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In this paper we study degenerate Hopf bifurcations with O(2) symmetry 
in systems of ordinary diffcrcntial equations 

.i+F(x, i)=O. (1.1 

where I;: UP x u8 + H”. We assume that F commutes with a (nontrivial) 
linear action of O(2) on 58”. that is: 

F(;:x, A) = ;lF(x, i) v;: E O(2); (1.2 

that there is an 0(2)-invariant equilibrium that, without loss of generality, 
we take to be x =O; and that there is a value of i., which for convenience 
we take to be iL = 0. at which the Jacobian matrix DF(0, 0) has a pair of 
purely imaginary eigenvalucs which after a resealing of lime in ( I .I ) may bc 
assumed to be +i. Generically there are no other cigenvalues on the 
imaginary axis and lhe repre5cntation of O(2) on the eigenspace corrc- 
sponding to the cigenvalue i is irrcduciblc. This means that the eigenvalues 
+i are simple or double (see [ 17 1). The simple eigenvalue cast may be 
understood using the standard Hopf bifurcation theorem; here we assume 
that the eigcnvalues at + i are double. 

There are a number of physical situations where circular symmetry seems 
to bc important and where Hopf bifurcation with double eigenvalues 
appears. We mention four: oscillation of a flexible pipe [ 111, the Couette 
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Taylor cxpcriment [IO; 71: doubly dill’usivc waves [31 -1: ad porous-plug 
burner flames [l9]. Such systems have scverai parameters and because of 
this wc may expect dcgeneracies to occur at special parameter values. Our 
study is motivated by the fact that the (quasij global behavior of suc5 
systems is organized by these dcgencracics. 

There are two types of degcneracies that occur in tnuitiparametcr 
systems, mode interactions and higher order singularities. Mode intcrac- 
tions occur when sevcrai eigenvaiues of DF(O. 0) appear simulaneous$ on 
the imaginary axis. Motivated by the Couctte ‘l‘a:$or expcrimcnt. studies 
have hem made of O(2)-symmetric Hopf-steady state mode intcractior.5 
[IS] and O(2)-symmetric Hopf-Hopf mode interactions [3. 5]. The 
gencrai O(2) Hopf-Hopf mode interactions probicm is cons&red iI\ 

Chossat. Goiubitsky: and Keyfit/. [S]. Mode interactions wiih double XX 
cigenvalues ha\e been considered in Dangeimayr :.nd Armbruster [S] 2tr.d 
Dangeimayr and Knobioch [IS]. 

fiighcr order singularities occur when certain nondegcneracq conditions 
in the simplest O(2)-Hopf theorem fail. in this paper “he ciassify and unfoiJ 
those singuiaritics that may be cxpectcd to appc,~ in ,<ystcms ( 1. I ; ti-.;!; 
dcpcnd on two parameters in addition to the bifurcation parameter i; :h;r: 
is, the singularities of codimcnsion less than or equal to two. The codimcn- 
sion /era and one singularities have been studied by sekcrai au:hors. as WC 
now explain. For case of exposition we assurnc that di cigenvalues C; 
DF(O, Gi., other than + i, have possitive ITXtl p>lt?. WC assume !hat liif> 

cigenvaiac of UF(O. j.) corresponding to !’ (when I -0) crossc5 :;x; 
imaginary axis with nonzcro speed and that this eigcr?vaiuc also h,;s :: 
positive real part ahcn X ~0. ‘rhus Y- 0 is an asymptoticail) <tzb!:c 
cquiiibrium when i > 0. 

I: is now well known that under these assumptions there exist I*W 
families of periodic solutions to (1. I ), rotatin, 17 waves and standing waves 
SW Rucllc [‘2?], Schccter [24], van Giis [?b]. and Goiubitsky and 
Srewar: [ 171. Moreover, thcrc is a kind of exchange of srnbililj That IS 
valid generically and which rnay bc expressed as follows. Pieithcr family of 
periodic soiutions is asyrnptoticaiiy stabic unless both families bifurcate 
supcrcritically. and then precisciy one family IS stable. The super- or huh- 
critically of each branch: as well as their stabilities is dctermincd by two 
numbers that depend on the Taylor expansion of F(.r. L) a; (0, 0) up ro 
order 3. Thus the codimcnsion zero singularities arc detcrmincd by fo;;l 
nondegeneracy conditions: 

(a) cigenvalues crossing the imaginary axis wilh non/era spcctf: 
(bj supcr!‘sub-criticality of rotating waves. 
(c) super/sub-criticality of standing waves, and 
(d) the competition between stability of rotating and standing wavc~. 



218 C;OL.USITSKY AMI ROUIIR’I S 

The codimcnsion one singularities are found by having precisely one of 
these four conditions fail, and then imposing certain nondegeneracy con- 
ditions at a higher order. The most interesting codimcnsion one singularity 
occurs when (d) fails. As discovered by l3ncux and Matkowsky [ 111, pcr- 
turbation of such a singularity lcads to a branch of 2-tori connecting the 
standing and rotating wave branches, and: under certain circumstances, 
this 2-torus can bc asymptotically stable. More precisely, Erneux and 
Matkowsky work with the system (1.1) in normal form and it can be 
shown (WC will do so below). that under such circumstances the flow on 
this ‘-torus must bc linear. Recently Chossat [4] has shown that this 2- 
torus and its linear flow persist cvcn when (1. I ) is not assumed to bc in 
normal form. 

Swift [25], Knobloch [20], and Nagata [22] have each investigated the 
codimcnsion one singularities corresponding to dcgencracics in (b) and (c) 
above. In addition. Knobloch has studied certain codimcnsion two 
dcgcneracies. the most interesting of which lcads to the cxistcncc of an 
invariant j-torus. 

Our paper extends the work dcscribcd above in several ways: 

(1) We include the elTccts of degcneracies in the bifurcation 
parameter (that is, failure of (a) above). This is analogous to the 
classification of dcgencratc Hopf bifurcations, without symmetry, given by 
Golubitsky and Langford [ 141 (see also [ 151). Some familiarity with those 
results will bc helpful in the understanding of the results WC present here. 

(2) Our classification is complete up to codimension two and 
includes all nondcgencracy conditions. 

(3) The universal unfolding theorem guarantees that WC have found, 
up to an appropriate notion of equivalence. all possible perturbations of 
the singularities we classify. 

Our main results arc summarized in Table II, where the complete 
classification is given, and in the figures of Section 5. where the quasi- 
global information obtained in the universal unfoldings of the singularities 
is pictured. We rcgrct that this information is sufficiently complicated that 
the figures are necessarily incomplete; this is, however, an accurate rellec- 
tion of the complexity of the problem. Ncverthelcss, the main conclusions 
are illustrated. 

The rcmaindcr of the paper is divided into tight sections. In Section 2 we 
follow Swift [25] in reducing the Q(2)-symmetric Hopf bifurcation to one 
of finding zeroes of /I,-equivariant mappings on W’. This reduction uses 
the center manifold and Hirkhoff normal form thcorics to obtain D4- 
equivariant amplitude equations. In Section 3 we dcfinc D,-cquivalencc and 
state our classification results. We discuss how to solve these amplitude 



equations in Section 4. Section 5 is devoted to constructin? the bifurcation 
diagrams for the normal forms of Section 3. In Sec!ion 6 WC describe hov> 
to find Knobloch’s [:20] invariant 3-torus using our rcsuhs. 

The proofs for our main theorems arc given in Scclions 7 -9. The 
necessary singularity theory background is dcscrihcd in Section 7. The 
calculations nccdcd to use singularity theory are described m SectIon S. 
Here wc rely on results from Ruzano ~1 u!. [2 1. The main ideas in th:: 
proof\, and some of the most difficult calculations. are summarized ii; SW- 
tion 9. The calculations have been substanCallq simplified using a reccn! 
result of Gaffncy [ 121 which is described in Section 7. 

Ccntcr manifold theory alloas us to stud! small amplitudc periodic 
solutions to ( 1.1 ) by analyzing 

1 + j’(s, ;.) = 0. (2.i ) 

where /: 9’ x $1 + IF”,” commutes with the action of O(2) on K”. identifird 
with the sum or the + i cigen$paces. 

There is also a natural action of the circle group S’ on 1s’ which stcnis 
from (2.1 ). IT<’ can be identified with the space o !. 7 - LX p orwdic solulions *!C 

;he lincarizcd system 

1 + I>/‘( 0. 0 ) . \’ = 0 (2.2) 

and S’ acts on these 2n-periodic solutions by phase shifting. The theor? ol 
Rirkhoff normal Forms [ 171 allows us to use nonlinear changcb of coor- 
dinates to transform (2.1 ) to commute with the action or O(2) x .S1. Mo:c 
prcciscly. for each integer /C thcrc exists a pol>nomiai chansc or coordinates 
so that f‘commutcs with O(2) x -5” modulo terms of dcgrce greater than k. 
WC note, however. that as k increases to infinity the neighborhood of !hc 
origin on which this transformation is valid ma>- shrink to nothing. 

