cylinders, complex flow 

pattterns may appear in close proximity to the primary transition from laminar Couette flow, at relatively 

low Reynolds numbers. Recent advances in equivariant bifurcation theory (Golubitsky and Stewart [4]) 

make possible an explanation of these low Reynolds number complex flow patterns. This paper presents 

detailed calculations of Hopf and steady-state bifurcation mode interactions in the presence of symmetry. 

which are in agreement with experimental observation. The analysis covers a wide range of radius ratios 7. 

from 0.43 to 0.98, and predicts new flow states, bistability and hysteresis behavior not previously reported. 

These predictions seem to be confirmed by experiments now in progress (Tagg et al. [5]). The results affirm 

the significance of equivariant bifurcation mode interactions for pattern formation in fluid dynamics. and 

may provide a paradigm for studies of pattern formation in other fields. 

0167-2789/88/$03.50 0 Elsevier Science Publishers B.V. 

(North-Holland Physics Publishing Division) 



M. Golubitsky and W. F. Langford/ Pallern formation in flow between counterrotating cylinders 363 

Following this Introduction, section 1 outlines the mathematical analysis involved in the reduction of 

the Navier-Stokes equations to a 6-dimensional mapping by the classical LiapunovSchmidt procedure. 

Section 2 summarizes the consequences of the symmetry assumptions and gives the resulting normal form, 

following Golubitsky and Stewart [4] but with a new choice of coordinates which is more convenient for 

calculations. Section 3 describes the numerical computations. Finally, section 4 presents the detailed 

results and the conclusion of this investigation. 

The remainder of this Introduction is divided into 3 parts. Part A describes the relevant experimental 

observations and the symmetries of the experiments, part B outlines the main results of this investigation, 

and part C reviews previous work as it relates to this paper. 

A. Experiments and symmetries 

Fig. 1 shows the flow regimes found by Andereck et al. [3], for experiments with counterrotating 

cylinders, and radius ratio 77 = 0.883. The coordinates R, and R, are the two Reynolds numbers, 

proportional to the rotation speeds of the inner and outer cylinders respectively, and opposite in sign 

because the cylinders are counterrotating (precise definitions are given in section 1). The flow patterns 

which are of interest in this paper are: 

AZ1 = azimuthal laminar Bow (also called Couette flow COU), 

TVF = Taylor vortex flow, 

SPI = spiral vortices, 

IPS = interpenetrating spirals, 

WVF = wavy vortex flow, 

MWV = modulated wavy vortices, 

RIB = ribbons (nonaxisymmetric simple mode), 

TWI = twisted vortices, 

MSP = modulated spirals, 

MTW = modulated twisted vortices. 

See Andereck et al. [3] for identification of the outer flow regimes in fig. 1. This paper is concerned with the 

neighborhood where the regimes AZI, TVF, SPI and IPS appear to meet in fig. 1. 

Fig. 2 presents photographs of the flow patterns for the cases TVF, WVF and SPI. The flow patterns are 

visualized by adding small platelike particles (called kalliroscope) to the fluid, which align themselves in 

the direction of the flow and reflect light. For sufficiently small R, (below the lowest curve in fig. l), the 

observed flow is primarily an aximuthal laminar flow here called AZ1 or Couette Bow, which is constant in 

time and spatially constant in the axial and azimuthal directions. (Superimposed on the laminar Couette 

flow one observes weak Ekman cells due to end effects and finite cylinder length. The effects of finite 

length on the AZ1 and TVF flow patterns are partially explained in terms of the Ginzburg-Landau 

amplitude equation, see Ahlers et al. [6] and further references therein. Finite length effects are excluded 

from our calculations, an assumption discussed further below.) The three flow patterns in fig. 2 may be 

obtained by the following experimental procedure. A rotation speed for the outer cylinder is chosen (this’ 

determines R2), and the outer cylinder is slowly accelerated to and then held at this constant speed. Next 

the inner cylinder is slowly accelerated to the speed determined by R,. If R, is negative but near 0, or 

positive with any magnitude, then as R, increases the first transition from AZ1 is to TVF, which is shown 

in fig. 2(a). On further increase of R, at the same R,, one next observes a transition from TVF to WVF, 
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Fig. 1. The flow-regime diagram for counterrotating cylinders and q = 0.883, from experiments of Andereck et al. (31. The 

abbreviations AZI, etc. used for the different flow patterns are explained in the text. 

see fig. 2(B). However, for more negative values of R, (stronger counterrotation) as R, is increased the 

first transition from AZ1 is to SPI, see fig. 2(c). All of these transitions are shown as boundary curves in fig. 

1. Andereck et al. [3] only briefly describe the bicritical region, where the TVF and SPI transitions meet: 

“Near R 2 = - 155,. . . increasing R, leads to a complicated series of transitions from Taylor vortex flow to 

spirals and mixtures of the two flows. The order of these transitions is not well established.. “. 

Though extensive in Reynolds numbers, the study of Andereck et al. [3] is limited to a single value of the 

radius ratio 7 = 0.883. Snyder [7] experimentally determined the primary transition boundary for 4 radius 

ratios, 11 = 0.20, 0.50, 0.80 and 0.959, and found the bicritical points (where the TVF and SPI transitions 

meet) to be strongly dependent on 7. His measurements confirmed the linear stability analysis of Krueger 

et al. [8]. These and other experiments, however, leave open the selection of flow patterns beyond the 

primary transition boundary near bicriticality. New experiments are now underway (Tagg et al. [5]) to 

clarify these transitions near the bicritical point. 

The symmetries of the experimental apparatus and of the flow patterns play a fundamental role in the 

analysis of this paper. First we observe that, since the underlying physical laws (the Navier-Stokes 

equations) are invariant under the Euclidean group E, of all translations, rotations, and reflections of 

space, the group of symmetries of the experiment is a subgroup of E, determined by the shape of the 

domain and the boundary conditions. The most obvious symmetry of the Taylor-Couette system is that 

obtained by rotation of the whole apparatus about the common axis of the two cylinders. These rotations 

lead to an SO(2) azimuthal symmetry. There is also an approximate axial symmetry evident in the 

photographs in fig. 2. In fact, many of the observed flow patterns appear to be periodic in the axial 
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Fig. 2. Photographs of experimentally observed flow patterns; (a) Taylor vortex flow (TVF), (b) wavy vortex flow (WVF). (c) spiral 

vortices @PI). Courtesy of R. Tagg and H.L. Swinney. 

direction, within the central portion of long cylinders. (For short cylinders, it is well known that this is not 

the case, for example Benjamin [9] emphasized the importance of finite length effects.) Throughout this 

paper we assume that the fluid flow pattern is periodic in the axial direction, an assumption which goes 

back at least to Taylor [l], and is adopted in the majority of papers cited here. This assumption is often 

called the infinite cylinder approximation, because theoretically an axially periodic flow pattern can be 

extended indefinitely in the axial direction. However, we prefer the mathematically equivalent interpreta- 

tion of a finite cylinder, one period in length, with the two ends identified, i.e. with periodic boundary 

conditions. Thus axial translations are identified with the action of a circle group. This assumption will be 

justified if the results agree with experimental measurements taken in the central portion of sufficiently 

long cylinders. In addition to this axial periodicity, we observe that the cylinders are symmetric with 

respect to reflection through a plane perpendicular to the axis. Then the full axial symmetries may be 



Fig. 2. Continued 

identified with the group O(2), the orthogonal group of rotations and reflections of the plane. Since the 

axial O(2) and the azimuthal SO(2) symmetries commute, the total spatial symmetries of the model form 

the group I = O(2) X SO(2). The consequences of these symmetry assumptions are presented in section 2. 

Inspection of the flow patterns observed in the experiments reveals that they have symmetries which can 

be identified with subgroups of I. For example, Couette flow (neglecting end effects) is invariant under the 

full symmetry group I. Flow patterns with more structure correspond to smaller subgroups. In fig. 2, 

Taylor vortices (TVF) have the symmetry Z 2 x SO(2) of axial flips and azimuthal rotations, spirals (SPI) 

have the symmetry g(2) of a simultaneous axial translation and azimuthal rotation, and wavy vortices 

(WVF) have the symmetry Z 2( K . (n, a)) of a simultaneous axial flip and azimuthal half-period rotation. 

(See section 2 for an explanation of the group-theoretic notation used here.) In this way, experimentally 

observed flow patterns may be identified conveniently by their symmetry subgroups. 

Furthermore, the experimental observation that these flow patterns break the original symmetry of the 

apparatus leads to predictions about the multiplicity of the eigenvalues found in the analysis to be 

described in section 1. For example, it is known (since Taylor [l]) that the bifurcation of Taylor vortices 

corresponds to the existence of a zero eigenvalue for the linearization of the boundary value problem about 

Couette flow. The Taylor vortices are not invariant under the axial translational symmetry of the 
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apparatus. From a given set of Taylor vortices, we can obtain a continuum of congruent Taylor vortices, 

by axial translation through any portion of one period. These are distinct and independent, but all are 

solutions of the boundary value problem, in view of our assumption of axial O(2) symmetry. Therefore the 

zero eigenvalue must have at least a 2-dimensional eigenspace. Genericity leads to the conclusion that it is 

exactly of multiplicity 2. Similarly, the bifurcation of spiral vortices corresponds to the existence of pure 

imaginary eigenvalues fro (a Hopf bifurcation). But upward spiraling vortices are clearly distinct from 

downward spiraling vortices. The fact that spirals break the reflectional as well as translational O(2) axial 

symmetry implies that these imaginary eigenvalues are generically double. These predictions are confirmed 

by the calculations, see section 1. For a more complete discussion of these group-theoretic ideas, see 

Golubitsky et al. [lo]. 

