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This paper addresses the issue of how to determine numerically the symmetry of an attractor for dynamical systems.

(The symmetries of attractors in phase space are related to patterns in the time-average of the solution.) Our approach to
this question proceeds in two parts. First, we prove a general theorem, based on group-theoretic and differential
topological ideas, which states that generically the symmetry of a (thickened) attractor can be computed from the
symmetries of a point in an auxiliary space. This theorem procceds by integrating an equivariant mapping over the
thickened attractor.

Once this is done, the numerical computation of symmetries reduces to showing that a certain nonnegative number is
zero. Numerically, demonstrating that this number is zero can be difficult. Thus the second part of the algorithm is to
consider how this number varies with parameters and noting that sudden jumps towards zero can be associated with
increases in symmetry. The paper is divided into two parts. In the first we prove the general theorem and in the second we
illustrate how the numerical techniques work on several examples including discrete dynamical systems with tetrahedral
symmetry in R* and systems of three coupled cells. In high dimensions the integral mentioned previously is difficult to
compute. For such examples, we assume that an ergodic theorem is valid and that symmetries can be computed using a
time-average. We compare both of these methods on the low-dimensional examples as well as detect points of symmetry
creation for a reaction—diffusion equation on an interval. This technique can also be used in principle to compute the

symmetries of an attractor in an experiment from a time-series.

1. Introduction

Let I be a finite group and let f: R"—>R" be
continuous and [-equivariant. We view f as a
discrete dynamical system and assume that the
compact set L is an attractor for f with an open
basin of attraction. The question we address is:
“How can we determine the symmetry group of
L7 We denote that symmetry group by

S(Ly={yelyL=1).

The reasons for asking this question are dis-

'Permanent address: Department of Mathematical Sci-
ences, New Mexico State University, Las Cruces, NM 88003,
USA.

cussed in [4]. Roughly speaking, we view [ as
representing the dynamics of an equation in
phase space while our interest in the symmetry of
an attractor lies in physical space. For equilibria
and for periodic states there is a well understood
connection between symmetries in phase space
and symmetries in physical space [7]. In particu-
lar, symmetries of cquilibria have been identified
with patterns in solutions in a number of phys-
ically interesting situations including Rayleigh—
Bénard convection. the Taylor-Couette experi-
ment and Turing patterns in reaction—diffusion
systems. Rather little attention has been paid,
however, to the physical space interpretation of
the symmetry of a chaotic attractor. It is shown
by example in [4] that those symmetries are
related to patterns that appear in the time-aver-
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age of a solution (see section 10) — even though
that pattern is never present at any particular
moment in time.

The existence of symmetries of attractors is
demonstrated clearly through pictures for planar
maps [2,6,9] but rather less is known about the
symmetries of attractors in higher dimensions, in
part because of the difficulty of visualizing these
symmetries. Even in three dimensions it is some-
times difficult to determine the exact symmetries
of a cloud of points — which is what a chaotic
attractor of a discrete dynamical system resem-
bles in this dimension.

Our approach to determining numerically the
symmetries of an attractor L is a three step
process. First, we thicken L to an open set A
having the same symmetries as L. Second, we
transfer the symmetries of an open set A CR" to
the symmetries of a point in an associated space
W by integrating an equivariant map ¢: R*— W
over A. This point is denoted by K, (A). We call
¢ an observable and K,(A) an observation. In
lemma 3.2 we show that the symmetries of A fix
the point K,(A). Hence, by definition, 3(A) is
contained in the isotropy subgroup of the point
K,(A) which we denote by X,(A). Finally, we
show that for certain ¢ generically the symmetry
group 3(A) actually equals 2,(A) whose nu-
merical computation is, in principle, a straight-
forward task.

The notion of genericity that we use here is a
natural one for dynamical systems. Observe that
if ¢: R"—R" is a I'equivariant diffeomorphism,
then the set (L) is an attractor for the mapping
@ofouy ™', which is just the map f viewed in a
new coordinate system, and the symmetries of A
and §(A) are equal. Fix the equivariant map ¢.
What we prove is that if ¢ satisfies certain easily
verified conditions, then for any A there is an
open dense set of near identity diffeomorphisms
¥ so that 3(A) = 3, (¢(A)). These ¢, which we
call detectives, each generate a method for de-
tecting symmetries which works, in principle, for
almost any open set A.

In theorem 5.2 we prove that if W is a repre-
sentation of I' that contains all of the nontrivial

irreducible representations of I" and if the ob-
servable ¢:R"— W is a polynomial mapping
whose components in each of these irreducible
representations is nonzero, then ¢ is a
detective — from which we conclude that detec-
tives always exist. It also follows that for most
finite groups that one is likely to consider, it is
possible to construct detectives. The general
theorems concerning the existence and construc-
tion of detectives are presented in sections 2-5
of this paper.

The remaining sections are devoted to illus-
trating the use and explicit construction of detec-
tives. In section 6 we discuss the symmetries of
attractors for a certain parametrized family of
mappings on R’ having tetrahedral symmetry.
We show how, using detectives, the computer
can determine, almost automatically, the sym-
metries of attractors as parameters are varied.
Indeed, this variation of parameters is more or
less necessary for the method to work. The
difficulty concerns the numerical computation of
K,(A), which—as in any numerical computa-
tion — can be computed only approximately. In-
deed, we may reformulate the question: ““Is the
group element y a symmetry of the point K, (A)
in W?” by computing the distance of the com-
puted K, (A) to the fixed-point subspace Fix(7y).
In theory v is in the isotropy subgroup X,(A)
precisely when this computed distance is zero. So
the numerical difficulty in determining whether y
is a symmetry of A reduces to determining
whether a certain nonnegative number is actually
Zero.

Our strategy for determining when this dis-
tance is zero is to compute the distance as a
function of parameters and call the distance zero
when there is a jump in the distance to a number
close to zero. This test is based on the ex-
perience obtained by simulation in [2] which
suggests that when the symmetry of an attractor
changes as parameters are varied, the size of the
attractor also changes dramatically. Thus this
numerical method seems to be well suited to
determining approximate parameter values
where symmetry increasing bifurcations occur.
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The result of our particular computations is a
phase diagram showing regions in parameter
space where attractors with various symmetries
have been found. See fig. 2.

We note that in low dimensions or in the
presence of reflections the symmetry groups of
attractors cannot be just any subgroup of I". In
certain cases some subgroups are excluded [5,1].

The numerical method that we describe
theoretically is based on computing numerically
an integral over the thickened attractor. When
the state space R" is of large dimension (even
infinite-dimensional in the case of PDEs), the
computation of this integral becomes impracti-
cal. Then our only recourse is to presume that an
ergodic theorem for the attractor is valid and to
compute an ergodic sum rather than the integral.
In section 7 we describe this ergodic sum more
fully and compare it to the integral test for
certain low-dimensional examples.

The remaining sections are devoted to describ-
ing how our method works for systems of ODEs
and PDEs and how it might be used in experi-
ments. Systems of identical coupled oscillators
are described in sections 8 and 9. In these scc-
tions we show that for rings of oscillators which
have D, symmetry, the matrix outer product
¢(x) = x - x' mapping the state space into the
space of symmetric matrices is always a detec-
tive, and we illustrate this fact by computing the
symmetries of attractors for a system of three
coupled oscillators.

In the last section, section 10, we apply the
method to the Brusselator on the line, which has
only a reflectional symmetry. We also illustrate
how these methods would apply to PDEs or even
to experiments defined on a domain with square
geometry.