Jn this papa we assume that f’ commutes with O(2) x .‘i“ to all ordc:s. 
This may appear to bc a strong restriction, but the local dynamics ~1‘ nc); 
system (2.1 ) is well approximated by an O(2) x S’ equivariant sy~tcm. ;I! 
least regarding the existence and stability of small ampliwde periodic 
solutions with period near 2~. This can he proved using I hc theory :Y 
Golubitsky and Stewart [ 171 and Cl~ossat [43. 

The group O(2) is generated by 0 E SO(?). where 0 d 0 < 2;r and i:.~? 
mvolution K. The group of phase shifts S’ has as typical clement (I,. when: 
0 < CP < 27~ It is now well known [3 -5, 26, 71 that it is possible to identify 
$4’ with C’ and choose coordinates so that the action (if O(2) x S’ is. 
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(a) U.(z, ) z2) = (l+Q: c ‘SJ 

(b) IC~(;,,Z~)=(Z~:.Z,) (2.3) 

(c) cp. (2, : 7*) = (@“‘k,) Pzz). 

The O(2) x S’ equivariance of f’imposes strong restrictions on the terms in 
its Taylor scrics expansion. The normal form WC USC is rclatcd to those of 
Swift [25] and van Gils [IX]. 

f’(7 ;*)=(p+iy) ZI -‘.Z2* 0 
31 $(r+i.s)h . \z2 ( ) -?2 

,~~hrrc p, q. I’, and .Y urc O(2) x S’ incariant ,fLnction.v WI C’ x R. 

The proof of this is n straightforward invariant theory calcularion. See 
Swift [25] or Golubilsky, Stewart, and Schaeffer [I&]. 

Rcmcrrk. With this notation the hypothesis that D/‘(O. 0) has cigen- 
values + i becomes ~(0, 0) = 0 and q(0, 0) = J. 

One of the nice facts about the form of the vector field given by (2.4j is 
that it allows us to scparatc the four-dimensional system of ordinary dif- 
ferential equations into amplitude and phase equations. If WC’ write 
i, =x1&l ) z2 = -pY’ ’ -, ‘I”’ then the equations 

t,+(p+iq+(r+i.r)~)z,=O 

i,+(p+iq-(r+is)d)zz=O 
(2.5) 

become 

f+(p+i+).Y=O 
amplitude equations (2.621) 

j+(l7-r6)Il=O 

$,+(q+.s+O 

l+b2+(y-s~)=0, 
phase equations (2.6b) 

where p, q, r, and .V arc functions of N. A. and 3.. where N = X’ + J.~. 
(j = ,;* - .g, and A = 3’. This calculation may be done by diffcrentialing the 
identity .Y’ = z, 2, to obtain 

xi = Re(5,5, )= --(y+rii)z,Y, 
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and similarly with J.’ =z,Z,. Tn this paper we are chiefly concerned wi!l - A 
the amplitude equations which we think of as defining a vector field on R’, 
WC follow Swift in noting that these equations are equivariant with respect 
to the group action on R’ generated by the symmetries: 

Ihi P group is the group of symmetries of the square in 3’ with vcrticci 
( f 1) 2 I ) or, abstractly. the dihedral group 11,. The II,-eyuivariancc of 
the amphtudc equations is essential to our classification procedure. li is not 
hard to show that (2.6~1) gives the general form for a II,-equibarianr vector- 
field on R’. Compare with t3uLano rt ~1. [2j. 

WC now describe the correspondence between equilibrium solutions oi 
the amplitude equations (2.6a) and soiutions of the original equations 
(2.5). Observe that if (x,,. J’()j is an equilibrium point of (2.&j then the sub- 
manifold of R” defined by zl = Y,~@“~, z2 = J~~,c”“I~ as $, and $: vary., is 
invariant under the flow described by (2.5). These submanifolds arc point:, 
(if -Y. = 0 = .I’~~), circles (if .Y() = 0, J’~ # 0 or .lcg f 6 J*,) = O), or tori (if xg f 9, 
.I’,) f 0). The solution z! = 0 = zz is always an equilibrium point of (2.5). The 
possible 110~s on each of the other invariant submanifolds arc restricted by 
the symmetry conditions. Each submanifold is x orbit of ihe SO(Z) x S’ 
action on R”. This means that the vector lieid on each invariant orbit is 
determined by its value at any one point; in particular if it is Lero at one 
point it must bc zero on the whole submanif&l. Thus the invariant circ!es 
arc either periodic solutions of (2.5) or , exccptionaily, circles of cquiiibrium 
points. while the invariant tori have cithcr ‘kX;“ fiO\r;S Or, :3gair! exCC?3- 

tionaily, are tori of equilibrium points. This can also bc seen by considering 
the phase equations (2.6b). since for each in Itar-iant orbit both &, ;?nd $, 

are COI%iAtli. 

For certain tori the equivariancc with respect to K in ~‘32) places cvcn 
further restrictions on the flow. The involu!ion K maps invariant tori to 
invariant tori, taking .(z, = YOWL@!, zz = ! oc ,‘Y’) t() I - l’ ] = y(re”” ‘., zz _= ~yoc~c:” ),, 

If +‘cC, = J’~) (or. equivalently, .‘I(, = -I.,,) then this takes the corresponding 
torus to itself: leaving fixed the subset given by +I = 1/1>, a circle in the 
torus. The equivariancc of the vector field with respect to E implies :ha: 
this circle must be invariant under the flow and hcncc must be a periodic 
solution. The linearity or the flow on the torus now implies that the w!lole 
torus must be filled out by periodic solutions. Again :his can aiso be see by 
considering (2.6b). 

We Slave shown that the equilibrium points of (2.6a) correspond to four 
differen: types of invariant submanifolds of (2.5): an equilibrium poinl at 
the origin, “isolated” periodic solutions, invariant tori foliated by periodic 
solutions. and invariant tori with general linear .flows. These may be dis- 



TABLE I 

Label 

O(2) x S’ Acmn on 1:: 
~----_ 

Isolropy Fixed point 
subgroup se1 

114 ( (0, 0) ; Iiquillbrium point 

{I, I) [(,K, 0)) Pcrioclic solulwn, 
I(& J) = (.r. -4’) “rotalmg wves” 

(1, Jj { (4 x) j Torus foliated br 
J(r,~)=(.v.x) periodic solutions. 

“standing \s aves” 

{I) 

tinguished by cithcr the isotropy subgroup of 11, at (x,,: J()) (the subgroup 
of D, fixing lhe point) or by the isotropy subgroup of O(2) x S’ at II point 
in the corresponding invariant submanifold OC W ‘. This inrormation is sum- 
marized in Table I. The group .5=) is the subgroup of S’O(2) x 5” = 
( (<,rHq p ) ) given by 0 = --CD: while a, is the group gcneratcd by IC and Z:‘ is 
gcneratcd by (e’“. P) E SO(2) x S’. Note that 2:‘ fixes every point in C’. In 
the table we have only included one representative from each colijugacy 
class of isotropy subgroups and the fixed point set is the fixed point set of 
that represcntatiw. The solution tppcs labellcd R and S arc those tiith 

T = : 
: ---_ 

--. : 

ciE9 

1 

‘\\ 
\ 

‘.- ,I’ 
\ 
\ \ 

FIG. 2.1. Types of inwrlant submnnifolds given by equilibrium pointr, of the amplitude 
equations: fi: pcriodlc solul~on; S: torub of periodic solutions; 7: torus wth lmear ilow. 



“maximal” isotropy subgroups, having two-dimensional fixed point sets ,C:’ 
(see ‘Table 1). These are the solutions whose exislcncc near the bifurcation 
point i% proved in Golubitsky and Stewart [17]. These periodic solutions 
arc called “rotating waves” and “standing waws,” :cspcctiwAy. 

We end this section by observing that the correspondence between 
equilibrium solutions of the amplitude equations and solutions of the 
original equations preserves stability. 

I’x~o~~ A /era (A-~~, ~3~~) of the ampliludc equations is asymptoticaify 
stable if. for ckcry tntjcctory (.Y(I). I*) with initial point sufficiently cloce 
to 1X,), .!‘(, ). the trajectory stays near (So,. J’!,) and lirn, _ , (x(t). J,(!)) = 
(.vo, yII). I.ct .M bc the orbit of X1(2)x S’ given by II!/ =x,,. 1~~1 = J:!. 
Then .\/I is asymptotically slablc if and only iiY for every tr;l.jectorv 
(r,(t). z?(t)) of the four-dimcnsioIlal system, with (z,(O). z?(O)) sufficicntiy 
close lo .Irl: lim, ._ x (12,(z),, Iz?(t)l)=(.v,,, yoi and so if and on14 if (x,), v!!) 
ih asymptotically stable as an equilibrium solutions of ihc Clm4iiucizz _ r 
equations. 1 

RcwrrrX Observe that solutions that tend to a 2-torus of standir;g 
;havcs actually converge to a single periodic orbit on that 2-torus since $,, 
tends to a constant in the phase equations (2.6b). 