B. Outline of results 

The results of this paper, presented in detail in sections 1-4, are briefly outlined here. 

The Navier-Stokes partial differential equations for the Taylor-Couette experiment have been reduced 

by the Liapunov-Schmidt procedure to a 6-dimensional bifurcation equation or normal form, in a 

neighborhood of the bicritical point for the Hopf/steady-state mode interaction. This reduction preserves 

branches of stationary and periodic solutions, together with their stabilities, and gives some information 

about more complicated dynamics such as tori. 

The symmetry group I = O(2) x SO(2) restricts the 6-dimensional bifurcation equation to a very special 

normal form. The possible branches of solutions of the normal form equations have been classified, along 

with their stabilities, so far as these are determined locally by cubic terms in the normal form. These 

solutions include the following, with the same symmetries as the observed flows: AZI, TVF, WVF and SPI 

described above, and also twisted vortices (TWI), and 2-frequency modulated wavy vortices (MWV); as 

well as ribbons (RIB), the last not observed by Andereck et al. [3]. In addition several new types of flow 

states are found: a second 2-frequency MWV, 3-frequency MWV, analogous 2- and 3-frequency mod- 

ulated twisted vortices (MTW), and a new type of 2-frequency modulated spiral flow (MSP); in total there 

are 7 possible quasiperiodic flows. 

The coefficients of the normal form equations, calculated on a microcomputer, determine the bifurcation 

diagrams, presented here for a range of radius ratios from TJ = 0.43 to n = 0.98. The numerical results give 

explicit predictions which can be compared directly with experimental data. In experiments one may only 

expect to observe flow patterns corresponding to solutions which are stable (asymptotically stable in the 

sense of Liapunov). The calculations show that most of the solutions in the previous paragraph are 

unstable and hence not observable. The only solutions found to be stable are AZI, TVF, WVF and SPI. 

The existence of stable AZI, TVF and SPI is in agreement with published experimental observations, 

however the observation of WVF near criticality has not been reported. Furthermore, the calculations 

predict the existence of parameter values at which SPI and either TVF or WVF exist and are stable 

simultaneously (bistability), and of jumps between the two states as the parameters change (hysteresis). 

Experiments now in progress (Tagg et al. [5]) appear to confirm all three new predictions. In fact the 

ambiguous observations of Andereck et al. [3] quoted in part A may be due in part to this bistability. 

The analysis also explored the effects of radius ratio on pattern formation, near bicriticality. Over a 

range of wider gaps, TJ = 0.43 to n = 0.80, variation of the radius ratio was found to have negligible 

qualitative effect on the bifurcation diagrams. However, for narrow gaps, n > 0.85, the effect is dramatic. 

One encounters several additional degeneracies in cubic coefficients which change stabilities of TVF, MVF 
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and SPI, as well as the proximity of additional bicritical points corresponding to Hopf/Hopf mode 

interactions. The latter gives a plausible explanation for the discrepancy between the observation of IPS by 

Andereck et al. [3], and the absence of IPS in the results of this paper, since the IPS mode arises naturally 

in Hopf/Hopf mode interactions, see Chossat et al. [ll]. Because of these degeneracies, the results of this 

paper are most applicable for wider gaps (11 I 0.85); narrower gaps require further effort. 

Of the possible quasiperiodic flows, stability has been computed only for the modulated spiral solution. 

and it is always unstable. Further investigation of the quasiperiodic flows is left for a future paper. 

The results of the calculations have been compared with available experimental data, from mea- 

surements in the central portion of moderately long cylinders (aspect ratios about 30). The quantitative 

agreement of these results with experimental data validates the assumption of axial periodicity, and 

supports the hypothesis that end effects are not important in this context. 

The analysis presented in this paper is relevant to the understanding of the transition to turbulence in 

the Taylor-Couette experiment. It lays the foundation for investigation of the mode-interaction route to 

turbulence, as explained below. 

Finally, on the fundamental question of the origin of the flow patterns observed in the experiments, this 

analysis implies that both the form and the variety of the patterns are due principally to the symmetry in 

the geometry of the apparatus and to generic implications of equivalent bifurcation theory, and not to the 

physics of the fluid as expressed by the NavierrStokes equations. This conclusion suggests that similar 

analyses will be fruitful in explaining pattern formation in other fields, when symmetry is present. 

C. Previous work 

Hopf and steady-state mode interactions have been studied by Langford [12], Holmes [13], Iooss and 

Langford [14], Guckenheimer [15] and others; see Guckenheimer and Holmes [16] and further references 

therein. In one-parameter families of differential equations, Hopf bifurcation and steady-state bifurcation 

each occur generically (modulo constraints or symmetries). The coalescence of these two bifurcations can 

be expected to occur in 2-parameter families, and normal form analysis shows that nonlinear interactions 

near the coalescence lead to secondary bifurcations of time-periodic solutions and even to quasiperiodic 

solutions (2-tori). The analogy between the sequence of bifurcations occurring in Hopf/steady-state mode 

interactions and the “main sequence” of transitions observed in the Taylor-Couette experiment was 

pointed out by Langford [12]. Coalescence of Hopf and steady-state bifurcations in the Taylor-Couette 

problem is not unexpected, since there are 3 independent parameters available (the 2 cylinder rotation 

speeds and the radius ratio). Linear stability analysis of Krueger et al. [8] (extended by Langford et al. [ 171) 

demonstrated the existence of such bicritical points, see section 1. However, the analysis of mode 

interactions under generic assumptions does not apply here, because of the special symmetries of the 

Taylor-Couette apparatus, which require an equivariant version of the bifurcation theory. The general 

analysis of Hopf/steady-state mode interactions in the presence of the O(2) X SO(2) symmetry of the 

Taylor-Couette apparatus was first carried out by Golubitsky and Stewart [4], in a coordinate system less 

convenient for calculations than the one presented here. See Golubitsky et al. [lo] for a more detailed 

exposition of the present approach. 

The landmark paper of Davey et al. [18] explained the instability of Taylor vortices to nonaxisymmetric 

disturbances as a nonlinear interaction between the first two unstable modes from Couette flow: i.e. as a 

Hopf/steady-state mode interaction in the language of this paper. Their analysis used amplitude expan- 

sions in a 6-dimensional system, as here, and they found the 5 solution types are called Taylor vortices, 
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wavy vortices, twisted vortices, spirals and ribbons (but they called ribbons “the nonaxisymmetric simple 

mode”). Without explicitly exploiting the symmetries, they calculated the cubic coefficients; this was 

extended to fifth order by Eagles [19]. They were not able to justify mathematically their reduction to 6 (or 

fewer) modes, since they considered only the case of a fixed outer cylinder where the bicriticality 

(coalescence) does not actually occur. They worked in the small gap limit, in order to carry out the 

asymptotic analysis. In the case of counterrotation of the two cylinders, bicriticality is known to occur over 

a wide range of radius ratios (Langford et al. [17]). Thus the present paper is able to extend the asymptotic 

results of Davey et al. [18] globally in the radius ratio, to perform the reduction to 6 dimensions (or less) 

with greater mathematical rigor, to reveal new flow states, and to explain the mechanism underlying the 

observed pattern formation. 

DiPrima and Grannick [20] extended the earlier linear stability analysis of Krueger et al. [8] in the case 

of counterrotating cylinders, into the nonlinear regime, using the amplitude expansion technique of Davey 

et al. [18], for a fixed radius ratio n = 0.95. They calculated the direction and stability of the primary 

bifurcation solution on both sides of the bicritical point. To the left side, they found that the primary 

bifurcation always yields simultaneously spirals and ribbons (the nonaxisymmetric simple mode); the 

ribbons are never stable, and the spirals vary between stable supercritical and unstable subcritical. The 

azimuthal mode number m increases with the counterrotation. To the right side, where Taylor vortices 

bifurcate first, they discovered a small interval of subcritical instability of Taylor vortices near the 

bicritical point. 

The stability of Taylor vortices to nonaxisymmetric disturbances for counterrotating cylinders was 

studied by Jones [21], using a Chebyshev collocation procedure. He computed the bicritical curve (between 

Taylor vortices and spirals), and the curve of transition to subcriticality of Taylor vortices, for 0.5 < 77 < 1.0. 

