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l. INTRODUCTION

In this paper we study degenerate Hopf bifurcations with O(2) symmetry
in systems of ordinary differential cquations

X+ Fix, A)=0, (1L

where £ R"x R > R”. We assume that F commutes with a (nontrivial)
linear action of O(2) on R”, that is,

Fyx, A)=vF(x, /) Yy e O(2); (1.2)

that there is an O(2)-invariant cquilibrium that, without loss of generality,
we take to be x =0; and that there is a value of i, which for convenience
we take to be 4 =0, at which the Jacobian matrix DF(0, 0) has a pair of
purcly imaginary eigenvalucs which after a rescaling of time in (1.1) may be
assumed to be =i Generically there are no other cigenvalues on the
imaginary axis and the representation of Q(2) on the eigenspace corre-
sponding to the cigenvalue i is irrcducible. This mcans that the eigenvalues
+ i are simplc or double (see [171}). The simple eigenvalue casc may be
understood using the standard Hopf bifurcation theorem; here we assume
that the cigenvalues at +i are double.

Therc are a number of physical situations whcre circular symmetry seems
to be important and wherc Hopf bifurcation with double eigenvalues
appears. We mention four: oscillation of a flexibic pipe [17], the Couette -
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Taylor cxperiment [10, 7], doubly diffusive waves [21 ], and porous-plug
burner flames [19]. Such systems have several parameters and because of
this we may cxpect degeneracies to occur at special paramcter values. Our
study is motivated by the fact that the (quasi) global behavior of such
systems is organized by these degeneracics.

There are two types of degeneracies that occur in multiparameter
systems, modc interactions and higher order singularities. Mode intcrac-
tions occur when several eigenvalues of DF(0, 0) appear simulaneousiy on
the imaginary axis. Motivated by the Couctte Tavlor experiment. studies
have been made of O(2)-symmetric Hopf-stecady state mode interactions
[18] and O(2)-symmetric Hopf-Hop{ mode interactions [3.5]. The
gencral O(2) Hopf—Hopf mode interactions problem is considered m
Chossat. Golubitsky, and Keyfitz [6]. Mode interactions with double zerc
cigenvalues have been considered in Dangelmayr znd Armbruster [87 and
Dangelmayr and Knobloch [9].

Higher order singularities occur when certain nondegencracy conditions
in the simplest O{2)-Hopf theorem fail. In this paper we classify and unfold
those s:ngularitics that may be expected to appedr in systems (1.1} that
depend on two parameters in addition to the bifurcation parameter #; thus
is, the singularitics of codimension less than or equal to two. The codimen-
sion sero and one singularities have been studied by several authors. as we
now explain. For case ol exposition we assume that all cigenvalues o7
DF(0, Gi, other than +i, have possitive real part. We assume that the
cigenvalue of DF(0. ) corresponding to / (when 7 =0} crosses 1ie
imaginary axis with nonzero speed and that this cigenvalue alse has 2
positive real part when 2 <0. Thus v=0 is an asymptotically stable
equilibrium when 2> 0.

It is now well known that under these assumptions there exist two
families of periodic solutions to (1.1), rotating waves and standing waves
Sec Ruelle [23]. Schecter [24], van Gils [26]. and Golubitsky and
Stewart [ 17]. Moreover, there is o kind of cxchange of stability that i3
valid generically and which may be expressed as follows. Neither family of
periodic solutions is asymptotically stable unless both families bifurcate
supercriticaily. and then preciscly one family 1s stable. The super- or sub-
critically of each branch, as well as their stabilitics is determined by two
numbers that depend on the Taylor expansion of F(x, 2} at {0,0) up
order 2, Thus the codiimension zero singularitics are determined by four
nondegencracy conditions:

(a) cigenvalues crossing the imaginary axis with nonzero specd,

(b) super,sub-criticality of rotating waves.

(c) super/sub-criticality of standing waves, and

(d} the competition between stability of rotating and standing waves.
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The codimension one singularities are found by having preciscly one of
these four conditions fail, and then imposing certain nondegeneracy con-
ditions at a higher order. The most intercsting codimension one singularity
occurs when (d) [ails. As discovered by Erncux and Matkowsky [11], per-
turbation of such a singularity lcads to a branch of 2-tori connecting the
standing and rotating wave branches, and, under certain circumstances,
this 2-torus can be asymptotically stable. More precisely, Erneux and
Matkowsky work with the system (1.1) in normal form and it can be
shown (we will do so below). that undcr such circumstances the flow on
this 2-torus must be lincar. Recently Chossat [4] has shown that this 2-
torus and its linear flow persist even when (1.1) is not assumed to be in
normal form.

Swift [257, Knobloch [20], and Nagata [227] have cach investigated the
codimension one singularities corresponding to degencracics in (b) and (c)
above. In addition. Knobloch has studied certain codimension (wo
degeneracies. the most interesting ol which Icads to the cxistence ol an
invariant 3-torus.

Our paper extends the work described above in several ways:

(1) We include the ellects of degeneracies in the bifurcation
paramcter (that is, failure of (a) above). This is analogous to the
classification of degencratc Hopf bifurcations, without symmetry, given by
Golubitsky and Langford [14] (scec also [15]). Some familiarity with thosc
results will be helpful in the understanding of the results we present here.

(2) Our classification is complete up to codimension two and
includes all nondegencracy conditions.

(3) The universal unfolding theorcm guarantecs that we have found,
up to an appropriate notion of equivalence. all possible perturbations of
the singularitics we classify.

Our main results arc summarized in Table TI, wherc the complete
classification is given, and in the figures of Section 5. where the quasi-
global information obtained in the universal unfoldings of the singularities
is pictured. We regret that this information is sufficiently complicated that
the figures are necessarily incomplete; this is, however, an accurate reflec-
tion of the complexity of the problem. Nevertheless, the main conclusions
are illustrated.

The remainder of the paper is divided into cight sections. In Scction 2 we
follow Swilt [25] in reducing the O(2)-symmctric Hopf bifurcation to one
of finding zerocs of D,-equivariant mappings on R This reduction uses
the center manifold and Birkhoff normal form thcorics to obtain D,-
equivariant amplitude equations. In Section 3 we dcfinc D,-cquivalence and
state our classification results. We discuss how to solve thesc amplitude
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cquations in Section 4. Section 5 is devoted to constructling the bifurcation
diagrams for the normal forms of Section 3. In Section 6 we describe how
10 find Knobloch’s [20] invariant 3-torus using our results.

The proofs for our main theorems are given in Sections 7-9. The
nceessary singularity theory background is described in Section 7. The
calculations nceded to use singularity theory are described in Section &.
Herc we rely on results from Buzano er al [2]. The main ideas in the
proofs, and some of the most difficult calculations, are summarized in Sec-
tion 9. The calculations have been substantially simplified using a recent
result of Gaffney [127] which is described in Section 7.

2. REDUCTION TO AMPITITUDE EQUATIONS AN D -EQUIVATENCL

Center manifold theory allows us to study small amplitude periodic
solutions to (1.1) by analyzing

2+ f(x, 2)=0. (2.0

where /2 R x R — R* commutes with the action of O(2) on K*. identified
with the sum of the +/ cigenspaces.

There is also a natural action of the circle group $' on W¥ which stenis
from (2.1). k' can be identified with the space of 2z-periedic solutions of
the lincarized system

N

X+ Df10.0)- v =0 (2.2

and S' acts on these 2z-periodic solutions by phase shifting. The theory of
Birkhofl normal forms [ 177 allows us to use nonlincar changes of coor-
dinates to transform (2.1) to commute with the action of O(2)x S'. More
precisely, for cach integer k there exists a polvnomial change of coordinates
so that £ commutes with O(2) x S' modulo terms of degree greater than £.
We note, however. that as k increases to infinity the neighborhood of the
origin on which this transformation is valid may shrink to nothing.

In this paper we assume that / commutes with Q(2)x S' to all orders,
This may appear to be a strong restriction, but the local dynamics of any
system (2.1) is well approximated by an O{2)x S’ equivariant system.
least regarding the existence and stability of small amplitude periodic
solutions with period ncar 2z, This can be proved using the theory of
Golubitsky and Stewart [17] and Chossat [47.

The group O(2) is generated by e SO(2). wherc 0<0<2r and an
involution k. The group of phasc shifts S' has as typical clement ¢. where
0 <2n T is now well known [25, 26, 7] that it is possible 1o identify
R* with € and choose coordinates so that the action of O(2)x S' is.
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(@) 0-(z,2)=(e"z;,¢ “z,)
(b) Kk-(z1,25)= (2, 21) (2.3)
(€) @ (z), 22)=(e"z;, ¢"z;,).

The O(2) x S' equivariance of f imposes strong restrictions on the terms in

its Taylor scrics cxpansion. The normal form we use is rclated to those of
Swift [257] and van Gils [26].

ProrosiTiON 2.1. (1)  Any O(2)x S" invariant function g: C*x R — R is
a function of (N, 4, 2), where N=|z,|? + |z,)% 4=8% and 6 = z,1” — |z,,%.

(il) Any O2)x S' equivariant mapping [ C> x R — C? has the form
f'(z,.zz./'.)z(p+iq)( >+(/+1S)5( '_) 2.4)
<2

where p, q. 1, and s are O(2)x S" invariant functions on S x R.

The proof of this is a straightforward invariant theory calculation. See
Swift [25] or Golubitsky, Stewart, and Schaelfer [167.

Remark.  With this notation the hypothesis that Df(0.0) has cigen-
values +7 becomes p(0,0)=0 and ¢(0, 0)=1.

