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This paper addresses the issue of how to determine numerically the symmetry  of an attractor for dynamical  systems.  
(The symmetr ies  of  attractors in phase space are related to patterns in the t ime-average of the solution.) Our  approach to 
this quest ion proceeds in two parts. First, we prove a general theorem,  based on group-theoret ic  and differential 
topological ideas, which states that generically the symmetry  of a ( thickened) attractor can be computed  from the 
symmetr ies  of a point in an auxiliary space. This theorem proceeds by integrating an equivariant mapping over the 
thickened attractor. 

Once  this is done,  the numerical computat ion of symmetr ies  reduces to showing that a certain nonnegat ive number  is 
zero. Numerically,  demonst ra t ing  that this number  is zero can be difficult. Thus  the second part of the algori thm is to 
consider how this number  varies with parameters  and noting that sudden jumps  towards zero can be associated with 
increases in symmetry.  The paper is divided into two parts. In the first we prove the general theorem and in the second we 
illustrate how the numerical techniques work on several examples including discrete dynamical systems with tetrahedral  
symmet ry  in ~ and systems of three coupled cells. In high dimensions the integral ment ioned  previously is difficult to 
compute .  For such examples,  we assume that an crgodic theorem is valid and that symmetr ies  can be computcd  using a 
t ime-average.  We compare both of these methods  on the low-dimensional examples  as well as detect points of symmetry  
creation for a react ion-diffusion equat ion on an interval. This technique can also be used in principle to compute  the 
symmetr ies  of an attractor in an exper iment  from a time-series. 

I. Introduction 

Let F be a finite group and let f :  [~"-~ ~" be 
continuous and F-equivariant.  We view f as a 
discrete dynamical system and assume that the 
compact  set L is an attractor for f with an open 
basin of attraction. The question we address is: 
"H ow  can we determine the symmetry group of 
L ? "  We denote that symmetry group by 

Z'(L) = { y  E F: T L  = L}  . 

The reasons for asking this question are dis- 
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cussed in [4]. Roughly speaking, we view f as 
representing the dynamics of an equation in 
phase  ,space while our interest in the symmetry of 
an attractor lies in physical  space. For equilibria 
and for periodic states there is a well understood 
connection between symmetries in phase space 
and symmetries in physical space [7]. In particu- 
lar, symmetries of equilibria have been identified 
with patterns in solutions in a number of phys- 
ically interesting situations including Rayleigh- 
B6nard convection, the Tay lor -Coue t te  experi- 
ment and Turing patterns in reaction-diffusion 
systems. Rather  little attention has been paid, 
however,  to the physical space interpretation of 
the symmetry of a chaotic attractor. It is shown 
by example in [4] that those symmetries are 
related to patterns that appear in the time-aver- 
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age of a solution (see section 1 0 ) -  even though 
that pattern is never present at any particular 
moment  in time. 

The existence of symmetries of attractors is 
demonstrated clearly through pictures for planar 
maps [2,6,9] but rather less is known about the 
symmetries of attractors in higher dimensions, in 
part because of the difficulty of visualizing these 
symmetries. Even in three dimensions it is some- 
times difficult to determine the exact symmetries 
of a cloud of p o i n t s - w h i c h  is what a chaotic 
attractor of a discrete dynamical system resem- 
bles in this dimension. 

Our approach to determining numerically the 
symmetries of an attractor L is a three step 
process. First, we thicken L to an open set A 
having the same symmetries as L. Second, we 
transfer the symmetries of an open set A C ~n to 
the symmetries of a point in an associated space 
W by integrating an equivariant map 4~: 0U--, W 
over A. This point is denoted by Ke~(A). We call 
4~ an observable and Ke~(A ) an observation. In 
lemma 3.2 we show that the symmetries of A fix 
the point K4~(A ). Hence,  by definition, X(A) is 
contained in the isotropy subgroup of the point 
Ks(A ) which we denote by X+(A). Finally, we 
show that for certain 4~ generically the symmetry 
group ,~(A) actually equals 2~,(A) whose nu- 
merical computation is, in principle, a straight- 
forward task. 

The notion of genericity that we use here is a 
natural one for dynamical systems. Observe that 
if qJ: En___~ [~n is a F-equivariant diffeomorphism, 
then the set ~0(L) is an attractor for the mapping 
t p o f o +  -1, which is just the map f viewed in a 
new coordinate system, and the symmetries of A 
and ~0(A) are equal. Fix the equivariant map th. 
What  we prove is that if & satisfies certain easily 
verified conditions, then for any A there is an 
open dense set of near identity diffeomorphisms 
~O so that 2 ( A)  = X,~(~b(A)). These ~b, which we 
call detectives, each generate a method for de- 
tecting symmetries which works, in principle, for 
almost any open set A. 

In theorem 5.2 we prove that if W is a repre- 
sentation of F that contains all of the nontrivial 

irreducible representations of /" and if the ob- 
servable ~b: En__~ W is a polynomial mapping 
whose components in each of these irreducible 
representations is nonzero,  then & is a 
d e t e c t i v e - f r o m  which we conclude that detec- 
tives always exist. It also follows that for most 
finite groups that one is likely to consider, it is 
possible to construct detectives. The general 
theorems concerning the existence and construc- 
tion of detectives are presented in sections 2-5  
of this paper. 

The remaining sections are devoted to illus- 
trating the use and explicit construction of detec- 
tives. In section 6 we discuss the symmetries of 
attractors for a certain parametrized family of 
mappings on E3 having tetrahedral symmetry. 
We show how, using detectives, the computer  
can determine,  almost automatically, the sym- 
metries of attractors as parameters are varied. 
Indeed,  this variation of parameters is more or 
less necessary for the method to work. The 
difficulty concerns the numerical computation of 
Ks(A), w h i c h - a s  in any numerical computa- 
t i o n -  can be computed only approximately. In- 
deed,  we may reformulate the question: "Is the 
group element y a symmetry of the point Ks(A ) 
in W?"  by computing the distance of the com- 
puted Ke~(A) to the fixed-point subspace Fix(y) .  
In theory y is in the isotropy subgroup X, (A)  
precisely when this computed distance is zero. So 
the numerical difficulty in determining whether y 
is a symmetry of A reduces to determining 
whether  a certain nonnegative number is actually 
zero. 

Our strategy for determining when this dis- 
tance is zero is to compute the distance as a 
function of parameters and call the distance zero 
when there is a jump in the distance to a number 
close to zero. This test is based on the ex- 
perience obtained by simulation in [2] which 
suggests that when the symmetry of an attractor 
changes as parameters are varied, the size of the 
attractor also changes dramatically. Thus this 
numerical method seems to be well suited to 
determining approximate parameter  values 
where symmetry increasing bifurcations occur. 
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The result of our particular computations is a 

phase diagram showing regions in parameter 

space where attractors with various symmetries 

have been found. See fig. 2. 

We note that in low dimensions or in the 

presence of reflections the symmetry groups of 

attractors cannot be just any subgroup of F. In 

certain cases some subgroups are excluded [5,1]. 

The numerical method that we describe 

theoretically is based on computing numerically 

an integral over the thickened attractor. When 

the state space JR" is of large dimension (even 

infinite-dimensional in the case of PDEs), the 

computation of this integral becomes impracti- 

cal. Then our only recourse is to presume that an 
ergodic theorem for the attractor is valid and to 

compute an ergodic sum rather than the integral. 

In section 7 we describe this ergodic sum more 
fully and compare it to the integral test for 

certain low-dimensional examples. 
The remaining sections are devoted to describ- 

ing how our method works for systems of ODEs  

and PDEs and how it might be used in experi- 

ments. Systems of identical coupled oscillators 
are described in sections 8 and 9. In these sec- 

tions we show that for rings of oscillators which 

have Dp symmetry, the matrix outer product 

d , ( x ) - x . x  ~ mapping the state space into the 

space of symmetric matrices is always a detec- 

tive, and we illustrate this fact by computing the 
symmetries of attractors for a system of three 

coupled oscillators. 
In the last section, section 10, we apply the 

method to the Brusselator on the line, which has 

only a reflectional symmetry. We also illustrate 
how these methods would apply to PDEs or even 

to experiments defined on a domain with square 
geometry.  

2. Thickened attractors 

Let 1" be a finite group. We assume that we 
have a mapping f :  IR"--~N" that is continuous 
and F-equivariant. We view f as a discrete dy- 
namical system and suppose that the compact set 

L is an attractor for f with an open basin ot 
attraction. The question we ask is: "'How can we 

determine the symmetry group of L?'" We let 

Z ' ( L )  denote the group of symmetries of L. One 
consequence of the open basin assumption is that 

for each 3' C l ' e i ther  v L  - L or y L  n L - O. See 
proposition 1.1 of [2]. 