The simultaneous bifurcation of spirals and ribbons was explained by Chossat and Iooss [22], as a Hopf 

bifurcation in the presence of the axial O(2) symmetry (periodicity and reflection) of the flow. Demay and 

Iooss [23] calculated the cubic coefficients which determine relative stability of spirals and ribbons, for 

TJ = 0.95 and 17 = 0.75, and for a variety of azimuthal mode numbers, and predicted the existence of stable 

ribbons for n = 0.75. Chossat et al. [ll] have calculated the cubic coefficients for the case of the 

Hopf/Hopf mode interaction, which occurs for stronger counterrotation than that considered here. These 

calculations are based on normal form techniques theoretically equivalent to the technique used here, see 

Chossat and Golubitsky [24]. Recently, the normal form for Taylor vortices has been calculated to fifth 

order using Macsyma computer algebra by Laure and Demay [25], and the singularity of codimension 3, 

with vanishing cubic Taylor vortex coefficient in the 6-dimensional normal form, has been considered by 

Signoret and Iooss [26]. Laure [27] presented the normal form to seventh order, for the codimension-3 

singularity corresponding to transition between stable spirals stable ribbons, and found an unstable 

quasiperiodic flow and hysteresis between spirals and ribbons. 

Independently, DiPrima et al. [28] have studied Hopf/steady-state mode interactions for flow between 

counterrotating cylinders, using a center manifold approach, and reported on preliminary findings which 

are consistent with those presented here. In particular, they noted the possibility of solutions other than 

those reported by Davey et al. [18], and pointed out the importance of fifth order terms where the cubic 

Taylor vortex coefficient changes sign. 

One of the major problems of fluid dynamics today is that of understanding the transition to turbulence. 

There is mounting evidence that, at least in some systems having small spatial scales and/or symmetries, 

low dimensional “strange attractors” play a essential role, see Lanford [29] and Guckenheimer [30]. (Here 

“strange attractor” means a bounded invariant set in the phase space, with local exponential divergence of 

trajectories, and contained in the interior of a open region in which all trajectories converge to the 



370 M. Goluhitsky and W. F. Langford/ Pattern formotron in jh between counterrotutmg q4inder.s 

attractor as t -+ co.) The Taylor-Couette experimental is one of the most thoroughly studied in this regard. 

Brandstater et al. [31] calculated Liapunov exponents, phase portraits and power spectra from experimen- 

tal measurements taken just above the onset of turbulence, and found convincing evidence of a strange 

attractor. The possible existence of such a strange attractor is of great significance, because it allows a 

reduction of the dynamical system from the infinite-dimensional phase space of the Navier-Stokes 

equations of fluid dynamics to the low finite dimensionality of the attractor itself, and thus, in principle, 

greatly simplifies the study of the dynamics. However, practical difficulties remain, because the reduction 

can never be carried out exactly, and even if it could, strange attractors involve global dynamics which can 

not be expressed by an explicit formula. Thus, for example it is very difficult to “find” a Lorenz attractor 

or a Roessler attractor explicitly in the Navier-Stokes equations. This difficulty is overcome in the 

mode-interaction route to turbulence. As indicated by the numerical studies of Langford [32, 331, the 

truncated normal form equations from Hopf/steady-state mode interactions can lead in a stable manner 

to chaotic dynamics, beyond the regime of periodic and quasiperiodic dynamics described above. This type 

of strange attractor is local, and is accessible via a reduction from the full Navier-Stokes equations; that is 

to say, only finitely many normal form coefficients are required, and they can be computed explicitly as in 

this paper. Thus this paper lays a foundation for further work, now under way, which investigates the 

possibilities of chaotic and quasiperiodic dynamics beyond the periodic regime, for mode interactions in 

the presence of the O(2) X SO(2) symetries of the TaylorCouette experiment. 

1. Reduction of the Navier-Stokes equations to the 6-dimensional kernel 

The analysis begins with the Navier-Stokes equations 

u,=vv2u- (u*v)u- ;vp, 
v l u=o, 

where 

u( t, x) = velocity vector at time t and x = 08 3, 

p = pressure, 

p = mass density, 

v = kinematic viscosity. 

Let us introduce the additional notation 

rr = inner cylinder radius, 

r, = outer cylinder radius, 

d = gap width = r2 - rl, 

q = radius ratio = r1/r2, 

9, = inner cylinder angular velocity, 

(1.1) 

(1.2) 

(1.3) 
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D, = outer cylinder angular velocity, 

P = Q2,/Q 29 

R, = r,L$d/v = inner cylinder Reynolds number, 

R, = r2i12d/v = outer cylinder Reynolds number. 

In the present work, R, > 0 and R, < 0. It is convenient to bring (1.1) into nondimensional form by 

resealing lengths by d, velocities by the inner cylinder velocity yiL$, and time t by the viscous time scale 

d 2/v. Furthermore, given the cylindrical symmetry of the apparatus, it is natural to express (1.1) in 

cylindrical coordinates (r, 13, z). We let U, u, w denote the corresponding components of u in cylindrical 

coordinates. Then (1.1) in the new variables, with partial derivatives denoted by subscripts, is 

2 
u,=~~u-,~~-~-p~-R~ 

2 

r r2 
uu,+;uo+wul-~ 1 , 

MU, + ; II, + wvz + T , 
I 

w,=v2w-pp,-RI uw,+;w,+ww, , [ 1 
1 1 

VVl=u,+,u+,v/j+wZ=o. 

04 

The ‘no slip’ boundary conditions at the cylinder walls take the form 

(UT u, w) = (uo) at r=v/(l -q), 
(u,u,w)=(O,~/17,0) atr=l/(l-7). 

(1.5) 

As described in the Introduction, we assume that the flow II is periodic in the z direction, with period 

27/k, where k is the axial wave number to be determined numerically as explained below. We solve (1.4) 

over one period in z, with periodic end conditions, as well as azimuthal periodicity 

u(r, 8, z) = u(r, 0, z + 2a/k), 

u(r, 8, Z) = u(r, 8 + 277, z). 
0 4 

It is well known that the problem (1.4)-(1.6) has an exact time-independent solution, known as the 

Couette flow, given by 

*,= (0, u,(r),O), p =pc(r), v,(r) =A,r+ Be/r, 

(1.7) 

Since Couette flow is independent of z and 8, it has the symmetry of the full group I = O(2) x SO(2) 

described in the Introduction. We are interested in the bifurcation from Couette flow to solutions with 

greater spatial structure, i.e. which break symmetry. To this end, we translate Couette flow to the trivial 
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solution, by substituting 

u=uc+s, P =p,+B, 

and then dropping the “hats”. The resulting system is 

2 
u,=v%-u--u -p,-C(r)us+2C(r)u-R, 

V2 

r2 r2 ’ 
uu,+ ;u,+wzl- r , 1 

u,q72u_-++2, 1 
r2 r2 ’ 

-,pe-C(r)v,+2Du-R, uo,+~q,+wu~+~ , 1 
wt=V2w-pp,-C(r)ws-RI ~w~+~w~+ww~], 

[ 

u,+ +u+ ;r,,+ w;=o. 

The coefficients C(r) and D appearing in (1.9) are defined by 

D= -R,A,= 
vR, - R, 

l+Tj ‘O, 

C(r) = R,(A,+Bc/r2) = -D+ 
9(R, - 77R*) 

(1 - q)(l - q2)r2 

(1.8) 

(1.9) 

(1 .lO) 

The boundary conditions for (1.9) state that the velocity is zero on the cylinder walls, and the periodicity 

conditions (1.6) are satisfied. 

The analysis of bifurcation from Couette flow begins with a linear stability analysis of the trivial 

solution of (1.9). (The validity of the principle of linearized stability for the Navier-Stokes equations has 

been examined by several authors, see Sattinger [34] and references therein.) The linearization of (1.9) is 

obtained by dropping the bilinear terms (in square brackets). Then the stability of the trivial solution is 

determined by the eigenvalues X of the eigenvalue problem 

Xu=V’u--F-mu,-p,-C(r)u,+2C(r)a, 

Xv=~~v-~+~~~-fp~-C(r)u~+2Du, 

Xw = V2w -pz - C(r)ws, 

V *u=o. 

(1 .ll) 

This eigenvalue problem has been studied by many authors. The axisymmetric case was investigated by 

Taylor [l] and Chandrasekhar [35]. The nonaxisymmetric case was studied by Krueger et al. [8], Demay 

and Iooss [23], and Langford et al. [17] among others, see the survey of DiPrima and Swinney [2]. The 

present paper follows the approach and notation of Langford et al. [17], and the reader is referred to this 

work for tables of numerical values and graphs of the neutral stability curves, from which Figs. 3 and 4 

have been taken, as well as for details of the numerical procedure used to solve the eigenvalue problem 

(1.11). 
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Fig. 3. Neutral stability curves from linear analysis, for counterrotating cylinders. Radius ratios: (a) 7 = 0.883 and (b) q = 0.800. 

These linear investigations show that, for each value of the radius ratio TJ, there are smooth curves in the 

(R,, R2) plane, along which (1.11) has critical eigenvalues, either h = 0 (real) or h = f iw (purely 

imaginary), see fig. 3. Here m is the azimuthal wave number, defined more precisely below; we note that 

X = 0 if and only if m = 0. In every case the eigenvalues have been found to have multiplicity 2, as 

predicted by symmetry arguments based on the experimental observations in the Introduction. 

This paper is concerned with the bicritical points (or codimension-2 points), as in fig. 3, where (1.11) has 

simultaneously eigenvalues A = 0 and A = _t io (i.e. m = 0 and m # 0 in fig. 3). The analysis shows that, 

below the envelope of the curves in fig. 3, all the eigenvalues have negative real part, i.e. Couette flow is 

stable to small disturbances, As R, increases in fig. 3, Couette flow loses stability successively to an 

increasing number of modes (i.e. eigenfunctions of (1.11)). Therefore, intersection points above the lower 

envelope in fig. 3 are of less interest than those on the envelope, where Couette flow first loses stability. 