In the previous section WC rcduccd the study of equilibrium orbits :.,f 
O(2)-equivariant kector liclds near a Hopf bifurcation point to that of .!I,- 
cquivarianl vcclor lields on R’ in a neighborhood of the origin. We aiso 
saw that wy I),-cquivariant \;ector field can hc written as 

We are chicily interested in the equilibrium points oi j’ and so in the 
solutions of the equation /‘(.x. 1’. ib) = 0. We shall study the bifurcations of 
these solutions as the distinguished parameter i. varies. using singularity 
theory methods. WC rcfcr to the mapping J(.Y. J’: ;.) as a D,-bifurcation 
problem. it is convenient to introduce a notion of codimension Car I?,.- 



bifurcation problems. Loosely spcaking the codimcnsion of ,i’ is the 
minimum number of extra parameters needed for a generic family of bifur- 
cation problems to inc1udc.f: A more precise description is giwn in the last 
section. 

Our three main theorems give solutions to the following three problems: 

(1 ) Classify all /I,-bifurcation problems of codimcnsion ~2. The 
classilication consists of a list of normal forms such that any vector field 
with codimension ~2 is equivalent to one of these normal forms. The 
cquivalencc relation is defined below. 

(2) For each normal form give necessary and sufficient conditions on 

the partial derivatives of a D,-bifurcation problem for it to bc equivalent to 
that normal form. 

(3) Give a qualitative description of all bifurcation diagrams that can 
bc oblaincd by perturbing germs of D,-bifurcation problems of codimcn- 
sion 62. 

Dr.rrw IOIV 3.1. Two I),-bifurcation problems /‘and g arc II,-cyuicrrkent 
if there exists a smooth 2 x 2 matrix S’(U, i. j and diffcomorphism @(u: ;) = 
(qAT i), /f(i)) 0r R’ x R sucil thl 

g(L4. j.)=.Y(u: d),f’(Z(u, l.j, A(i)! (3.2) 

and satisfying: 

@(O: 0) = (0, O), (3.321) 

Z(y. 24, i) = -yZ(u, 2) for all ;! in f14, (3.3b) 

S( ;! . u. i) . ;: = ;: . S( 14: E.) for all ;’ in II,, (3.3c) 

/l’(O) > 0. (3.3d) 

S(0, 0) = A . I and dZ(O, 0) = 0 . I, 

where .4 and u are strictly positive real number. (3.3e) 

WC define &(D,) to be the ring of D,-invariant functions A” + R. 
Mat&es S satisfying (3.3~) arc called II,-cquivariant matrices and form a 
module over 8/,,,(/Il). A simple calculalion shows that, for any Z satisfying 
(3.3b), dZ(u: j) is also a D,-equivariant matrix. Equivariance imptics that 
S(0, A) = c(i,j. / for some c(E.) E 8;) and similarly for cZZ(0, j.j. As WC discuss 
next, the extra hypothesis in (3.3ej, that L.(O) =.4 >O and u>O. is ncedcd 
to ensure that II,-equivalence preserves the stability of at least some of the 
equilibrium points of ,f: 



(,i) 21 = 0. 
(ii ) 14 is of f~‘pc R or S, 

(iii) u i.~ c!f‘ /,p T und det df'(u, A) < 0. 

Proc$ It is sulficient to prove that for any equivariant matrix S such 
that S’iO, 0) = A I. where A > 0, the signs of the t-4 parts of the cigen- 
values of S . df’are the same as those of df when any of the conditions hold 
r 15, Chap. X. Lemma 3.3 and the following remark]. Observe that if ;! is in 
the isotropy subgroup of u then it follows from (3.3~) that 

S( II. 2) . ;’ = ;: S( 24: L). (3.4) 

The isotropy subgroup of II = 0 is D,. The commutativiry in (3.4) with II, 
forces S(0, ;) to bc a multiple of I, say c.(A) . 1. Since we assume ~(0) > 0 
and since df(O, j.) is also a multiple of’ the identity. I.he cigcnvalues of 
.S(O: i) df(0. E.) have the same signs as those of dff’(0, ;) and (1) ic verified. 
Similarly the matrix ;* = (A O,) ir in the isotropy subgroup of solutions of 
type X. Thus (3.4) implies that S and df are both diagonal and (ii) follows. 
The argument showing the invariance of the stability of type S solutions is 
abstractly the same. The nontrivial matrix in the isotropy subgroup of type 
.S solutions is ;! = (:) :,). Since 7 has distinct eigenvalues with cigenvectors 
r:, = ( I, ! ) and c7 = (1. - I ) it follows from (3.4) that .S and df aiso have V, 
and I:~ as eigcnvectors. Thus (ii) is verified. 

For (iii) WC note that, near (0, 0), det S(u, E,) must be positive imd so 
det S(m. i.) d/j 11, j-) must have the same sign as det Q’(u: I.). If this ic 
negative both the cigcnvalues of df‘(u, j.) and thosl: of S(U. i.) c~(u, i.) must 
have real parts with opposite signs. 1 

WC now come to the statement of our main classification results, for 
which all the relevant data arc contained in ‘Table IT. Note that the 
classification up to codimcnsion one is given in J3urano cl al. [?I md 
corresponds to the results of Nagata [22] and Knobtoch [20] described in 
Section 1. 
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equiwlent to u norinaI,form jf and onl~l if it satisjh the corresponding sets of 
“d~finbg” und “non-degcnerucy” conditions listed in Tuble II. 

UI\TFOI.DING THFIOREM. Any hfurcation diqrum oJ’ u perturbation of a 
germ D,-equivalent to u given norrnul ,fbrnz is qualitutioel~~ the surne us u 
h~fimation diaq-am ohtuined ,fhn the uniocrsal unjblding oJ’ the norrlzul 
jbm. The universal urzfblding is the ,ftimiJ~~ OJ hifirrcution problems obtained 
by &ding to the normal,form the terms listed in the tuhle. 

The proofs of these theorems will be given in Section 8: using the 
singularity theory and calculations outlined in Sections 6 and 7. Examples 
of the bifurcation diagrams obtained from the unfoldings of the normal 
forms are given in Section 5. 

Motes on stables If. (i) The DA-vector field (3.1 ) is written as (13, r), 
where p and r arc elements of &,,,.(D,). The defining conditions are given in 
terms of the partial derivatives of p and r, with respect to :Y, A, and E.: at 
the origin. 

(ii) The normal forms arc listed under fifteen headings, but under 
each of these there arc: in general, a number of different families of non- 
equivalent normal forms. Each choice for sign c, and distinct value5 of the 
moduli. m, n, give different normal forms. 

(iii) To obtain the universal unfolding of a normal form we need to 
add on the terms in the column headed “universal unfolding” and also 
allow the moduli to vary. However, for most values of the moduli small 
perturbations do not effect the qualitative properties of the bifurcation 
diagrams in the unfolding. When WC come to discuss the perturbed bifur- 
cation diagrams we will restrict attention to normal forms for which the 
bifurcation diagrams are persistant under perturbation of the moduli and 
explicitly consider only perturbations with respect to the parameter 2, [I’. 

(iv) The “codimension” given in the table is that referred to above. It 
is the number of parameters needed for a generic family of vector fields to 
include a germ cquivalcnt to the normal form (such a family is provided by 
the universal unfolding). This idea of codimension is the topological (or 
Co) codimension of singularity theory and is related, but not identical, to 
the smooth (P j codimension defined in Section 7. 

(v) The following expressions arc needed for VIII, IX: and X, respec- 
tively. 



,E - 1 
cl-2p,v,,5(Y,p,--(,., ) I ,) fPV(P\‘.,, -r\ PA,! 

+ Pj(I’,“.V\ - “,p\y)b 2p,(p,r,,-- I’,, /I,& 

In this section we obtain the three sets of equations that ilrc satisfied by 
the three different types. Ii, S, and T> of equilibrium points of the 
amplitude equations (2.6a). We also calculate general expressions that give 
the stability of these points; for R and S WC find the signs of the cigenvalues 
of df; while for T we give formulas for the signs of the trace and the deter- 
minant of df. Recall that if dct ~fj’< 0 then the eigenvalues zre rcai and have 
opposite signs and so the equilibrium point is unstable. while if dct L+‘> 0 
the real parts of the cigenvalucs have the same sign and this is posi:ive if 
tract fJ/‘> 0 and negative if trace @‘< 0. 



PIYM$ The equilibrium points of (2.6a) are the solutions of the 
equation 

f(x, JM(JI)+r6( g=o. (4.1) 

The solutions of type K are those satisfying cithcr ,I’ = 0, x # 0 or Y = 0: 
?;#O. Using the symmetry operation (.u, J) + (y, x) it is sufficient to find 
the solutions satisfying the first set of conditions and substituting this into 
(4.1) giws the rcquircd equations. Similarly the equations for solutions of 
type S can be found by substituting x = 1: into (4.1 ), noting that then 
8(x, .,;) = 0. Solutions where x = ---J arc found by symmetry. 