2. Thickened attractors

Let I" be a finite group. We assume that we
have a mapping f: R"— R" that is continuous
and I'-equivariant. We view f as a discrete dy-
namical system and suppose that the compact set

L is an attractor for f with an open basin ot
attraction. The question we ask is: “"How can we
determine the symmetry group of L?7 We let
2(L) denote the group of symmetries of L. One
consequence of the open basin assumption is that
for each y € I'either yL = L or yL. N L =. See
proposition 1.1 of [2].

In general, it is impossible to know precisely
the set L. What one computes graphically on a
computer is the set A defined as follows. Choosc
a small positive number 7 and let A be the set of
all points whose distance to L is less than 7.
Since L is compact, A is in the basin of attraction
for L for small enough 7 and A has the same
symmetry group as L. We call A a thickened
attractor and note that thickened attractors have
the property that either yA= A or yYAN A=
forall ye .

Later on, we shall need A to have a boundary
that is sufficiently regular to apply Stokes
theorem. Indeed we may assumc that A is an
open sct with the same symmetries as L. A is
compact, and A has a piecewise smooth bound-
ary. To construct such an A cover L by a finite
number of 7-balls and let A be the union of thesc
7-balls along with all images of these 7-balls
under X(L).

The mathematical problem that we address in
this paper is the following. Let .« be the class of
all open subsets of R” with piecewisc smooth
boundary that satisfy the dichotomy y4 = A4 or
yAN A=0 for all y € I". Find a procedure for
generically determining the symmetries of sets in

Our basic approach is to transfer the problem
of finding the symmetries of a set in .« to tinding
the symmetries of a point in an associated space
W. We do this by averaging an observable over
the set, as we now explain. We refer to the
subgroup of symmetries of the set A as X(A).

3. Estimates for Y (A)

Definition 3.1. An observable is a C° [-
equivariant mapping ¢: R"— W where W is
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some (finite-dimensional) representation of I
An observation is:

K (4)= | dan.

where u is Lebesgue measure.

Note that the observation K,(A) is a vector in
the space W since the observation is just the
integral of a W-valued function. Moreover, this
integral can be nonzero since A is an open set
and has positive Lebesgue measure. This should
be contrasted with integrating over the set L
which itself might have zero Lebesgue measure.
Define X,(A) to be the isotropy subgroup of
K,(A) in W, that is,

Efb(A) ={yer: 'YK¢(A) = K¢(A)} .
Lemma 3.2. For each observable ¢
3(A)C 3, (A).

Proof. Suppose that o € 3(A). We use the I'-
equivariance of ¢ to see that

oKy()= o [ 60 du() = [ dlo) duto)
A A
Since 3 acts orthogonally on R” it follows that

[ #ox) du) = [ o(0x) duion).

Then the change of variables formula for integra-
tion implies that

oK, (4)= | 6 du) .

agA

Finally, the fact that A = A implies that

oK, =K,(A),
and o € 3, (A). O

Proposition 3.3. For every open set A € A there
exists a representation W of I" and an observable
¢: R"— W such that

3(A)=3,(A).

Proof. The representation that we use here is
the left regular representation V. consisting of all
real-valued functions on I'. V. is a vector space
of dimension |I'|. The action of y Eon h €V,
is defined by

(v-h)(8)=h(y '8).

We can choose an open set U € & such that
U C A and the symmetries of U are the same as
those for A. Moreover, given £>0 we can
choose U so that u(A —U) <e.

Next we define ¢: R"—V,.. Let h: >R be
defined by

1 forye€ 3(A4),
0 otherwise .

h(v):{

Let p: R"—[0,1] be a smooth bump function
that is 1 on U and 0 off A. Then define ¢(x) =
p(x) h so that

s JO ifx&ZA,
¢(x)_{h fxeuU.

Next define ¢ by averaging é over I' as follows:

S = 2 v 'b(yx).
yeEr
It is easy to check that ¢:R"—V, is I-
equivariant.
We now complete the proof by showing that if
8 Z 3(A), then 8 £ 3,(A). Begin by noting that
if x € U, then

b(x) = |2(A)|h .
This equality may be verified as follows. Observe

that if x € U then either yx € U if y € 3(A) or
yxZ A if y&Z3(A). Hence vy 'h=h for all
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v € 3(A) and is zero otherwise. Now compute

dx)= 2 v 'd(yx)

yel

= 2 v 'n

yeEX ()

=[2(A)h.

It foliows that

K(4)= | ¢ au

=jqbdp+()(€)
= |3(A) w(U) ki + O(e).

Hence 8K,(A)=[3(4)|u(U)8h + O(e). Since
Sh+#h when & Z3(A) we see that K, (A)+*
8K, (A). So 6 £X,(A). as desired. O

4. Distinguishing subgroups

Definition 4.1. Let 3 C I be a subgroup and
let W be a representation of I We say that W
distinguishes 3 if

dim Fix,,(4) < dim Fix,, (2 ) < dim Fix,,(Y)

whenever 4 and Y are subgroups not equal to X
and ADIDY.

Definition 4.2. Two representations V and W of
I' are lattice equivalent if there exists a linear
isomorphism L: V— W such that

L(Fix, (2)) = Fix,,(3)

for every subgroup ¥ C I'.

Clearly, isomorphic representations are lattice
equivalent, but inequivalent representations can
be lattice equivalent. For example, consider the
two distinct two-dimensional irreducible repre-
sentations of D..

We now state the basic result of this section.
LetW ..., W, be. up to lattice equivalence, all
of the nontrivial irreducible representations ot I'.
Define

W)= W, @D W,

Theorem 4.3. Let I' be a finite group and let
V 2O W(I'). Then V distinguishes all subgroups of
I

We begin the proof of theorem 4.3 with two
lemmas.

Lemma 4.4. Suppose that V distinguishes 3 and
that W is a representation of I. Then V& W
distinguishes Y.

Proof. Since
Fixy () = Fix (X)) ® Fix,(2) (4.1)

all you need to verify the strict inequality in
dimension is the inequality in dimension on
fixed-point subspaces of V. ]
Lemma 4.5. Suppose that V distinguishes X.

(a) Suppose that V=V, V,EW where V.
V,. and W are representations of ['and V| and V,
are lattice equivalent. Then V, ® W distinguishes
<

(b) Suppose that V=V, & W where W is the
trivial representation of I'. Then V| distinguishes
v

This lemma is easily proved using (4.1).
Proof of theorem 4.3. Recall that V,.. the left
regular representation of I', consists of all func-
tions from [ into R. Let 2 C T be a subgroup.
Then
Fix, (Y)={h€V,:h(oc '8)=n(8) VoEX}.

Thus if k# is in Fix,, (3) then /& is constant
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on X. It follows that if ¥ CA but 3 #A4,
then dim Fix, (4) <dimFix, (2). Certainly,
Fix, (4) CFix, (¥). However, it is easy to con-
struct a function that is in Fix, () that is not in
Fix, (4). Define

1 yed-2%
0 otherwise.

nn =1

It follows that V. distinguishes every subgroup
of I'. A standard theorem states (see [10], p. 77)
that up to isomorphism every irreducible repre-
sentation appears in V.. Hence lemma 4.5 im-
plies that W(I") distinguishes all subgroups. Now
apply Lemma 4.4 to prove that V distinguishes
all subgroups of I. O

We note that proposition 3.3 can be
strengthened to show the following. Fix A € .
Then X(A)= 3,(A) for almost all observables
¢: R"— W D W(I'). The idea is to show that the
linear mapping @(¢)=K,(A) is onto
Fix, (2(A)), which can be done using bump
functions. We will not pursue this result since
there is a stronger and more useful version of
this theorem which we present in the next
section.