One of the nicc lacts about the form of the vector ficld given by (2.4) 1s
that it allows us to scparatc the four-dimensional system of ordinary dif-
ferential equations into amplitudc and phase equations. If we wrile

ry=xeV, z,= ve

o

%, then the equations

+(pt+ig+(r+is)d)z, =0

: (25)
Zro+(pHig—(r+is)d)z,=0
become
X+ (p+rd)x=0 ]

) amplitude equations (2.6a)

y+(p—rdé)y=0

f 4+ (g+55)=0
i+l phase equations (2.6b)

Yo+ (q—s0)=0,

where p, g, r, and s arc functions of N. A, and 2, where N=x7+ )2
8= v?~ x?, and 4 = &°. This calculation may be done by diffcrentiating the
identity x*=z,Z, to obtain

xx=Re(Z,2)})= —(p++¢d)z,Z,
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and similarly with y?=z,%,. In this paper we are chiefly concerncd wita
the amplitude equations which we think of as defining a vector field on R%
We follow Swift in noting that these equations are equivariant with respect
to the group action on R?* generated by the symmetrics:
[(x, v} (x. —y) and Jilx, 1Yo {0 x).

——
£~
~J

This group is the group of symmetrics of the square in R with vertices
(£ 1, £ 1) or, abstractly, the dihedral group D,. The D;-equivariancce of
the amplitude equations is essential 1o our classification procedure. 1t is not
hard to show that (2.6a) gives the general form for a D -equivariant vector-
ficld on R Compare with Buzano et al. [2].

We now describe the correspondence between cquilibrium solutions or
the amplitude cquations {2.6a) and solutions of the original cquations
(2.5). Observe that il (x,. ¥,) is an equilibrium point of (2.6a) then the sub-
manifold of R* defined by z, = vye™!, z,= yye™. as ¢, and , vary, is
invariant under the flow described by (2.5). These submanifolds arc points
(if xg=0=1y), circles (if xq=0, y, #0 or x,#0, 3,=10), or tori (il x;#90,
1 #0). The solution z, = 0 =z, is always an equilibrium point of (2.5). The
possible flows on each of the other invariant submanifolds are restricied by
the symmetry conditions. Each submanifold is ar orbit of the SO(2)x &'
action on R* This mcans that the vector field on cach invariant orbif is
determined by its value at any one point; in particular if it is zero at one
point it must be zero on the whole submanifold. Thus the invariant circles
arc either periodic solutions of (2.5) or, exceptionally, circles of equilibrium
points. while the invariant tori have cither “lincas™ flows or, again excen-
tionally, are tori of equilibrium points. This can also be seen by considering
the phase cquations (2.6b). since for each invariant orbit both i, and -
are constant.

For certain tori the equivariance with respect to x in 0(2) places cven
further restrictions on the flow. The involution « maps invariant tori to
invariant lori, taking {z, = xye™', z, =) 4e""} t0 {2, = y,e"", 2, = x5 .
If xo= v, (or. equivalently, x,= —)) then this takes the corresponding
torus to itself, leaving fixed the subsct given by ¥, =1y,, a circle in tise
torus. The equivariance of the vector field with respect to x implies that
this circle must be invariant under the flow and hence must be a periodic
solution. The linearity of the flow on the torus now implics that the whole
torus must be filled out by periodic solutions. Again this can also be see by
considering (2.6b).

We have shown that the equilibrium points of {2.6a) correspond to four
different types of invariant submanilolds of (2.5): an equilibrium point at
the origin, “isolated™ periodic solutions, invariant tori foliated by periodic
solutions. and invariant tori with general linear flows. These may be dis-
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TABLE 1
0(2)x S" Action on U7 Dy Action on R”
Isotropy Fixed point Isotropy Fixed peint
Label subgroup set subgroup set Description
0 0(2)x §! 10.0); D, 110,00} Equilibrium point
R S0(2) {(z,0)} (L1} Hx, 0)} Periodic solution,
I(x, v)=(x. —») “rotating waves”
S 7,+7¢ "z 7)) {1,J} {(x, x)}  Torus folialcd by
J(x, y)=(r.x) periodic solutions.
“standing waves”
T as {z,.2)} {1} {tx, )}  Torus with linear

flow

tinguished by cither the isotropy subgroup ol D, at (x,, »,) (the subgroup
of D, fixing the point) or by the isotropy subgroup of O(2) x S' at a point
in the corresponding invariant submanifold of R*. This information is sum-

o

marized in Table I. The group SO(2) is the subgroup of SO(2)x S'=
(¢, e™)} given by 0= —q, while 7, is the group generated by x and Z< is

generated by (e ™) e SO(2) x S'. Note that Z§ fixes every point in C2. In
the table we havc only included onc representative from each conjugacy
class of isotropy subgroups and the fixed point set is the fixed point sct of
that representative. The solution types labelled R and S arc those with

="

n—

=4

FiG. 2.1. Types of invariant submanifolds given by equilibrium points of the amplitude
equations: R: periodic solution; St torus of periodic solutions; T: torus with linear flow.
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“maximal” isotropy subgroups, having two-dimensional fixed point sets C*
{sce Table 1). These are the solutions whose existence near the bifurcation
point is proved in Golubitsky and Stewart [17]. These periodic solutions
arc called “rotating waves” and “standing waves,” respectively.

We end this section by observing that the correspondence between
cquilibrium solutions of the amplitude cquations and solutions of the
original cquations preserves stability.

Provosirion 220 An equilibrium solution of the amplitude equations is
asympiotically stable if and only if’ the corresponding equilibrium peini.
peviodic solution, or invariant 2-rorus is asympiotically stable in the four-
dimensional systen.

Proof. A rero (xg, yo) of the amplitude equations is asymptoticaily
stable ilL for every trajectory (x(7). v(¢)} with initial point sufficiently close
10 tx,, vy). the trajectory stays near (xg. 1) and lim, | , (x(4). y{t)) =
(Xo. ¥o) Let M be the orbit of SO(2)x S! given by 2,1 =x,. |2,] = 1.
Then M is asymptotically stable if and only il for cvery trajectory
(z,(2). =>{1)) of the four-dimensional system, with (z,(C). 2,(0)) sufficientiy
close 1o M, lim, , , (|z,(1),, |z5(1)]) = (x4, ¥} and so if and only if (xy, v,)
is asvinptotically stable as an cquilibrium solutions of the amplitude
equations. |

Remark. Observe that solutions that tend to a 2-torus of standing
waves actually converge to a single periodic orbit on that 2-torus since 3,
tends to a constant in the phase cquations (2.6b).

3. NORMAL FORMS TOR THL AMP!ITUDE EQUA 1TONS

In the previous section we reduced the study of equilibriam orbits of
O(2)-equivariant vector ficlds near a Hopf bilurcation point to that of D -
equivariant vector fields on |2 in a neighborhood of the origin, We also
saw that any D,-cquivariant vector ficld can be written as

. . . XN ) o x
flx. v, )= p(N, 4. /.)( ) } +r(Nv. A 20l )

N

where d = v*—x” and p and r arc functions of N =x" + 7 and 4 =8
We are chicfly intercsted in the cquilibrium points of f and so in the
solutions of the equation f(x., 3. 1) =0. We shall study the bifurcations of
these solutions as the distinguished parameter /4 varies. using singularity
theory methods. We refer to the mapping f(x. y, 2) as a D,-bifurcation
problem. It is convenicnt to introduce a notion of codimension for {2,
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bifurcation problems. Loosely spcaking the codimension of f is the
minimum number of extra paramecters necded for a generic family of bifur-
cation problems Lo include /. A more precise description is given in the last
scction.

Our threc main thcorems give solutions to the following thrce problems:

(1) Classify all D,-bifurcation problems of codimension <2. The
classification consists of a list of normal forms such that any vector field
with codimension <2 is equivalent 1o one of these normal forms. The
cquivalence relation is defined below.

(2) For each normal form give necessary and sufficient conditions on
the partial derivatives of a D -bifurcation problem [or it to be equivalent to
that normal form.

(3) Give a qualitative description of all bifurcation diagrams that can
be obtained by perturbing germs of D,-bilurcation problems of codimen-
sion <2.

Let u=(x, ).
DrrnsmioN 3.1, Two D,-bifurcation problems fand g arc D ,-cquivalent
if therc exists a smooth 2 x 2 matrix S(u, ) and diffcomorphism &(u, 1) =

(Z(u, 4), A(A)) of R*x R such thal

g )= S(u, 4) f(Z(u, 2), A(J)) (3.2)

and satisfying:

(0, 0) = (0, 0), (3.3a)
Z(7-u, 2)=7Z(u, }) forallyin D,, (3.3b)
S(youor)-y=7-Su, +) forallyin D,, (3.3c)
A4°(0)> 0, (3.3d)

S(0,0)=4A-Tand dZ(0,0)=a" I,
whcre 4 and a are strictly positive real number. (3.3e)

We define &,,(D,) to be the ring ol D,-invariant functions R? > R.
Matrices S satisfying (3.3¢c) are called D -cquivariant matrices and form a
module over &, ,(D,). A simple calculation shows that, for any Z satisfying
(3.3b), dZ(u, A) is also a D equivariant matrix. Equivariance implics that
S(0, A)=c(4)- I for some ¢(4) e &, and similarly for dZ(0, /). As we discuss
next, the extra hypothesis in (3.3e), that ¢(0) =4 >0 and ¢ >0, is nceded
to ensurc that D, -equivalence prescrves the stability of at least some of the
equilibrium points of f.
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Prorosition 3.2, Let [ and g=S- f(Plu, 7)) be D,equivalent bifur-
cation problems and let (u, &) be an cequilibrium point of . Then the signs of
the real parts of the cigenvalues of df(u, 2) are the same as those of
dg(Dlu, 23) if any of the following conditions hold:

iy u=0.
(1) wis of type R or S,
(i) wis of type T and det df(u, ) <0.