If x# 0, J# 0, s # +J then (:) and ( ‘, ) are indepcndcnt vectors in R’ 
and (4. I ) can only be satisfied if 1~ = 0 and F = 0 so these arc the equations 
for the solutions of type T. 

To obtain the stability information in Lhe table WC need to compute dfin 
terms of p and I’. Write f’ as (,I”,) J;). where j’, = (/I+ ~6)x and 
J; = ( p - 19) 1:. Since @is an cquivariant matrix (3.3~) tells us that 

where the second subscript denotes a dcrivativc with respect to x or J. A 
straightforward computation gives 

At a point of type K for which 3 = 0: r/f is diagonal and so that cigen- 
values are equal to u”‘,,(x, 0) and I//&(-Y, 0). If, in addition, the point is a . -- 
solution of (4.1) we have p =x’r and the eigcnvalues are given by the 
expressions in the table. At a point of type S’: when x= J, we have 
cffll(x~ .r) = df22(x, x) and &,Jx, X) = C&(X, X) and so the cigenvalucs arc 
I!/‘,~(x, x) + L$,~(x, x). F’or a solution of (4.1 ) we take p -0 to obtain the 
required cxprcssions. Finally the formulas for the tract and determinant of 
df at a solutions of type T. when p =0= I’, are obtained by routine 
calculation. 1 



We now discuss and illustrate the bifurcation diagrams that are obtained 
by perturbing the normal forms in our classification. Wc will give esseri- 
tially all the diagrams for the gcncric and codimension one normal forms. 
For the codimension two normal forms we will derive some useful general 
formulas and illustrate the bifurcation diagrams with some reprcsentativc 
cxamplcs. In our discussion WC will allow time reversal (.f-+ ;f’) and 
reversal of the distinguished parameter (3. + - j.) to reduce the nurnhcr of 
normal forms we must explicitly consider. 

I. Tlw Grwc~ric~ .Vo,wzal Form 

We begin with the generic normal form 

The equilibrium point at the origin is stable if zoi > 0 and unstable if 
‘-:(,i < 0. Since ~(0) # 0 there are no type T equilibrium points. T!>e 
equations for the types K and S equilibrium points and their stabilities are 
given in the following table. 

T!X l?quatlons Syns o!-eiecll~alues c 
--. --- 

R ,I -=o ,I! i:, 
rg.4 IW--;:,).i’=O c: 

s Y- I 111 
I:(, ;. + 2rnr 0 i:, 

-. -- 

There arc twelve qualitatively distinct diagrams corresponding to the two 
possible choices of cg and i-:, and the three choices of m given by the three 
regions of E 1, IO, C, 1. However, allowing the coordinate changes /‘+ --j 
(which interchanges stabilities) and i + .-i. (which intcrchangcs left and 
right in the bifurcation diagrams) means WC riced only illustrate the 
diagrams for E() = -- 1 and C, = I. This is done in Fig, 5. I. 

FIG. 5.1. Bifurcation dmgrams for 1: co- -1. I., = 1. 
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For the remaining normal forms WC are not so much interested in the 
bifurcation diagram of the normal form itself as in those of its generic 
perturbations. All possible perturbations arc qualitatively equivalent to 
those given by the universal unfolding of the normal form and for most 
values of the moduli they can be obtained by keeping the rnoduli lixed and 
varying onlv the unfolding parameters x and /;. When WC look at the cxam- 
pies we will exclude from consideration any values of the moduli for which 
this is not true. This is justified by the fact that the normal forms 
corresponding to such values of the moduli do not appear in generic two- 
parameter families of vector fields, they have codimension strictly greater 
than two. 

II. (GO>. + E, NJ: x2) 

The universal unfolding is given by: 

WC will rcstricl our attention to ,Q= -- I and c, = I. As r#O there arc not 
solutions of type 7’ and, with our choice of signs. the origin is stable for 
j. < 0 and unstable for EL > 0. The other solutions arc given in the table 
below and the bifurcation diagrams are shown in Fig. 5.2. 

III. The bifurcation diagrams for this normal form can be obtained from 
those of II by interchanging R and S 

IV. (r:J. + C, N+ mn, rzzN), ~7 z 0. 

The universal unfolding is 

p = E” 1. + R , N + II1 A 

We can choose c:() = -I and c2 = 1 so the origin is stable if i. < 0 and 
unstable if i > 0. The other equilibrium points arc given in the table below. 
Notice that the T branch can only exist if z < 0. 



Lpations Stabl!~ty information 

The vslucs of j. at which the 1’ branch bifurcates from the R and S 
branches are found to bc 

2 = -t’, % + llZs12 for the bifurcation from the R branch, and 

;. = --l’i 3 for the bifurcation from the S branch. 
See also the gcncral formula given below. The bifurcation diagrams arc 

given in Fig. 5.3. The only cxccptional value of the modulus is tti = 0 and 
the only diffcrcnces between the tn >O and m ~0 cases arc the dircctiou 
and stability of the T branch. For m < 0 the stability of the r branch is an 
invariant of D4 equivalence by Proposition 3.3. However WC have no such 
result for HZ > 0. though by the exchange of stabilities rule for pitchfork 
bifurcations WC know that near the points of bifurcation from the R and S 
branches the stability must be as shown in the diagrams. 

v. (r:,,i2irnN+(:,i,v, Cl), 117 #it(!: I;? 

The universal unfolding is 

~t’i”2-t~lN+c:,i!v+-x 

/-z-i:, 

a<0 a-0 a>0 
+- s 

R -+ -- 

5z E%'l ++ -- "W 

/--- 
+- $ R.L+,vp 

-zz ++ --_ 
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WC choose E() = 1 and I:, = 1. The origin is stable if i* > --% and unstable if 
j.” < -2. There are no solutions of type T. The other solutions are given in 
the table below. 

Type F.quations Signs olcigcn~alues 
-._~- ------ .----.. - 

R y-0 11, -c;4-i. 
1 - i’ + (172 ---c? - i) x1 =: 0 i’- ‘L 

s x = , lif -c i 
.1 

ry + AL -L l(n7 - /.) x-2 = 0 -I:> 

Notice that the R and S solutions can only bifurcate if a ~0. The bifur- 
cation diagrams are given for c2 = -1, those for c2 = 1 can be obtained by 
interchanging R and S (Fig. 5.4 j. 

Rcforc describing the codimension-two normal forms we shall develop a 
general idea that was implicit in the discussion above. Most bifurcation 
diagrams in a universal unfolding are pcrsisferz~, that is, a small change in 
the unfolding parameters dots not change it qualitatively. The bifurcations 
which may occur in a pcrsistcnt diagram are limited to those listed in 
Table 111, which also includes the equations for the corresponding bifur- 
cation points. 

a Cl<0 aY2 

m>O ++ ++&” ++ JIG: 

m<O ++ +pg” ++ g: 

FK;. 5.3. (a) Bifurcation dugrams m the unfolding of IV: c,, = -I. c! - I, 
I;? =- 1. (h) BifurcnLwn diagrams in the unfolding of IV: I:~ = ---I, i:, =- -1, x:, 7 1. 
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Bil‘urcatiops in Persistant Diagrams 

Label Descriptmn 

Generic bifurcation from 0 

I oid m R branch 

Fold III S branch 

Fold m 7’branch 

Pitchfork bifurcation 
from R branch to r‘branch 

PItchfork bll’ttrcution 
from 5’ branch to 1. branch 

However, on subvarieties of the space of unfolding parameters more 
degenerate behavior can be seen in the bifurcation diagrams. Roughly 
speaking, any codimension-one degeneracy defines a hypersurface in an 
unfolding space such that points on that hypersurfacc correspond exactly 
to the bifurcation diagrams containing that degeneracy. Similarly, codimcn- 
sion-two dcgeneracies define codimension-two subvarieties and so on. The 
subvariety given by a particular degeneracy is called the trurzsition wrict~. 
of the dcgcneracy. The transition varieties divide the unfolding space into a 
linitc number of regions in each of which the bifurcation diagrams are al! 
qualitatively the same and it is these diagrams that we illustrate. Fo: 
codimension-one normal forms the unfolding space is one dimensional and 
50 the transition varieties can only be the origin (since I and /3 arc alwa):s 
considered to bc “small”). However, for the codimcnsion-two normal forms 
the transition varieties of codimension-one degencracies can be qui:c 
complicated. They arc of two types. gkohul and latul. corresponding, 
respectively to (1) and (2) below. 

(1) For every pair (X; Y) of generic singularities, listed in Table Iii, 
there is a transition variety. denoted 9(X, Y), consisting of all values of the 
unfolding parameters for which the corresponding diagrams contain bifur- 
cations of type X and Y at the same jlalue of 2.. WC do not explicitly 
calculate the equations for these transition varieties; they can be found by 
eliminating x and J from the equations for X and similarly for Y: and then 
eliminating f. from the resulting equations. 