In general, it is impossible to know precisely 

the set L. What one computes graphically on a 

computer  is the set A defined as follows. Choose 
a small positive number ~- and let A be the set of 

all points whose distance to L is less than 7. 
Since L is compact, A is in the basin of attraction 

for L for small enough r and A has the same 

symmetry group as L. We call A a th i ckened  

at tractor  and note that thickened attractors have 

the property that either T A  = A or T A  O A = 

for all T E F .  
Later on, we shall need A to have a boundary 

that is sufficiently regular to apply Stokes 

theorem. Indeed we may assume that A is an 

open set with the same symmetries as L .  A is 

compact,  and A has a piecewise smooth bound- 

ary. To construct such an A cover L by a finite 
number of 7-balls and let A be the union of these 

T-balls along with all images of these ~--balls 
under Z'(L ). 

The mathematical problem that we address in 

this paper is the following. Let ,ff be the class of 
all open subsets of [R" with piecewise smooth 

boundary that satisfy the dichotomy TA - A or 

y A O A  ~ for all 3 ' C F .  Find a procedure for 

generically determining the symmetries of sets in 

Our basic approach is to transfer the problem 
of finding the symmetries of a set in .¢1 to finding 

the symmetries of a point in an associated space 
W. We do this by averaging an observable over 
the set, as we now explain. We refer to the 
subgroup of symmetries of the set A as V(A). 

3. Estimates for X(A) 

Def in i t ion  3.1. An observable is a C ~ l'- 
equivariant mapping qS: JR"--, W where W is 
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some (finite-dimensional) representation of F. 
An observation is: 

K~(A) = f 4) dl~ , 
A 

Proposition 3.3. For every open set A E s4 there 
exists a representation W of F and an observable 
~b: N"---~ W such that 

X ( A ) =  Xo(A).  

where ~ is Lebesgue measure. 

Note that the observation Ks(A ) is a vector in 
the space W since the observation is just the 
integral of a W-valued function. Moreover,  this 
integral can be nonzero since A is an open set 
and has positive Lebesgue measure. This should 
be contrasted with integrating over the set L 
which itself might have zero Lebesgue measure. 
Define X, (A)  to be the isotropy subgroup of 

Ks(A ) in W, that is, 

Xs(A) = {3/E F: 3/Ks(A ) = Ks(A)} .  

Lemma 3.2. For each observable ¢ 

X(A) C Xs (A) .  

Proof. Suppose that ~r E X(A). We use the F- 
equivariance of q5 to see that 

o*K,~(A) = o* f 4~(x) dp~(x) = f 4~(o*x) dp,(x). 
A A 

Since X acts orthogonally on R" it follows that 

Proof. The representation that we use here is 
the left regular representation V r consisting of all 
real-valued functions on F. V r is a vector space 
of dimension IF]. The action of 3/E F o n h  E V r 
is defined by 

( 3 / ' h ) ( 6 ) = h ( 3 /  16). 

We can choose an open set U E s ¢  such that 
0 C A and the symmetries of U are the same as 
those for A. Moreover,  given e > 0  we can 
choose U so that p~(A - U) < e. 

Next we define &: Rn--~Vr. Let h: F - - ~  be 
defined by 

10 for 3 / E X ( A ) ,  
h(3/) = otherwise.  

Let  p: 
that is 
p(x) h 

Nn---~[O, 1] be a smooth bump function 
1 on U and 0 off A. Then define ~ ( x ) =  
so that 

~ ( x ) = { 0  if x ~ A , 
h i f x ~ U .  

Next define ¢ by averaging ~ over F as follows: 

f ck(ox) d/x(x) = f 6(crx) d/x(crx) 4)(x) = ~'. 3 / - '~(3/x) .  
• T C F  

A A 

Then the change of variables formula for integra- 
tion implies that 

o'Ks(A ) = f ¢(x)d/.z(x). 
erA 

Finally, the fact that (rA = A implies that 

o-K,b = K s ( A ) ,  

and tr ~ X~, (A). [] 

It is easy to check that ¢:R~---~Vr is F- 
equivariant. 

We now complete the proof by showing that if 
6 ~ , ~ ( A ) ,  then 6 ~ X s ( A  ). Begin by noting that 
i f x E U ,  then 

4 , ( x )  = I . ~ ( A ) l h  • 

This equality may be verified as follows. Observe 
that if x E U then either 3/x E U if 3, E X(A) or 
3 / x ~ A  if 3 / ~ X ( A ) .  Hence 3/ - lh=h  for all 



711 E. Barany / Detecting lhe ,svmtnetrv o f  attractors 

y E E(A)  and is zero otherwise. Now compute 

TGI' 

y ~h 
-y c ~ ( . , t )  

IZ(A)Ih. 

It follows that 

K+(A) = f (b d#  

= J ~b d/x + O(e) 

= I~(A)IMU) h + O(e). 

Hence 6K,~(A) [~'(A)I~(U) 6h + O(e). Since 
6 h ¢ h  when 6 ~ X ( A )  we see that K,~(A)¢  
6Ke,(A ). So 6 5ff~,'#,(A), as desired. [] 

We now state the basic result of this section. 
Let W L . . . . .  W be, up to lattice equivalence, all 
of the nontrivial irreducible representations of F. 
Define 

W ( F ) =  W t @ . . . @ W  . 

Theorem 4.3. Let F be a finite group and let 
V D W(F) .  Then V distinguishes all subgroups of 
1". 

We begin the proof of theorem 4.3 with two 
lemmas. 

Lemma 4.4. Suppose that V distinguishes v and 
that W is a representation of F. Then V @ W  
distinguishes v 

Proof. Since 

Fix>+w(~') F i x v ( X ) O F i x w ( .  v )  (4.1) 

4. Distinguishing subgroups 

Definition 4. I. Let X C F be a subgroup and 
let W be a representation of F. We say that W 
distinguishes S if 

dim Fixw(A ) < dim Fixw(Z' ) < dim Fixw(Y ) 

whenever  ,3 and Y are subgroups not equal to X 
and A D S  D Y. 

Definition 4.2. Two representations V and W of 
F are lattice equivalent if there exists a linear 
isomorphism L: V--+ W such that 

L(Fixv(X))  Fixw(X) 

for every subgroup X C F. 

Clearly, isomorphic representations are lattice 
equivalent,  but inequivalent representations can 
be lattice equivalent. For example, consider the 
two distinct two-dimensional irreducible repre- 
sentations of D~. 

all you need to verify the strict inequality in 
dimension is the inequality in dimension on 
fixed-point subspaces of V. [-7] 

Lernma 4.5. Suppose that V distinguishes X. 
(a) Suppose that V V I @ V , @ W  where V~, 

V,_, and W are representations of F and V~ and V+ 
are lattice equivalent. Then V l @ W distinguishes 

(b) Suppose that V V~@W where W is the 
trivial representation of F. Then V t distinguishes 

This lemma is easily proved using (4.1). 

Proof  o f  theorent 4.3. Recall that V I , the left 
regular representation of [', consists of all func- 
tions from F into ~. Let s_' C F be a subgroup. 
Then 

F i x v , ( X ) = { h C V l : h ( c r  ~6) t1(8) V~rE2S} .  

Thus if tl is in F ixv , (v)  then h is constant 
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on X. It follows that if X C A  but X ¢ A ,  
then dimFixvr(A ) <d imFixv r (X) .  Certainly, 
Fixvr(A ) C Fixvr(X). However,  it is easy to con- 
struct a function that is in Fixvr(X) that is not in 
Fixvc(A ). Define 

h ( y )  = otherwise.  

It follows that V r distinguishes every subgroup 
of F. A standard theorem states (see [10], p. 77) 
that up to isomorphism every irreducible repre- 
sentation appears in V r. Hence lemma 4.5 im- 
plies that W(F) distinguishes all subgroups. Now 
apply Lemma 4.4 to prove that V distinguishes 
all subgroups of r .  [] 

We note that proposition 3.3 can be 
strengthened to show the following. Fix A E M. 
Then X ( A ) =  X~(A) for almost all observables 
4): ~"--> W D W(F). The idea is to show that the 
linear mapping @(~b) = K~,(A) is onto 
FiXw(Z(A)), which can be done using bump 
functions. We will not pursue this result since 
there is a stronger and more useful version of 
this theorem which we present in the next 
section. 

5. Detectives 

Let ~b: N"---~ W be an observable. Roughly 
speaking we call 4~ a detective if for almost every 
open set A C Nn the subgroup ,Y,~(A) (the iso- 
tropy subgroup of the observation Ks(A)) and 
Z(A)  (the group of symmetries of A) are equal. 
To make this definition precise we must define 
more accurately what we mean by 'almost 
every ' ,  and to do that we must indicate how we 
can perturb an open set in such a way as to 
preserve its group of symmetries. 

Perturbations of sets are defined using dif- 
feomorphisms in the following way. Let  ~ be in 
Di f f r (N") ,  where Dif f r (N n) is the group of F- 
equivariant C = diffeomorphisms on Nn. It is easy 

to check that the group of symmetries of ~b(A) 
equals X(A). Moreover ,  if ~ is near identity, 
then 0(A)  is a small perturbation of A. 