This paper focuses on the intersection of the m = 0 and m = 1 curves in fig. 3. For a similar study of the 

intersections of m and m + 1 curves with m > 1, see Chossat et al. [ll]. 

The bicritical points in fig. 3 move as the radius ratio 9 varies. However, the numerical analysis in 

Langford et al. [17] shows that their ordering in R, remains monotone, see fig. 4. In section 4 of this 

paper, we describe the solutions, with their symmetries and stabilities, which bifurcate along the 

(m = 0) - (m = 1) bicritical curve in fig. 4, in the full nonlinear equations (1.9). 

The axial wave number k is determined in different ways by different authors. The approach of Taylor 

[l] and Langford et al. [17] is to fix R, and 17, then compute the critical value of R,, for which neutral 

0.6 - 

R2 

Fig. 4. Curves of bicritical points in the (R,, q) plane. Between the curves, the primary instability from Couette Row is to a mode 

with azimuthal wave number m. (Higher wave number modes, not shown, exist in the upper left corner of the figure). 



stability (Re( X) = 0) occurs, as a function of k. This function R,(k) is found to have a global minimum, 

which uniquely defines Rt and k, for the given 9, R, and m. It is this critical value R; which is plotted in 

figs. 3 and 4, see Langford et al. [17] for more details. 

A further complication arises when one considers the bicritical points. The critical wave number k, is in 

general different on curves with different azimuthal wave numbers m. This means that corresponding 

eigenfunctions have different periods in Z. We wish to assume in the present analysis, as explained in the 

Introduction, that there is a fixed periodicity in the z direction. Fortunately, the numerical results in 

Langford et al. [17] show that, for the (m = 0) - (m = 1) bicritical values, the corresponding kc’s are very 

close, in fact for moderate gap widths the difference is on the order of 1%. which is comparable to the 

uncertainty in experiments. Moreover, it is known that as R, increases above R;‘ in (1.11) the trivial 

solution becomes unstable for an entire interval of k values about k,. This interval grows rapidly, in fact 

its length has square root dependence on JR, - RYI. Therefore, very close to a bicritical point (R;, R;) 

where modes m = 0 and m = 1 are both neutrally stable but with different values of k,. there are points 

(R 2, R,) where modes with m = 0 and m = 1 and the sume values of k are neutrally stable. This common 

value of k is close to both of the two critical values of k,, and can be selected in a variety of ways. The 

calculations reported here used the following procedure for the selection of k,. Along the m = 0 neutral 

stability curve, the critical wave number kco( Rx) = k,( R2)lm=0 was computed as in Langford et al. [17]. 

Then in a neighborhood of the former bicritical point, the eigenvalue problem (1.11) was solved for the 

m = 1 mode, using the given k = k,,,( R2)_ This yielded a neutral stability curve for ~11 = 1, displaced 

slightly upward from the former curve. Its intersection with the m = 0 defined the new bicritical point. In 

every case the result was only a slight shift of the bicritical point, to larger values of R, and more negative 

values of R,. The same procedure appears to have been used by DiPrima et al. [28]. This procedure may 

be viewed as allowing the axisymmetric Taylor vortex mode to “select” the axial wave number, and then 

solving for a nonaxisymmetric mode with matching wave number. It makes possible the exploration of 

mode interactions between modes with the same axial periods. Numerically. the point of intersection was 

determined by polynomial interpolation, over a mesh of points on which the difference changed sign. 

A different approach, used by Chossat et al. [ll], is to assume that the cylinder has a finite length I, and 

minimize over wave numbers k for which I/k is an integer. 

Let us now assume that the parameters have been chosen, as determined numerically, so that the 

eigenvalue problem (1.11) has double eigenvalues at 0 and f iw, and no others on the imaginary axis. As 

in Langford et al. [17], the corresponding six eigenfunctions can be written 

(1.12) 

together with the three complex conjugates. The exponential dependence on L and 0 is obtained by 

elementary separation of variables, then the r-dependent vectors are computed numerically as the solution 

of an ordinary differential equation two-point boundary value problem. We have chosen to include a 

factor i in the third components (equivalent to a phase shift of ~/4); this has the consequence that O;,, 4, 

and W, are real functions. In every case, CJi, V, and IV, are complex. Note that m in (1.12) is the 

azimuthal wave number as in figs. 3 and 4. Henceforth in this paper, we consider only the m = 1 

nonaxisymmetric modes. 
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Let us now consider the time-dependent linearized equations, that is (1.9) with the bilinear terms 

dropped. Again, by separation of variables, this has solutions 

+,(t, x) = Go(x), $,(t, x) = eC’“‘@,(x), $,(t, x) = eCiw’Q2(x), (1.13) 

together with the 3 complex conjugates. Here X = - io is the numerically computed purely imaginary 

eigenvalue, and w > 0. The general real solution of the linearized differential equation is then given by 

where z, E Q= , (1.14) 
J=o 

The sum in (1.14) spans a six-dimensional linear space of smooth functions, satisfying the boundary 

conditions of (1.9), and periodic in t with period (2a/w). We refer to this space as the six-dimensionul 

kernel; it is the space on which the Liapunov-Schmidt reduction of the nonlinear equations will be 

performed. 

Before beginning the Liapunov-Schmidt reduction, we remark that we are seeking time-dependent 

solutions of the Navier-Stokes equations which exist and are bounded (in fact periodic) for all t 2 0. The 

corresponding Cauchy problem has been studied by many authors, see for example Sattinger [34], Teman 

[36] and Iooss [37]. In order to sketch their results, it is convenient to rewrite (1.9) in the form 

$=A(p)u+R,B(u,u), (1.15) 

where A is the linear part and B is the bilinear part of the right-hand side of (1.9), and p represents the 

parameters 

,J = (R,, R,, v) - (R;, R;> 71% (1.16) 

To find an appropriate function space setting for (1.15) let D denote the physical space between the 

cylinders, of height 2a/k, and let L2( D) be the Hilbert space of square-integrable vector functions u on 

D, then let H’ c L2( D) be the Sobolev space of u with partial derivatives square-integrable up to order j 

and with the inner product 

(1.17) 

Then Ho = L2( D) and we define H,” c L2( D) to be the subspace of “divergence-free” u, satisfying 

0= u*vqdx= 
/ / 

qu*nda- qv’udx, 
D aD / 

(1.18) 
D 

where q E C’(D), and the second equality holds for sufficiently regular u (Green’s formula). Thus (1.18) 

has the effect of incorporating the divergence-free condition and no-flux boundary condition into the 

function space H,“. Furthermore, H,” is closed in L2( D) and has orthogonal complement consisting of 

functions vq, q E H’. Now let r denote the orthogonal projection onto H,” in L,(D), and project eq. 
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(1.15) into Hf, to get 

$=&++~~i+,~j, 

where A” = VA, 8 = TTB, and the vp terms have disappeared. The domain of A” is 

(1.19) 

Y= {uEH~~H~: rrsatisfiesB.C.}, (1.20) 

with the inner product of Hz. Then A” is a bounded linear operator from Y to Hf, and the Fredholm 

alternative holds for A”, so that the Liapunov-Schmidt procedure can be applied. 

Furthermore, it can be shown that the Cauchy problem has a unique solution on any time interval [0, T], 

analytic in the parameters p and analytic for t E (0, T), provided the initial ~(0, x) E Y is sufficiently 

small, see Iooss [37]. 

In order to apply the Fredholm alternative, we will need the formal adjoint of A which is 

A*u = 

v~u-~-~u~+C(+~+~DU-~~ 

v%- ;+ ;liz++ c(r)z++2c(r)u- ;p* 

v2w+ C(r)W,-p; 

(1.21) 

where v * II = 0, and A” = TA*. 