5. Detectives

Let ¢:R"— W be an observable. Roughly
speaking we call ¢ a detective if for almost every
open set A CR" the subgroup 3,(A) (the iso-
tropy subgroup of the observation K,(A)) and
3(A) (the group of symmetries of A) are equal.
To make this definition precise we must define
more accurately what we mean by ‘almost
every’, and to do that we must indicate how we
can perturb an open set in such a way as to
preserve its group of symmetries.

Perturbations of sets are defined using dif-
feomorphisms in the following way. Let ¢ be in
Diff.(R"), where Diff.(R") is the group of I'-
equivariant C* diffeomorphisms on R”, It is easy

to check that the group of symmetries of Y(A)
equals 3(A). Moreover, if ¢ is near identity,
then ¢(A) is a small perturbation of A.

We note that if f: R"—R" is a I'-equivariant
dynamical system with an attractor L, then (L)
is an attractor for the dynamical system
@ofoy " Thus the type of perturbations of A
that we consider here are natural from the point
of view of dynamical systems, as they correspond
to making a smooth change of coordinates in the
original dynamical system.

Definition 5.1. The observable ¢ is a detec-
tive if for each subset A € &, almost all near
identity diffeomorphisms ¢ € Diff.(R") satisfy
3, (U(A) = 3(A).

Recall from lemma 3.2 that 3,(¢(A4))D
3(¢(A)). Since ¢ is a I'-equivariant diffeomor-
phism it follows that 3(¢(A)) = 3(A). Thus to
prove that ¢ is a detective we must show that for
almost all near identity ¢, 3, (¥(A)) C Z(Y(A)).

For ¢ to be a detective we need to know that
there are observations K,(¥(A)) that lie in
Fix,(3(A)) — Fix,,(A) for all subgroups AD
3(A) with A% 3(A). This is not possible if
dim Fix,,(3(A)) = dim Fix,,(4). Thus ¢ may be
a detective only if W distinguishes all subgroups
of I'" Thus a necessary condition for ¢ to be a
detective is that W distinguishes all subgroups.

We now state our main theorem. Recall that
W(I') is the sum of all nontrivial lattice inequi-
valent irreducible representations of I We can
write W(I')=W,®---®&W,. Should a repre-
sentation W of I" contain W(I"), then we can
decompose W= W(I')® W " for some represen-
tation W,

Theorem 5.2. Let WD W(I') and let ¢: R"—> W
be a polynomial observable where ¢ =
(y,...,¢,,¢") in coordinates. Suppose that
¢, 70 for 1 =j=s. Then ¢ is a detective.

Corollary 5.3. Every finite subgroup I' C O(n)
has a detective.
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Proof. To prove this corollary we apply theorem
5.2 and to apply this theorem we need only show
that there exists a nonzero [-equivariant poly-
nomial map from R" to W where W is any
representation of I. This we do by averaging.

Since I' is a finite group the principal orbit
type is the trivial group. Hence we can choose a
nonzero vector x € R” that has trivial isotropy.
Next choose a nonzero vector we& W. Let
f:R"— W be a polynomial mapping such that
f(x)=w and f(yx) =0 for all nonidentity y € I'.
Now define

fr= 2 y fra).

and observe that f is a I'-equivariant polynomial.
Finally compute f(x)=w from which one¢ can
conclude that f is nonzero. |

We begin our proof of theorem 5.2 with the
observation that the bigger the range space W
the more likely it is that ¢ is a detective.

Lemma 5.4. Let p: W, — W, be a I'-equivariant
projection. Let ¢é,: R"— W, be an observable
and let ¢, = po,. If the observable ¢, is a detec-
tive, then ¢, is also a detective.

Proof. The assumption that p is I’-equivariant
and onto implies that W, =W, @V for some
I-invariant subspace V of W,. Hence, the iso-
tropy subgroup of a point (w,, v) is the intersec-
tion of the isotropy subgroups of w, € W, and
v € V. In particular, the isotropy subgroup of a
point in W, is contained in the isotropy of the
projection of that point in W,. Since
p(Kd,l(A)):K%(A), it follows that X, (A)C
24, (A).

On the other hand, if ¢, is a detective,
then generically 5, (A) = 3(A). But lemma 3.2
states that X(A) C 3, (A) always. Therefore, ge-
nerically X, (A4)C 3, (A). Thus generically
2, (A)=2,(A)= 3(A) and ¢, is a detective, as
asserted. |

It follows that it is sufficient to prove theorem
5.2 when W= W(I").

We divide the proof of theorem 5.2 into three
main steps. First, we show that ¢ is a detective if
a certain nonlinear map W7, is locally onto
(lemma 5.5). Next we show how to prove that
W, is onto by linearizing 1[’;: (proposition 5.6).
Finally, we show how to verify that the lineariza-
tion of ¥ is onto by using the fact that ¢ is a
polynomial mapping (proposition 5.8). We begin
by defining the mapping ¥/, .

Let ¥ Diff,(R")— Fix,,(3(A)) be defined
by

Vo) = K, (b '(A).

Lemma 5.5. Let ¢:R"— W be an observable
and assume that W distinguishes all subgroups. If
for each set A € o there exists an open neigh-
borhood U of the identity in Diff,.(R") such that
the observations W;‘(U) cover an open neigh-
borhood € of K,(A) in Fix,,(3(A)), then ¢ is a
detective.

Proof. Let V be the algebraic variety UFix,, (A)
where the union is taken over all subgroups A
containing but not equal to 3(A). Since W dis-
tinguishes all subgroups, V is a variety of
codimension at least one in Fix, (2(A)). It fol-
lows that the set ¢’ = —V is an open dense
subset of @ in W whose closure includes K, (A).

Since ¥ is smooth, (¥3) '(¢")N U is an
open dense subset of U in Diff,(R") whose
closure contains the identity. It follows that for
most near identity diffeomorphisms ¢ the obser-
vations 11’2(11/) =K, (¢ '(A)) are not in V and
are arbitrarily close to K,(A). This proves the
lemma since observations not in the variety V
have the correct isotropy subgroup. ]

Next we want to show that for each open set
A, ‘I’i is onto a neighborhood of K,(A). We do
this by using the implicit function theorem. We
assume that i, is a one-parameter family in
Diff, (R") with ¢,(x)=x, and we let X be the
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infinitesimal generator for ,, that is, X =
(d/dt)¢,|,_,- Then we differentiate ¥ f;(z//,) with
respect to ¢ and evaluate at ¢t =0, to get a linear
mapping £ $ (X). If we can show that 3; is onto
Fix,, (3(A)), then we can apply the implicit func-
tion theorem and lemma 5.5 to conclude that ¢
is a detective. Let C-(R", R") be the space of C”
I-equivariant mappings on R".

Proposition 5.6. Let ¢: R"— W be an observ-
able and assume that W distinguishes all sub-
groups. Suppose that for every set A € o the
linear mapping

451 Cr(R", R")— Fix,, (3(A))
is onto, then ¢ is a detective. Moreover,

ffg(X)=f¢X-Ndu,

A

where N is the unit outward normal on 6 A and »
is the natural measure induced by Lebesgue
measure on dA.

Proof. The discussion preceding the statement
of proposition 5.6 shows that ¢ is a detective.
Thus, we need only verify the computation of
the linear mapping $2. Using change of vari-
ables in integration, observe that

viw)= | o duw

W (A)

_ f & (,(x)) det(d,), du(x) .