We note that if f :  ~"--> ~" is a F-equivariant 
dynamical system with an attractor L, then ~ (L)  
is an attractor for the dynamical system 

ofo + 1. Thus the type of perturbations of A 
that we consider here are natural from the point 
of view of dynamical systems, as they correspond 
to making a smooth change of coordinates in the 
original dynamical system. 

Definition 5.1. The observable ¢ is a detec- 
tive if for each subset A C M, almost all near 
identity diffeomorphisms ~b E Diffr(N n) satisfy 
~ (q,(A)) = .~(A). 

Recall from lemma 3.2 that X~(C,(A))D 
X(~b(A)). Since qJ is a F-equivariant diffeomor- 
phism it follows that X(~b(A))= X(A). Thus to 
prove that 4' is a detective we must show that for 
almost all near identity ~b, X,~(~b(A))C X(0(A)) .  

For  ~b to be a detective we need to know that 
there are observations K~(O(A)) that lie in 
Fixw(,~(A))-Fixw(A ) for all subgroups A D 
X(A) with A ~ X ( A ) .  This is not possible if 
dim Fixw(X(A)) = dim Fixw(A ). Thus 4' may be 
a detective only if W distinguishes all subgroups 
of F. Thus a necessary condition for 4~ to be a 
detective is that W distinguishes all subgroups. 

We now state our main theorem. Recall that 
W(F)  is the sum of all nontrivial lattice inequi- 
valent irreducible representations of F. We can 
write W ( F ) = W  1 0 . . . O I V , .  Should a repre- 
sentation W of F contain W(F),  then we can 
decompose W = W(F) ~) W ~ for some represen- 
tation W • 

Theorem 5.2. Let W D W(F) and let 4~: ~"---~ W 
be a polynomial observable where 4, = 
(4'1 . . . .  ,4~s, 4 ~l)  in coordinates. Suppose that 
~bj ~- 0 for 1 -< j --- s. Then 4) is a detective. 

Corollary 5.3. Every finite subgroup F C O(n) 
has a detective. 



72 E. Barany / Detecting the syrnmeto' o f  attractors 

Proofi To prove this corollary we apply theorem 
5.2 and to apply this theorem we need only show 
that there exists a nonzero F-equivariant  poly- 
nomial  map from R" to W where W is any 

representat ion of F. This we do by averaging. 
Since F is a finite group the principal orbit 

type is the trivial group. Hence we can choose a 
nonzero vector x E R ~ that has trivial isotropy. 
Next  choose a nonzero vector w E  W. Let 
f: R"---~ W be a polynomial  mapping such that 
]Ix) - w and )~(yx) = 0 for all nonidentity Y ~ F. 

Now define 

TEl"  

It follows that it is sufficient to prove theorem 
5.2 when W -  W(F). 

We divide the proof  of theorem 5.2 into three 
main steps. First, we show that 95 is a detective if 

A a certain nonlinear map ~ is locally onto 
( l emma 5.5). Next we show how to prove that 

A (proposition 5.6), q tj+ is onto by linearizing q r  
Finally, we show how to verify that the lineariza- 

A tion of q t  is onto by using the fact that 95 is a 
polynomial  mapping (proposition 5.8). We begin 
by defining the mapping q t  A. 

Let ~A:  Difft.(~,,)___,Fixw(~(A) ) be defined 
by 

'(A)). 

and observe that f is a F-equivariant  polynomial.  
Finally compute  f ( x ) =  w from which one can 

conclude that f is nonzero.  [] 

We begin our proof  of theorem 5.2 with the 

observat ion that the bigger the range space W 

the more likely it is that 95 is a detective. 

Lemma 5.5. Let 4~: R"---, W bc an observable 
and assume that W distinguishes all subgroups. If 
for each set A E ,~/ there exists an open neigh- 
borhood U of the identity in Dif f r (N ") such that 
the observations q,A (U)  cover an open neigh- 
borhood  C of K,~(A) in Fixw(£(A) ), then 95 is a 
detective. 

Lemma 5.4. Let p: W~--~ W 2 be a F-equivariant  

projection.  Let 95l: [R"---~ Wj be an observable 

and let 952 = P95~- If the observable 62 is a detec- 

tive, then 95~ is also a detective. 

Proof. The assumption that p is F-equivariant  

and onto implies that W 1 = W 2 @ V  for some 
F-invariant  subspace V of W 1. Hence,  the iso- 
tropy subgroup of a point (w 2, v) is the intersec- 

tion of the isotropy subgroups of w 2 E ~ and 
v ¢ V. In particular,  the isotropy subgroup of a 
point in W~ is contained in the isotropy of the 
project ion of that point in W 2. Since 
p(K~t(A))= K+:(A), it follows that Z#o~(A)C 

On the other hand, if 952 is a detective, 
then generically X~2(A ) = 5 (A) .  But lemma 3.2 
states that Z ( A ) C  X+~(A) always. Therefore ,  ge- 
nerically X+~(A) C X+~(A). Thus generically 
,,~e,,(A) = Z~fA)  = X(A) and 951 is a detective, as 

asserted. [] 

Proof. Let V be the algebraic variety UFixw(A) 
where the union is taken over  all subgroups A 
containing but not equal to X(A). Since W dis- 
tinguishes all subgroups,  V is a variety of 
codimension at least one in Fixw(X(A)). It fol- 
lows that the set 6 ' =  C V is an open dense 
subset of (9 in W whose closure includes K~(A). 

Since ~A is smooth,  (qt2)  l ( ~ , ) n  U is an 
4~ 

open dense subset of U in Diffr(N" ) whose 
closure contains the identity. It follows that for 
most near  identity diffeomorphisms ~0 the obser- 
vations A qte,(t#) K~,(O I(A)) are not in V and 
are arbitrarily close to K6(A). This proves the 
l emma since observations not in the variety V 
have the correct isotropy subgroup. [] 

Next we want to show that for each open set 
A, g '~ is onto a neighborhood of K4,(A). We do 
this by using the implicit function theorem. We 
assume that ~, is a one-parameter  family in 
Diffr({R ~) with O0(x)= x, and we let X be the 
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infinitesimal generator for tOt, that is, X = 
A 

(d/dt)tO,[,=0. Then we differentiate g r  ( ~ )  with 
respect to t and evaluate at t = 0, to get a linear 

A mapping ~ (X). If we can show that ~+  is onto 
FiXw(X(A)), then we can apply the implicit func- 
tion theorem and lemma 5.5 to conclude that ~b 
is a detective. Let  Cr(N ~, R ~) be the space of C = 
F-equivariant mappings on R ". 

Proposition 5.6. Let ~b: R~---~ W be an observ- 
able and assume that W distinguishes all sub- 
groups. Suppose that for every set A E M the 
linear mapping 

A n n . ~+ : Cr(N , ~ )-+FlXw(X(A)) 

is onto,  then 4~ is a detective. Moreover,  

f 5f ,  (X) = d p X . N d v ,  
O A  

where N is the unit outward normal on OA and u 
is the natural measure induced by Lebesgue 

measure on OA. 

Proof. The discussion preceding the statement 
of proposition 5.6 shows that 4~ is a detective. 
Thus, we need only verify the computation of 
the linear mapping ~ .  Using change of vari- 
ables in integration, observe that 

A f ~ ,  (tO,) = &(x) dp,(x) 

q/t(A) 

= f ~b(tO,(x)) det(dtO,)~ dtz(x) .  
A 

Differentiating with respect to t and evaluating at 
t = 0 leads to 

 2(x) 
A 

d det(dtO,)l,=0] dry(x) 

Next observe that 

d det(dtO,)],= ° = t r (dX) x =V.  X 
dt 

Finally, use Stokes theorem to conclude that 

372(X) = f 6X" N d v .  (5.1) 
a A  [] 

It follows from (5.1) that if X has support in 
the interior of A, then 5(~ (X) = 0. lndeed, this 
fact could have been anticipated in the following 
way. If tO were a diffeomorphism on Nn with 
support  in A, then tO(A) = A. Thus the observa- 
tions K+ over A and tO(A) are equal. So no 
infinitesimal change occurs for such deforma- 
tions. 

A We now use the explicit computation of ~ 6  in 
A (5.1) to compute explicitly the image of ~7,.  Let 

A F ,  be the subspace of W spanned by 4~(x) where 
x is in the smooth part of 0A. Let 
P: W--> Fixw(X(A)) be orthogonal projection. It 
follows from the trace formula [7] that 

P(w)- 1 Z 

Since the integral in (5.1) may be taken over the 
smooth part of OA, we see that I m ( ~ 2 ) C  
P(F2). In fact, we prove: 

Lemma 5. 7. Im(oLY 2 ) = P(F 2 ). 

Proof. Let x E 0 A be a point on the smooth part 
of the boundary of A and let 6 x be a delta 
measure supported at x@OA with value [1/ 
[X(A)]]N(x) ~ O~ n. Let p = E~c r 6vx. Formally, p 
is a F-invariant mapping, and formally 

1 Z (P)- ]Z(A)] 

since only when 7 E X(A) is 6rx supported in 
OA. Now we use the trace formula to conclude 
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that  P(O(x)) is in the image of  j ,A By linearity, 
< / 5  " 

the subspace P(FI~ ) is in the image of  ~'i~ • which 

yields the desired equality.  