(2) There arc sixteen possible codimcnsion-one degenerate locai 
bifurcations listed. along with their equations, in Table IV. The first four nf 
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TABLE IV 

Codlmension One Local Transition \‘arletie.\ 

LXbel Descripllon Equaliuns 
-___. --- -. _- -. -. .- 

Blfurcalion from 0: 

normal form I I 

Bifurcation from 0; 

normal form I II 

Bifurcation from 0. 

normal form IV 

Hlfurcnlion from 0: 

normal form V 

Symmclrq prescrbin:: bifurcation 

from R branch 

Sq’mmctry prcscrvlng bifurcation 

from 5’ branch 

Degenerate symmclry breakmg 

bifurcation from 11 branch 

1)epencrate symmetry breaking 

bdurcation from S branch 

Hysteresis pomt on 

R branch 

Hysteresis point on 

S branch 

Coalescence of 3, 
w-ill1 .‘PR 

Coalescence of 3 / 
with :P\ 

coalesccncc or .Y ,< 
WItI YR 

Coalescence of Q 5 
with .‘P$ 

Bifurcation from 
7 branch 

Hysteresis pin1 on 
‘1’ branch 

p(O) 0: p,(O)=0 

p(0) 0; p,(O) --r(O) 

p(O) = 0. r(0) =o 

p(O)=O: p,10)=0 

,’ 7 0: p y+ = 0; ,,i - x $; - 0 

p,--‘+x’(2/.‘,1-r,)-2Zu’, , -0 

-II’= ! : ,’ = 0. p \ - 0: 

p, =o 

Not nccdccl eqdlcltlp 

Uor nscdcti esplicilly 

?’ = 0: p - x:r - 0; 

p, r+~‘(lp,-r,,j 2x j-,=0 

p,,\+2p, -2r,+sL(4p,, or,-rv,) 

+3.~‘(p,,~ -r,,,)-&,,.w” -0 

.Y 7 )‘, p 0: p,v 0: 

p \ , = 0 

J-0. p o:v=o; 

p,“,-pdrI=O 

.r--=j;,,--O:r=O: 

p.,r,-p,,‘,‘o 

.v : 0; p - 0: r - 0: 

p k T x"(2pn r,,)- 2x-5, -0 

u=,L;p--o;r=o; 
p4 z 0 

,, - 0; r = 0; 

Not neeclcd 



these are those occurring aL the origin and listed as I1 V in Table II. Most 
of the others are tither the usual codimension-one bifurcations that can 
occur (.‘n,(: %#.$. :lv;,. &. 9,. A$) or the codimcnsion-one bifurcations with 
one-dimensional critical eigcnspace and Z? symmetry (WRT qs: ,j+l,(? J.,). 
classified in Golubitsky and Schaeffer [IS]. The two exceptions, 2!R rind 
2.s . are codimension-one bifurcations with two-dimensional critic,! 
eigcnspace and nontrivial a 2 symmetry. The equations for these transition, 
varieties can bc deduced from the theory developed in Golubitsky and 
Schaeffcr L 151. 

VT. (co.? + I:, :v’, c2) 

The unfolding is 

I’= c:. 

As in the previous examples WC can restrict attention to the case co= - :. 
;:, = I. ‘l‘he origin is stable if i < 0 and unstable if i > 0. There are no 
solutions of type 7’. The solutions of type K and S are given in Ihe tabi;:. 

It is easily checked that the only generic bifurcations occurring are those at 
the origin and folds in the S branch. The folds occur when 

x= I’ (S.!a:: 

C” i. + 21x’ + 4/w + 8x” = 0 (5.1 b) 

z + 4ps2 + 12X” = 0. (5.10) 

Bifurcation from 0 occurs when i. = 0 and so $L(.$; 27\) can be found by 
eliminating x from Eqs. (5.1) with it = 0. Subtracting 2 x (5.1~) from 
3 x (S.1 b) gives (z + /?x’) .Y’ = 0, so x and p must have opposite signs. Sub- 
stituting .x’ = ---z/P into (5.lc) gives X(9--/?‘/4)=0. As u=O is easily seen 
to be the equation of the transition variety girl, the relevant part of this 
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s 

3-k 

s 
R+- -- -- 

+- R 

m<O ++ -- ++ 

The other nontrivial transition varieties are calculated to bc 

The bifurcation diagrams are shown in Fig. 5.5. 

VII. 

The bifurcation diagrams for this normal form are essentially the same as 
those for VI, but with K and S intcrchangcd. 

VIII. (c,,ii-c, M+mn’: C?N), m#O 

The unfolding is 

We make the choices c,) = --1, R, = I. The origin is stable if i < 0 and 
unstable if i.>O. The other solutions are given in (he cable. Note that the 
lype 1’ solutions can only exist if tizzy < 0. 



a 
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The values of i at which type T solutions bifurcate from the K and S 
solutions are: 

The nontrivial transition varieties are: 

In Fig. 5.6 we illustrate only the cases I:, = I and rn > 0. The diagrams for 
wl < 0 are essentially the same while those for c2 = - I can be obtained by 
interchanging R and S. The remarks we made in the discussion of IV 
concerning the stability of the torus branch apply here also. 

a (Z 

! Is --- ---- -__- ,J) 
B 

L a 

FIG. 5.6. (aj Transltiun \arictw of VIII. t:(, - 1, c,= I. t;, -1, rrf>O (b)l3lfuurcalion 
chayrarns m the unfolding of VIII: c,, - - I, c, r 1. i:_ - I. WI z 0. 



TX. (r:,,L + cl 3, I: z A + td2 ): m Z 0 

The unfolding is 

As usual we take cg = --I: I:, = 1. The origin is stable if il < 0 and unstabic 
if EL 10. The other solutions are given by 1 he table: 

--. -~ -. -. ~.. .--- ..--. ..~. ..~... ..-- 

The generic bifurcations in the diagrams arc: 

The R and S branches bifurcate supercritically, so only positive values of ;. 
for V,< and ./p, are rclcvant. The nontrivial transition varieties are: 

Note that 

To obtain pcrsistant bifurcation diagrams in the unfolding we need LO 
cxcludc m = I:: as well as tn = 0. 
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m<-I -I<m<O 

l.‘IG. 5.7 (a) Transilion vanctics for IX: I:~ = --I; c I = 1. i:? -= 1. (h) M’urca~~on diagrams 
111 ll1e lulfolcllng of LX: q, =- -I. E, 7 I; I:, y 1. 

The illustrations in Fig. 5.7 arc for co = -1, cl = 1: C~ = 1 and y?z < -1 
and - I <In < 0. The diagrams for these choices of I:, and 1~ > 0 are cssen- 
tially the same as for rn < -1, though with changed stability assignments. 
Changing the sign of c2 rcvcrscs the direction of the T branch. Notice that 
in this cast we haw also shown the unperturbed bifurcation diagram at 
x=0=/i 

X. (c,i + n2.W’ + 74, c, X + c2 A), m # 0, 17 # 0, in + n f cl , r-:,:2 

The unfolding is 

p = c:,,;. + n1M’ + n3 + c7xN 

I’ = c , N + 8: A + p. 



Choosing sCi = --- I, I:, = I, the origin is stable if L < 0 and unstable if IL > (!. 
The other solutions arc given in the table: 

The equations for the i values of the generic bifurcations in the bifurcatron 
diagrams and those for the transition varieties arc given in Tables V anil 
VI: respectively. Hecause of the two moduli, this cxamplc is considcrabty 
more complicated than the others. The nondegcneracy conditions thar 
appear in the classification (HZ f 0, y2 f 0. IIZ + n #- 1: ru -1 u # f) divide the 
moduli space into ten regions and so WC have ten normal forms to considc: 
(not counting the different casts E? = + I ). Howvcr, the situation is even 
worst than this as the moduli space will need further subdivision to dis- 
tinguish between germs whose vcrsal unfoldings arc not qualitatively the 
same. We therefore content ourselves with a discussion of just one cast, 
which, nevertheless, we bclievc encompasses all the important phenomena 
associated with the normal form. The cast WC illustrate is given by 
n7 + II -- I > 0 and IH < 0. The choice of c2 = + I dots not affect the bifur- 

&OlP. H2I.c GL +- ‘- denotes higher or&x terms. 
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TABLE VI 

Transilion Varieties for X 

cation diagrams. The transition varieties arc shown in Fig. 5.8 and the 
bifurcation diagrams themselves in Fig. 5.9. Nolc that %(.g,: &:I.)= @ in 
this case. 

Notice that in the bifurcation diagrams numbered (3) (7) the exchange 
of stabilities rule shows that the T branch must be stable when it bifurcates 
from the R branch: bur unstnblc when it bifurcates from the S branch. This 
has important conscqucnces which arc described in the next section. 

Tic;. 5.8. Transil~on rarietlcs for X’ c,, = I, i:, - J. 17, i-w I > 0. nr 4 0. 
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lw..” $23 ST-R 

I%,. 5.9 Blfurcattion diagrams in the unfoldmg of X: 8:: = -1. 2, = 1, ?>I ?-II-- 1 >O. 
m <o. 