Differentiating with respect to ¢ and evaluating at
t =0 leads to

2500 = [ | @8).(xx)

d
+ ¢ a det(dll’r)lr=0:| d/‘“(x) B

Next observe that

d

& det(dy,)|,., = tr(dX) =V- X .

Finally, use Stokes theorem to conclude that

$2(X)=jd>X-Ndv. (5.1)

dA

O

It follows from (5.1) that if X has support in
the interior of A, then 2;‘ (X) = 0. Indeed, this
fact could have been anticipated in the following
way. If ¢ were a diffeomorphism on R" with
support in A, then y(A) = A. Thus the observa-
tions K, over A and (A) are equal. So no
infinitesimal change occurs for such deforma-
tions.

We now use the explicit computation of 55(’; in
(5.1) to compute explicitly the image of 552. Let
F 2 be the subspace of W spanned by ¢(x) where
x is in the smooth part of JA. Let
P: W— Fix,,(3(A)) be orthogonal projection. It
follows from the trace formula [7] that

CH

P = 3@ .2

a(w).

Since the integral in (5.1) may be taken over the
smooth part of dA, we see that Im(ﬁf;‘) C
P(Ff;). In fact, we prove:

Lemma 5.7. Im(¥3) = P(F}).

Proof. Let x €9 A be a point on the smooth part
of the boundary of A and let 8, be a delta
measure supported at x €EdA with value [1/
|Z(A)|IN(x) ER". Let p=1X 8 . Formally, p
is a I'-invariant mapping, and formally

! > o(yx),

FHp)= ——
« (P =3 L&

since only when y € 3(A) is 8, supported in
dA. Now we use the trace formula to conclude
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that P(¢(x)) is in the image of f/(; By linearity,
the subspace P(F ) is in the image of ¥ . which
yields the desired equality.

We now discuss how to make this formal
computation rigorous. Let U be a small ball
centercd at x. Choose a vector field X supported
in U, pointing in the direction N at x with
magnitude 1/|3(A)| and equivariant with respect
to the isotropy subgroup of x. Use the group
action of I"to extend X to a I equivariant vector
field on R" supported on the balls yU (which we
can assume are cither disjoint or equal, if U is
small enough).

Observe that J’;‘(X) points approximately in
the direction of P(¢(x)). Indeed, an appropriate
limit of vector fields U will converge to 8 ; and
the integrals will converge to P{¢(x)). as
desired. O

Next we show how to usc the fact that ¢ is a
polynomial and the explicit form of 7 to show
that this linear map is onto. To do this we need
to introduce a new subspace of W. Let W, CW
be the subspace generated by the vectors ¢(x)
for x € R".

Proposition 5.8. Let ¢: R"— W be a polynomial
observable. Assume that W, = W and that W
distinguishes all subgroups. Then ¢ is a de-
tective.

Proof. 1t follows that we can apply proposition
5.6 precisely when P(F) equals Fix,(3(A)).
We begin by showing that we can deform A to A’
by a near identity diffeomorphism so that the
corresponding P(P;)) equals Fix, (3(A)). Then
we use the implicit function theorem to deform
A’ 10 A which has the correct symmetry when
observed by ¢. The composition of two near
identity diffeomorphisms is still near identity — so
¢ is a detective as claimed.

We extend the space Fg to F’ where F' =
{d(x): x is near A ). We usc the fact that ¢ is a
polynomial mapping to show that P(F')=
Fix,,(2(A)). Since ¢ is a polynomial mapping,

P¢ is also a polynomial mapping of R” into
Fix,, (2 (A)). If an open set of all images of P
end up in a subspace, then all vectors in PH(R")
arc in that subspace. But this contradicts the
assumption that W, = W. For if this assumption

is valid, then P(F') = P(W,) = Fix,,(2(A)).
Next we observe that since Fix, (2(A)) is fi-
nitec-dimensional, there exist points x,.... .. X
such that ¢(x,)... ., G(x.) is « basis for
Fixy (3(A)). Since ¢ is continuous, there are
neighborhoods U; of x, for 1=j=s such that
d(v,).....d(y) is a basis for Fix,(32(A))
whenever y, € U, for 1 = =s. It follows that we
can choosc the x;’s to have trivial isotropy and so
that no two are on the same group orbit. Next
choose a, .. .. a, on dA so that a, is near x,, «,
has trivial isotropy, and no two «, are on the
same group orbit. We can now construct a near
identity ['-cquivariant diffeomorphism ¢ which
moves a, to x, for each j. Let A" = ¢(A). In this
way we can deform A by a diffeomorphism
just a little near the boundary so that the points
x, arc in 9 A’. Now we can apply proposition 5.6
since the new P(D) ) is equal to Fix,(3(A)).
O

Proof of theorem 5.2. Theorem 4.3 implies that
W distinguishes all subgroups. Next let W, be
the subspace of W, spanned by all vectors in
¢,(R"). The cquivariance of ¢, guarantees that
the space W(,,, is I'-invariant. The irreducibility of
W, implies that W, = W, since ¢, is nonzero.
Similarly, the space W, is a I'-invariant subspacc
of W and the projection of W into W, whose
kernel is spanned by thc other W.'s takes W,
onto W(,,/. Therefore, there is a subspace of W,
that is [-isomorphic to W, Since all of the
representations of /" on the W/'s are distinct, this
implies that W, = W. Now we can apply proposi-
tion 5.8 to conclude that ¢ is a detective. [

6. Example: tetrahedral symmetry

To illustrate the toregoing considerations, and
to investigate what might comprise typical be-
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havior for symmetric maps, we study an example
with the tetrahedral group T acting on R’ in the
usual way. Truncating arbitrarily at third order,
the general tetrahedral equivariant map can be
written

X

flx, y,2)= A(y

Zz

yz x y?
+B<x2)+y(y + 6 y22 .
Xy z zx’

See [11] for a complete discussion of the poly-
nomial tensors of the point groups.

Recall that T has two nontrivial irreducible
representations, one of dimension three (the
standard representation) and one of dimension
two (where the D, subgroup acts trivially). Thus
we can construct a detective ¢: R*— RS, which
we take to be

)+a(x +y° +z)(

¢, yz
b, Xz
d(x, y,z)=| & [= xy ,

b, 26— yz — 2
&, 2y2 B

where the first three and last two components
span irreducible subspaces. For convenience, we
write W= R’ = W, @ W,. It follows from the dis-
joint union decomposition (T=U*Z,U’Z,; see
[7]) that there are seven distances to calculate:
four to Z, fixed-point subspaces and three to Z,
fixed-point subspaces. The Z, fixed-point spaces
are one-dimensional and are given by

Fix,, (Z\")=R{(1,1,1,0,0)},

Fix,,(Z’)=R{(1,-1,1,0,0)} ,
Fix,,(2{)=R{(1,1, -1,0,0)} ,
Fix,,(Z{M) =R{(-1,1,1,0,0)} ,

while the Z, fixed-point subspaces are three-
dimensional and are given by

Fix,,(Z{")=R{(1,0,0,0,0)} ®W,,
Fix,, (Z{*) =R{(0,1,0,0,0)} ® W, ,
Fix,,(Z$)=R{(0,0,1,0,0)} ®W, .

Writing lpf5, = ¢1+ ¢+ 3 and @]}, =
d2+ ¢2, the correspondmg distance formulas
are

d(¢, Fix(Z{"))* = ¢,

+3(ol%, — d1b, — 16, — b,,)
(6, Fix(Z57))" = o3,

+3(bl, = 1, + by + D,0,)
(¢, Fix(Z;"))* =|¢l3,

+ 31, + &b+ b1y — bys)
(o, Fix(Zy"))’ = |3,

+ 3o, + ¢1d, — Gy + br0)

d(¢, Fix(Zy"))* = ¢3 + ¢3
d(d, Fix(Z$V)) = ¢7 + ¢,
d(¢, Fix(Z))* = ¢ + &3 .