We now discuss how to make this formal 

compu ta t i on  rigorous.  Let U be a small ball 

cen te red  at x. Choose  a vector  field X suppor ted  

in U, point ing in the direction N at x with 

magni tude  I/[Z(A)[ and equivariant  with respect 
to the isotropy subgroup of  x. Use the g roup  

action of  F to extend X to a F equivariant  vector  

field on N" suppor ted  on the balls TU (which we 

can assume are ei ther  disjoint or  equal ,  if U is 
small enough) .  

Observe  that  ~I'A ~,~ (X)  points approximate ly  in 
the direct ion of  P(4"(x)). Indeed,  an appropr ia te  

limit of  vector  fields U will converge  to 8,; and 

the integrals will converge  to P(4 '(x)) ,  as 

desired.  [] 

Next  we show how to use the fact that  4' is a 
po lynomia l  and the explicit form of ~j,A to show 
that  this l inear map is onto.  To do this we need 

to in t roduce  a new subspace of  W. Let W~ C W 

be the subspace genera ted  by the vectors 4'(.r) 
for  x E ~". 

Proposition 5.8. Let 4': ~"---, W be a polynomial  
observable .  Assume that W,~ , -W and that W 

distinguishes all subgroups.  Then  4' is a de- 
tective. 

ProoJL It follows that we can apply proposi t ion 

5.6 precisely when P(F]) equals Fixw(,Y(A)). 
We begin by showing that we can deform A to A'  

by a near  identi ty d i f feomorphism so that the 
co r re spond ing  P ( P f )  equals Fixw(X(A)) .  Then  
we use the implicit funct ion theorem to deform 
A '  to / t  which has the correct  symmet ry  when 
observed  by 4'. The composi t ion  of  two near 
identi ty d i f feomorphisms is still near  identity so 

05 is a detect ive as claimed. 
We extend the space F Aa to F '  where F ' =  

(4 ' (x) :  x is near  OA}. We use the fact that  05 is a 
po lynomia l  mapping  to show that P(F ' ) -  
Fixw(X(A)) .  Since 4' is a polynomial  mapping,  

P4' is also a polynomial  mapping  of  ~" into 

Fixw(X(A)) .  If an open  set of  all images of  P4' 
end up in a subspace,  then all vectors  in P05(N") 

are in that subspace.  But this contradicts  the 

assumpt ion  that  W;, = W. For if this assumption 

is valid, then P(F')= P(Wf,) Fixw(X(A)).  

Next  we observe that since Fixw(Z'(A)) is fi- 

n i te-dimensional ,  there exist points x; . . . . . .  r 

such that 4 ' (xl)  . . . . .  4 ' ( x )  is a basis for 

F ixw(X(A)  ). Since 05 is cont inuous ,  there are 
ne ighbo rhoods  U s of  .r i for 1 <j-<- s such that 

05(Yl) . . . . .  & ( y , )  is a basis for Pixw(V(A))  

wheneve r  Y1 ¢ U~ for 1% j ~ s. It follows that we 
can choose  the x / s  to have trivial isotropy and so 

that  no two are on the same group orbit.  Next 

choose  a~ . . . . .  a~ on aA so that a i is near x i, ai 
has trivial isotropy,  and no two a s are on the 

same group  orbit. We can now construct  a near 

identi ty F-equivar iant  d i f feomorphism ~ which 

moves  a i to ,r i for each ]. Let A '  - O(A). In this 
way we can deform A by a d i f feomorphism ~/~ 
just a little near  the boundary  so that the points 

x i are in OA'. Now we can apply proposi t ion 5.6 
since the new P ( D f )  is equal to Fixw(V(A)).  

Proot: of theorem 5.2. T h e o r e m  4.3 implies that 
W distinguishes all subgroups.  Next  let W,6 be 

the subspace of  14/, spanned by all vectors in 

&i(lR"). The  equivariance of  05~ guarantees  that 
the space W4, i is F- invariant .  The irreducibility of  

W / implies that W + , - W  since &i is nonzero .  

Similarly, the space W,t , is a F- invar iant  subspacc 
of  W and the project ion of  W into W whose 

kernel  is spanned by the o ther  Wa's takes W+ 
on to  W,6. There fo re ,  there is a subspace of  W,, 

that  is / ' - i somorphic  to W,. Since all of  the 
representa t ions  of  1" on the W/s are distinct, this 

implies that W+ = W. Now we can apply proposi-  
tion 5.8 to conclude that  4' is a detective.  F_7 

6. Example: tetrahedral symmetry 

To illustrate the foregoing considerat ions,  and 
to investigate what  might comprise  typical be- 
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havior for symmetric maps, we study an example 
with the tetrahedral group T acting o n  ~ 3  in the 
usual way. Truncating arbitrarily at third order, 
the general tetrahedral equivariant map can be 
written 

= A Y  f ( x ,  y ,  z )  + O/(X 2 -~- "4- z 2) Y 

Z \ Z /  

y ) 
\ x y /  \ z  / \ Z X 2 /  

See [11] for a complete discussion of the poly- 
nomial tensors of the point groups. 

Recall that T has two nontrivial irreducible 
representations, one of dimension three (the 
standard representation) and one of dimension 
two (where the D 2 subgroup acts trivially). Thus 
we can construct a detective 4,: ~3__> N5, which 
we take to be 

4,(x, y, z) = 
4,2 XZ 

4,3 = x y  , 
4,4 2X2 _ y2  _ Z2 

4,s \2y2 X 2 2 

Fixw(Z~ ')) = a{(1,  O, O, O, 0)} • W 2 , 

Fixw(7/~ 2)) = ~{(0, 1, o, o, o)} ® w2 ,  

Fixw(7/~ 3)) = ~{(0, O, 1, O, 0)} • W 2 . 

Writing 14,12 =4)21+4,22+4,2 and 14,[ 2 , =  
_ 3 

4,] + 4,~, the corresponding distance formulas 
a r e  

d(4,, Fix(7/~'))) 2 = 161~ 
+ ~ ( 1 4 , 1 ~ , -  4,,4,2 - 4 , ,4 ,~-  6 J , , ) ,  

d(6,  Fix(77~2')): = 16122 

+ _{(14,:It - 4,,4'2 + 4,,4,3 + 4,24,.,), 

d(4,, Fix(g~3))) 2 = ]4,/)]2 

+ ~(14,1~, + 4,,4,2 + 4,,4,3 - 4,24,3), 

d(4,, Fix(Z~4))) 2 = 14,,12= 

-]- 2(14,[W3 q- 4,14,2 --  4,14,3 + 4,24,3), 

d(4,, Fix(7/~'))) 2 = 4,~ + 4,~, 

d(4,, F i x ( 7 / ~ 2 ) ) )  2 = 4,~ "4- 4,2 3 ,  

d(4,, Fix(7/~3))) 2 = 4,~ + 4,]. 

where the first three and last two components 
span irreducible subspaces. For convenience, we 
write W = [R 5 = W~ • w 2. It follows from the dis- 
joint union decomposition ( T =  0 4 7 2 3 0 3 7 / 2 ;  s e e  

[7]) that there are seven distances to calculate: 
four to 7/3 fixed-point subspaces and three to 7/2 
fixed-point subspaces. The 7/3 fixed-point spaces 
are one-dimensional and are given by 

Fixw(Z~ ~)) = ~{(1, 1, 1 , 0 , 0 )} ,  

Fixw(7/~ 2)) = a{(1,  - 1 ,  1, 0, 0)},  

Fixw(Z~ 3)) = ~{(1, 1, - 1 ,  O, 0)},  

Fixw(7/~ 4)) = E{( -1 ,  1, 1, O, 0 ) ) ,  

while the 7/2 fixed-point subspaces are three- 
dimensional and are given by 

The symmetry of the attractor is given by the 
distances as follows. If all distances vanish, the 
attractor has full tetrahedral symmetry. If any 
one of the Z 3 distances vanish, with all other 
distances nonzero, the attractor has 7/3 symmetry 
(all copies of 7/3 are conjugate in T). Similarly, if 
any one of the Z 2 distances vanish the attractor 
has 7/2 symmetry (again, all copies of 7/2 are 
conjugate), while if all three 7/2 distances vanish 
but the 7/3 distances are nonzero then the attrac- 
tor has D 2 symmetry. If all distances are nonzero 
the attractor has trivial symmetry. Generically, 
the only other possibility is for the map to 
"blowup" with the orbit diverging to infinity. 

We have made a rather rough investigation of 
the symmetry of attractors of this map; neverthe- 
less, we have found chaotic attractors of all 
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symmetry types. An advantage of these methods 

is that it is possible to automate the search, and 

so determine the symmetry over whole regions 
of parameter  space, The remainder of this sec- 

tion will describe the methodology and results of 

such a search over a particularly interesting two- 

parameter  region. 