The first step of the Liapunov-Schmidt procedure is a resealing of the time to fix the (unknown) period 

in t, by 

s = (cd + 7)r, (1.22) 

where io is the purely imaginary eigenvalue and 7 is a perturbation to be determined. Now (1.9) is 

equivalent to the nonlinear operator equation 

(1.23) 

Note that the Frechet derivative of N is 

D,N(O,O,O) =A, - a& = L, 
(1.24) 

L: c&Jr) + c,, (Hit 

and the kernel of L is spanned by { +a, 9i, +2, &,, &, G2}, see (1.12)-(1.14). By the Fredholm alternative, 

the range of L is orthogonal to the kernel of 

L*=&+w& (1.25) 

and since A*, given by (1.21), has much the same form as A, the same algorithm can be used to compute a 
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basis for the kernel of L* as was used in Langford et al. [17] for the kernel of L. This has the form 

1 
U,*(r) 

GO(t, x) = eikr V,*(r) 

iW,*(r) 

$,ct, x) = ei(-kr+@-wt) 

i 

u,*(r) 1 
(1.26) 

together with the 3 complex conjugates. The vectors (U, *, y*, W, * ) have been computed numerically, by 

the method in Langford et al. [17] over the range of parameter values of interest, and normalized so that 

(+~>~,),=s,,, j,k=O,l 2 > f (1.27) 

Now we construct a projection P onto ker( L), along the range of L, given by 

where Pu is real, since u is real. Applying P to (1.23) gives the alternative problems 

PNu, P, 7) = 0, 

(I- P)N(u, P-1,7) = 0, 

(1.29) 

(1.30) 

and we similarly decompose u into its projection in ker (L) and in the orthogonal complement to ker (L*) 

u= i (zp&+&) + w, (1.31) 
i=o 

where z = ( zc,, zr, z2) E C 3, and PW= 0. By the Implicit Function Theorem, we can solve (1.30) uniquely 

near (O,O, 0) for 

w= W(Z,Z,~,~). (1.32) 

Substituting this into (1.29) gives the 6-dimensional nonlinear bifurcation equation 

= 0, (1.33) 

which has 6 components 

g’= (NY 4,),, hJ= (N,&J)2, j=O,1,2. (1.34) 

However, since u is real, h’ = gJ, so only the first three need be considered, and we rewrite (1.33) in 
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components as 

where 

G(z,%P,~) = 

go 

111 
0 

g’ = 0 

g2 0 

(1.35) 

(1.36) 

In the next section we show how the form of G is determined by the O(2) x SO(2) symmetry which the 

bifurcation equation inherits from the original problem. 

2. Symmetry and normal form analysis 

The eigenfunctions of the Navier-Stokes equations linearized about Couette flow at the bicritical point 

where steady-state/Hopf mode interactions occur were given in (1.12) and (1.13). As in (1.14) we 

coordinatize the six-dimensional center subspace by ( zo, zi, z2) E Q: 3 E lR6. 

Using (1.12)-(1.14) we can compute how the symmetries of the Taylor-Couette apparatus act on Q= 3. In 

this calculation we set 

(a) Z=kz, 

(b) 0 = 8 - wt. (2.1) 

The group O(2) of axial translations and flips is generated by 

(a) S+(Z,@> = (Z-t+,@), 

(b) K(Z,O)=(-Z,@), 
(2.2) 

where, in addition, K changes the sign of the third component of the velocity field. It follows that S,+ and K 

induce actions on c3 by 

(a) SJzo7 zl, z2) = (e’+z,,e’“z,,e-‘+z,), 

(b) ~(zo> zr, z2) = &I, z2, z,). 
(2.3) 

The group SO(2) of azimuthal rotations acts by 

T,(Z,O) = (z,o+e) (2.4) 

and induces the action on c3 

T,(zo, =13 z2) = ( zo,eiBzl, ei0z2). (2.5) 

The reduced bifurcation equations obtained by the Liapunov-Schmidt reduction described in section 1 

commute with the action of O(2) x SO(2) on c3 defined by (2.3) and (2.5). The consequences of this 
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symmetry for these reduced equations is summarized in the remainder of this section, which is divided into 

four subsections: 

2.1. The general form for mappings on C3 which commute with O(2) x SO(2). 

2.2. The stationary and periodic solutions found in this mode interaction. 

2.3. The asymptotic stability of these solutions. 

2.4. Possible bifurcations to tori. 

2.1. O(2) x SO(2) inuariants and equiuariants 

The restrictions placed on the reduced equations by symmetry were first given by Golubitsky and 

Stewart [4] and in improved form using the coordinates described above by Langford [38]. A complete 

proof may be found in Golubitsky et al. [lo], ch. XX, $2. 

Let 

(a) P= lz012, 
(b) N= lz,12+ lz212, 

(4 6 = lz212- lq12, 
(d) A=a2, 

(e) A = z&z2, 

(f) @=ReA, 

(g) *=aImA. 

Theorem 2.1. Every smooth O(2) X SO(2) invariant function germ f: C 3 + 08 has the form 

f(z07 zi,zz)=h(~,N,A,@,*) 

for some smooth function germ h: R5 + R 

Theorem 2.2. Let g: C 3 x R k + C 3 be O(2) X S0(2)-equivariant. Then g has the form 

g( z, p) = (cl + iSc2) 

ZO 

11 0 + (c’+ iSc4) 

0 

(2.6) 

(2.7) 

where c-l, pj and qi are functions of p, N, A, @, \k and p. 
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2.2. Stationary and periodic solutions 

Let g(z, p, r) be the reduced mapping obtained by the Liapunov-Schmidt reduction in section 1 where 

z = (~0, ~1, ~2) E C3, p = (R,, R,> V> E Iw 3 and T E Iw. The parameters p refer to the system parameters, 

whereas r is the perturbed period parameter introduced in the reduction procedure. In this section we 

explain how to solve g = 0, using the fact that g must have the form (2.7), where the cJ. pJ, qJ depend on 

~1 and T as well as the basic O(2) x SO(2) invariants. 

Our method involves classifying (up to conjugacy) the isotropy subgroups Z of the action of O(2) X SO(2) 

on C3 and then considering the restricted system of equations 

g]Fix(Z:)XR3XR=0, 

where the fixed point subspace is defined by 

Fix(Z)= {zeC3: az=zV’a~Z}. (2.8) 

Proofs of these results may be found in Golubitsky and Stewart [4] and Golubitsky et al. [IO], ch. XX 

Define the subgroups of O(2) x SO(2) 

(a) 32) = (($5 -+I: $JE SO(2)}, 

(b) z*(K) = (1, + 

(c) zc,= {~,~~,~)}~ 
(2.9) 

(d) i&(K+J))= {1,K+?)}. 

A and Z be subgroups. We use the notation A + Z when some subgroup conjugate to A is contained Let 

in Z. 

Theorem 2.3. The lattice of isotropy subgroups of O(2) x SO(2) is given in table I. 

Recall that equivariance implies that fixed point subspaces are invariant subspaces of g. Thus, in table II 

we list the isotropy subgroups, the experimentally observed states whose symmetries correspond to these 

isotropy subgroups, (group) orbit representatives in the fixed point subspaces and the equations g = 0 

restricted to these orbit representatives. 

We note that generically in two-parameter families the equation g = 0 has no solutions with isotropy E; 

or { 1) and these isotropy subgroups have been omitted from table II. We also note that in the 

Liapunov-Schmidt reduction all linear terms must vanish. Thus 

c’(o) =p’(o) = 41(O) = 0. 

Table I 
Lattice of isotropy subgroups of O(2) X SO(2) acting in C3. 
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Table II 

Branching equations 

Isotropy subgroup 

Orbit 

Observed states representatives glFix(Z) X Rk 

(4 O(2) x SW Couette flow z=o 

(b) Z,(K) x SOP) Taylor vortices (x,0,0), x ’ 0 (.’ =o 

(c) E(2) spiral vortices (0, a,@, a ’ 0 P’_&l=O 

q’ - .zq2 = 0 

(d) ZZ(K) @ G ribbons (0, a, u), u > 0 pl = 0 

q1 =o 

(e) Z2(~. (n,~)) wavy vortices (iy, U, a), a, Y > 0 cl _ uzci = 0 

p’ ~ ,$3 = 0 

q’ ~ _gq3 = 0 

(0 E*(K) twisted vortices (x3 a, (I), a, x ’ 0 cl + 22 = 0 

pi + .x2$ = 0 

qL + 2q3 = 0 

In addition, the Liapunov-Schmidt reduction implies 

c;(o) =p,‘(o) = 0, q;(o) z 0. 

Thus, the equations involving the q’s in entries (c)-(f) may be solved implicitly for r. 

Later we will work explicitly with g truncated at third order in z and linear order in the parameters. 

Then we will assume that the cJ, pj and qj have the form: 

2 = ci(o)p + c$(O)p + c;<o>lv, 

2 = 2(O)) 
CJ = C3(0)) 

c4=o, 

P1 = PJ! (Oh-J + P,t (O)P + P'N (0) N, 

d = qxo)II + q#9P + Mw, 
P2 =p”(O), 

q* = q*(o), 

P3 = P3@), 

q3 = q3(o), 

p4 = 0, 

q4= 0. 

(2.10) 

As shown in Golubitsky and Stewart [4], the existence of solutions (a)-(e) in table II are determined at 

third order, assuming certain nondegeneracy conditions and moreover, these solution branches do not 

depend on r. 
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2.3. Asymptotic stability 

Chossat and Golubitsky [24] show that to third order the LiapunovSchmidt reduction with r set to 0 is 

precisely the same as the Poincare-Birkhoff normal form of the center manifold vector field. Now in 

equivariant Hopf bifurcation a vector field is in normal form precisely when it commutes with S’ phase 

shift symmetry (cf. Golubitsky and Stewart [39] and Elphich et al. [40]). It follows from (2.1)(b) that the 

phase shift symmetry (after scaling o to be unity) acts identically with the azimuthal rotation symmetry. 

Thus, the actions of S’ and SO(2) are identical on C3 and the center manifold vector field is, in this case, 

automatically in Poincare-Birkhoff normal form. 