The symmetry of the attractor is given by the
distances as follows. If all distances vanish, the
attractor has full tetrahedral symmetry. If any
one of the Z, distances vanish, with all other
distances nonzero, the attractor has Z, symmetry
(all copies of Z, are conjugate in T). Similarly, if
any one of the Z, distances vanish the attractor
has Z, symmetry (again, all copies of Z, are
conjugate), while if all three Z, distances vanish
but the Z, distances are nonzero then the attrac-
tor has D, symmetry. If all distances are nonzero
the attractor has trivial symmetry. Generically,
the only other possibility is for the map to
“blowup” with the orbit diverging to infinity.

We have made a rather rough investigation of
the symmetry of attractors of this map; neverthe-
less, we have found chaotic attractors of all
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symmetry types. An advantage of these methods
is that it is possible to automate the search, and
so determine the symmetry over whole regions
of parameter space. The remainder of this scc-
tion will describe the methodology and results of
such a search over a particularly interesting two-
parameter region.

In the notation above, the values of three of
the five parameters were fixed at a = 1.0, 8 = 1.0
and & = —1.0, while the remaining two covered
the region —2.1<<A<<—1.6 and 0.4 <y <14,
The search was conducted “quasistatically’” both
in parameter space and with respect to initial
conditions. The initial parameter values were
taken to be (A, y) = (~2.1,0.6), then A was held
fixed while y was incremented by 0.01 at a time
until it reached its maximum value of 1.4. Then
A was incremented by 0.005 with y held at 1.4,
and y was then decremented by steps of .01
until its minimum value was reached. Then A was
incremented again and the y process repeated so
that the parameter region was covered by a
snaking path.

For each pair of parameter values the map was
iterated 1000 times to eliminate transients and
set the scale of the attractor (or to check for
blowup). Then the grid was defined to dice the
region covering the attractor into boxes and the
map was iterated 1000 iterates at a time until
convergence was achieved. Convergence was de-
fined to have occurred if the net increase in the
number of occupied boxes in one cycle of 1000
iterates was 0.001 or less of the total number of
occupied boxes at the end of the previous cycle.
We stress that this feature of automatic detection
of convergence is extremely useful, especially in
light of the very poor asymptotic convergence
properties of the ergodic sum (see section 7). It
is also worth noting that the number of iterates
required for convergence contains interesting dy-
namical information. The simplest dynamics
(fixed points and finite n-cycles) result in conver-
gence on the first pass (1000 iterates), more
complicated but still nonchaotic attractors such
as invariant curves and also small chaotic attrac-

tors are indicated by convergence times of a few
thousand while large chaotic attractors can take
hundreds of thousands of iterates to converge.

The initial conditions in R* were arbitrarily
taken to be (0.75. 0.5. 0.66), but were sub-
sequently chosen quasistatically in the following
When attractor
occurred. the final value was taken to be the
initial condition for the transient cycle of the
next set of parameters. In order to avoid being
artificially caught in invariant subspaces. the
value was perturbed by adding a small random
number (O(1077)) to each component. If a
blowup occurred, the previous initial condition
was reused.

The final issue to be addressed is the way in
which the distance values were interpreted to
yield symmetry types. The fundamental question
is essentially: “*What is zero?”, and it must be
admitted that our treatment is somewhat ad hoc.
Opcrationally. zero is any quantity smaller than
the difference caused in an obscrvation by
changing the number of occupied boxes by one.
Unfortunately. this quantity will depend on the
attractor and the observable, so it is difficult to
apply this rule in practice though it is clear that
the finer the grid chosen the smaller this minimal
quantity will be. We chose our grid so that each
side was broken into 51 intervals; this number
represents a compromise between precision (size
of zero) and quick convergence. Checks were
performed with 101 interval grids to verify that
the results were not sensitive to the grid choicc.
Finally, by trial and crror. we chose a value of
0.005 to be the zero scale of distance squared. A
much larger value caused some parameter re-
gions to appear to have more symmetry (e.g. 7,
attractors might be labelled T symmectric), and a
much smaller one caused some regions to be
crroncously labelled as having only trivial sym-
metry.

Our results are summarized in fig. | and fig. 2
which should be read in the same manncr as
thermodynamic phasc diagrams. Figure 1 is an
exact representation of our results where there is

sensce. convergence to  an
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Fig. 1. Symmetry types. See text for discussion.
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Fig. 2. Symmetry phase diagram. See text for discussion.

a symbol printed for each pair of parameter
values. Plus signs indicate T symmetry, dots Z,,
asterisks Z,, circles indicate trivial symmetry and
blank spaces indicate regions of blowup. It so
happens that there are no D, symmetric attrac-
tors in this particular region. Figure 2 is essen-
tially the same diagram but with the boundaries
of the symmetry regions plotted to make it easier
to read. In practice, calculations near the bound-
aries can be somewhat problematic and can pro-
duce apparently spurious symmetry types.
Roughly speaking, the dynamics goes from
simple to complicated as one goes from right to
left in the diagrams. The Z, symmetric dynamics

at the far right consist of two-cycles each point of
which becomes first an invariant curve and even-
tually chaotic as A decreases. At the vertical
boundary between the Z, and Z, regions the 7,
limit cycles lose stability to Z, two-cycles, these
two-cycles also become limit cycles and eventual-
ly chaotic much as the Z, case. The serrated
appearance of the lower Z,-Z, boundary is clear
evidence of hysteresis in the symmetry transi-
tions. The tetrahedrally symmetric dynamics are
all chaotic and result from collisions of the lower
symmetry chaotic attractors. The thin peninsula
of Z, symmetry represents chaotic dynamics of a
different sort than in the other region. The dy-
namics with only trivial symmetry are particular-
ly interesting, and seem to result from fracture of
the symmetric attractor into shards. Asymmetric
attractors tend to have small support in R*. They
tend to appear as three disconnected regions;
indeed, for certain parameters these attractors
are just asymmetric three-cycles.

7. A method for observation: the ergodic sum

Given an observable ¢ and a set A € of, we
define the mapping g: I'— R by taking g to be
the distance of the observation K,(A) to
Fixy, (7v). The isotropy subgroup of K, (A) is just
the set of y € I' for which g(y)=0. From this
information we get the symmetry of the set A.

As an alternative to computing the integral
K,(A), one can presume that the ergodic
theorem is valid and compute (approximately)

Ky (x,) = lim = E d(f(x,)) -

]l]

To use Kg(xo) we must show, in analogy to
lemma 3.2, that 3(L), the symmetry group of
the attractor L, is contained in the isotropy
group of this ergodic observation. It follows from
the ergodic theorem (see [3]) that there is an
(map) invariant measure v that is also 3(L)
invariant. (Just average an invariant ergodic
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measure over the group of symmetries.) The
Bowen—Ruelle-Sinai  box-counting  measure
(when it exists) is an example of such a symmet-
ric ergodic measure. For these measures v it can
be shown, using the ergodic theorem, that sym-
metries o of L fix K; In symbols

oK ()= | blox) du)

= J ¢(x) dV(X) = K([;(xn) .

i

The same theorem suggests that when we use
a detective function ¢ this calculation will generi-
cally produce the actual symmetry of the attrac-
tor for the discrete dynamical system f. The main
difficulty is the numerical issue of deciding when
the distance g is actually zero. This difficulty is
accentuated by the fact that the ergodic sums
converge slowly. In fact, in the numerical exam-
ples below we will see that the direct computa-
tion of the integral K, (A) is— at least for low-
dimensional attractors — of advantage in com-
parison to the computation of the sum K;’(x(,).
In higher dimensions, however, the computation
of the integral K,(A) becomes impractical and
then we have no recourse but to compute the
ergodic sum K:,' (xy)-

As a final point in this section, we illustrate
the sense in which our numerical experiments
seem to show that the convergence properties of
the integral method are superior to those of the
ergodic sum. (It is known that in general the
convergence rate of the ergodic sum can be
proved to be no better than 1/N.) Moreover, in
practice, the ergodic sum tends to exhibit large
oscillations while converging, making a test for
convergence difficult. We will illustrate this diffi-
culty with examples of attractors of D;-
equivariant planar mappings, and compare the
results with the integral test.