Proof. 11 is sulficient to prove that for any equivarian{ matrix S such
that S(0,0)=4A- 1. wherc A >0, the signs of the real parts of the cigen-
values of S df are the same as thosc of df when any of the conditions hold
{15, Chap. X. Lemma 3.3 and the following remark ]. Obscrve that if + is in
the isotropy subgroup of u then it follows from (3.3c) that

(9%}
;N

St 2) =7 S(u, 2). (

The isotropy subgroup of u=0 is D,. The commutativity in {3.4) with 1,
forces S(0, 2) to be a multiple of 7, say ¢(4)-1. Since we assume ¢(0}>0
and since df(0, 2) is also a multiple of the identity. the cigenvalues of
S(0, 2) df(0. 4) have the same signs as those of df(0, #) and (i) is verified.
Similarly the matrix 7= (§ °,) is in the isotropy subgroup of solutions of
type R. Thus (3.4) implics that S and df are both diagonal and (ii) follows.
The argument showing the invariance of the stability of type S solutions iz
abstractly the same. The nontrivial matrix in the isotropy subgroup of type
S solutions is y=(9 {). Since 7 has distinct eigenvalues with cigenvectors
ry={l Yand v,=(1. —1) it follows from (3.4) that S and df aiso have »,
and ¢, as eigenvectors. Thus (ii) is verified.

For (iii) we note that, near (0.0), det S(u, A} must be positive and so
det S(u, 4) df(u, 2) must have the same sign as det df(u, 4). If this is
negative both the eigenvalues ol df(u, 2.) and those of S(u. A) dfiu, 2) must
have rcal parts with opposite signs. ||

We now come to the statement of our main classification results, {or
which all the relevant data arc contained in Table IT. Note that the
classification up to codimension one is given in Buzano er «l. [27] and
corresponds to the results of Nagata [22] and Knobloch [20] described in
Section 1.

CLASSITICATION THROREM.  [n a generic two-parameter family all bifur-
cation problems are D, -equivalent to one of the normal forms listed ir

Table V1.

RLCOGNITION THEORIM. A4 D ,-equivariant biturcation problem is 3,
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equivalent to a normal form if and only if it satisfies the corresponding sets of
“defining” and “non-degeneracy” conditions listed in Table I1.

UNFOLDING THEOREM. Any bifurcation diagram of a perturbation of a
germ D -equivalent 10 a given normal form is qualitatively the same as a
bifurcation diagram obtained from the universal unfolding of the normal
form. The universal unfolding is the family of bifurcation problems obtained
by adding 10 the normal form the terms listed in the table.

The proofs of these theorems will be given in Section 8, using the
singularity theory and calculations outlined in Sections 6 and 7. Examples
of the bilurcation diagrams obtained from the unfoldings of the normal
forms are given in Section 5.

Notes on Table 1. (i) The D,-vector field (3.1) is written as (p, r),
where p and r arc elements of &, ,(D,). The defining conditions are given in
terms of the partial derivatives of p and r, with respect to N, 4, and 4, at
the origin.

(i1) The normal forms arc listed under filteen headings, but under
cach of thesc therc arc, in general, a number of different families of non-
equivalent normal forms. Each choice for sign ¢, and distinct values of the
moduli, m, n, give different normal forms.

(iii) To obtain the universal unfolding of a normal form we need to
add on the terms in the column headed “universal unfolding™ and also
allow the moduli to vary. However, for most values of the moduli small
perturbations do not cffect the qualitative properties of the bifurcation
diagrams in the unfolding. When we come to discuss the perturbed bifur-
cation diagrams we will restrict attention to normal forms for which the
bifurcation diagrams are persistant under perturbation of the moduli and
explicitly consider only perturbations with respect to the parameter «, f.

(iv) The “codimension” given in the (able is that referred to above. It
is the number of parameters nceded for a generic family of vector ficlds to
include a germ cquivalent to the normal form (such a family is provided by
the universal unfolding). This idea of codimension is the topological (or
C?) codimension of singularity theory and is related, but not identical, to
the smooth (C*) codimension defined in Section 7.

(v) The following expressions arc needed for VIIT, IX, and X, respec-
tively.

. P D} >
¢y =m {Porap; +P.Parapay—Par\v)

F 20 Pal ¥ an—TaPoPra) T PPN Paa— Dy rAA)}
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2 -
2pupArapy--Pary)
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F PP Fan =T, P = 2P, (DT T o)y

{p‘\'(p\'r// A p/./)
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Fa

6pan(2p4+ Pyy -1

ciy=(p,ra—par,) ) 12, pann(pa—12)

FOpaN(r, ry—pipya)F3pn(psry 1, ]7\\)}-
4. SOLVING THE AMPLITUDE EQUATIONS

In this scction we obtain the three scts of equations that are satisfied by
the three different types. R, S, and 7, of equilibrium points of the
amplitude equations (2.6a). We also calculate general expressions that give
the stability of these points; for R and § we find the signs of the cigenvalues
of df, while for T we give formulas for the signs of the trace and the deter-
minant of df. Recall that if det df' < 0 then the eigenvalues are real and have
opposite signs and so the cquilibrium point is unstable. while if det ¢f >0
the real parts of the cigenvalucs have the same sign and this is positive if
trace df >0 and negative if trace df <.

ProrosimioN 4.1, The equilibrivm points of types R, S. and T of 1the
amplitude equations (2.6a) can be found by solving the equations in the
second column of the following table. 1heir stability can be computed fromw:
the information given in the third column

Tyne Fquations Stability
R y=0 x>0 Signs of exgenvalucs of df':
p -xr=0 pa—r+x(py ryy=2¢%
N x—y>0 Signs of ergenvalues of df.
p-0 pay o F
T x>3>0 Sign of trace df :
p-0 =0 Npa =2Ap,— Ary - 2N 4dr,

Sign of detdf.

Pafs - Paby

These equations do not give all the equilibrium points. However. the other
equilibria can be obtained from these by applving the symmeltry operations in
D,.

0569 267
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Proof. The cquilibrium points of (2.6a) are the solutions ol the

equation
flx, y)=p <v> +rd < * ) =0Q. (4.1)
Y -

The solutions of type R are thosc satisfying cither y=0, x#0 or v=0,
y#0. Using the symmetry operation (x, y) — (y, x) it is sufficient to find
the solutions satisfying the first set of conditions and substituting this into
(4.1) gives the required equations. Similarly the equations for solutions of
type S can be found by substituting x =y into (4.1), noting that then
d(x, v)=0. Solutions where x = --y arc found by symmetry.

If x#0, p#0, x# +y then (1) and ( ) are independent vectors in R*
and (4.1) can only be satisfied if p=0 and r =0 so thesc are the cquations
for the solutions of type T.

To obtain the stability information in the table we need to compute df in
terms of p and r. Write [ as (f,,f>). wherc f,=(p+rd)x and
J>=1(p —rd)y. Since df is an cquivariant matrix (3.3c) tells us that

df3y(x, ¥)=df>( ). x) and dfso(x y)=df (¥, x), (4.2)

where the second subscript denotes a derivative with respect to x or y. A
straightforward computation gives

df,(x, ¥y)=p+2xp, — 47 0p,+ (32 = 3xH)r+2x% or, — 4x* Ar,  (4.3a)
df 5(x, )—_xvp +4xy Op 4+ 2xvr + 2xy 01 +4xy Ar (4.3b)
df5(x, yY=2xypr —4x) Op 4+ 2xyr — 2xy Or +4xy Ar, (4.3¢)
dfs2(x. ¥)=p+22ps+ 42 0p, — Byt —xHr—2070ry— 4 4r,.  (43d)

At a point of typc R for which y =0, df is diagonal and so that cigen-
values are cqual to dfy;(x, 0) and df5(x, 0). If, in addition, the point is a
solution of (4.1) we have p=x? and thc eigenvalues are given by the
expressions in the table. At a point of type S, when x=y, we have
df11(x, X)=df(x, x) and df,(x, x)=df>(x, x} and so the cigenvalucs are
df11(x, x) £ df »(x, x). For a solution of (4.1) we take p=0 (o oblain the
required cxpressions. Finally the formulas (or the trace and determinant of
df at a solutions of typc 7. when p=0=r, are obtaincd by routine
calculation. ||
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5. PERTURBED BIFGRCATION DIAGRAMS

We now discuss and illustrate the bifurcation diagrams that are obtained
by perturbing the normal forms in our classification. We will give cssen-
tially all the diagrams [or the gencric and codimension one normal forms.
For the codimension two normal forms we will derive some uscful generai
formulas and illustrate the bifurcation diagrams with some representative
examples. In our discussion we will allow lime reversal (f—» —f) and
reversal of the distinguished paramcler (4 — -2) to reduce the number of
normal forms we must explicitly consider.

1. The Generic Normal Form

We begin with the generic normal form
(egs +mN, &), m#0,z,.

The cquilibrium point at the origin is stable if £,2>0 and unstable if
g/ <0. Since r0)#0 there are no type T equilibrium points. The
equations for the types R and S equilibrium points and their stabilities are
given in the following table.