In the notation above, the values of three of 
the five parameters were fixed at c~ = 1.0,/3 = 1.0 

and ~ = - 1 . 0 ,  while the remaining two covered 

the region - 2 . 1 < a < - 1 . 6  and 0 . 4 < y < 1 . 4 .  

The search was conducted "quasistatically" both 
in parameter  space and with respect to initial 

conditions. The initial parameter values were 
taken to be (a ,  3') - ( -2 .1 ,  (I.6), then a was held 

fixed while 3' was incremented by 0.01 at a time 

until it reached its maximum value of 1.4. Then 

A was incremented by 0.005 with y held at 1.4, 

and 3' was then decremented by steps of 0.01 
until its minimum value was reached. Then a was 

incremented again and the y process repeated so 

that the parameter region was covered by a 

snaking path. 

For each pair of parameter values the map was 

iterated 1000 times to eliminate transients and 
set the scale of the attractor (or to check for 

blowup). Then the grid was defined to dice the 

region covering the attractor into boxes and the 
map was iterated 1000 iterates at a time until 

convergence was achieved. Convergence was de- 

fined to have occurred if the net increase in the 

number  of occupied boxes in one cycle of 1000 
iterates was 0.001 or less of the total number of 

occupied boxes at the end of the previous cycle. 

We stress that this feature of automatic detection 
of convergence is extremely useful, especially in 

light of the very poor asymptotic convergence 
properties of the ergodic sum (see section 7). It 

is also worth noting that the number of iterates 
required for convergence contains interesting dy- 
namical information. The simplest dynamics 
(fixed points and finite n-cycles) result in conver- 

gence on the first pass (1000 iterates), more 
complicated but still nonchaotic attractors such 
as invariant curves and also small chaotic attrac- 

tors are indicated by convergence times of a few 

thousand while large chaotic attractors can take 

hundreds of thousands of iterates to converge. 
The initial conditions in R 3 were arbitrarily 

taken to be (0.75, 0.5. 0.66), but were sub- 

sequently chosen quasistatically in the following 
sense. When convergence to an attractor 

occurred, the final value was taken to bc the 
initial condition for the transient cycle of the 

next set of parameters. In order to avoid being 

artificially caught in invariant subspaces, the 

value was perturbed by adding a small random 

number ( O ( 1 0 - ' ) )  to each component.  If a 

blowup occurred, the previous initial condition 

was reused. 

The final issue to be addressed is the way in 

which the distance values were interpreted to 
yield symmetry types. The fundamental question 

is essentially: "What  is zero?",  and it must be 

admitted that our treatment is somewhat ad hoc. 

Operationally, zero is any quantity smaller than 
the difference caused in an observation by 

changing the number of occupied boxes by one. 

Unfortunately,  this quantity will depend on the 

attractor and the observable, so it is difficult to 

apply this rule in practice though it is clear that 

the finer the grid chosen the smaller this minimal 

quantity will be. We chose our grid so that each 

side was broken into 51 intervals; this number 
represents a compromise between precision (size 

of zero) and quick convergence. Checks were 
performed with 101 interval grids to verify that 

the results were not sensitive to the grid choice. 

Finally, by trial and error, we chose a value of 
0.005 to be the zero scale of distance squared. A 

much larger value caused some parameter re- 

gions to appear to have more symmetry (e.g. aY~ 
attractors might be labelled T symmetric), and a 
much smaller one caused some regions to be 

erroneously labelled as having only trivial sym- 
metry. 

Our results are summarized in fig. 1 and fig. 2 
which should be read in the same manner as 
thermodynamic phase diagrams. Figure 1 is an 
exact representation of our results where there is 
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Fig. 1. Symmetry types. See text for discussion. 
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Fig. 2. Symmetry phase diagram. See text for discussion. 

a symbol printed for each pair of parameter  
values. Plus signs indicate T symmetry, dots 7/3, 
asterisks 7/2, circles indicate trivial symmetry and 
blank spaces indicate regions of blowup. It so 
happens that there are no D 2 symmetric attrac- 
tors in this particular region. Figure 2 is essen- 
tially the same diagram but with the boundaries 
of the symmetry regions plotted to make it easier 
to read. In practice, calculations near the bound- 
aries can be somewhat problematic and can pro- 
duce apparently spurious symmetry types. 

Roughly speaking, the dynamics goes from 
simple to complicated as one goes from right to 
left in the diagrams. The 7/3 symmetric dynamics 

at the far right consist of two-cycles each point of 
which becomes first an invariant curve and even- 
tually chaotic as A decreases. At the vertical 
boundary between the 7/2 and 7/3 regions the 7/3 
limit cycles lose stability to 7/2 two-cycles, these 
two-cycles also become limit cycles and eventual- 
ly chaotic much as the 7/3 case. The serrated 
appearance of the lower 7/2-7/3 boundary is clear 
evidence of hysteresis in the symmetry transi- 
tions. The tetrahedrally symmetric dynamics are 
all chaotic and result from collisions of the lower 
symmetry chaotic attractors. The thin peninsula 
of 7/3 symmetry represents chaotic dynamics of a 
different sort than in the other region. The dy- 
namics with only trivial symmetry are particular- 
ly interesting, and seem to result from fracture of 
the symmetric attractor into shards. Asymmetric 
attractors tend to have small support in 0~ 3. They 
tend to appear as three disconnected regions; 
indeed, for certain parameters these attractors 
are just asymmetric three-cycles. 

7. A method for observation: the ergodic sum 

Given an observable d~ and a set A E sq, we 
define the mapping g: F--~ [~ by taking g to be 
the distance of the observation K,(A) to 
Fixw(T).  The isotropy subgroup of Ks(A ) is just 
the set of 3' ~ F for which g ( y ) =  0. From this 
information we get the symmetry of the set A. 

As an alternative to computing the integral 
K+(A), one can presume that the ergodic 
theorem is valid and compute (approximately) 

Ke~(Xo) = lira -~ cb(fi(Xo)). 
j=o 

E To use K,(xo) we must show, in analogy to 
lemma 3.2, that X(L), the symmetry group of 
the attractor L, is contained in the isotropy 
group of this ergodic observation. It follows from 
the ergodic theorem (see [3]) that there is an 
(map) invariant measure v that is also X(L) 
invariant. (Just average an invariant ergodic 
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measure  over  the group of symmetries.)  The 
B o w e n - R u e l l e - S i n a i  box-counting measure 
(when it exists) is an example of such a symmet-  
ric ergodic measure.  For these measures v it can 
be shown, using the ergodic theorem,  that sym- 
metries o- of L fix K E In symbols ,4,' 

o-K~(xo) = f 4'(crx) d~'(x) 
L 

I 4,(x) d~,(x) = = K+ (x,~) . 

~rL. 

The same theorem suggests that when we use 
a detective function 4' this calculation will generi- 
cally produce the actual symmetry  of the attrac- 
tor for the discrete dynamical system f. The main 
difficulty is the numerical issue of deciding when 
the distance g is actually zero. This difficulty is 
accentuated by the fact that the ergodic sums 
converge slowly. In fact, in the numerical exam- 
ples below we will see that the direct computa-  

tion of the integral K~,(A) i s - a t  least for low- 
dimensional  a t t r a c t o r s - o f  advantage in com- 

E parison to the computat ion of the sum K+(x0). 
In higher dimensions, however,  the computat ion 
of the integral K~,(A) becomes impractical and 
then we have no recourse but to compute the 

E 
ergodic sum Ke,(xo). 

As a final point in this section, we illustrate 
the sense in which our numerical experiments 
seem to show that the convergence propert ies of 
the integral method are superior to those of the 
ergodic sum. (It is known that in general the 
convergence rate of the ergodic sum can be 
proved to be no better  than 1/N.) Moreover ,  in 
practice, the ergodic sum tends to exhibit large 
oscillations while converging, making a test for 
convergence difficult. We will illustrate this diffi- 
culty with examples of attractors of D 3- 
equivariant  planar mappings,  and compare  the 
results with the integral test. 

On the other hand, numerical approximations 
to the integral method as described in section 6 
must converge to its final value in afinite number  

of  iterations, because no additional boxes will be 
filled after the at tractor is covered. Moreover ,  
this saturation will occur faster when a coarse 
grid is chosen, making it possible for the calcula- 
tion to proceed quite briskly in comparison with 
the ergodic method.  Of  course, we pay a price 
for this acceleration of convergence in the form 
of some loss of precision. As mentioned previ- 
ously, a coarse grid causes more uncertainty in 
the interpretat ion of a distance value as zero or 
nonzero.  

We illustrate these points with a simple exam- 
ple with D~ symmetry acting on C, choosing a 
situation in which it is known that a fully D~ 
symmetr ic  chaotic at tractor exists (see [2]). With 
z E C, the general equivariant map truncated at 
third order  is 

f(z) = (az# + a)z + yzT:, 

and a D~ symmetric attractor appears  to exist for 
the pa ramete r  values o~ = 1.0, 7 = - ( I . 5  and 
• ~ = 2.3. The results are presented in fig. 3 where 
we plot the value of the distance to the fixed- 
point space of the rotation in D3. The detective 
is t h ree -d imens iona l -  a two-dimensional ir- 
reducible component  z and a one-dimensional 
nontrivial irreducible component  Im(z~). 