On the other hand, numerical approximations
to the integral method as described in section 6
must converge to its final value in a finite number

of iterations, because no additional boxes will be
filled after the attractor is covered. Morcover,
this saturation will occur faster when a coarse
grid is chosen, making it possible for the calcula-
tion to proceed quite briskly in comparison with
the ergodic method. Of course, we pay a price
tor this acceleration of convergence in the form
of some loss of precision. As mentioned previ-
ously, a coarse grid causes more uncertainty in
the interpretation of a distance value as zero or
nonzero.

We illustrate these points with a simple exam-
ple with D, symmetry acting on C, choosing a
situation in which it is known that a fully D,
symmetric chaotic attractor exists (see [2]). With
z € C, the gencral equivariant map truncated at
third order is

f(z)=(azz + Nz + yz°,

and a D, symmetric attractor appears to cxist for
the parameter values « = —1.0, y=—-0.5 and
A =2.3. The results are presented in fig. 3 where
we plot the value of the distance to the fixed-
point spacc of the rotation in D,. The detective
is three-dimensional —a two-dimensional ir-
reducible component z and a one-dimensional
nontrivial irreducible component Im(z}).

distance
= ;
——

B LU P
SO0 20000 2500 3000 3500 4000 4500 500

TR
ierates

Fig. 3. Convergence properties: SI X 51 grid -solid line:

201 x 201 grid — dashed line: 1001 x 1001 grid - dotted linc:

ergodic sum - dash-dotted line.
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Two points are immediately clear from the
diagram. First, the ergodic sum converges more
slowly than any of the integral results; second,
the coarser the grid the faster is the convergence
for the integrals. Put another way, the finer the
grid the more closely the ergodic behavior is
mimicked by the integral. Comparison of the
results for the 51 x 51 grid and the 201 x 201 grid
illustrates the price of the quick convergence: the
asymptotic value of the distance for the coarser
grid is 0.036 and for the finer grid 0.010.

8. A detective for coupled cells

The results that we obtained in the previous
sections apply to attractors in ordinary differen-
tial equations as well. Then the attractor is given
by L ={x(t):t=0} and the time-average be-
comes

KE((O) = lim 7 | #(x(0) d.

In this section we will apply theorem 5.2 to rings
of coupled cells, which are D, symmetric systems
of the form

2;=fz; .1, z;, 2,0, (J=1,...,p), (8.1)

where z, ER™ and f(x, y, z, A) = f(z, y, x, A).
(We use the convention here that z, =z, and
2,1 =2,.) We set n=mp.

We now present a detective for such systems
and, in the next section, we explore numerically
an example of three coupled cells (p =3) con-
sisting of two equations each (m =2) so that
n =6. The representation space W that we use
for this detective is the space of nXn real
symmetric matrices where y €D, acts by simi-
larity transformations on W:

vy-w=ywy' forallweWw.

We will prove the following:

Theorem 8.1. Assume that the number of cells is
p =3 and the number of equations governing
each cell is m =2. Then the mapping

d(x)=x-x'
is a detective.

It is easy to check that with respect to this
action of D ,onW, ¢ is D p—equivariant; hence, ¢
is a polynomial observable. We will use theorem
5.2 to prove theorem 8.1. There are two points
that must be checked. We must show that W
contains every (lattice equivalence class of) non-
trivial irreducible representations of D, and that
this particular ¢ is nonzero on each of these
representations. In fact, we will show using the
theory of characters that W contains every non-
trivial irreducible representation.

It is easy to show that ¢ will then be nonzero
on each of these representations by showing that
W, =W where W, = ($(x): x ER"). (The vec-
tor space W, was introduced in the proof of
theorem 5.2. To prove that ¢ is a detective in
this case we find it easier to verify the hypotheses
of proposition 5.8.) To verify the claim let
e.,...,e, be the canonical basis of R” and
define the vectors x, ; by

€ i=j
x"~l'={e.+e. oy Lj=1,...,n.
Then one can check that the set of matrices
o(x; ;) (k=0,1,...,n—1, i=1,2,...,n~
k) defines a basis of W, which implies W, = W.
To check the first assumption of theorem 5.2
we compute the multiplicities of the irreducible
representations of D, in W using characters.
Recall that the character of a representation W is
the mapping xy: I —R defined by xu(y)=
trace(y) where this trace refers to the trace of
the action of y on W,
The multiplicity of an irreducible representa-
tion V in the representation W is the number of
independent isomorphic copies of V that appears
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in W. Since we fix W we denote this multiplicity
by c,.

The theory of characters states that (see Miller
[10]) ¢, may be computed by

1
5 8.2
5 ED X (¥ )x(y) | (8.2)

c, =
where y is the character of W and Y, is the
character of V.

To compute the character of D, acting on W
we need to compute trace(y) for each y €D .
This we can do by a direct combinatorial argu-
ment. We denote the basic rotation in D, by R.
The reflections fall into three types — all reflec-
tions interchange some cells in pairs and fix other
cells. Each reflection in D, (p odd) fixes exactly
one cell while the reflections in D, ( p even) fix
either (0 or 2 cells. According to this we denote
them by §,, S, and S, respectively.

Lemma 8.2.

trace(!) = ‘mp(mp + 1),

1 j= 1
iy )2 mp (] =2 p)
trace(R”) {0 (otherwise) ,

trace(S,) = imp ,
trace(S,) = {m(p + m),

trace(S,) = im(p +4m) .

Proof. Let A be the p X p matrix (a,) and let
y €D, acton Aby y- A=yAy' EachyED,is
a permutation matrix. A short calculation shows
that permutation matrices act by just permuting
indices, that is,

'Y'(aij):(ay(i)y(j)) > (8.3)

where, by abuse of notation, we also denote the
permutation on indices by y. Similarly, when A
is an (mp) X (mp) matrix and each g, is an
m X m block matrix, we see that (8.3) is still

valid, though here block matrices rather than
individual elements are permuted.

Now we suppose that A = (@) is a symmetric
matrix. so that a; = a, and, in particular, a, is
itself a symmetric matrix. We can see from (8.3)
that the only contributions to trace(y) come
when (y(i), y(j)) equals either (i. j) or (,i).

There are three possibilities. If (y(i). y(i)) =
(i, 1) then there is a contribution of $m(m + 1) to
trace(y ), since g, is an m X m symmetric matrix.
Should (y(i). y(j)) = (i, j) where i +# j, then the
contribution to trace(y) is m’ since a; is an
arbitrary m X m matrix. Finally if (y(i), y(j)) =
(j.i) where i+#j, then the contribution to
trace(y) is only m since only the diagonal cle-
ments of g, contribute to the trace.

This remark can now be used to compute trace
(v) for yED,. If y=R then (R(i), R()))=
(i+1,j+1)mod p and (R(i), R(j)) is never
equal to (i, j) or (j. ). So trace(R) =10.