Tipe Equations Signs ol eigenralues
R 1--0 mo-g,
ggrt lm—¢g)a’=0 €
s - v m
Egrt+ 2mx? -0 -

There arc twelve qualitatively distinct diagrams corresponding to the (wo
possible choices of ¢, and ¢, and the three choices of m given by the threc
regions of R.!0,2,}. Howcever, allowing the coordinate changes f— -/
(which interchanges stabilities) and 4 —» —2 (which interchanges left and
right in the bifurcation diagrams) means we nced only illustrate the

diagrams for ¢y= - 1 and ¢, = 1. This is done in Fig, 5.1.
S== + + R
R= =S
R\ Y fzs
N - +4 - ++ |4 -
m<Q O<m<i m>|

FiG. 5.1, Bifurcation diagrams for I: ¢~ —1. &, ~ 1.
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For the remaining normal forms we are not so much intercsted in the
bifurcation diagram of the normal form itself as in those of its generic
perturbations. All possible perturbations arc qualitatively equivalent to
those given by the universal unfolding of the normal form and for most
values of the moduli they can be obtained by keeping the moduli fixed and
varying onlv the unfolding paramcters « and 5. When we look at the exam-
ples we will cxclude from consideration any values of the moduli for which
this is not true. This is justificd by the fact that the normal forms
corresponding to such values of the moduli do not appcar in generic two-
parameter {amilics of vector fields, they have codimension strictly greater
than two.

CODIMENSION ONE NORMAL FORMs
IL (¢o2+e, N, &)
The universal unfolding is given by:
p=ctor+e, N> +aN
r=g,.

We will restrict our attention to g,= — 1 and &, = 1. As r #0 there arc not
solutions ol type 7" and, with our choice of signs. the origin is stable for
A< 0 and unstable [or 4A>0. The other solutions arc given in the table
below and the bifurcation diagrams are shown in Fig. 5.2.

Type I'quations Signs ol cigenvalues
R u=0 x—g,+ 2x7
r—{x—e) v —x* -0 £
S x=y o+ 4
2= 2ax - 4xt=0 5

[TI. The bifurcation diagrams for this normal form can be obtained from
those of II by interchanging R and S
IV. (g2 + e, N+ma, e,N), m#0.
The universal unfolding is
p=¢tyl+e N+mAa
r=g,N+o
We can choose g,= —1 and ¢,=1 so the origin is stablc if 4 <0 and

unstable if ~ > 0. The other equilibrium points arc given in the table below.
Notice that the 7 branch can only exist if z <0.



Lad

DEGENLERATL HOPIL' BIFURCATIONS 23

Iype I’quations Stability information
R y-0 Signs of eigenvaiues:
= OxXT—(m—=Dx" =9 (e7 0)+(@m 1)y,
%— x>

S Signs of eigenvalues:

£y, =2 1 2x7)

T s e N-md=0 Sign trace df:

x4+ N=0 ey N+ (2m—1)4

Sign det df"
m

The values of 4 at which the 7' branch bifurcates from the R and §
branches are found to be

yl

—&, %+ ma? for the bifurcation from the R branch, and

L= 0 for the bifurcation from the S branch.

See also the general formula given below. The bifurcation diagrams arc
given in Fig. 5.3. The only cxceptional value of the modulus is m =0 and
the only differences between the m >0 and m <0 cases arc the dircction
and stability of the T branch. For m <0 the stability of the T branch is an
invariant ol D, equivalence by Proposition 3.3. However we have no such
result for m> 0. though by the exchange of stabilities rule for pitchfork
bifurcations we know that near the points of bifurcation from the R and §
branches the stability must be as shown in the diagrams.

V. (gg22+mN+¢e /N, ¢,), m#£Q, z,
4] l 2 2

The universal unfolding is

p=~+mN+¢ N+

FiG 5.2, Bilurcation diagrams in the unfolding of 1l: gg= —1. g; = 1.
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We choose ¢,=1 and ¢, = 1. The origin is stablc if i>> —x and unstable if
4* < —a. There are no solutions of type T. The other solutions are given in
the table below.

Type Fquations Signs of cigenvalues

R y=0 m g, 44
A= 724 (m =g, —2) x7 =0 ¢

IV

S Xx=) w2
A+ A2-22m =) ¥2=0 —&

Notice that the R and S solutions can only bifurcate if « <0. The bifur-
cation diagrams are given for ¢, = —|, those for ¢, =1 can be obtained by
interchanging R and S (Fig. 5.4).

Before describing the codimension-two normal forms we shall develop a
general idea that was implicit in the discussion above. Most bifurcation
diagrams in a universal unfolding are persistent, that is, a small change in
the unfolding parameters docs not change it qualitatively. The bifurcations
which may occur in a persistent diagram are limited to thosc listed in
Table IT1, which also includes the equations for the corresponding bilur-
cation points.

a a<0 a>0
+— S +-_~S
§++ +e R
e
++ — ++ —
m>0
+- +-
++ +— "
T+

++ ++ -

m<0

m>0
R~Zt R+
s=EN\ $==
m<0++ - ++ -—
Fi. 5.3. (a)Bifurcation diagrams 1 the unfolding of IV: ¢= -1. & -1,

£,= 1. (b) Bifurcation diagrams in the unlolding of TV: o= ~1, ¢, = —1, &»=1.
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TABLE Il

Bifurcations in Persistant Diagrams

Label Description Equations
% Generic bifurcation from 0 p=0:x=0=y
Fp ¥ oid 1n R branch y=0:p~xir=0
Py FrXR2py ) - 2x% =0
ER fold in S branch x -ypip=0; p,=0
# Fold in 7"branch p Or=Cpyry,—pary=0
P Pitchfork bifurcation y=0;p=0:r- 0

from R branch to I'branch

) Pitchfork bifurcation ¥y -v,p=0r-0
from S branch to 7 branch

Howevcr, on subvaricties of the space of unfolding parameters more
degenerate behavior can be scen in the bifurcation diagrams. Roughly
spcaking, any codimension-onc degencracy delincs a hypersurface in an
unfolding space such that points on that hypersurface correspond exactly
to the bifurcation diagrams containing that degeneracy. Similarly, codimen-
sion-two degeneracies define codimension-two subvarieties and so on. The
subvaricty given by a particular degeneracy is called the transition varierv
of the degeneracy. The (ransition varicties divide the unfolding space into a
finitc number of regions in each of which the bifurcation diagrams are all
qualitatively the samc and it is these diagrams that we illustrate. For
codimension-one normal forms the unfolding space is one dimensional and
so the transition varieties can only be the origin (since z and § are always
considered to be “small”). However, for the codimension-two normal forms
the (ransition varicties of codimension-one degeneracies can be quiw
complicated. They arc of two types, global and local, corresponding,
respectively to (1) and (2) below.

(1) For every pair (X, Y) of generic singularities, listed in Table T11,
there is a trausition variety. denoted Z(X, Y), consisting of all values of the
unfolding parameters for which the corresponding diagrams contain bifur-
cations of type X and Y at the same value of /. We do not explicitly
calculate the equations for these transition varicties; they can be found by
eliminating x and y from the cquations for X and similarly for ¥, and then
eliminating 4 [rom the resulting equations.

{2) There arc sixtecen possible codimension-one degenerate locai
bifurcations listed. along with their cquations, in Table IV. The first four of
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TABLE 1V

Codimension One Local Transition Varieties

Label Description Equations

VA Bifurcation from 0 POy 0:py(0)=0
normal form II

i Bifurcation from 0;
normal form 1L

p(0)- 0; p\(0)--1(0)

Yiv Bifurcation from 0,
normal form I'V

p(0Y=0,r0)=0

Py Bifurcation from 0:
normal form V

p(0Y=0: p,101=0

;=0

y=0:p XIr=0; p— i,
Pr—tr+x22p—ry)—2x%,-0

By Svmmetry preserving bifurcation
from R branch

A Symmetry preserving bifurcation x=13:p=0.p,—0:
from S branch p,=0
U Degeneralc symmelry breaking Not needed esplicitly

bilurcation from R branch

b Degencrate symmetry breaking
bilurcation from S branch

Not needed explicitly

Hr Hysteresis point on y=0:p—xr-0;
R branch Py X 2p—ry) 2xr =0
Paa+20s -0 +xHdps, Ory—ryy)
F4x4(paa—rog)—4r,xt =0
# Hysteresis point on y=upp - -0:py O
S branch Pry=0
Fr Coalescence of #, y=0.p 0:r=0;
with %, Pabi—pary=0
S Coalescence of #, x=);p--0:r=0:
with 2 Para—Pary=0
I Coalescence of %, yv=0;p—0:r—0:
with %, Py 22p, ra)—2x%,—0
2 Coalescence of % x=1;p--0;r=0;
with ‘2 py—=0
8, Bifurcation from p—0;r=0;
T branch
rank (I’\ Pa Ih) <
PN Ty r,
H; Hysteresis point on Not needed

1I'branch
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these are those occurring at the origin and listed as [1 V in Table 11. Most
of the others are cither the usual codimension-one bifurcations that can
occur (A, By Hy. Hy. By, ;) or the codimension-one bifurcations with
one-dimensional critical eigenspace and Z. symmetry (4g. Gs. Fro £ )
classified in Golubitsky and Schaeffer [15]. The two exceptions, 2, and
2. are codimension-onc bifurcations with two-dimensional critical
eigenspace and nontrivial 7, symmetry. The cquations for these transition
varicties can be deduced from the theory developed in Golubitsky and
Schaeffer [ 15].

CODIMENSION Two NOrRMAI FORMS

VL (ep4+6, N, ¢5)

The unfolding is

p==toi+e, N+ N* +aN

F=e

2.
2

As in the previous cxamples we can restrict attention lo the case ¢y= — :.
¢, = 1. The origin iy stable if 2<0 and unstable if 2>0. There are no
solutions of type T. The solutions of type R and S are given in the tabic.