XI. (c,;.2+~;iN2+m)“1~: c,), m2#4E(,E, 

The unfolding is 

p = c,,j.’ + cl N2 + rni.N + I t- flN 

Y=C,. 

Choose co = I. The R and S branches are given in the table: 

Signs ofei e envalucs 



246 GOLUBITSKY AKD ROBERTS 

FIG. 5.10. (a) Transition varieties for XI: E,, = 1, z, = 1. (13) Bifurcation diagrams in the 
unfoldmg of XI: c0 = I. E, = 1. 

The behavior of the R branch is essentially as in V. while that of the S 
branch is given by the Z, normal form (8) on page 263 of Golubitsky and 
Schaeffer [IS], to which WC refer the reader for a full discussion. In 
Fig. 5.10 we illustrate the cases E, = 1, m > 2 and E, = 1, 0 <m < 2. Chang- 
ing the sign of m is equivalent to reversing i while c, = - 1 gives a rather 
different set of diagrams. Note that m = 0 has to bc excluded if all 
persistant bifurcation diagrams are to be obtained by varying SI and b. 

XT1 

This is similar to XI with R and S interchanged. 

XIII. (&oi,2+E,iV, ~~).+nzA), m#O 

The unfolding is 
p = coTi f c, + 3 

r = c2 i. + mA + /I. 
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a s,--, ST -. 
--? \ \ 

3 I 
I 

,//I 

_--/ 
,,’ ,@ L/ 

t . 

++ 

FTC;. 5 Il. (a) Transitwn vaneties ol XIII: i+,= 1, i:>= I (b) Rifurca tion c!iagrams is the 
unlblding 01 Xiii: I-:,) = I, c? 1. 
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The case HI -C 0 is illustrated in Fig. 5.11. Changing the sign of tz reverses 
the direction of the T branch. 

XIV. (+,i” + nzN f I:, n,Y, t:? j, wz # 0, c2 

The unfolding is 

Fix I:,, = I, ;:* = I : 

The bifurcation diagrams arc illustrated in Fig. 5.12. The choice of C, 
makes little difference to these diagrams, it simply changes the relative 
amplitudes of the various R and S branches. A similar phenomenon occurs 
in XV. 

a 

“y “L 

EIG. 5.12. (n)Transhm variety of XIV: 1.:(, = 1. I:? : 1. fb) Bifurcalwn diagxms In lhc 
tlnfdding of XIV: c,, = I, c2 -- I 



xv. (ii02 $ rn!v. I:1 ), 111 If 0: r., 
The bifurcation diagrams here are essentially the same as those of the 

codimcnsion-one V. The extra dcgcncracy that makes it codimension two is 
simply symmetry with respect to E, -+ --.il. 

In the bifurcation diagrams (3) (7) of normal form X (with cg = ---I: 
i:, -= 1) MI+ II -- I > 0, m < 0) the exchange of srabilities rule shows that the 
7’ branch must have cigcnvalucs with positive real parts when it bifurcates 
from the R branch. but negative real parts when it bifurcates from the !:’ 
branch. These cigcnvalucs vary continuously along Ihe branch and so at 
some point must pass through the imaginary axis. In the region of moduh 
space we arc considering n > 0 and so det CI/~‘> 0 on the T branch (using the 
formula given in the discussion of the normal form and noting that WC arc 
considering r and :V small compared with 171 and rj). Thus the eigenvalue:; 
of the I’ branch cannot pass through 0. Hence they must cross the 
imaginary axis at a pair of nonzcro conjugate points, giving a Hopf bifur- 
cation: i.e.. a bifurcation of a periodic solution of the amplitude equation:; 
from the T branch of equilibrium solutions. 

Lifting this bifurcation back to the full equations (i.3) we obtain the 
existence of a bifurcation of an invariant 3-torus from a 2-torus with linear 
flow. This is the 3-torus found by Knobloch [ZOll. The original periodic 
solution of the amplitude equations is, of course topologically conjugate to 
rotation of a circle; this conjugacy can bc lifted back to the SO(2) >: S’ 
cquivariant Ilow on the J-torus, showing that it must also bc conjugate lo a 

linear How. 
We now claim that the existcncc of this bifurcation is preserved unde: 

D,-equivalence. If g is any bifurcation problem thal is II, equivalent to the 
normal form X, with c,, = -1: I:, = 1, ITI + n - 1 > 0, and m < 0, then the 
perturbed bifurcation diagrams of g are Ihc same as those of the normal 
form. This equality cxtcnds to the stabilities of the R and S branches (by 
Proposition 3.2) and hence those of the T branch near its bifurcation 
points. In the unfoldings WC also still have det & > 0, by essentially the 
same argument as that used in Proposition 3.2. Thus the Hopf bifurcation 
from the Y- branch must continue to occur. 

Any periodic solution of the amplitude equation created ‘by a Hopf bifur- 
caGon from the T branch can only exist for the bounded range of j. values 
for which the 7’ branch itself exists. Of course there may bc more than one 
Hopf bifurcation from the T branch, but since thcrc is a net change ic 
stability during its existence there must also be a ncL produc:ion of periodic 
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orbits. Thus there must be some other means by which such a periodic 
orbit is destroyed. The only possibility for a planar system is some form of 
infinite period bifurcation involving the collision of the periodic orbit with 
one or more separatrices of the amplitude equations. Note that the 
existence of this infinite period bifurcation is again prcscrved under D4 
equivalence. A further study of the normal form X would reveal more 
details of its dynamics, but it stems probable that most of thcsc will not be 
invariant under D, equivaiencc. 

7. SINGULARITY THEORY 

The Recognition, Classification of Unfolding Theorems are proved using 
“singularity theory” techniques. as adapted to bifurcation theory. In this 
section we briefly review these. referring to Golubitsky and Schaeffer [ 151, 
Golubitsky, Stewart, and Schaeffer [IO], and GaKncy [12] for proofs and 
further details. The discussion is given for bifurcation problems which are 
cquivarianr with respect to any absolutely irrcduciblc representation of a 
compact group I‘ on R”. The definition of D, equivalence given in Sec- 
tion 3 extends easily to the general case and WC use- , to dcnotc “is 
r-equivalent to.” 

The recognition problem is conccrncd with determining when a bifur- 
cation problem is equivalent to a given one. We are first of all interested in 
knowing when a germ is equivalent to an initial segment of its own Taylor 
series and so in criteria for deciding whether I’+ p is equivalent to f’ for 
germs ,f and p in &,(I’), the ~~.j.(l.) module of all II,-equivariant bifur- 
cation problems. 

DEFINI’TION 7.1. The set of higher order terms of a germ J’E 3,,,( I’), 
denoted .P(,f’), is defined by 

9(f)= (pE2;,.j(z.): g+p-rf‘vg-r.f‘). 

In [ 161 it is shown that 9(.j-) is a submodule of g,.,.(f) which depends 
only on the I’-equivalcncc class ofJ’and has the closely related property of 
being “intrinsic.” 

DEFINITION 7.2. A submodulc M c &,(I-) is said to be inlrinsic if for 
every g and h in <JZ‘): 
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For any linear subspace id of &JI-) we define the intrinsic part of L. 
denoted Ttr L. to be the maximal intrinsic submodule contained in L. The 
usefulness of .Y(f’) is greatly enhanced by a result of Craffney [ 12.1 which 
enables us to calculate it. Let {cp,(u))fFj denote a minimal set of 
homogcncous generators of &( I-‘) as an &,,,,,(IT) module. with ~p~(uj the 
identity map and degree (p! 3 2 for j = 2,..., k. Similarly let {S,(u),..., S,(u) 1 
denote a minimal set of homogcncous generators of the &(T) module of 
equivariant matrices, with S, the constant identity matrix and degree S, 3 ! 
for j= 2,.... 1. Roth sets of generators can always be chosen to depend on s 
only. Let m,,.,(r) denote the maximal ideal in &,(I’). For {‘E <,,.;(I‘) define 
.I&( /‘) to be the &,,,(I‘) module generated by 

and X2( /‘) to be 6; module gcncrated by i2f,(zd, j.): where ,I;(ll: j-) denotes 
the derivative of /‘with respect to i.. 

~HF.OREY 7.3 [ 121. .V( f) = Itr(.4,( f’) + X2( f’)). 

For our rcprcsentation of IT= D,, on R’ this description is made more 
explicii by the calculations in the next section. 

The proofs of the recognition and classification theorems given in the last 
section USC this result to calculate the higher order terms that can be dis- 
carded in a ‘Taylor series and then uses explicit changes of coordinates tr> 
bring the low order terms into the required normal form. General form&.; 
for thcsc coordinate changes are given in the ncx! section. 

h k-parameter unfolding ol j‘~ &,(I‘) is a germ FE &~j.j..X(lJ where 
2 = (2, j . . . . xk) E Wk and r acts trivially on WA, with F(z4, i., 0) =.f(u, I.). 9’ 
I;(u. i. 2) and G(u, E,, p) are two unfoldings of,f WC say G factors through .F 
is there exist smooth mappings S, X, A, and A such that 

and for /j -= C) wc have S(lc, i, 0) = I, X(u, 2.. 0) = 21, A(A. 0) = E.: and 
.1(O) = 0. An unfolding I; or’f is unircrsal if every other unfolding or,f’ fac- 
tors through E WC will also require that a uni\;crsal unfolding has the 
minimum number of paramctcrs amon g unlbldings with this property. 
Universal unfoldings arc unique up to equivalcrice. 