Thus when the signs of the eigenvalues of dg],_, are determined at third order, the asymptotic stability 

and instability of the solution g = 0 is also determined. As discussed in detail in Golubitsky and Stewart 

[4] and Golubitsky et al. [IO], restrictions on dg induced by symmetry from the isotropy subgroup are 

often sufficient to enable one to calculate the individual eigenvalues of dg. For each of the solutions in 

table II (a)-(d) this scenario is possible to complete and the results are listed in table III. For wavy and 

twisted vortices however, the computation of the eigenvalues of dg reduces to determining the eigenvalues 

of two 2 x 2 matrices. The entries of these matrices are complicated functions of the normal form 

equations. So in table III (e)-(f) we list only the contribution to the matrix entries stemming from terms of 

degree I 3 in g. 

2.4. Bifurcation to tori 

There are several possible bifurcations to tori indicated by the entries in table III. These tori will 

bifurcate from the branches of either spiral vortices, wavy vortices or twisted vortices. (The possible Hopf 

bifurcations along the branch of Taylor vortices just indicate bifurcations to the branches of the time 

periodic wavy and twisted vortices states.) 

Along the branch of spirals the eigenvalue c1 typically changes sign and when this happens a Hopf 

bifurcation to solutions on an invariant 2-torus occurs, Crawford et al. [41] show that the direction of 

branching, and hence the asymptotic stability, of these 2-frequency solutions can be determined from the 

third order terms in the bifurcation equations, g. Specifically, this branch of 2-tori is asymptotically stable 

when the remaining eigenvalues along the spiral vortices are negative and when 

PXV 
h=cL- 2(p’,_p2) 

- ;Re 
1 

p3 - iq3 

p2+i(c2-q2) I 
(2.11) 

is negative. 

Along the branch of wavy vortices each of the 2 X 2 matrices can undergo a Hopf bifurcation. Purely 

imaginary eigenvalues in the first matrix indicate a Hopf bifurcation in the fixed point subspace of 

Z 2( K . (T, T)); thus the resulting solutions will have the same symmetries as wavy vortices for all time. This 

2-frequency motion can be identified with the observed state of modulated wavy vortices. 

In principle a Hopf bifurcation can occur by complex conjugate eigenvalues of the second 2 X 2 matrix 

crossing the imaginary axis along the branch of wavy vortices. Results of Chossat and Golubitsky [46] 

prove that the resulting flow will have three independent frequencies: one near the frequency of spiral 

vortices, one near the frequency determined by the imaginary eigenvalues of one Hopf bifurcation, and 

one near 0, corresponding to a slow drift in the axial direction. To our knowledge a flow having these 

characteristics has not been observed in the Taylor-Couette system. 
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Table III 

Computation asymptotic stability. 

State 

Amplitude 

equations Signs of eigenvalues 

(a) Couette flow 

(b) Taylor vortices 

(c) Spiral vortices 

(d) Ribbons 

(e) Wavy vortices 

(f ) Twisted vortices 

_ 2 (twice) 

p’ (four times) 

c’=o c; 

p1 + x*p’ (twice)* 

p’ ~ x2p3 (twice)* 

0 

pl - (gp’ = 0 cl (twice)* 

p* (twice)* 

p’, -p= + (2pi -p;)a* ~ 2p39 

0 

p’=o CJ + CA3 

cl _ a2c3 

P’N 

-P* 

0 (twice) 

Cl _a*c3=~ 0 (twice) 

[ 

$,,V* (24 - c’) a.)! 

pl - y*p3 = 0 ev’s of 

(pi -ps) aL’ 2p;a2 I 

I p3y* - 2p*a* ~ 434,* 

ev's of 
2(c2-q2)u2+q3y2 c3u* -t p3.v2 

2 + a2c3 = 0 0 (twice) 

C$X' (24. + c’) ux 

pl + .2p’ = 0 ev’s of 

( p; +p3) ox 2p’,a* 
I 

I 

p?x* + 2p*a* _ q3x* 

ev's of - 

-2(c2 - q=)a* + q3x1 p’x2 + c311* 1 
*Each of these double eigenvalues are in fact the real part of eigenvalues associated to a 2 x 2 

rotation matrix. Thus Hopf bifurcations are associated with these eigenvalues crossing 

through 0. 

Thirdly, in principle it is possible for a single eigenvalue of the second matrix to go through 0. The 

resulting bifurcating flow will have 2-frequencies with one near 0. This observation also follows from the 

methods in Chossat and Golubitsky [46]. 

Analogous torus bifurcations can occur along the branch of twisted vortices. In all, there are seven 

distinct branches of tori that could occur as secondary and tertiary bifurcations resulting from this steady 
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state/Hopf mode interaction. Which ones do actually occur depends on the exact values of the Taylor 

coefficients listed in (2.10). Determination of the direction of branching and the asymptotic stabilities of 

the tertiary branches of tori bifurcating from wavy and twisted vortices may require terms of degree 5 and 

higher in the Taylor expansion of g, and this issue is not considered here. 

3. Computation of the coefficients 

The previous section ascertained the possible solutions of the bifurcation equations, according to their 

symmetries, and determined which cubic order coefficients in the normal form are required to decide the 

direction of branching and the stability of the solutions, up to secondary bifurcations. This section 

describes how these coefficients have been computed, from the Navier-Stokes equations, over the range of 

parameter values of interest. 

First we express the required derivatives of the invariant functions appearing in (2.10) in terms of 

derivatives of the bifurcation function defined in section 1. Subscripts denote partial derivatives, and all 

derivatives are evaluated at the origin: 

(a> cx = Re s$ , ( 1 R=R,orR,, 

@I C: = Re ( g&OiOj/2~ 

(4 4V= Re(gfoz2i2j) 

(4 c2 = Im gYozxF2 , 
( j 

(4 c3 = Re( g&,z2)~ 
(f) P~=Re(&,), R=R,orR,, 

(g> P&i = Re (d,&)q jJ 

(h) p’, = Re ( gflz2i2j/2 + Re ( Rf,=,qj/4~ 

6) p2 = Re( dIz2aj/2 - Re( dlz,i,j/4, 

ci> q2 = Im( d1L2i2 j/2 - Irn (dlz,il ji4, 

(k) p3 = Re ( sf,,,,, j/2> 

0) q3 = Im ( s~,z,z, j/2. 

(3.1) 

The R, and R, derivatives are then obtained by differentiation of the equations defining go and g’, 

ci = Re(A,(O)G,, li/,>, pi = Re(A,(O)cp,, 4,) T (3.2) 

where R = R, or R, and A(p) is as in (1.15). Here the angle brackets denote inner products which are in 
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fact the L, integrals of section 1, defined by 

(3.3) 

The integrals were all evaluated numerically, using Simpson’s rule, from previously computed and 

tabulated values of the eigenfunctions Q, and adjoint eigenfunctions +,. The method of calculation of these 

eigenfunctions is described in Langford et al. [17]. 

Similarly the formulas for the cubic coefficients are obtained by differentiation of the bifurcation 

equation (1.36) or (1.33) but in this case z-derivatives of W appear, and so it is necessary to solve (1.30) 

for W to second order. In general, we find 

(3.4) 

where W&, is the solution of 

L~~L,+Ri&)qb,)=O (3.5) 

and i denotes the symmetric bilinear form 

~(,,u)=B(u,u)+B(u,u). (3.6) 

Numerically, this problem was solved as follows. First the linear term $(G~, $,) in (3.5) was evaluated 

using tabulated values of the eigenfunctions. Then the nonhomogeneous boundary value problem (3.5) was 

solved for Wzkz,, using a slightly modified version of the shooting algorithm used previously to compute the 

eigenfunctions. Finally, the inner products (3.4) were computed, using Simpson’s rule. 

All of the computations described here were performed on microcomputers of the IBM PC class, in the 

BASIC programming language. This may be compared with a direct numerical solution of the original 

fluid dynamical equations, which though possible, would require a supercomputer and more sophisticated 

programming techniques. 

4. Results and conclusions 

The results of the numerical calculations are presented in tables IV, V and VI. These data were used to 

plot bifurcation diagrams, shown in figs. 5 and 6. The radius ratios q were chosen in the range 

0.43 I n I 0.98, with special emphasis on the values n = 0.736 and n = 0.883 for which experimental data 

are available (Andereck et al. [3], Tagg et al. [5]). 