Type Equations Signs of cigenvalues
R 3= 0 (2 &)+ 205 -3t
tgs (2 =) x7 L Bt =0 s
S X=y vt A4fxt =12t
EoA+ 207 +4Bx7 + 8" - 0 —

It is casily checked that the only generic bifurcations occurring are those at
the origin and folds in the S branch. The folds occur when

xX=v (5.1a3
i+ 2ax + 4fx* 4 8x° =0 (5.1b)
2+ 4Px2 4+ 12x" =1, {5.1¢)

Bifurcation from 0 occurs when 42=0 and so %(%;: %) can be found by
eliminating x from Egs. (5.1) with A=0. Subtracting 2x(5.1c) {rom
3x{5.1b) gives (z+ fx?) x* =0, so « and § must have opposite signs. Sub-
stituting x* = —-a/f into (5.1c) gives a(x— $%/4)=0. As 2=0 is casily seen
to be the equation of the transition variety Yy, the rclevant part of this
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O<m<I ++ ++ ++
s
. ¥;/ S
+- R
m<o +4
Fio 54, Bifurcation diagrams in the unfolding of V- gp= 1. e. =15, — — 1.

cquation for % (% F) is a=f%4. Thus x is positive and i must be
negative and

(S F)={a=p"4, <0}
The other nontrivial transition varieties are calculated to be
= {a=0].
Hy={x=p%3.<0}.
The bifurcation diagrams are shown in Fig. 5.5.

VIL
The bifurcation diagrams for this normal form are essentially the same as
thosc for VI, but with R and S interchanged.
VIIL.  (ggi+e,N+md? e, N), m#0
The unfolding is
p=coit+ e N+md*+ fa
Fr=e, N+

We make the choices ¢,= --1, ¢, =1. The origin is stable if /<0 and
unstable if 4> 0. The other solutions are given in the (able. Note that the
type 1" solutions can only cxist if .0 < 0.
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]
[N

NS

Type Fquations
R =0
= (I~ 2)x* (B o) x*—mx*—0
S X o=y
=237 —dABxt — 16mxt =0
I =N B4 -mti=0

7 -, V=0

Stability

Signs of eigenvalues:
(H—a)-(f
74 gax?
Signs of Ligenvalucs.
1
{y—& X7
Sign trace df’.
N4 {2 —e-) A —dmd®
Sign det df -

£,) v 4 2mxt

e i+ 2md)
a
B
| 1
l'l\l
AN Ad L — ]
4
\
\
N
~
- \\
3 2, y
Sp D(S;Fg) ®
b
0
v
+ e
P N
4 +_—-R
4
S (0 ==
<
PR "
4,
G e
N\,
44 -
IiG. 3.5, (@) Transition varieties of VIigy— —1. &, — 1. ib) Bifurcation diagrams m the

unfolding of VI: ¢« —f. ¢, ~ 1
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The values of / at which type T solutions bifurcatc from the R and §
solutions are:

P b= —[ey0— o’ — ma]
D= =gy

The nontrivial transition varicties are:

Fe={B+2mx?=0,0,2<0}
Fs=18=0,62<0}

I

U P Py={f+ma"=0.c,2<0}.

In Fig. 5.6 we illustrate only the cases &, =1 and m> 0. The diagrams for
m <0 are essentially the same while those for ¢, = - 1 can be obtained by
interchanging R and S. The remarks we madc in the discussion of IV
concerning the stability of the torus branch apply herc also.

a
B
R T L.
/
3 /
/
a4/
‘},I, 5
D(PR'PS)IR Sy
b
@«
(3
Fi. 5.6. (a) Transition varicties of VITL ¢o— 1, g, =1. ¢, -1, m>@0 (b) Bifurcation

diagrams 1n the unfolding of VIIT: 6y — - 1, gy = 1. e, — 1. m>0.



DIEGENERATE HOPF BIFURCATIONS 241
IX. (204 + &, N, 8,4+ mi%), m#0
he unfolding is
p=égr+e N
F=g,d+mit4 BN 4o
As usual we take ¢, = —1, ¢, =1. The origin is stable if 2< 0 and unstable

if 2>>0. The other solutions are given by the table:

Type Fquatons Stability
R 10 Signs of eigenvalues
o= )Y ma v b et L eaxt=0 (=) B = 2.7
2=t I iyt
S -y Signs of cigenvalues:
;o¥-0

2
{7 —ma? =27
/ =N 0 Sign trace df:
x=mi + N =51 =0 NOf1 26N
Sign det df

Shs

The generic bifurcations in the diagrams arc:
S a=0
P h=(m+es)[- BB —daim +¢5)].2
P b=m[ - B4/ — dam]:2.
The R and S branches bilurcate supercritically, o only positive valucs of 2
for %, and % are rclevant. The nontrivial transition varieties are:
(N (PP A B ]
Y= 2=0,
Gr={

g 4
b=

=
>
SN
R
3
-
+
I\::J
I
=~
2.
1]
=
=
)
i
=
3
T
lJ.

=
b

7 —4am =0, sign f= —sign m}.
Note that
IS P =US; P) =TSy AV =Sy = {a=01.

To obtain persistant bifurcation diagrams in the unfolding we nced
cxclude m= - ¢, as well as m=0.

E‘;
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a Cr--o @ ..
RT~s @ C . @
AN N N
Cs - N RG]
\ . W
. @ \
PN Q0 B \
[ _\\\
& O~
@ ~oc
Sy a Sy R
m<-I -lKm<Q
b
©
0
N2/
2
©)
@
I'16. 5.7 {(a) Transition varietics lor IX: ¢g= —1, &, =1. & =1. (b) Bifurcation diagrams
wn the unfolding of [X: ¢y=- —L g, =1, ;= L.
The illustrations in Fig. 5.7 arc for ¢y= —1, ¢,=1, &, =1 and m< —1

and -1 <m<0. The diagrams for these choices of &, and m >0 are cssen-
tially the same as for m< -1, though with changed stability assignments.
Changing the sign of ¢, reverses the direction of the T branch. Notice that
in this casc we have also shown the unperturbed bifurcation diagram at
21=0=4.

X. (eoh+mN*+nA,6,N+e,4), m#0, n£0, m+n#¢,., &,/2
The unfolding is

p=¢&ys+mN>+nd+aN
r=¢ N+e,A+p.
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Choosing g, = |, ¢, =1, the origin is stable if 2 <0 and unstable if 1> 0.
The other solutions arc given in the table:

Type Fquations Stability

R ¥ 0 Signs of Lugenvalues:
= Piv-(m+n- Dxt+ex®=0 (x—f)+2m+n~1)-- 33"
Brl—oxt

5 x=1 Sigrs of cigenvaiues:
4—=2xx? -dmxt -0 x + dix”
(8+2x%)

! £—aN-—nA-mN =0 Sign trace df
B~N+e.d 0 AN+ (2n 1A +2mN - 26, A4
Sign det df-
B3y — 2, N

The equations for the 4 values of the generic bifurcations in the bifurcation
diagrams and those for the transition varietics arc given in Tables V and
VI, respectively. Because of the two moduli, this example is considerably
more complicated than the others. The nondegeneracy conditions thas
appear in the classification (m#0, n#£0. m+n £ 1, m+n+1) divide the
moduli space into ten regions and so we have ten normal forms to consider
(not counting the different cases ¢, = +1). Howcever, the situation is even
worsc than this as the moduli spacc will need {urther subdivision to dis-
tinguish between germs whose versal unfoldings are not qualitatively the
same. We therefore content ourselves with a discussion of just one casc,
which, nevertheless, we believe encompasses all the important phenomena
associated with the normal form. The case we illustrate is given by
m+n—1>0 and m <0. The choicc of ¢, = +1 does not affect the bilu--

TABLE V

Generie Bifurcations in the Unfoldings of X

Y 70

Iy L= (2 =) mrn— 1)+
F A= 2 Am

7 i=(m+n)p - ofi+

P r=mp’ - 2f

Note. Herc *+ -7 denotes higher order terms.
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TABLE VI

Transition Varicties for X

S x=0

S z--ff

Fiy f=0

25 a=2m+n- 1:2)f

2 x=2mf
A\ D) a=(m+n)f
T(F; A) 1=mf
GFy; Fs) 2Am=(m+n—1)x*—2e.x°,

B—2-2m-rn-1)x" 3g,x

Y(F: ) y=2[(m+n—12 = n(m+n— )|
L Fs: ) a=2m+ . —mm|p

cation diagrams. The transition varietics arc shown in Fig. 5.8 and the
bifurcation diagrams themselves in Fig. 5.9. Notc that & (%z: %)= in
this case.

Notice that in the bifurcation diagrams numbered (3) (7) the cxchange
of stabilities rule shows that the 7 branch must be stable when it bifurcates
from the R branch, but unstablc when it bifurcates from the S branch. This
has important consequences which are described in the next scction.

St
0 Sm
S]z———————-‘.w-;':lf; ———————— Sx
@ ................ 5 ~.//_,‘. \x'f'i.,,_*
DFai Pe) ™ R [N X e 0
@,/_/ x7 s X *4 .
QR/ r_i) x/x _.' \\ x *D(Fs, PR)
\NE x/ .’ \ % H
x7 @) o \
D(S; Pg) @?.. \ @ 9
. \ =/
Sm ® D\
" D(S . Pg)
S1

I'G. 5.8. Transition varietics for X ¢o= 1, ey— L m+n- 1>0. m<0.
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™~
® a S
A J+-
++ ==
@ @ S ++R
-
++ --
Fi. 5.9  Bifurcattion diagrams in the unfolding of X: ey=—1. ¢, =1, m+~a—1>0.

m<Q.