The universal unfolding if J’ is calculated (if it exists) by means of the 
“tangent space” of L denoted T(f). 
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DEFINITION 7.4. The tungenr spcrce, T(J), of a germ ,f’~ <,,,(I-) is the 
subspace of &(T) obtained by taking the vector space sum of the $,j.(f-‘) 
submodule generated by 

(lrf(zl, i) q?,(Zl),...: df(z1, 2) q,,(u), S,(u) f'(L/, i),..., s-,(21) f(u, E.)} 

and the 8; submodulc generated by fj.(u, i.). 

Notice that r(j) contains Y(j‘). 
The fundamental theorem of unfolding theory is 

THEC)KEM 7.5 [16] . LPI F be a k-parameter unfolding (f J’ E g,.;(f). 
Then F is a unicersal zz+lding of‘,f if mzd only if 

&(f’) = T(f) + W . { dF,!&,(u, i, 0) ,... i S,+x,(u, A, 0) ;. 

It clearly follows from this that a bifurcation problem has a universal 
unfolding if and only if the dimension of &(r)jl‘(,f’) as a real vector space 
is finite; and that the number of parameters in the universal unfolding is 
cyual to this number. This is the “CC-codimension” of the bifurcation 
problem and is finite if and only if the dimension of &,(Z‘)/.Y(,j’) is finite: 
which in turn is equivalent to the dimension of &( f )/Itr Y(J’) being finite. 

Another easy corollary of the theorem gives a recipe for constructing the 
universal unfolding of a germ with finite C’“-codimcnsion. 

COROLLARY 7.6 [ 161. Let ,f’~ q,,.,(r) huue C’,-codimension k and vzzp- 
pose ( p1 ,...; pk } c <Jr-) is a set of’germs such that 

~~,,j,(T) = T(f’)O [w . .(p,,..., pk ~. 
Then 

F(u, i, 3) =,f(u, i) + 2 r,p,(u, 2.1 
,i I 

is u zmicersal mfblding of’ f: 1 

This reduces the calculation of the universal unfolding of a bifurcation 
problem to the calculation of r(j). As we show in the last section, this is 
conveniently done alongside the calculation of .Y(J‘). 

This section consists of calculations oT: 

(a) a generating set for the module of D,-equivariant matrices, 
(b) generators of S(j’) and r(j) when j’E &(D4). 
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(,c) explicit formulae for the cffcct of changes of coordinates on !ow 
order terms in /; and 

(d) intrinsic submodules of &( 04)” 

This is proved, in a different coordinate system. by Buzano et ~11. [2-] 

(b) Gmmmrs of P(f) and ‘T(f) 

Retail that any.fE&;Jqi(f14) has the form 

whcx p, I’ E (‘:,,., (/I,). 
As bcforc we identify &(II,$) with <,,,,.(D4) 0 &;(D,) and write ,/‘ as 

( p. I’). Then easy calculations give 

S,.f’=(p.r) 
s2 . f‘= (ivp - Ar. 0) 
s, . ,I’ = (0, p - Nr) 
S,.J’=((N”--A)p. --- (N’-./r)Y). 

(a,!) 

We also riced ~Ij’.(p, and l/f’. (pz, where ‘pi = (t) and cpZ = 6( yF) arc the 
generators of ~$(fl~). A straightforward calculation using (4.3) gives 

‘I-he final ingredient for both .‘P( f‘) md Y‘( f ) is simply 

f, = (I’, 7 f,.). (8.3) 

Using the expressions of (8.3), (8.4): and (8.5) in the detinitions preceding 
Theorem 7.3 and Definition 7.4 gives explicit formulae for the generators of 
X, ( f‘) $- X;(,l’) and T( f‘). 
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From (3. I ) a general D,-cquivalencc consists of: 

(i) a mapping Z(u, 2): R2 x R! + R2 which is equivariant mith 
respect to the D, action on R’, 

(ii) a D,-cquivariant matrix S(U, i), and 

(iii) a mapping /l(L): R -+ R. 

These satisfy &(O, 0) =a1 and S(0, 0) =>41. where a and rl are strictly 
positive real numbers and n’(O) > 0. The cquivariancc of Z and S imply 

(8.4) 

whcrc U, b, A, U, C’; DE ~~,,j( D,). 
An easy calculation shows that composing X, (5, and .4 with Z gives 

3 c N ,_ Z = tr2$ - 2&A + f7’lv4 

(~=6,:%=(a2-22ah:~~+b’A)8 (8.5) 

2 = A z = (a2 - 2ab:V + /G/l y/4. 

A further calculation shows that the result of applying the coordinate 
changes Z and A to ,f’= (p, r) is 

(ufi + b(n’ - 2UhlV + b”A) d?, b@ + N(U2 - 2ahN+ /?‘A )iq. 

whcrc j?j = p(:q, d”, A) and Y = r(:v. d, A ). 
Finally, applying S to (8.6), using (X.1 ), gives (fi. I’): whhcre 

(8.6) 

~={Aa+BaN-((Bb+Da)4+DaM2}p 

+ {[Ah-Ba+ RbN+ D&V’-/l)][a’--2uh,V+h2d]} A7 (8.7) 

~=~Ah+Ca-C’l,:~-Dh(N’-A))d 

+ { [a - CaN+ (Da + Cb)A - DaN2] [u’ -- 2abN+ h2A] ) ?. 

That is, any germ D,-equivalent to (p, Y) can be written as (/i, Y^) for some 
a, b, A. B: C, D: A. 

Ry taking the Taylor series expansions of fi and i WC can extract from 
(8.7) the coefficients of low order terms of all bifurcation problems D4- 
equivalent to (p, Y). Those we need for the examples in the ncxl section arc 
given in Table VII. The expressions pi, rMd, (,4u),, etc., arc partial 



Low Order Terms of Hifurcalion Problcnis I),-Fqcivalcnl tc? (p, r J 

I /., 0) 

( !? . (1) 

!d. D) 

(i2. 0) 

(i,V. 0) 

I .v’. 0) 

(LA, 0) 

derivatives with respect to the subscripts. All terms are evaluated at 0 aad 

WC have assumed throughout that I)(O) = 0. 

(d) Intrinsic Suhmodul~~s of’ c$,.( D,) 

Recall that an intrinsic submodule of &,(D,) is a submoduic that is 
invariant under the action of the group of II,-equivalences. An ideal in 
Ati., is also said to be intrinsic if it is invariant under the group of coor- 
dinatc changes 

(u, 3.) -+ (Z(u, i), A(i)), 

where Z and A satisfy the conditions in (3.1). 
We write submodules of &.(D4) z 8,i,j,.i(D4) @ &‘JD4) as I@J, where 1 

and .I arc ideals in &,(D4). The following result is proved using the 
formula in (8.7) (for (i)) and (X.9) (for (ii)). 

PK~POSITI~~ 8.2. (i) If 1 iu an i&u1 in &(Dd) ~Aich is a sum r,,! 
products of the ideals (1>, (A > and (8, A > then I is intrinsic. 

(ii) A submodule (I, J) of’~&(D~) is intrinsic i$~and only ~f’hoth I und 
.I ure intrinsic id&s in &(D4). Ic J. und (A) J c: I. 
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Kmmk. It follows from (ii) that i@/ and (A)101 arc intrinsic sub- 
modules whenever I is an intrinsic idcal. 

9. P~oot OF mt- THEOREMS 

Most of this section is dcvotcd to outlining the calculations necessary to 
verify the Recognition Theorem. However, we begin by discussing the 
Classification Thcorcm and the [Jnfolding Theorem. By the general results 
in Section 7, the latter is reduced to the calculation of T( f’) for each normal 
form ,/: This is a straightforward exercise and is conveniently carried out 
alongside the calculations that arc necessary for the Recognition Theorem. 
Examples are given below. For the Classification Thcorcm we refer to the 
accompanying flow chart (Table VIII), which describes a partition of the 
space of k-jets (at 0) of germs of II,-cquivariant maps with ~(0) -0, 
denoted J”, into (semi-algebraic) subvarieties. Specifically WC associate to 
every terminal point of the flow chart the subvariety dcfincd by the set of 
conditions on the partial derivatiljes which distinguish that terminal point. 
It is easily seen that those subvarieties associated with the terminal points 
labelled by normal forms have codimcnsion in ./” (for k sufficiently large) 
equal to the number given under “C” codimcnsion” in Table II, while all 
the remaining varieties have codimension greater than or equal to three. 
Denote the union of the varieties of codimcnsion 33 by I”‘. A standard 
transversality argument implies that the image of the jet extension of a 
generic two-parameter family of Da cquivariant germs will not intersect 2’/‘ 
and the Classification Theorem thercforc follows from the Recognition 
Theorem. 