Table IV presents some results of the linear stability analysis, and for comparison purposes, calculations 

of Langford et al. [17] indicated by *. (The symbols are as defined in section 1, except for k,* and k: 

which are the axial wave numbers computed independently for the m = 0 and m = 1 modes. The azimuthal 

wave speed w is in units of 52,.) Recall from section 1 that the two axial wave numbers, for the m = 0 and 

m = 1 modes, have been forced to have the identical value k in this paper. As a result, the minimizing 

value of R, can be expected to be larger here than in Langford et al. [17], and the other parameters will be 

perturbed similarly. Table IV shows that the changes are large for n I 0.6, but are smaller for larger 1) 

(generally less than experimental uncertainties). Therefore, the simple procedure employed to select k, in 

this paper seems to be justified for moderate and narrow gaps, but would have to be modified for wider 

gaps. 
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Table IV 

Parameter values at bicriticality, linear stability analysis 

R, 
Rr 

RI 
RI- 

7h 11 

7? 71) 

Yh 4Y 

Y5 25 

4131 
4 oil) 

3 xii 
0 ?Xhl 

0 2x13 

0 3445 
,I 1x74 

Table V 

Linear and cubic bifurcation coefficients 

” 0 430 0500 0.600 0.736 0800 0 x50 0 x70 0 RX3 0900 0 Y50 ,I Y70 0 YXO 

A +Y.72Em01 +8.29E-01 +3.84Em01 15.37Em01 +4.57E-01 +39OE-01 +361EmOl t342Em01 t314Em01 1219Em01 +lhYE~Ol +13XE 01 
ck: +4.41Em01 +4.36E-01 +6,98EmOl +2,94Em01 +2,48Em01 +ZOYE- 01 +l.Y3E-01 +182EmOl -L167Em01 t115E~Ol +XXlEm02 +716E~O2 

c’, -993E+02 -47OEiO2 -1,SOE+O2 -392E+Ol -134E+Ol -2,68E+W -146E- 01 +106E+00 +216E+O” -2 70E + ,X1 - 1 Y6E + (Xi + L 41E + 00 

2, -2.36E+O3 -1.22E+03 -5.37E+O2 -1.64E+O2 -844E+Ol -45OE+Ol -336EtOl -272EiOl ~2OlE+Ol -5Y2E+00 -267E t(X) -1 5OEi OC, 

(.2 -1.64E+O3 ~8.47EiO2 -4,29E+O2 -1,68E+O2 mY7YE-01 -582E+Ol -454E+Ol -37YE+OL -2YlE+01 ~Y44E+oO 4 24E + 00 227E+W 

ci -1.96E+O3 -100EiO3 -4,67E+O2 -1,69E+O2 mY,92E-01 -6,16E+Ol -497E+Ol ~42XEiOl -345E+Ol -147EiOl 833EiW 5 41E + W 

PZ, +7.58Em01 +655E-01 +5.88Em01 +4.88Em01 +4,2YE~Ol 1373E -01 +348E- 01 +33OEmOl *3OSEmOl +216EmOl il68E~Ol +137E~Ol 

PX, +294EmOl +2.71E-01 +2.61E-01 +2.33E-01 +21OE-01 +186EmOl -174Em01 tl66Em01 .1.54tm01 + l.IlE 01 + X.63E 02 +706E 02 

fJ; -1.69E+O3 -8.42E+O2 -3.82E+O2 -1.23E+02 -6.41E+Ol -346E+Ol -26OEiOl -2.llErOl -157E+Ol -4X4E+W -227EiW -132EiW 

py -141E+O3 -7.42EfO2 -3.35E+O2 mlOlE+O2 -4.98EiOl -246EiOl -175EiOl ~1.36EiOl 9 34E + CC 17OE+00 -3R3Em01 -541Em02 

PI -2.788+02 -1.65E+O2 ~8.58E+Ol -35OE+Ol ~2.lYEtOl -142EiOl -117E+Ol ~lOZE+Ol -831EiW 365E+W -208E+W 135E T W 

4* ml.“lE+O3 -4.988+02 -2.57E+O2 -104E+O2 -619E+Ol -373E+Ol -2.928+01 ~24SE+Ol mIXYE-01 -626E-W -2R4E+W 153E+W 

P’ -966E+O2 -4.998+02 -2,45E+O2 -9,43E+Ol -565E+Ol -353E+Ol ~2.X5EtOl -244E-01 mlY6E+Ol mRO4EsW 4 43E + 00 2 X2E + W 

4’ -2.658~02 -1.59EiO2 -1.05EiO2 -512E+Ol -3.2OEiOl --1.98E~Ol -157E+Ol -132E+Ol -102E+Ol -337E+W -152E*W mX14E 01 

Table VI 

Coefficients for direction and stability of bifurcation, as defined in (4.1), except MSP defined in (2.11). 

‘I 0 430 0 5W 0 6(HI 0 716 0 X,X) 0 x50 0 x70 0 XX? 0 Y,Xi 0 450 II Y70 0 ‘)x0 

Cdl 9 Y3L + 02 4 70E + 02 1 XOt - I)? 3 Y?E + 01 1 14E + 0, 26XE 1 W I 46t 01 . , Ohb. 1 (X, t? Iht 2 00 - 2 7°F. + ,“I + 1 YhE + (“1 I4,E + iH1 

(iI 1 X3E + 03 X 04E i 02 3 ilk - 02 9 73E + 01 4 Y4E + 01 2 h?E + 01 I 9hE f 01 I 5YE 01 I IXE / 01 3 41t + CX, 1 46E + 00 7 6SE 01 
(dl +45YE+01 -232EiOl ~lOXE-+Ol i392E-W 1227EtW +I?YE~W +Yh?t 01 -774k 01 +556t 01 vl,XEm 01 +356Em0? ,114E 02 

(a 2 32E - 03 1 02E - 03 4 3YE r 02 1 34E 02 6 Y3E + 01 1 73E - 01 ? XOE i 01 2 ?XE + 01 , 6YF + 01 5 WE - W 2 IhE + 00 1 14E - W 
(h) +6 57E T 02 + 2 Y3E - 02 i I IIE - 02 + 3 OYt / “1 + L 5Xt / 01 -X 6lE 7 00 + 6 57b A W + 5 42t + W ~41?b~,XI .,37E+W ih32F~Oi -346E 0, 

Cl) ~113EtO3 -57XEiO: -24YE-02 ~663EtOl ~27Yk+Ol ~104E+01 5 77E - ,x, 3 42t + (“1 I 04E - ,X, + 1 YSE + (Hi + 1 70E + 00 - I JOE + (XI 

01 686E+02 -3lYE+O2 1 42E * 02 4 46E + 01 2 34E - 01 1 27E + 01 Y 5YE + W 7 X?k + 00 5 X?E + 00 I71E + IKI 7 35E 01 3 X4E 01 

(1) HOE + 07 3 92E + “6 R 45E + 05 1 WE + 05 3 1OE + 04 I 05E + 04 6 36E + 03 4 46E + 03 2 6XE + 03 351E+O? Y 31E - 01 3 5OE + 01 

cm) T X.02E + 05 + 2 06E + 05 I 3 XlE t 04 + 3 42E + 03 -XObE+O? +153E+O2 +4YlE+O1 1463EiIH) ~lXZE+OI I X3E + 01 7 YhE + (XI 3 7XF + HI 

MSP t274EiO3 +14OE-03 +66OE+O? + 2 65E + 02 + 1 X3E + 02 ! 1 52E + 02 ilSht+O? +175EtO? +3litiO? ~614ktt(X) ~307E-00 +354E+W 

The tables contain no entries for 77 < 0.43, for the following reason. If k, is forced to be equal to k,, the 

critical stability curves for the m = 1 and m = 0 modes can have two points of intersection. For example, 

when 11 = 0.45 the second crossing is near (R 2, R,) = (- 145,125). As n decreases, these two bicritical 

points come together, then coalesce and disappear, between n = 0.425 and n = 0.420. For n 5 0.420, no 

bicritical points were found. This appears to be an artifact of the procedure used to select k; when k, and 

k, were minimized independently, Langford et al. [17] found only a unique bicritical point. However, the 

region n < 0.4 remains largely unexplored. 
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/ 
WVF 

Fig. 5. Bifurcation diagrams for increasing R,, with R, constant on each side of Ri, and for radius ratios: (a) n = 0.736, (b) 

n = 0.883, (c) n = 0.950. Thick tines represent stable branches, thin lines are unstable, and circles represent quasiperiodic solution 

branches. 

All of the parameters in table IV are experimentally measurable in the laboratory. See Langford et al. 

[17] for corresponding experimental data at radius ratios of TJ = 0.800 and n = 0.883. The agreement is 

within the experimental uncertainties in these cases, and thus supports the assumption of axial periodicity 

(or infinite cylinder approximation) adopted in this paper. 

Table V gives the numerical values of the derivatives appearing in eqs. (2.10) and (3.1) for radius ratios 

from n = 0.430 to n = 0.980, calculated as explained in section 3. Additional computed values not 

presented, for intermediate radius ratios (n = 0.450, 0.550, etc.), are consistent with those in this table. 

TVF 

COU(AZl) -%c,x,# 
MSP 

Fig. 6. Gyrant bifurcation diagram, with (R,, Rx) moving in a circular path about the bicritical point as center. Radius ratio 

n = 0.800. See the Introduction for explanation of the branch labels. The inner circle represents the trivial Couette flow; radial 

distance from this circle represents amplitude of the nontrivial flows. Thick lines represent stable branches, thin lines are unstable, 

and circles represent quasiperiodic solution branches. 
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All but one of the derivatives in table V are constant in sign, and are monotone functions of 7. The 

single exception is ci, which determines the direction of branching and stability of Taylor vortices; it has a 

zero near n = 0.87 and a maximum near 11 = 0.95. The coefficient CL was calculated to be negative by 

Davey [42] and by Kirchgassner and Sorger [43], for R, = 0 and restricted values of 11. Positive values of cb 

correspond to subcritical Taylor vortices. The sign change found here agrees with the calculations of Jones 

[21]. The codimension-3 singularity with ck = 0 has been considered by Signoret and Iooss [26]. 