XL (g 27+ 6, N+ mIN, g,), m* #4eye,
The unfolding is
p=ggit+e N> +miN+a+ N

r

It

12

Choose ¢,=1. The R and S branches are given in the table:

Type Equations Signs of eigenvalucs
R y=0 —¢;+ 4+ mi+ 2e 02
Arat(Brmi-Dxt+ex*=0 £,
S X=y B+ mi+ 3 x*

Pt a=2f+mi)xt 4o xt=0 —s,
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Sy Sy
Sp~- ® S~
a “reesl &) .. @ )
\\\ B \\\\ """""""""""" Bs
@ A N
a ©)
-, J T
B e 0 7 @
s @.- -
-7 - @
m>2 0<m<2
b
@ ZN—:/ ~_-+ —F
> ++ 4+
= _ _
@ R+_ +R Rt ~tg
S> +=S +-g
4+ ++ ++ ++
-+ -+ R
R . R
) ot t-g RIY *=s
et ++ ++ ++
S
_ +- -+
@ "= " +=§ IR
e " ?
++ o ++ ++ ' ++
+=S

++

|

FiG. 5.10. (a) Transition varicties for XI: ¢,=1, ¢, =1. (b) Bifurcation diagrams in the

unfolding of XI: g=1, ¢, =1.

The behavior of the R branch is cssentially as in V., while that of the S
branch is given by the 7, normal form (8) on page 263 of Golubitsky and
Schaeffer [15], to which we refer the reader for a full discussion. In
Fig. 5.10 we illustrate the cases ¢, =1, m>2 and ¢, =1, 0 <m < 2. Chang-
ing the sign of m is equivalent to reversing /7 whilec ¢, = —1 gives a rather
different set of diagrams. Note that m=0 has to bc cxcluded if all
persistant bifurcation diagrams are to be obtained by varying « and g.

XI1
This is similar to XI with R and § interchanged.

XITL (ggd®+2 N, &,2 +md), m#0

The unfolding is
pP=ctoit+e, +a

r=gr+md+p.
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We fix gg=1, ¢,=1:

247

Type Equations Stability
R y=90 Signs of cigenvalues:
Arad(e, -2l —mxt 0 & B- i—3mxt
i+ B —mx?
S Ay Signs of ergenvalucs.
Ada=2e,x7=0 ‘)
Ca=B
T a4+ N—0 Sign trace df:
r+f+mA-0 ¢, —2md
Sign det df.
—&.m
a S
Sy~ _|Px
¥~ @) B
~
Y
. L,
\ >a
\
P i
‘@ 1 \D
;
s
I'd
Fd
“ a3
-~ &
b €= €=t
-+ — R
s
€ \'+
—_— -+ g
~_T
b . - S
-— R
@ . -
—R
= -t
v 7N 4+ _++
— Ri ;R
3 R /
+ § <= \ /S ~tg
w5 N4 U\
R+
AN
& ++ R
§ <=
e N ++
FiG. 511. (a) Transition vaneties of XIII: ¢o=1, 2,=1 (b} Bifurcation diagrams in the

unfolding of XHL: go=1, ¢» L

30569 37
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The case m < 0 is illustrated in Fig. 5.11. Changing the sign of m rcverses
the direction of the T branch.

XIV. (cod>+mN 4+ iN, &,), m#0, ¢,
The unfolding is

p=coi+mN+e iN+a+pi

F=i,.
Fix ¢o=1, ¢;=1:
Type Fquations Signs of Ligenvalues
R y=0 m—i;+ 6/
A D)X et x4 =0 PR
S

x=}

m—g i
24 2mx? 4+ 28 0x7 +a + Bi=0

-ty

The bifurcation diagrams are illustrated in Fig. 5.12. The choice of &,
makes little difference to thesc diagrams, it simply changes the relative

amplitudes of the various R and S branches. A similar phcnomenon occurs
in XV.

a

¥ ® /9’[
a

R —
s s =% SR
++ —-/ S \——
m>i

FiG. 5.12. (a) Transition varicty of XI1V: g, =1. &, = [. (b) Bifurcation diagrams 1n the
unfolding of XIV: g4=1, ¢;-- |
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XV. (6922 + mN. &,), m#0, ¢,

The bifurcation diagrams herc are essentially the same as those of the
codimension-one V. The extra degencracy that makes it codimension two is
simply symmetry with respect to 4 — —/.

6. EXISTENCE OF INVARIANT 3-TORI

In the bifurcation diagrams (3) (7) of normal form X (with 5,= -1,
=1, m+n—1>0, m<0) the exchange of stabilities rule shows that the
7 branch must have cigenvalues with positive real parts when it bifurcates
from the R branch, but negative real parts when it bifurcates from the &
branch. These cigenvalucs vary continuously along the branch and so at
some point must pass through the imaginary axis. In the region of modul:
space we are considering 7> 0 and so det df >0 on the T branch (using the
formula given in the discussion of the normal form and noting that we arc
considering ¥ and N small compared with m and »). Thus the eigenvalues
of the 1" branch cannot pass through 0. Hence they must cross the
imaginary axis at a pair of nonzero conjugate points, giving a Hopf bifur-
cation, i.e., a bifurcation of a periodic solution of the amplitude equations
from the T branch of cquilibrium solutions.

Lifting this bifurcation back to the full cquations (1.3) we obtain the
existence of a bifurcation of an invariant 3-torus from a 2-torus with lincar
flow. This is the 3-torus found by Knobloch [207]. The original periodic
solution ol the amplitude equations is, of course topologically conjugate to
rotation of a circle; this conjugacy can be lifted back to the SO{2)x §’
cquivariant flow on the 3-torus, showing that it must also be conjugate to 4
lincar flow.

We now claim that the existence of this bifurcation is preserved under
Dy-equivalence. If g is any bifurcation problem that is D, equivalent to the
normal form X, with ¢,= —1, ¢;=1, m+n -1>0, and m<0, then the
perturbed bifurcation diagrams of g are the same as those of the normai
form. This equality cxtends to the stabilitics of the R and S branches (bv
Proposition 3.2) and hence those of the T branch ncar its bilurcation
points. in thc unfoldings we also still have det dg >0, by essentially the
samc argument as that used in Proposition 3.2. Thus the Hopl bifurcation
from the T branch must continue to occur.

Any periodic solution of the amplitude equation created by a Hopf bifus-
cation from the T branch can only exist for the bounded range of 4 valucs
for which the 7 branch itsell exists. Of course there may bc morc than one
Hopf bifurcation from the T branch, but since there is a nct change in
stability during its existence there must also be a net production of periodic
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orbits. Thus therc must be some other means by which such a periodic
orbit is destroyed. The only possibility for a planar system is some form of
infinite period bifurcation involving the collision of the periodic orbit with
one or more separatrices of the amplitude cquations. Notc that the
existence of this inlinitc period bifurcation is again preserved under D,
equivalence. A further study of the normal form X would reveal morc
details of its dynamics, but it scems probablc that most of these will not be
invariant under D, equivalence.

7. SINGULARITY THLORY

The Recognition, Classification of Unfolding Theorcms are proved using
“singularity thcory” techniques, as adapted to bifurcation theory. In this
section we briefly review these. referring to Golubitsky and Schaeffer [15],
Golubitsky, Stewart, and Schaeffer [16], and Gallncy [12] for prools and
[urther details. The discussion is given for bifurcation problems which are
cquivariant with respect to any absolutely irreducible representation of a
compact group /° on R”. The definition of D, cquivalence given in Sec-
tion 3 cxtends easily to thc general case and we use~, to denote ~is
I'-equivalent to.”

The Recognition Problem

The recognition problem is concerned with determining when a bifur-
cation problem is cquivalent to a given one. We are [irst of all interested in
knowing when a germ is cquivalent to an initial segment of its own Taylor
serics and so in criteria lor deciding whether f'+ p is equivalent to f for
germs [ and p in (ﬁ,,( ), the &, ;(17) module of all D,-equivariant bifur-
cation problems.

DeriNtTioN 7.1, The set of higher order terms of a germ fe &, A1),
denoted #(f), is defined by

Pf)={peé ) g+p~rfVg~rf}

In [16] it is shown that 2(f) is a submodule of c’ﬂ,(l") which depends

only on the I-equivalence class of f and has the closely related property of
being “intrinsic.”

DermNITION 7.2. A submodule Mc[ S() is said to be intrinsic if for
every g and £ in (‘”,(1 :

eM and h~,g=heM.



DEGENERATL HOPF BIFGRCATIONS 251

For any linear subspace L of & ‘,,([') we define the intrinsic part of L.
denoted Ttr L. to be the maximal intrinsic submodule contained in L. The
usefulness of #(f) is greatly enhanced by a resuit of Gaffney {127 which
enables us to calculate it. Let {¢,(#)}*_, denole a minimal set of
homogencous gencrators of ((H,( ") as an &, ;(I") module. with ¢,{u) the
identity map and degree ¢,>2 for j=2,..., k. Similarly let {S(u),... S{u}}
denote a minimal set of homogencous gencrators of the &, ,(I7) module of
equivariant matrices, with S, the constant identity matrix and degree S, > |
for j=2,... . Both sets of generators can always be chosen to depend on u
only. Let m, ;(I') denote the maximai ideal in &, (7). For f'e u,( ) define
H(f) to be the &,,(1") module generated by

(m (1) dftu, 2) @ (u), df (u, 2) @y(u)en, df (u, 2) @l0),
m, Y S ) flue A), So(u) flu, 2) S, 2) flu, 233,

and #,(/) to be & module generated by 2% (u, 4}, where f,(u, 4) denotes
the derivative of / with respect to 4.

THEOREM 7.3 [12]. 2(f)=Ur(# )+ H:(])).

For our representation of I'= D, on R? this description is made more
explicit by the calculations in the next section.