07 

t~ ! ]'~:i: ! (I.2 ~11 ~ i 
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Fig .  3. C o n v e r g e n c e  p r o p e r t i e s :  5 l × 5 1  g r i d - s o l i d  l ine:  

201 × 2(11 g r id  - d a s h e d  l ine :  1(1(11 × I001 g r id  - d o t t e d  l ine" 

e r ~ o d i c  s u m -  d a s h - d o t t e d  l ine .  



E. Barany / Detecting the symmetry o f  attractors 79 

Two points are immediately clear from the 
diagram. First, the ergodic .sum converges more 
slowly than any of the integral results; second, 
the coarser the grid the faster is the convergence 
for the integrals. Put another way, the finer the 
grid the more closely the ergodic behavior is 
mimicked by the integral. Comparison of the 
results for the 51 z 51 grid and the 201 x 201 grid 
illustrates the price of the quick convergence: the 
asymptotic value of the distance for the coarser 
grid is 0.036 and for the finer grid 0.010. 

8. A detective for coupled cells 

The results that we obtained in the previous 
sections apply to attractors in ordinary differen- 
tial equations as well. Then the attractor is given 

by L = {x(t): t->0} and the time-average be- 
comes 

T 

K~(x (O) )  = l im -~ ck(x(t)) d t .  

11 

In this section we will apply theorem 5.2 to rings 
of coupled cells, which are Dp symmetric systems 
of the form 

2 i = f ( z j  1 , z i ,  z j+~,A)  ( j = l  . . . . .  p ) ,  (8.1) 

where zj ~ 0~ m and f ( x ,  y ,  z,  A) = f ( z ,  y ,  x ,  A). 
(We use the convention here that z 0 = Zp and 
Zp+ 1 = z l .  ) We set n = rap. 

We now present a detective for such systems 
and, in the next section, we explore numerically 
an example of three coupled cells ( p  = 3) con- 
sisting of two equations each (m = 2) so that 
n = 6. The representation space W that we use 
for this detective is the space of n x n real 
symmetric matrices where y ~ Dp acts by simi- 
larity transformations on W: 

3, - w = ? w  7 '  for a l l w E W .  

We will prove the following: 

Theorem 8.1. Assume that the number of cells is 
p---3 and the number of equations governing 
each cell is m-> 2. Then the mapping 

~,(x)  = x .  x '  

is a detective. 

It is easy to check that with respect to this 
action of Dp on W, 4, is Dp-equivariant; hence, & 
is a polynomial observable. We will use theorem 
5.2 to prove theorem 8.1. There are two points 
that must be checked. We must show that W 
contains every (lattice equivalence class of) non- 
trivial irreducible representations of Op and that 
this particular & is nonzero on each of these 
representations. In fact, we will show using the 
theory of characters that W contains every non- 
trivial irreducible representation. 

It is easy to show that & will then be nonzero 
on each of these representations by showing that 
W6 = W where W~ = (~b(x): x E E " ) .  (The vec- 
tor space IV+ was introduced in the proof of 
theorem 5.2. To prove that 4' is a detective in 
this case we find it easier to verify the hypotheses 
of proposition 5.8.) To verify the claim let 
e 1 . . . .  , e  n be the canonical basis of E" and 
define the vectors xi4 by 

e i i = j  
x i 4 =  e i + e  j i # j  i , j = l  . . . . .  n .  

Then one can check that the set of matrices 
&(Xi.i+k) ( k = 0 , 1  . . . . .  n - l ,  i = 1 , 2  . . . . .  n -  
k) defines a basis of W, which implies W~ = W. 

To check the first assumption of theorem 5.2 
we compute the multiplicities of the irreducible 
representations of D e in W using characters. 
Recall that the character of a representation W is 

the mapping Xw: F---~E defined by Xw(y) = 
t r ace (y )  where this trace refers to the trace of 
the action of Y on W. 

The multiplicity of an irreducible representa- 
tion V in the representation W is the number of 
independent  isomorphic copies of V that appears 
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in W. Since we fix W we deno te  this multiplicity 

by c v. 
The  theory  of  characters  states that (see Miller 

[10]) c v may be c o m p u t e d  by 

1 ~ X v ( T ) X ( T ) ,  (8 .2 )  Cv 2p vcD:, 

where  X is the charac ter  of  W and Xv is the 
charac te r  of  V. 

To  c o m p u t e  the character  of  D n acting on W 
we need  to compu te  t race(T)  for  each Y ¢ D . 

This we can do by a direct  combinator ia l  argu- 
ment .  We deno te  the basic ro ta t ion in Dp by R. 

The  reflections fall into three t y p e s - a l l  reflec- 

t ions in terchange  some cells in pairs and fix o ther  

cells. Each  reflection in Dp ( p  odd)  fixes exactly 

one  cell while the reflections in Dp ( p  even) fix 

e i ther  0 or  2 cells. Accord ing  to this we deno te  

them by S~, S 0 and S 2 respectively.  

Lemma 8.2. 

t r ace ( l )  -- ½rnp(mp + 1) ,  

imp  ( j  = ½p) t race(R j) 
0 (o therwise) ,  

trace(S,,) = ~rnp, 

t race(S,  ) = ~ r n ( p  + m) , 

t race(S2) = ½rn(p + 4rn) .  

Proof. Let  A be the p × p matrix (ai:) and let 

T C D n act on A by Y " A = TAT t. Each  Y C D:, is 
a pe rmuta t ion  matrix. A short  calculation shows 
that  pe rmuta t ion  matr ices act by just permut ing  
indices, that  is, 

y.(ai/) = (av(,)v<j))  , (8.3) 

where ,  by abuse of  nota t ion,  we also deno te  the 
pe rmu ta t i on  on indices by Y- Similarly, when A 
is an ( m p ) x  (mp) matrix and each aij is an 
m x m block matrix,  we see that  (8.3) is still 

valid, though  here block matrices ra ther  than 
individual e lements  are permuted .  

N o w  we suppose that A = (a~/) is a symmetr ic  
[ 

matrix,  so that a ¢ =  a:, and, in particular,  a ,  is 

itself a symmetr ic  matrix. We can see from (8.3) 

that  the only contr ibut ions  to t r a c e ( y )  come 

when (y( i) ,  Y(j))  equals ei ther  (i, j )  or  ( j ,  i). 

The re  are three possibilities. If (y ( i ) ,  y(i))=- 
(i, i) then there is a contr ibut ion of  ½m(rn + l) to 

t r a c e ( y ) ,  since a ,  is an rn × m symmetr ic  matrix. 

Should  (y( i) ,  Y(J)) (i, j)  where i ¢ j, then the 
cont r ibut ion  to t r a c e ( y )  is rn 2 since a ,  is an 

arbi t rary  rn × m matrix. Finally if (y(i) ,  Y(j))  = 
( j , i )  where  ig: j ,  then the contr ibut ion to 
t r a c e ( y  ) is only m since only the diagonal  ele- 

ments  of  ai: contr ibute  to the trace. 

This r emark  can now be used to compute  trace 

(Y) for  TCD: , .  If T = R  then ( R ( i ) , R ( j ) ) :  
( i + l , j + l ) m o d p  and ( R ( i ) , R ( j ) )  is never  
equal to (i, j)  or (j ,  i). So t race(R)  I). 

Now consider  R: (1 _< l-< p 1). Then  (Rl(i), 
R:( j ) ) ( i + l, j + l) mod p. The only possibility 
for  a contr ibut ion to the trace is when (i + l, j + 
l) = ( j ,  1 ) rood p. Then  p must be even,  l =  ! p 

a n d j  = i + 1. Thus  t race(R l) = 0  unless l = {p  in 
which case t r ace (R ' "2 )  = ~rnp since the ~p 
blocks 

a l , l  ~l , 612,l,2 . . . . .  ~ll,p 

each contr ibute  m to the trace. 

The  e lements  of  D:, remaining to be discussed 

are all reflections. Exchanging one pair of  cells 
cont r ibutes  rn to the trace while fixing a cell 
cont r ibutes  ½rn(rn+ 1) to the trace. Finally, 

when  two cells are fixed say cells 1 and ~ p +  1 

then an addit ional  block al.!:,+ ~ is also fixed and 
an extra m e is cont r ibuted  to the trace. Therefore  

trace(S,,) = ~prn = ½rnp (p  e v e n ) ,  

t r ace(S , )  = ½(p - 1)rn + ~m(m + 1) 

= ~ m ( p + r n )  ( p o d d ) ,  

trace(S2) ½ ( p - 2 ) r n +  ~ m ( m + l ) + m  ~ 

- ½ m ( p + 4 m )  ( p e v e n ) .  
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Since trace (1) equals the dimension of the 
space, 

t race(I)  = ½mp(mp + 1) .  [] 

and for all the ½ (p  - 1) two-dimensional irreduc- 
ible representations W~ we obtain 

c~ = ½m(mp + 1) .  