From the data in table V, the bifurcation diagrams are obtained as follows. The direction of branching 

and stability of all but the quasiperiodic branches of solutions are determined locally by the data in table 

V, provided only that certain nondegeneracy conditions are satisfied, see Golubitsky and Stewart [4]. If we 

fix R, close to its critical value R,, (but R, f Rzc), and vary R, as bifurcation parameter, then the 

bifurcation diagrams are determined by the signs of the following quantities, which must be nonzero for 

nondegeneracy: 

(4 
w 
(4 
(4 
(4 
( f) 
k> 
04 
6) 
ci> 
04 
0) 
(4 
(4 
(0) 
(P) 

(9) 

cfp,, 
(P;+P3)4-PPfp;cbl 
(Pi-P’) 4, -Pkp;) 

1 
PN, 

Pip 

(2. c;+c3).p;,-2+p~, 

(2.c’,-c3).pX,-2.c~,-plN1 

P2T 

Pfy - P2> 

Gv.PlR, + “i,iP2 -Pi+>3 

2p’,+(p;+p3).(2c;+c3), 

2p’,+(p;-p3).(2c;-c3), 

c3, 

P33 

C2, 

q3. 

(4.1) 

Note that quantities (e), (i), (n), (o), (p) and (q) defined above are already displayed in table V, and all of 

them are negative for all values of 7. Similarly, (b) and (f) are always positive. The remaining quantities in 

(4.1) are tabulated in table VI. Here we see exactly three sign changes: (a), (j) and (m) each change sign 

once, between 17 = 0.87 and TJ = 0.95. These correspond, respectively, to changes of direction of bifurcation 

(and stability) of Taylor vortex flow (TVF), spirals (SPI) and wavy vortex flow (WVF). 

The last entry in table VI is the coefficient for the bifurcation of modulated spirals (MSP) from the 

spiral flow, calculated as in Crawford et al. [41], see (2.11). It is always positive in the regime q < 0.90 

where spirals are supercritical, which implies that the MSP bifurcation leads to an unstable branch. 
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All of these data are summarized in the bifurcation diagrams of figs. 5 and 6. In these figures, thick lines 

represent stable solution branches, thin lines are unstable, and circles represent quasiperiodic branches. 

The straight branches are those for which the direction and stability has not yet been computed. The 

labeling of the branches is as defined in Andereck et al. [3] and in the Introduction. In all cases, the 

branches RIB (ribbons) and TWI (twisted vortices) are unstable. 

Fig. 5 shows pairs of conventional bifurcation diagrams, for R, constant on either side of its critical 

value R;, and with R, as bifurcation parameter, for n = 0.736, 0.883 and 0.950. These bifurcation 

diagrams are valid locally, for R, fixed close to R;, and for R, in a small interval containing Ri. The pair 

of bifurcation diagrams shown for n = 0.736 is typical of all of those obtained in the range 0.43 < 17 I 0.87. 

Note that for R, < R;, the first bifurcation from Couette flow is always to SPI (spiral flow), and only the 

SPI branch is stable, in agreement with all previous work on this problem. For R, > R;, the primary 

bifurcation from Couette flow is to TVF (Taylor vortex flow), and it is stable as expected. At slightly larger 

values of R,, there is a secondary bifurcation from TVF to stable WVF (wavy vortex flow); this transition 

had not been reported previously, so close to criticality. The ultimate fate of WVF as R, is increased 

further with R, constant cannot be determined from this data. The most interesting feature of fig. 5(a) is 

the branch of stable SPI not extending to Couette flow, for R, > RS, where one of TVF or WVF is stable 

simultaneously. The coexistence of two different stable solutions is called b&ability; it had not been found 

before in this context. The SPI branch is initially unstable at the primary bifurcation; it gains stability 

through a secondary Hopf bifurcation to a torus of quasiperiodic MSP (modulated spirals), calculated as 

described in Crawford et al. [41] and in section 2. Since the MSP branch bifurcates supercritically and 

unstably throughout this range, it is not expected to be observable experimentally. However, it can be 

expected to induce a visible hysteresis jump from SPI to TVF as R, is decreased. 

As n increases, the region of bistability of SPI and TVF shrinks. Near TJ = 0.87, the TVF branch turns 

subcritical and unstable, see fig. 5(b). Next, the WVF branch turns subcritical as the quantity (4.1)(m) 

changes sign, and finally, as (4.1)(j) changes sign the SPI branch turns subcritical and unstable near 

n = 0.92, see fig. 5(c). It is reasonable to believe that these subcritical branches quickly turn back 

supercritical and regain stability as the amplitude increases, however direct confirmation of this conjecture 

would require calculations beyond the scope of the present paper. Thus we cannot rigorously make 

predictions about the stable (observable) flow patterns for the narrower gaps, 17 2 0.883, without additional 

computational effort. 

There is still another complication arising in the small gap region. As seen in fig. 4, as TJ + 1, the 

bicritical curves for higher modes (m = 1,2,3,. . . ) all come together asymptotically. For example, when 

$ = 0.80, the value of R, for the m = 1,2 bicritical point is about 25% higher than the value for the 

m = 0,l bicritical point; at n = 0.883 this difference is only about 11%. Thus the region of applicability of 

the analysis in this paper of the m = 0,l mode interaction shrinks dramatically as n --+ 1. For the 

experiments, the proximity of these bicritical curves explains the difficulty encountered by Andereck et al. 

[3] in resolving flow patterns due to different mode interactions (e.g. IPS), due to the long relaxation times. 

Therefore, experimentalists investigating mode interaction phenomena are advised to focus their attention 

on wider gaps which resolve the different mode interactions, e.g. n < 0.85. At the other end of the scale of 

n, table IV has shown that the assumption used here to compute the axial wave number k is justified only 

for 77 > 0.60. Thus there is an overlap region, 0.60 < TJ < 0.85, where both requirements are met, and it is in 

this region that agreement of this paper with experiments may be sought. 

Fig. 6 displays the same type of information as fig. 5, but in the form of a gyrunt bifurcation diagram, 

that is, a diagram which plots the amplitude of a solution branch radially from a unit circle, as a function 

of the angles as (R,, R2) moves around a circle centered at the bicritical point in the (R,, R2) plane. 

Recent advances in computer-controlled instrumentation allow the experimentalist to program the ap- 
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Fig. 7. Experimentally observed states near the bicritical point, for 1) = 0.800. In the experiments, R, and R, were varied in steps on 

a circular path around the bicritical point (stepsize about one unit in Reynolds number). The letters indicate the observed state. e.g. C 

is Couette flow. (a) Clockwise circuit showing transition from spirals (S) directly to Taylor vortices (T). (b) Counterclockwise circuit, 

showing transitions from Taylor vortices to wavy Taylor vortices (W) then to spirals. 

paratus to follow this type of path in the (R,, R2) plane, see fig. 7. Gyrant bifurcation diagrams as in fig. 6 

have several advantages over the traditional bifurcation diagrams in fig. 5. They are uniformly valid for 

parameter values (R2, R,) in a sufficiently small disk centered at the bicritical point, and thus they 

eliminate the singularities due “north and south” of the bicritical points, showing how the branches on the 

left and right of bicriticality are connected. 

Fig. 6 with n = 0.800 makes clear the bistability and hysteresis behavior. It shows that the isolated stable 

SPI branch shown in fig. 5 for R, > Rt is in fact joined to the stable SPI branch for R, < R;. Moreover, it 

shows that the WVF branch continues over the “north pole” and is stable in a region to the left of 

bicriticality. It clearly predicts the existence of a hysteresis loop, with transitions occurring between SPI 

and TVF or WVF, in both directions but at different angles, as (R,, R2) traverses the circular path. The 

bifurcations of MWV (modulated wavy vortices) and MTW (modulated twisted vortices) are indicated by 

straight branches (of small circles), because the direction and stability of these branches has not yet been 

computed; however WSP has been computed and is unstable, as noted above. 

Fig. 7 presents some preliminary results from experimental studies of Tagg et al. [5], around the 

bicritical point for n = 0.800, motivated by the theoretical work in this paper. These experiments have 

revealed the existence of WVF, bistability, and hysteretic transitions depending on the direction of the 

path around the bicritical point. Fig. 7 shows all of the stable flow patterns predicted theoretically in fig. 6. 

and they occur in the same order, around the bicritical point in either direction. This agreement is 

remarkable in view of the experimental difficulties caused by the long transient times near the bicritical 

point, and the local validity of the calculations, as well as the idealized assumptions of periodic boundary 

conditions and equal axial wave numbers. The weaker quantitative agreement between figs. 6 and 7 in the 

numerical values of these transitions may be due to these idealizations. 

Very recent experiments of Tagg and Swinney [44] have revealed a new “alternating spirals” flow, 

occurring after spirals lose stability and before Taylor vortices gain stability during the clockwise circuit of 

the codimension-two point. This new mode is indicated by a question mark in fig. 7. Here one observes 

simultaneous upward and downward spirals in opposite ends of the cylinder, separated by an interface 

which slowly oscillates axially, with a period up to 70 times that of the basic spirals period. This may be a 

type of stable homoclinic behavior, or may correspond to quasiperiodic flow on a torus, but it is not yet 

explained by theory. 

In conclusion, this work has yielded new understanding of the process of pattern formation in the 

TaylorrCouette experiment, and already has led to new experimental findings. These successes suggest 

that the same methods of equivariant bifurcation theory can be fruitfully applied to investigations of 

pattern formation in other contexts. 
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