Now consider R' (1=/=p —1). Then (R'(i).
R(j)=(i+1, /+ 1) mod p. The only possibility
for a contribution to the trace is when (i + /. j +
fy=(j.lymod p. Then p must be even. [ = !p
and j =i+ 1. Thus trace(R') =0 unless / = | p in
which case trace(R”*)= imp since the ip
blocks

Ay e Uagooeoos ds p

each contribute m to the trace.

The elements of D, remaining to be discussed
are all reflections. Exchanging one pair of cells
contributes m to the trace while fixing a cell
contributes $m(m +1) to the trace. Finally,
when two cells are fixed say cells 1 and ip + 1
then an additional block 4, ;. is also fixed and
an extra m” is contributed to the trace. Therefore

trace(S,) = L pm = tmp (peven) .

trace(S,)=3(p— m+ sm(m+ 1)

i

sm(p+m) (podd),
trace(S.) = 3(p —2ym+ im(m+ 1)+ m’

=im(p+4m) (peven).
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Since trace (I) equals the dimension of the
space,

trace(!) = imp(mp +1) . O

Proof of theorem 8.1. 1t remains to show that W
distinguishes all the subgroups if m=2 and p =
3. For this we use theorem 4.3 by showing that
all the nontrivial irreducible representations of
D, are present in W.

In the case that p is even there exist three
distinct nontrivial one-dimensional representa-
tions which we denote by Wz,,’ Wpy and Wy,
The subscripts indicate the kernels of those rep-
resentations. Using (8.2) and lemma 8.2 we com-
pute their multiplicities in W. For the irreducible
representation WZp we obtain

1 1

2p-cy =smp(mp+1)+ 3mp—3p-3mp
—3p-im(p+4m)
=3mp(mp+1+1~3p—3p—2m)
=zmp(m —1)(p—2),
and therefore
¢z, = im(m—1)(p-2).

Similarly we compute

im(p+2)+1+(-1)7"%,

p

o=

p

im(p—2)+1+(-1)""?].

(SIS

Moreover there are 3 p —1 two-dimensional ir-
reducible representations W} (j=1,...,4p—
1) with multiplicities

ci=1immp + 1+ (-1)'].
In the case where p is odd there is just one

nontrivial one-dimensional representation and
we compute

¢z, = im(m=1)(p - 1),

and for all the 1( p — 1) two-dimensional irreduc-
ible representations W’ we obtain

cj=4sm(mp +1).

From these computations it now follows that the
representation W distinguishes all the subgroups
if and only if m=2 and p =3. il

We end this section by computing the dis-
tances d(A,Z3") (k=1,..., p) and d(4,Z,)
between an element A € W and the fixed-point
spaces of the p reflections and the basic rotation
in D,. These formulae will be used in the nu-
merical computations of the following section.

Again we write A = (a;); ,_, , in block form
such that each qa,; itself is an m X m matrix. With
this notation the fixed-point spaces can be writ-
ten as

FiX(ng)) ={AeW: (a[j) = (ap—i+k,p~j+k) >

1=k=p},
Fix(zp) = {A ew: (aij) = (ai+1,j+l) ,
l=i=p-1},

where the values of the indices have to be
evaluated modulo p. Hence the distances are
given by

d(A, ng))z =3 Z |(aij - ap—i+k,p—j+k)|z >
ij
k=1,...,p,
1%
(aij - ; 120 ai+l,j+l>

In these last expressions |(b,)|” denotes the sum
of the squares of the entries of the m X m matrix

(bij)'

2

d(A,Z,)" =2

i

9. An example of three cells

As an example of the results in the previous
section we consider the following system of three
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coupled cells:

PR 8 2
X, =x,, toxix,, .,

£ =X = (0 - Ay

+ a(x,71 ~2X],+1 + x/'+3) + B'x/x/+l M (91)

where j=1,3.5, x,=x, and x,=x,. We fix
three of the four parameters in this system
setting

a=-05, B=-1.8, 6=—028.

and consider A as the bifurcation parameter.
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The dynamical system (9.1) possesses D, sym-
metry, where the clements of D, act by block
permutation matrices. Using the previously de-
fined notation we have p=3, m=2 and n=06
(see section ¥).

The equivariant polynomial observable that
we use to detect symmetry is ¢(x) = x - x' which
leads to the computation of the correlation
matrix

7

& . l t
K (x(0) = lim ?fx(r)-x(l‘) dr .

)

Test for second retlectional symmetry
45 .
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Fig. 4. The distances for K} (x(0)).
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Since m =2 and p =3 we already know from
theorem 8.1 that this observable is a detective.

We computed both KE (x(0)) and K,(A) nu-
merically varying A from —1.20 to —1.04. In fig.
4 we show the distances between KE (x(0)) and
the fixed-point spaces of the reflections and the
rotations for this range of the parameter value,
while in fig. 5 we show these distances for
K,(A). In six dimensions the memory require-
ments of the integral test are already substantial
and it is no longer possible to cover a whole
region of space containing the attractor by a grid
as we did in section 6. So in this example we
were forced to use a different method for storing
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data. What we did was to generate a covering of
the attractor during the simulation. This resulted
in the integral test running much more slowly
than the ergodic test (roughly by a factor of five).
If more sophisticated storage techniques were
used, this difference in computation speed could
probably be minimized in this dimension. How-
ever, it is clear that we are close to the limits of
the direct use of the integral test in six dimen-
sions.

With respect to symmetry types everything can
be read off from either figure: For —1.20= A =<
—1.10 the attractor is essentially Z, symmetric,
for —1.10= A = —1.06 the attractor has D, sym-

Test for second reflectional symmetry
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Fig. 5. The distances for K,(A).
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metry and, finally, for A= —1.06 the attractor
becomes Z, symmetric. For this interpretation
the distance itself is not relevant but the change
in distance that occurs at parameter values where
symmelry creation occurs, 1.e., where conjugate
attractors collide and the resulting attractor has
more symmetry than the single attractors before
collision.

On the other hand, at classical symmetry-
breaking bifurcations, the distance that we com-
pute should vary continuously. In fact, further
inspection shows that there is a period-doubling
sequence occurring for A€ (—1.14, —1.11) in
which the Z, symmetry is lost. But this can
hardly be seen in fig. 4.

In the computation of K,(A) we again made
use of the fact that the computation of the
integral allows one to introduce a criterion for
stopping the integration automatically. Hence
the number of boxes actually used in the compu-
tation of the integral depends crucially on the
dynamical complexity of the corresponding at-
tractor. Roughly speaking, in this example the
dynamical behavior becomes more and more
complicated as A is increased to approximately
—1.06. For A>—1.06 the attractor is just a
discrete rotating wave. Accordingly, it can be
observed (fig. 6) that the number of boxes grows
rapidly when the dynamical behavior becomes
more complex and that sometimes more than

LN

i

134

Number of boxes

104}

PR
10— — - - . .
-2 -y -1.16 Lid -b12 1.1 1.08 -1.06 .04

tambda

Fig. 6. The number of boxes used for the computation of
K, (A).

50 000 boxes were needed to satisty the criterion
for stopping the integration.

Finally we obscrve that the computation of
K,(A) for the D, symmetric (‘‘chaotic™) attrac-
tor at A = —1.095 requires about three times the
number of boxes than for the Z, symmetric
(“chaotic™) attractor at A = —1.1. This indicates
that this transition is related to a symmetry in-
creasing bifurcation (cf. [2]) in which three con-
jugate Z, symmetric attractors collide.