Proof of  theorem 8.1. It remains to show that W 
distinguishes all the subgroups if m >- 2 and p >- 
3. For this we use theorem 4.3 by showing that 
all the nontrivial irreducible representations of 

D e are present in W. 
In the case that p is even there exist three 

distinct nontrivial one-dimensional representa- 
tions which we denote by W z ,  WD~ and WD2. 
The subscripts indicate the kernels of those rep- 
resentations. Using (8.2) and lemma 8.2 we com- 
pute their multiplicities in W. For the irreducible 
representat ion Wz, we obtain 

2 p . c ~  = l m p ( m p +  l ) +  ½ m p - ½ P . ½ m p  

½p. ½m(p + 4 m )  

= ½mp(mp + l + l - ½ p -  ½p - Zm) 

= ½mp(m - 1)(p  - 2 ) ,  

and therefore 

c~p = ¼ m ( m -  l ) ( p  - 2 ) .  

Similarly we compute 

CD~ = ¼[m(p + 2) + 1 + (--1)P/Z], 

co~ = l [ m ( p  -- 2) + 1 + (--1)P/2] . 

Moreover  there are ½ p -  1 two-dimensional ir- 
reducible representations W~ ( j  = 1 , . . . ,  l p _  

1) with multiplicities 

c~ = ½m[mp + 1 + ( -1)q .  

In the case where p is odd there is just one 
nontrivial one-dimensional representation and 
we compute 

c~o = l m ( m  - 1)(p - 1) ,  

From these computations it now follows that the 
representat ion W distinguishes all the subgroups 
if and only if m >- 2 and p -> 3. [] 

We end this section by computing the dis- 
tances d(A,7_~ *)) (k = 1 , . . . ,  p) and d(A,  Yp) 
between an element A E W and the fixed-point 
spaces of the p reflections and the basic rotation 
in Dp. These formulae will be used in the nu- 
merical computations of the following section. 

Again we write A = (ai j ) i , j= 1 ..... p in block form 
such that each aq itself is an m × m matrix. With 
this notation the fixed-point spaces can be writ- 
ten as 

Fix(Z~ k)) = {A E W :  ( a q )  = ( a p _ i + k , p _ j + k ) ,  

l < - k < - p } ,  

Fix(Zp) : { A ~ W :  (ai j )  = (ai÷l,y+t) , 

1 - - < l - - < p - 1 } ,  

where the values of the indices have to be 
evaluated modulo p. Hence the distances are 
given by 

d(A ,  7/~)) 2 = ~ ~ ](aq - O p_ i+ k ,  p j+k)]  2 , 
t,] 

k = l  . . . . .  p ,  

p 1 2 ( d(A, ~-p)2 = E aij 
i,j P I=0 

In these last expressions ](bi j )]  2 d e n o t e s  the sum 
of the squares of the entries of the m × m matrix 
(bq). 

9. An example of three cells 

As an example of the results in the previous 
section we consider the following system of three 
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coupled cells: 

.f;~ = Xj~ I + ~ X ~ X i ~ l  , 

"('1 ~ I = - - X j  - -  ( X 2  - -  A)Xi+ I 

- ~  O / ( X j  1 - - 2 X j + l  4- Xj+3)  4- f l X  Xt+  , , ( 9 . 1 )  

where j = 1 , 3 , 5 ,  x 0 = x ~  and x s = x , .  We fix 
three of  the four parameters in this system 
setting 

c ~ = - 0 . 5 ,  / 3 =  1 .8 ,  6=-0.28.  

and consider a as the bifurcation parameter. 

The dynamical system (9.1) possesses D~ sym- 
metry,  where the e lements  of  D~ act by block 
permutation matrices. Using the previously de- 
fined notation we have p = 3, m = 2 and n -  6 
(see section 8). 

The equivariant polynomial  observable that 
we use to detect symmetry is & ( x ) =  x - x '  which 
leads to the computat ion of the correlation 
matrix 

1' ,f K~(x(0)) = .]r!m ~ x ( t ) .  x ( t )  ~ d t .  
0 

4 5 ,  
i I 

~5 l 

Test fl)r first re/]ectiona] s~,mmet D 

15 

I '  

[ 
O5[ 

0(2  1.18 I 16 114 I 12 7 i /  ~*~1 0~ 106 t o 4  

lambda 

4 S  

4 

15 

I 

nl 2 

Test  h~l s e o m d  retlectiona] *?u rnetr? 

I 1 g  I I(~ I 14 / [ 2  1 I I rig I 06 / o 4  

hlmbda 

-: 5 

d ,  

Test tor third re 1cclio¢ a s~mnie  rv 

2 5 i 
i 

2~ 

1 5 i  

o51 
I 

12 1.18 116 I 14 -1 12 1 I I (18 106 

lambda 

2 

I s 

I 

0 5  

iumhda 

Fig. 4. The distances for KIll(x(0)). 
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Since rn = 2 and p = 3 we already know from 
theorem 8.1 that this observable is a detective. 

We computed  both K2(x(O)) and K+(A) nu- 
merically varying A from - 1 . 2 0  to - 1 . 0 4 .  In fig. 
4 we  show the distances between K~(x(O)) and 
the fixed-point spaces of  the reflections and the 
rotations for this range of the parameter value, 
while in fig. 5 we  show these distances for 
Ke~(A ). In six dimensions the memory  require- 
ments  of  the integral test are already substantial 
and it is no longer possible to cover a whole  
region of  space containing the attractor by a grid 
as we did in section 6. So in this example we 
were  forced to use a different method for storing 

data. What  we  did was to generate a covering of 
the attractor during the simulation. This resulted 
in the integral test running much more slowly 
than the ergodic test (roughly by a factor of  five). 
If more  sophisticated storage techniques were 
used,  this difference in computat ion speed could 
probably be minimized in this dimension.  How-  
ever,  it is clear that we  are close to the limits of  
the direct use of  the integral test in six dimen- 
sions. 

With respect to symmetry types everything can 
be read off  from either figure: For - 1 . 2 0  < - A <- 
- 1 . 1 0  the attractor is essentially 7/2 symmetric,  
for - 1 . 1 0  <- A--< - 1 . 0 6  the attractor has D 3 sym- 
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metry  and, finally, for A->-1 . ( /6  the attractor 
becomes 2_ 3 symmetric.  For this interpretation 
the distance itself is not relevant but the change 
in distance that occurs at pa ramete r  values where 
symmetry creation occurs, i.e., where conjugate 
at tractors collide and the resulting attractor has 

more symmetry  than the single attractors before 
collision. 

On the other hand, at classical symmetry-  
breaking bifurcations, the distance that we com- 

pute should vary continuously. In fact, further 
inspection shows that there is a period-doubling 
sequence occurring for A ~ ( - 1 . 1 4 ,  1.11) in 
which the 2~ symmetry is lost. But this can 
hardly be seen in fig. 4. 

In the computat ion of K+(A) we again made 
use of  the fact that the computat ion of the 
integral allows one to introduce a criterion for 
stopping the integration automatically. Hence 
the number  of boxes actually used in the compu- 
tation of the integral depends crucially on the 
dynamical complexity of the corresponding at- 
tractor.  Roughly speaking, in this example the 
dynamical  behavior  becomes more and more 
complicated as A is increased to approximately 
-1.(16. For A > - 1 . 0 6  the attractor is ,just a 
discrete rotating wave. Accordingly, it can be 

observed (fig. 6) that the number  of boxes grows 
rapidly when the dynamical behavior  becomes 
more  complex and that sometimes more than 

!~)': 
/ 

I ! i ;  I 

10¢[ 

f 

10: . . . . . .  
I 2 1 IN 1 16 I 14 I [2 1.1 [c)N I i)(~ I I)-I 

[{lmbda 

5(1 000 boxes were needed to satisfy the criterion 
for stopping the integration. 

Finally we observe that the computat ion of 
K,~(A) for the D~ symmetric ("chaot ic")  attrac- 
tor at A = -1 .095  requires about three times the 
number  of boxes than for the Z~ symmetric 
( "chao t ic" )  at tractor at A = -1 .1 .  This indicates 
that this transition is related to a ,s:vrnrnetrv in- 
creasing, bifurcation (cf. [2]) in which three con- 
jugate ~2 symmetric attractors collide. 

I0. Detectives for PDEs and experiments 

In this section we discuss how we might use 

our results to compute  the symmetry of an at- 
t ractor  from either experimental  data or numeri- 

cal computat ion of solutions to PDEs.  In [41 we 
showed by example that the symmetry of an 

at t ractor  for a PDE,  in this case the Brusselator, 
could be visualized as a symmetry of the time- 
average of the solution. We begin this section by 
discussing, through the use of the ergodic 
theorem,  why this observation is valid. We then 
repeat  the numerical experiment  for the Brus- 
selator illustrating how detectives can simplify 
the observation of symmetry.  At the end of the 
section we discuss how to use these techniques in 
a system with square symmetric geometry.  