The proofs of the recognition and classilication theorems given in the last
section use this result to calculate the higher order terms that can be dis-
carded in a Taylor serics and then uses explicit changes of coordinates o
bring the low order terms into the required normal form. General formuias
for these coordinate changes are given in the next section.

Unfolding Theory

A k-parameter unfolding ol fe (S‘:L,,-_(I ) is a germ F e(‘,,”( ), where
a=(%,., %) R* and I acts trivially on R*, with F(u, £, 0)= f(u, 2). If
Fu. A. 2) and G{u, 4, §) are two unfoldings of f'we say G factors through £
is there exist smooth mappings S, X, A4, and A4 such that

G(u, 2, BY=S(u, 2, B) F(X(u, 4, ). A(4, ), A(B)).

and for f=0 wc have S(u, /,0)=1, X(u, /.0)=u, A(i.0)=4i, and
A4(0)=0. An unfolding F ol f is universal if every other unfolding of f fac-
tors through F. We will also requirc that a universal unfolding has the
minimum number of paramecters among unfoldings with this property.
Universal unfoldings arc unique up to equivalcnce.

The universal unfolding il f is calculated (if it exists) by means of the
“tangent spacc” of £, denoted T(f).
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DermiTION 7.4, The tangent space, T(f), of a germ fe/,‘,( I') is the
subspace of ¢ ,,,(1" ) obtained by taking the vector space sum of the &, ;(I")
submodule generated by

{df (u, 2) @ (1), df (1, 2) @ (1), S\ (1) ftty 2)yeeey S{10) f(u, 2) }
and the &; submodule generated by f(u, £).

Notice that T(f) contains #(f).
The [undamental theorem ol unfolding theory is

THEOREM 7.5 [16] . Let F be a k-parameter unfolding oij(‘,,, .
Then F is a universal unfolding of f if and only if

E 1) =T(f)+ R {0Fjéa,(u, 4, )., CF/0,(u, 7, 0)}.

Tt clearly follows from this that a bifurcation problem has a universal
unfolding if and only if the dimension of ,“(F )/T(f) as a real vector space
is finite, and that thc number of parameters in the universal unfolding is
cqual to this number. This is the “C™-codimension” of the bifurcation
problem and is finite if and only il the dimension of (‘u,(l y/2(f) is finite,
which in turn is cquivalent to the dimension of é‘,/(l") Atr /#(f) being finite.

Another easy corollary of the theorem gives a recipc for constructing the
universal unfolding of a germ with finite C*-codimension.

COROLLARY 7.6 [16] Let fe ,“( } have C*-codimension k and sup-
pose { Py }c( ) is a set of germs such that

u/(r) T(f)(-DR{pl?’ pk}
Then

A
Fu, A, 2)= f(u, &)+ > 2, p,(u, 7)
1—=1

is a universal unfolding of f. |

This reduces the calculation of the universal unfolding of a bifurcation
problem to the calculation of 7(f). As we show in the last section, this is
convcniently done alongside the calculation of 2(f).

8. PRELIMINARY CAT.CULATIONS

This section consists of calculations of:

(a) a generating set for the module of D,-equivariant matriccs,
(b) generators of #(f) and T(f) when f'e “,(D4).
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{¢) explicit formulac for the cffect of changes of coordinates on low
order terms in f, and
(d) intrinsic submodules of &, ,(D,).

w3
(a) D,-Equivariant Matrices

ProrosrrionN 8.1, The module of D,-equivariant matrices is generated
over &, ,(Dy) by

This is proved, in a different coordinate system. by Buzano et al. [27.
{b) Generators of P( ,f' ) and T(f)

Recall that any fe &, ;(D,) has the form

1,7
( _/1(5_)/) I,V. .-..<-v 4-;'(,r . ,(,\‘\
flx v. 72) <f(\ v ')) p(N, 4, 7) )_) Fr(N, A1) 0 \ ‘.‘v'/;’

where poreé, (D,).
As bcforc, we identify &, (D,) with &,,(D,)®&,,(Ds) and write [ as
(p. #). Then easy calculations give
S f={(p.r
S, f=(Np—4r.0)
S;-/=1{0, p—Nr)
e f=(N>=A)p. — (N> = A)r),

We also nced d/'-(p1 and df-@,, where ¢, =(7) and ,=45(",) are the
gencrators of ¢ u,(D4). A straightforward calculation using (4.3) gives

(R.0)

df -@,=(p+2Np, +4A4p,, 3r + 2Nr, +4A4r )

(8.2)
df - @,=1(--24p —4NAp ,+ Ar, p—2Nr — 2/Ar, — 4NAr ).
The final ingredient for both 2(f) and 7(f) is simply
f.=(p,.r.) {8.3)

Using the expressions of (8.3), (8.4), and (8.3) in the definitions preceding
Theorem 7.3 and Definition 7.4 gives explicit formulac [or the generators of
KUY+ A5()) and T(f).
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(c) Low Order Terins
From (3.1) a general D -cquivalence consists of:

(i) a mapping Z(u, 2): R*xR— R* which is equivariant with
respect to the D, action on R?,
(ii) a D,-cquivariant matrix S(u, Z), and
(iii) a mapping A(A):R—- R

These satisfy dZ(0,0)=al and S(0,0)= AL wherc a and A are strictly
positive rcal numbers and A'(0) > 0. The cquivariance of Z and S imply

Z=u <Y) + bd ( X ) =(a, b)
’ - (8.4)

S=.1S, + BS, + CS:+ DS,,

where a, b, A, B, C, De &, ;(D,).
An casy calculation shows that composing N, d, and 4 with Z gives
N=N.Z=aN—2abA+bh’N4
§=08-7Z=(a*—2abN + b*1)é (8.5)
Ad=4-7=(a’—2abN + h*1)*4.

A further calculation shows that the result of applying the coordinate
changes Z and 4 to f=(p,r) is

(ap + b(a? —2abN + b°A) AF, bp + a(a” — 2abN + b2A)F), (8.6)

where = p(N, 4, A) and r=r(N. 4, 7).
Finally, applying S to (8.6), using (8.1), gives (p. ), where
p={4a+ BaN — (Bb+ Da)4 + DaN*} p
+ {[Ab — Ba + BbN + Db(N* — A)][a> — 2abN + b?4]} AF (8.7)
F={Ab+ Ca— CbN —Dh(N*—A)} p
+ {[a— CaN + (Da+ Ch)A — DaN*][a* - 2abN + b4 ]} F.
That is, any germ D, -equivalent to (p, ) can be written as (p, F) for some
a, b, A. B, C, D, A.
By taking the Taylor series cxpansions of § and 7 we can extract from
(8.7) the coefficients of low order terms of all bifurcation problems D,-

equivalent to ( p, r). Thosc we need for the cxamples in the next section arc
given in Table VII. Thec expressions p;, ra,, (Aa)y. elc, arc partial
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TABLE V11

Low Order Terms of Bifurcation Problems D g-Fgtivalent te (p, 1)

(1, 0) Aad, p;
(A0} da'p.,
(4,0) 24a%hp,, - 1a’p,+(Aa’h~ Ba')

(42.0) (4aV,A. p, + Aa(A,)p;, 2
{#N.0) ((Aa), + Ba) A, p, + (4a),a’p., + Aa*A, p,,
N2 0) (Ba® L (Aa) a’ Y py + Ad’pani2

(24,0) ((Aay, (Bb+Da) A, p, —2(4a), abp, ~ (Aay,a*p, 24a’hA,p, .,
+APA, p, 4~ (4a°h- Ba'),r+(Aa’b~ Ba*) A,r,;

(¥4, 0) (Aab? - 3Ba’h -- Da* —2(Aa)ab + (Aa) a*) p+
+(—44a*h+ B’ + (Aayva* p,y+ Aa'py
~{ 24ab’ = 3Ba’b - (A@2)\Vr + (da'th —Ba'yry

0.1 Aa'r
(6.4 (AD+Cay A, p, + (Ad),r+ Add*A,r,
0, ) (Aa’b+ Ca*p., — 24d’b — Ca’yr + Ad'r

(0. 1) —2(Aab* + Ca?b) p, + (Aa*b + Ca®) p,
+(Aab? + Ca?h+ Da*yr —2Aa*br + Aa'r 4

derivatives with respect to the subscripts. All terms are evaluaied at 0 and
we have assumed throughout that p(0)=0.

(dy Intrinsic Submodules of <§i,_,_(D4)

Recall that an intrinsic submodule of (5—‘1,,-_(134) is a submodule that is
invariant under the action of the group of D,-cquivalences. An ideal in
&.,(D,) is also said to be infrinsic if it is invariant under the group of coot-

dinate changes
(U, )-') i (Z(u’ /.")a A(;')),

where Z and A satisfy the conditions in (3.1).

We write submodules of c‘?’:‘,,:(D4);5‘,,‘;_(D4)®6",,,;_(D4) as I®J, where /
and J arc ideals in &, ,(D,). The following result is proved using the
formula in (8.7) (for (i)) and (8.9) (for (ii)).

ProvosiTioN 8.2, (i) If I is an ideal in &,,(D,) which is a sum of
products of the ideals {1, {A) and {N, A4 then I is intrinsic.
(ii) A submodule (1, J) of é_’;,.,-(D‘,) is intrinsic if and only if both I und
J are intrinsic ideals in &, ,(D,). [cJ. and {A>Jc I
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Remark. It follows from (ii) that /@7 and {A4>1@® I arc intrinsic sub-
modules whenever [ is an intrinsic ideal.