WC now turn to the proof of the Recognition Theorem. The theory and 
formulae given in the previous two sections have reduced this to routine, 
though cxtensivc, calculations. The details of these are left to the diligent 
rcadcr. Here WC shall give a procedure that may be followed and illustrate 
it by a number of examples. 

For each normal form /‘there arc two calculations that have to bc made: 

(1) Cheek that P(f’) contains the submodule, .U, of &,(n,) listed in 
the third column of Table TX. 

(2) Check that any germ 00 satisfying the delining and nondegeneracy 
conditions for ,f, given in Table 11, is D,-cyuivalcnt to ,f mo~~lo M. 

It then follows from the general theory that g is II,-equivalent to /“‘to all 
orders.” 

Because of the algebraic difficulties with working directly with 
.$((.f) +.X2(./) it is best, in (l), to begin by showing that $(.f’) (an 
&,(D4) submodulc of &;(D,)) contains the submodule iistcd in column 2 



I k-(’ xi- 0 - II P,,,, --- I’,.\’ I’,,‘, --“L XIV 
1 

cndim 2 3 
1 

codim > 3 

I), P,, 

codim 2 3 codim 2 3 

,,,,“‘iilF I --3 
L 

codim 2 3 
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Algebraic Data for Normal I ormx 

Itr ‘2, f.f’) contains Y(f) contain5 

I (,A!'+ (A). -k) 

II (.d~+J/(i) A- (4). ,//J 

111 (.d"--..K(i. A), R2+ (i, A)1 

IV (,/P. 3‘) 

v f.AS-c(~v..d)‘+(,l). ~N*+(x.d)J 

VT (../P+ .k(n)+ (4); fi) 

VII (.,zP+.Myd) + (,I>>+ A(l.). 
.&-.,/i(d) L (I.)) 

VIII (.N’+ .,/l(L). ..N’+..i/(i)) 

IX f./d’-t ,#(4),,d++.,a(n)) 

X (.,~~~~.ni(n)+(4)‘+.,r;/(i). 
0’ i + .A (2. 4 ) ) 

xr (.M + (A). -A-'+ ( Y, A)) 

XII (..N'+.tP(/l)+ (A)', ./it'+Jl(4)) 

XIII (.,/P-t (X, d)', A'+ it(X‘,d)) 

XIV I.N-<,v. 4)'+(,r),.l*/j.t(?,4)) 

xv (.n~+(h,A)~‘(d).,M’l+(‘v.n>) 

Abhi column 

As 2nd column 

.4s 2nd column 

As 3nd column 

A:, 2nd column 

A5 2nd column 

As 2nd column 

As 2nd column 

4s 2nd column 

45 2nd column 

( i’i i + (4 ). Ji) 

(,/i’f.,~(,l)..X’--(d)J 

( A’ -t .A! (A, 4); A~) 

( ii’+ il’(X. ,lJ-- (.v. A;:+ (/i>; 
,zT’ + (1.V. 4 j) 

As 2nd column 

of Table TX. This is illustrated in the examples. In the table and the exam- 
plcs RC USC’ .A? to dcnotc HZ,,,(L),). 

EXAMPLE 1: NORMAL FOKM IV. WC have to show that, for 
f- (~~3. + 8, A’+ mtl, c2N) with in # 0. 

(1) Itr(&(f’) + ,:&(,f’)) 2 (M’. M’). 

(2) If g m ( p, I) satisfies 

r(0) = 0, p,v(O) f 0, P/.((J) z 0 

PY(O) Td(O) - Y,(O) r,v(O) +o. p,(O) r,,(O) - p,~(O) ~j(O) #O 

then it is D,-equivalent to /; module (.,N2, M2), with 

+ = w p,.(O), I-:, = sgn I),\(O), i:2 =i:,) sgn(p,(O) r,(O)- /7~(0) rj.(o)) 

lF7= c2 Pi(")2(P,V(o) '4(O)- PA(O) '.\'("))/(/7j(o) CV(")- Y,\(O) ri("))'. 



TABLE X 

(~',O)(~~.O)l;.~l.OJ(.~'.O) (,XA.O) (A~,O)(O.i")(O.i.Y) (0.2) (O,.Y') (O,.VA) (0.d:) 

WC will also show that 

(3) 7‘( /‘) = (.A! + ( jb): ..&) -t- 5 further elements. and a universal 
unfolding ofJ’is given by adding the term ‘~(0, 1 i to the normal form. 

Using the generators of .$,(I’) given in Section 8(b) we see that 

(--2;:, n + (c2 - 4,)2)wA?~(,j"+F,!,Yi(~r--2E2),~--21-:2.~1j3. 

We prove that Y,( I’) 3 (.Jlr’?. .&“) by showing that the inclusion hoids 
module (AI”. A”) and then applying Nakayama’s lemma [I6f. Showing 
the inclusion mod(.J’, ..U’) is an cxercisc in linear aigebra; it amounts io 
showing that the matrix in Table X has rank 12 (providing m # 0). This is 
left to the reader. Thus 3’;(f) 3 (.A//“‘. .X’) and sincc this in inirinsic. 
P(J) 3 (JK2: AP). 

Next we calculate 7’( f ). Since T(J’) 3 .Y,(,[) 3 (.&‘. .,I!?) we only need to 
carry out the calculation mod(.,K’, .&I). As G vector space over R. 
T(:‘)‘(.N’, &‘) is gcneratcd by the following matrix: 
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(1.0) (i, 0) (3. 0) (A. 0) (0. I ) (0, i) (0, N) (0. A) 

These relations are indepcndcnt and so T(f) = (.A!’ + (A), A2j together 
with 5 further generators over R. A complement to I’(f) is given by 
R. ( (0. 11, (A, 0)) and so, since the coefficient of (A, 0) in,/‘is a modulus; a 
universal unfolding is obtained by adding the term x(0, I). 

Enally we use the formulae given in Table VII to show that any 
,q c (11, Y) satisfying the defining and nondcgeneracy conditions of j’ is /II- 
equivalent to f’mod(,&“, 4”). Since p(O) = 0 and r(0) = 0 the cocffkients of 
( 1, 0) and (0, 1) must always be 0. WC riced to choose values of A. C. u, h, 
and Aj. so that, evaluating all terms at 0: 

(a) coeflicicnt of (1, 0) = AaA,p, = sgn 1~;. 
(b) coefficient of (N, 0) = Aa’p v = sgn p:\ 
(c) cocfficicnt of (A, O)= -2A~?~~~~+Arr’~,, 

= sgn(prl(p,rz -p~v:,)Np,:I’(P,rt - P,L~.,))~(P.v~,I .- P,I~v) 
(d) coefficient of (0, L) = (Ah + CU) A,./>, + ALL~/IjI., = 0 
(e) coefficient of (0. 3) = tr2(Ah + Caj /J,~ + Aa’r,\ 

= sgn((p,r, - P.~~,)!P,) 

(f) cocfficienl d- (0, A) = -2ah(-4h + CU) + a4(Ah + Ca)p, - 
2Adhr,, + Acr’r, = 0. 

Thus we need. from (a), (b): and (d), 

‘4UA j = I:11 (J,(. .4r1’= tl(y,vl, Ah+ CLL= -Aa’r,/p; = --rj./(p,vl p;.. 

Substituting for A/T + Cc7 in (c) gives 

and substituting into (f) gives 

and so WC must have 

I7 = U3(jJj.l.A - I’,. (Id )/( pj I-,?$ - r; p,v)/2. 



These conditions completely determine ;4. C: U. !>, A, and it is easily 
checked that the values obtained for these also satisfy (c). 

EXAMPI.E 2: NORMAL PORM XII. Our second cxamplc is a normal form 
for which S(,f’) is strictly larger than Itr .%‘,(,l’). Ijsing the formulae of 
Scciion 8(b) we obtain 

We leave the rcadcr to verify that 

using the same method as in the previous example. 
Modulo IV, Y;(j) + .Y;(j’) g IS enerated over W by the elements shown in 

Table XI (omitting some obvious redundancies). The combination of rows 
(I) - (2) -- (3) + (4) gives - 2(m(jGt: 0) + 2c,(1t;l, 0)) as an element of 
.Yi( f) t- Nz(.f). Combinin g this with (5) shous that if tir’+ 4+:z1 then 
.Y,( 1’) t- .&(J’) contains (;A, 0) and (%A, 0). Ilt now follows easily that in 
fact 

This is intrinsic and so 

It remains to show that any g - (p. r) satisfying the defining and non- 
degeneracy conditions of .f‘ is I>,-cquivalcnt to .f’ mod(.,J%” + .I( 4 >, 
..H2 + (A )) and to calculate r( /‘). Thcsc can bc done as in the previous 
example and are left to the rcadcr. 
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