To  indicate how the symmetry of an attractor 

manifests itself in physical space, we assume that 
u(x, t) is (one component  of) a solution to a 
PDE.  We let U(x) be the t ime-average of this 
solution, that is, 

,f U(x)= lira 7 u(x , t )d t .  (lll. l) 
(I 

We claim that if the attractor of the PDE has a 
symmetr ic  ergodic measure,  then 

U(~rx) U(x) (1(1.2) 

Fig. 6. The number of boxes used for the computation of 
K~(A). for all symmetr ies  ~r of the attractor. Indeed, the 
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right hand side of (10.1) is evaluated using the 
ergodic theorem to be a space integral over  the 
attractor.  Using change of variables and symme- 
try invariance of the ergodic measure yields the 
desired result. 

As an example we consider the Brusselator 
which is given by the following system of re- 
action diffusion equations: 

Ou D 1 020 
- -  + u Z u  - -  (B + 1)u + A 

at h 2 0 x  2 

O0 _ O 2 020 

Ot A 2 0 X  2 
2 u v + B u .  (10.3) 

Here  u, 0, A and B represent  chemical concen- 
trations and D I ,  D 2 are diffusion constants. The 
pa rame te r  A is a characteristic dimension of the 
system and we shall treat  A as the bifurcation 
parameter .  We impose Dirichlet boundary condi- 
tions: 

u(0, t) = u(1, t) = A ,  

0(0, t) = 0(1, t) = B / A .  

Then the problem has a reflectional symmetry 
given by 

K(u(x ,  t),  v (x ,  t)) = (u(1 - x, t), v ( 1 -  x, t ) ) .  

We fix four of the parameters  by setting 

A = 2 ,  B = 5.45,  D 1 = 0 . 0 0 8  , D 2 = 0.004. 

By doing this we follow [8], since Holodniok et 
al. found complicated dynamics in (10.3) for this 
set of pa ramete r  values by numerical simulation. 

For  a construction of an appropriate  observ- 
able we make  use of the preceding discussion of 
how symmetry  of an attractor manifests itself in 
physical space (see (10.2)). Since 7/2 has just one 
nontrivial one-dimensional  representat ion our 
observable  should be a nonzero equivariant map- 
ping f rom a suitable function space into ~. In 
our numerical  computat ions we have chosen the 
following two observables: 

~bl(u, v) = u(0.3) - u (0 .7) ,  

62(u ,  o) = 0 (0 .3 )  - 0 ( 0 . 7 ) ,  

and computed  the corresponding observations 

T 

K E  = 1 f 6j lirn -~ ~ j ( u , v )  dt  ( j = l , 2 ) .  

0 

The results are presented in fig. 7. In those 

computations we havc chosen T= 60000. A 

symmetry creation can be observed to occur 

beyond A ~ 1.45. This was already mentioned in 

[4], where numerical simulations were performed 

for A = 1.45 and A = 1.47. However ,  the results 

in fig. 7 show that in between,  for A = 1.4625, the 
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attractor  again loses the 7/2 symmetry.  Another  
gain and loss of symmetry occurs for a ~ 1.44. 
Finally, observe how similar the two observables 

behave qualitatively. 
We end this section with a discussion of sys- 

tems with square symmetry.  For these systems 
we imagine taking time series at eight symmetri-  
cally placed points as illustrated in fig. 8. The 
observable 4) is then the composition of a map- 
ping f rom the state space of the experiment  to 
[R s - the values of the state at these eight points - 

and a detective from ~s into W. 
Our  method for detecting symmetries is to 

compute  the distance of the ergodic observation 
E K~ defined in section 7 to the fixed-point sub- 

space corresponding to each cyclic subgroup of 
D 4. We begin by describing the symmetries of D 4 
in physical space: 

identity 1 

rotation clockwise by 91) ° rv. 
identity rP~0 = - 1 

3 rotat ion counterclockwise by 90 ° r~ m 
reflection across horizontal line r h 
reflection across vertical line r,  
reflection across northwest diagonal r .... 
reflection across northeast  diagonal r,,~.. 

We use the following notation for certain sub- 
groups: 

2 3 s 
g4 = {1, ,r~o, r,,l~, r~o } , D 2 = {rh, r,} 

and D ~ ' = { r , , ~ , r  } .  

Let S = (S, . . . . .  S,) C A s be the time dependent  
values of the time series. We now explain how 

this data can be processed to determine the 
symmetr ies  of an attractor. First recall that the 
group D a has four distinct one-dimensional and 
one two-dimensional irreducible representations. 
Using the notation of section 8 we denote them 
by 

W~) , Wx , W~);,, W m and W, . 

As previously, the subscripts on the one-dimen- 
sional irreducible representations indicate the 
kernels of those representations; in particular, 
WD4 denotes the trivial representation.  

We begin by writing ~s as a direct sum of 

irreducible representations.  Abstractly, 

~ = W~)~ @ Wx~ ® Wp;, ® W m ® W~ . 

Concretely,  

WD4 = ~{(1, 1. 1, 1, 1, 1, 1, 1)}, 

W& = ~ { ( 1 , - 1 ,  1 , - 1 .  l , - 1 ,  1 , - 1 ) } .  

W,)~ ,=~{( l ,  l , - l ,  - t . 1 , 1 , - 1 , - 1 ) } ,  

w,,, = ~{ ( l ,  - J ,  l, l, 1 , - l , - 1 ,  1)}, 

W 2 = ~ { ( 1 , 1 , 0 , 0 ,  1. 1 .0 .0 ) .  

( 0 , 0 . 1 . 1 , 0 . 0 , - 1 , - 1 ) } ,  

W 2 = ~ { ( 1 ` - 1 , 0 , ( L - I ,  1 ,0 .0 ) .  

(o ,o ,  1 , - 1 , o , o , - 1 ,  l )} .  

I ~, , ,  ] 
• ~ , 0  j 

I 
, • j 

N' s ~,', 

Fig. 8. Eight symmetrically placed points. 

It is now a simple matter  to compute the fixed- 
point subspaces of the various cyclic subgroups 
of D 4 acting on the five-dimensional subspace 
W ( D 4 ) = W z 4 @ W D { , @ W m @ W ~ ,  which is the 
sum of all the nontrivial irreducible representa- 
tions of D 4. We shall write, in coordinates 

W, = x(1, 1, O, O, 1, I, (), O) 

+y(O.O,  1, 1 , 0 , 0 , - 1 , - 1 ) .  
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Table 1 
Fixed-point subspaces in W(D4). 

Fix( y ) Fixed-point subspace d(w, Fix(7 ))2 

Fix(rgo) Wz4G {0} • {0} @ {0} b 2 + c 2 + x 2 + y  2 
Fix(rv) { O } G { O } O W D ~ G { x : y }  a 2 + b Z + ½ ( x - y )  z 

Vix(rh) {0)G{0}GWD~O{x=-y} aZ + b2 + ½(x + y) 2 

rix(r,e) {0} O WDe~{0) ~) {X = 0} aZ+c2+y 2 
Fix(r.w) {0) G Wt,2p • {0} • {y = 0) a2+c2+x  2 
Fix(-/) W z 4 ~ V ~ D 2 p ~ W D s ~ { O )  x2 + y z 

2 2 

Evens  for  helpful conversat ions.  The  research of  

E .B.  was suppor ted  in par t  by the Texas Ad-  
vanced  Research  P rog ram (003652037). The re- 

search of  M.D.  was suppor ted  in part  by the 

Deu t sche  Forschungsgemeinschaf t  and by NSF 

G r a n t  DMS-9101836.  The  research of  M.G.  was 

suppor t ed  in par t  by NSF Gran t  DMS-9101836 

and by the Texas A d v a n c e d  Research  P rogram 

(003652037). 

If  we deno te  a point  w E W ( D 4 )  by w =  
(a, b, c, x, y),  then it is a simple matter to write 

down  the fixed-point subspaces in W(D4) and the 

distances squared  of  w to these fixed-point sub- 

spaces.  These  data  are given in table 1. 

Finally,  denote  the D4-equivariant  project ion 
by 7r: ~8-----~W(D4). It is easy to write ~- in 

coordinates .  Let  S be in [R 8, then 

a = S .  (1, - 1 ,  1, - 1 ,  1, - 1 ,  1, - 1 ) ,  

b = S - ( 1 ,  1 , - 1 , - 1 ,  1, 1 , - 1 , - 1 ) ,  

c = S .  (1, - 1 ,  - 1 ,  1, 1, - 1 ,  1, 1, - 1 ,  - 1 ,  1 ) ,  

x = s . ( 1 ,  1, o , o , - 1 , - 1 , o , o ) ,  

y = S .  (0, 0, 1, 1, 0, 0 , - 1 ,  - 1 ) .  

Thus  to compu te  the symmet ry  of  an at tractor ,  
E one  computes  the ergodic observat ion S - - K +  

f rom a t ime series, then one computes  the vector  

w = 7r(S) E W(D4) ,  and finally one  computes  the 

distances to the various fixed-point subspaces. 
The  exact  symmet ry  is de te rmined  by which of  

these distances are (approximate ly)  zero. 
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