9. PrOOF OF THY THLEOREMS

Most of this scction is devoted to outlining the calculations necessary to
verify the Recognition Theorem. However, we begin by discussing the
Classification Theorecm and the Unfolding Theorem. By the gencral results
in Section 7, the latter is reduced to the calculation of 7( f) [or each normal
form f. This is a straightforward excrcise and is conveniently carried out
alongside the calculations that arc necessary for the Recognition Theorem.
Examples are given below. For the Classification Theorem we refer to the
accompanying llow chart (Table VIIT), which describes a partition of the
space of k-jets (at 0) of germs of D,-cquivariant maps with p(0)=0,
denoted J¥, into (semi-algebraic) subvarietics. Specifically we associate to
every terminal point of the flow chart the subvariety defined by the set of
conditions on the partial derivatives which distinguish that terminal point.
It is easily seen that those subvarietics associated with the terminal points
labelled by normal forms have codimension in J* (for k sufficiently large)
equal to the number given under “C" codimension” in Table I1, while all
the remaining varieties have codimension greater than or cqual to three.
Denotc the union of the varieties of codimension >3 by X*. A standard
transversality argument implies that the image of the jet extension of a
generic two-parameter family of D, cquivariant germs will not intersect 2™*
and the Classification Theorem therefore f{ollows [rom the Recognition
Theorem.

We now turn to the proof of the Recognition Theorem. The theory and
formulac given in the previous two sections have reduced this to routine,
though cxtensive, calculations. The details of these are left to the diligent
reader. Herc we shall give a procedure that may be followed and illustrate
it by a number of examples.

For each normal form ftherc arc two calculations that have to be made:

(1) Check that 2(f') contains the submodule, M, of cf;:.,:(lh) listed in
the third column of Table IX.

(2) Check that any germ g satisfying the defining and nondegeneracy
conditions for f, given in Table 11, is D,-cquivalent to / modulo M.

It then follows from the gencral theory that g is D,-equivalent to f“to all
orders.”

Because of the algebraic difficulties with working directly with
K () +A()) it is best, in (1), to begin by showing that (/) (an

&, .(D,) submodulc of (ELJ(D“)) conliains the submodule iisted in column 2
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TABLE VI

Fiow Chart of the Classification
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TABLLE 1X

Algebraic Data for Normal T orms

Itr - #,(f) contains P f) contains
1 (AP + A7) As2nd column
11 (A4 LAY A, . 7)) As 2nd column
I (A3 =l G Ay ™+ (A As 2nd column
v (H>..H7) As 2nd column
V (PN ADHAD HEH N AD) As 2nd column
\1 (A H () + 4>, &) As 2nd column
VII (0% A5 +{ADE+ i dhy, As 2nd column
= WA= (D)
VI (A4 (A B+ lt LAD) As 2nd column
X (A LAY, A+ 1A D) As 2nd column
Xl LAY+ LA T LD, As 2nd column
W4 G4
XI (A4 Aot 4 (N, A) (W34 AD>ti)
XIT (ol 4+ 27CAS + LAY, ol + 01 AD) (A4 A i (4
XIT (43 (N, A5% 0+ <N, 4) (A3t N A, )

XIV (=N AD A, PN AY) (#+ #ENA) - N AT (A,
A+ N A

XV (3 (N, AD2 2 LAY, HE+ (N AD) As 2nd column

of Table IX. This is iflustrated in thc examples. [n the table and the exam-
ples we use .4 to denote m,, ;(D,).

ExampLE 1: NormaL Form IV. We have to show that, for
f~(s92+& N+md, g;N) with m##0.
(1) (A (1) + Aa(f)) = (M2 M?).
(2) TIf g~ (p,r) satisfics
r0)=0, p(0)#0, p0)#0
P(0)r4(0) = pa0) ra(0)#0.  pi(0) ry(0)— pr(0) r;(0)#0
then it is D,-equivalent to /, modulo (.#7, .#?), with
go=sgn p,(0), & =sgnpa(0), & =zmsgn(p.(0) ry(0)— py(0) r;(0))
m =, p;(0)*(pa(0) 4(0) = p,(0) 5(0))/(p;(0) r;(0) = pi(0) r;(0))".
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TABLE X

{23, 0) (2N, 0) (24.0) (N 0) (NA.0Y (A°,0) (0. 22) (0. 2N) (0. 24) (0, N°) (0, N4) (0. 47

20 &) " £
a £ m 25
&y & m &
& 3s, Sm S¢s
&g 3¢ Sm e,
Ly 3¢, Sm 563
. &, - &,
& & H1l
&9 . m
£ &) 1
I -z, —m s
28, o 8y om- 26
- 28, e e m  2e-
-2g, fa e, om—e;

We will also show that

(3) T(/)= (M’ + {i>, .#)+5 further elements, and a universai
unfolding of fis given by adding the term «(0, 1) to the normal form.

Using the generators of #,(f) given in Section 8(b) we sce that

AU V=0 NoAY  Hegd+ e N+ md, 3N, (804 + 36, N + 5md, Se, NV
+E,,0Dg) HegiN +6, N+ (m —¢;,) N4, 0).
(0, 204+ &, N+ md -- g, N?),
(N = ANegr + &, N+md). —e, N(N* - A)).
(=22, A+ (65 —dm) NA, e/ + &, N+ (m— 2e,)4 — 2, N7} ).

We prove that #,(f) > (.#*, .47 by showing that the inclusion holds
modulo (.#°, .4%) and then applying Nakayama’s lemma [16]. Showing
the inclusion mod (.47, .4") is an exercisc in linear algebra; it amounts io
showing that the matrix in Table X has rank 12 {providing m = 0). This is
left 1o the reader. Thus #,(f)> (.#° .4%) and since this in inirinsic.
P([)o (A2, .07

Next we cajculate T(f ). Since T(f) > #,(f) 2 (.7, .#’ ) we only need to
carry out the calculation mod(.#2, .4%). As a vector spacc over R.
T(fY(.#7, .#7?) is generated by the following matrix:
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(1.0) (~,0) (N.0) (4.0) (0. 1) (0, 4) 0, &) 0. 4)

£y & m
£ -m —&
&) 2m 2in
£y £,

&

Lo

Thesc rclations are independent and so T(f) = (.#/*+ (A5, .#?) together
with 5 further generators over R. A complement to 7(f) is given by
R-{(0.1), (A, 0)} and so, since the cocflicient of (4, 0) in f'is a modulus, a
universal unfolding is obtained by adding the term «(0, 1).

Finally, we use the formulac given in Table VIl to show that any
g~ (p, r) satislying the defining and nondegeneracy conditions of f is D,-
equivalent to f mod (.47, .4?). Since p(0)=0 and r(0) = 0 the cocfficients of
(1,0) and (0, 1) must always be 0. We¢ nced to choose values of 4. C, 4, b,
and A4; so that, evaluating all terms at 0:

(a) coellicient of (4, 0)=Aad, p,=sgn p;

(b) coelficient of (N, 0)= Aa’p,=sgn p,

(c) cocfficient of (A, 0)= ~24a’bp v+ Aa’p 4
= sgn(p:/(p,ra—par INpAp,ra— ]’w"/))z(/),v’”/t —Palx)

(d) coefficient of (0, 2)=(Ab+ Ca) A, p, + Aa’A,r, =0

(e) coefficient of (0. N)=a*(Ab+ Ca) py+ Ad’r,
= sgn((p.ry— pvr.ip,)

(f) cocfficient of (0.4) = —2ab(Ab + Cu) + a*(4b + Ca)p, —
24a*br + Ad’r ,=0.

Thus we need. from (a), (b), and (d),

AaA; =1 p,l. Aa*=1/|pyl, Ab+Ca= —Aa’r,ip, = —r;/|py| ;.
L ?

Substituting for Ab+ Ca in (c) gives
Ad’ = 12/l piry— parsl
and substituting into (f) gives
Aatjp A (psra—1,p4) =2b(p;1y—1,Px)} =0
and so we must have

b=a*(pira—r.p)(p;ry—r;pu)i2.
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These conditions completely determine 4. C, a. b, A, and it is casily
checked that the valucs obtained for these also satisly (c).

Examrre 2: NorMaL Form XII.  Our second cxample is a normal form
for which 2(f) is strictly larger than Itr #,(/). Using the formulac of
Section 8(b) we obtain

H ()= AN, Ay {(egd” + 6, N +niN + 6,40 80)
(€942 + 38, N+ 3miN + 5e,4, 36,3}
+ &, (D) {(eoAN + 2, N+ mAN® +6,N4,0),
(0, ey A* + mMAN +¢,.1),
(N7 = Mo+ e, N+ mAN + o, 40 6 (N — 1)},
( ~e,d—=2mid~ 4e-NA, eod” — & N+ miN =, 1),
Hy=¢6, ((2eoi+mN,0)}.

We leave the rcader to verify that
HA Vo M= (A + 2+ A, 77+ 1 {AY)

using the samc method as in the previous cxample.

Modulo M, #(f)+ #5(f) is generated over R by the elements shown in
Table X1 (omitting some obvious redundancies). The combination of rows
(1) —(2) — (3) + (4) gives —2(m(iA4,0) + 2&5(N4, 0)) as an clement of
H(FY+ H,(f). Combining this with (5) shows that il m°+#£4e,c, then
A )+ A(f) contains (24, 0) and (NA, 0). 1t now follows casily that in
fact

A+ A2 (P LAY, + (A
This is intrinsic and so
PUYS P+ LAY, 24D
It remains o show that any g~ (p.r) satistying the defining and non-
degencracy conditions of f is Dj-equivalent to f mod(./Z7>+.#4<{4),

M+ {A4>) and to calculate T(f). Thesc can be done as in the previous
example and are left to the reader.
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