10. Detectives for PDEs and experiments

In this section we discuss how we might use
our resuits to compute the symmetry of an at-
tractor from either experimental data or numeri-
cal computation of solutions to PDEs. In [4] we
showed by example that the symmetry of an
attractor for a PDE., in this case the Brusselator.,
could be visualized as a symmetry of the time-
average of the solution. We begin this section by
discussing, through the use of the ergodic
theorem, why this observation is valid. We then
repeat the numerical experiment for the Brus-
selator illustrating how detectives can simplify
the observation of symmetry. At the end of the
section we discuss how to use these techniques in
a system with square symmetric geometry.

To indicate how the symmetry of an attractor
manifests itself in physical space. we assume that
u(x, t) is (one component of) a solution to a
PDE. We let U{x) be the time-average of this
solution, that is,

/

Ux)= }an ,—lrfu(x,t)dt.

4l

(10.1)

We claim that it the attractor of the PDE has a
symmetric ergodic measure. then
Ulox) = U(x) (10.2)

for all symmetries o of the attractor. Indeed, the
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right hand side of (10.1) is evaluated using the
ergodic theorem to be a space integral over the
attractor. Using change of variables and symme-
try invariance of the ergodic measure yields the
desired resuit.

As an example we consider the Brusselator
which is given by the following system of re-
action diffusion equations:

2

d D, s
a—?zA—]a—L;+u2v—(B+l)u+A,
x
v D, d
a—l;=)\—2262—u2v+Bu. (10.3)
P

Here u, v, A and B represent chemical concen-
trations and D,, D, are diffusion constants. The
parameter A is a characteristic dimension of the
system and we shall treat A as the bifurcation
parameter. We impose Dirichlet boundary condi-
tions:

ul0,Hy=u(l,t)=A,
v(0,0)=uv(l,1)=B/A.

Then the problem has a reflectional symmetry
given by

k(u(x, 1), v(x, £)) = (w1 —x,t),v(l — x,1)).
We fix four of the parameters by setting

A=2, B=545, D, =0.008, D,=0.004.
By doing this we follow [8], since Holodniok et
al. found complicated dynamics in (10.3) for this
set of parameter values by numerical simulation.
For a construction of an appropriate observ-
able we make use of the preceding discussion of
how symmetry of an attractor manifests itself in
physical space (see (10.2)). Since Z, has just one
nontrivial one-dimensional representation our
observable should be a nonzero equivariant map-
ping from a suitable function space into R. In
our numerical computations we have chosen the

following two observables:

¢ (u, vy =u(0.3) — u(0.7),
&,(u, v) =v(0.3) - v(0.7),

and computed the corresponding observations

T
E_ . 1 .
K¢j:;£§o?f¢j(u,v)dt (j=1,2).

0

The results are presented in fig. 7. In those
computations we have chosen 7 =60000. A
symmetry creation can be observed to occur
beyond A =1.45. This was already mentioned in
[4], where numerical simulations were performed
for A =1.45 and A =1.47. However, the results
in fig. 7 show that in between, for A = 1.4625, the
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0021

0.015
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o
=
T

0.005 q

1.42 1.43 1.44 1.45 L.46 1.47 1.48

lambda

0.2F

015+
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0.05+ 4

o
0 o o f
142 1.43 1.44 1.45 1.46 1.47 1.48

lambda

Fig. 7. The absolute value of the observations K i‘, (a), and
E
K, (b).
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attractor again loses the Z, symmetry. Another
gain and loss of symmetry occurs for A= 1.44.
Finally, observe how similar the two observables
behave qualitatively.

We end this section with a discussion of sys-
tems with square symmetry. For these systems
we imagine taking time series at cight symmetri-
cally placed points as illustrated in fig. 8. The
observable ¢ is then the composition of a map-
ping from the state space of the experiment to
R" — the values of the state at these eight points -
and a detective from R" into W.

Our method for detecting symmetries is to
compute the distance of the ergodic observation
K} defined in section 7 to the fixed-point sub-
space corresponding to each cyclic subgroup of
D,. We begin by describing the symmetries of D,
in physical space:

identity !
rotation clockwise by 90° Ty
identity Fog=—1
rotation counterclockwise by 90° Foo
reflection across horizontal line r,
reflection across vertical line r.

reflection across northwest diagonal
reflection across northeast diagonal 7, .

We usc the following notation for certain sub-
groups:

23 :
Ly={1,,rg5, oy Too) s D; ={re. 1.}

and DY={r .r.}.

—
1
1

Fig. 8. Eight symmetrically placed points.

Let S=(S,.....¢ S.) € R" be the time dependent
values of the time series. We now explain how
this data can be processed to determinc the
symmetries of an attractor. First recall that the
group D, has four distinct one-dimensional and
one two-dimensional irreducible representations.
Using the notation of section 8 we denote them
by

Wiy,o W, . Wy Wy and W, .

As previously, the subscripts on the one-dimen-
sional irreducible representations indicate the
kernels of those representations; in particular,
W,,, denotes the trivial representation.

We begin by writing R* as a direct sum of
irreducible representations. Abstractly,

R* =W, &W, &W, & Wy &W,.
Concretely,

Wy, = R{(L LI L1 D)

W, =R{(1, -1 1.1 1, =11, =)}

Wie = R{(L L =1, =1 1L 1 =1, = 1)}

W, =R{(1. 1.~ 1. 1. =L =L )} .

W, =R{(1,1.0.0. —1. ~1.0.0).
(0,0.1.1,0.0, =1, = 1)} .

W, = R{(1, —1,0.0. =1, 1.0, 0),
(0,0,1.=1.0.0,~1, 1)} .

It is now a simple matter to compute the fixed-
point subspaces of the various cyclic subgroups
of D, acting on the five-dimensional subspace
W(D,) =W, ®W, OW,, &W,. which is the
sum of all the nontrivial irreducible representa-
tions of D,. We shall write, in coordinates

W, =x(1.1,0.0, —1. —1.0,0)
+ (0.0, 1.1.0.0, =1, - 1)
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Table 1

Fixed-point subspaces in W(D,).

Fix(y)  Fixed-point subspace d(w, Fix(y))’
Fix(ro,) W, © {0} {0} {0} P +ct+x+y
Fix(r,) {O}EB{O}@WDE@{x=y} a+ b+ ix—y)
Fix(r,) {0} {0} & W, @ {x = -y} a+b +i(x+y)
Fix(r,.) {0}®W_,®{0}®{x=0} da+’+y
Fix(r,,,) {0}® WDZp G{0}D{y=0} a+ct+x
Fix(-1) W, ® WD} S Wy ®{0) X+

If we denote a point weW(D,) by w=
(a, b, c, x, y), then it is a simple matter to write
down the fixed-point subspaces in W(D,) and the
distances squared of w to these fixed-point sub-
spaces. These data are given in table 1.

Finally, denote the D ,-equivariant projection
by m:R*— W(D,). It is easy to write 7 in
coordinates. Let S be in R® then

a=5-(1,-1,1,-1,1,-1,1, -1),

b=S-(1,1,-1,-1,1,1, -1, —1),
-1,1,1, -1,
x=5-(1,1,0,0,-1,-1,0,0),
y=5:(0,0,1,1,0,0, -1, =1) .

c=S8-(1,-1,-1,1,1, -1,1),

Thus to compute the symmetry of an attractor,
one computes the ergodic observation $ = Ki
from a time series, then one computes the vector
w = 7(S) € W(D,), and finally one computes the
distances to the various fixed-point subspaces.
The exact symmetry is determined by which of
these distances are (approximately) zero.
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