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1. Introduction 

Many systems of partial differential equations are posed on all of R" 
and have Euclidean symmetry. These include the Navier-Stokes equations, 
the Boussinesq equations, the Kuramoto-Sivashinsky equation and reac- 
tion-diffusion systems (with constant diffusion coefficients). In many appli- 
cations, where these and related Euclidean equivariant equations are used, 
time independent, spatially periodic solutions are sought; and, typically, 
they are obtained by bifurcation from an invariant equilibrium. In this 
paper we attempt to classify, by symmetry, spatially periodic solutions that 
can be obtained through bifurcation. Our main result is a partial classifica- 
tion of such solutions in two and three spatial dimensions obtained using 
symmetry methods and equation independent genericity considerations. The 
remainder of this Introduction is devoted to making precise the kind of 
classification theorem we intend to prove. We show that a certain class of 
planforms may be found by solving an algebraic problem whose data is 
based on the irreducible representations of the symmetry groups of n-di- 
mensional lattices. 

The planar planforms are classified in Section 2 (see Theorem 2.1, 
whose proof is given in Section 3). The main theoretical results (valid for 
all n) are also presented in Section 2. The classification of planforms in 
three dimensions is more complicated than in two. In Section 4 we de- 
scribe our results for the standard cubic lattices; that is, for the standard 
spatially triply periodic planforms. Details for the other three-dimensional 
lattices may be found in Dionne [6]. 

* Research supported in part by NSF/DARPA (DMS-8700897) and by the Texas Advanced Research 
Program (ARP-1100). 
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(a) Reduction to an algebraic problem 

The standard method used to find spatially periodic, steady solutions, 
which we call planforms, may be abstracted as follows. Write the system of 
PDE for steady solutions in operator form between function spaces ~ and ~ ;  

F(u, 2) = 0 (1.1) 

where F:~Y • R-oCg, 2 is a bifurcation parameter, and u : R " ~ R .  (We 
have simplified the general situation by assuming that u is real-valued, 
rather than vector-valued, but when considering bifurcations the general 
situation can be reduced to this case.) 

We assume that there is a trivial solution u = 0; that is, 

F(0, 2) = 0. (1.2) 

To find spatially periodic solutions by bifurcation from the trivial 
solution, one fixes a lattice 5e in R" and demands that 

u(x + ~) = u(x) (1.3) 

for all # E ~ .  Mappings satisfying (1.3) are called ~-periodic. We denote 
by ~Y~ the space of all 5g-periodic functions in Y'. The Euclidean invariance 
of F implies that 

F :  ~ x R ---} r (1.4) 

Finally one .performs a bifurcation analysis on (1.4). (Note that (1.4) may 
be stated in another language. Restrict the system of  PDE to a fundamental 
cell of the lattice and assume periodic boundary conditions on the boundary 
of this cell.) 

We observe that there is a natural compact group of symmetries acting 
on f - p e r i o d i c  mappings that is derived from the action of  the Euclidean 
group. Recall that the Euclidean group E, is a semidirect sum of O(n) with 
the group of translations R", and g E E, acts on u : R"--+ R by 

(g  . u ) (x )  = u ( g - ' x ) .  (1 .5)  

The action of E, on the space of 5g-periodic mappings is best understood by 
considering the translations and the rotations separately. It is easy to see 
that translations leave the space of ~-per iodic  mappings invariant. Of 
course, by definition (1.3), translations in ~ fix all s functions. 
Thus, the effective action of  the group translations on the space of 5~-peri- 
odic functions is as the n-torus T" = R" /~  which is compact. Similarly, for 
the action of  rotations recall that the holohedry H of the lattice ~ is the 
Iargest subgroup of O(n) that leaves ~ invariant. It follows from (1.5) that 
H leaves the space of  A~-periodic functions invariant. Thus, the largest 
group that can be constructed from E, that acts on S-per iod ic  functions is 
the compact semidirect sum: 

F = H ~ -  T". (1.6) 

Finally, we note that F in (1.4) is F-equivariant. 
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Suppose that there is a steady-state bifurcation at 2 = 0 in (1.4); that is, 
assume that 

V = ker(dF)0,0 ~ {0}. 

Note that the kernel V is always F-invariant. Branches of planforms may 
be found using the Equivariant Branching Lemma, as follows. Fix a 
subgroup Z c F and compute dim Fixv(E) where the fixed-point subspace 
is defined by 

Fixv(Z) = {v ~ V:~v = v Vo- ~ Z}. (1.7) 

When the choice of V is clear we write Fixv(Z) as Fix(Z). In its simplest 
form the Equivariant Branching Lemma states that if 

dim Fix(Z) = 1, (1.8) 

then generically there is a unique branch of steady-state solutions to (1.4) 
with symmetries Z. The genericity condition states that the eigenvalues 
that go through zero do so with nonzero speed. We note that the only 
subgroups that we need consider are isotropy subgroups of the action of F 
on V. 

This theorem allows us to find a well defined class of planforms, namely, 
those solutions whose isotropy subgroups satisfy (1.8). In this paper, we 
classify when n = 2 all planforms satisfying (1.8); the corresponding classifi- 
cation for n = 3 is given in Dionne [6]. To indicate the complexity of the 
classification when n -  3 we present part of the results in Section 4. In 
general, generically, there may exist solutions whose isotropy satisfies 
dim Fix(Z) > 1. It is for this reason that our classification of planforms is 
only partial. We note, however, that almost all results exhibiting specific 
solutions for equations actually assume (1.8). For exceptions see Busse [2], 
Chossat [4], and Chossat et al. [5]. 

(b) Procedure for classifying planforms 

We now continue with a more precise statement of the three steps 
needed to classify planforms. 

1. Choose a lattice ~e. 
2. Determine V, the kernel of (dF)o,o. 
3. Find those isotropy subgroups Y~ of F = H -i- T" that satisfy (1.8). 

As we shall see these steps are interrelated. We begin our discussion by 
fixing a lattice 5e and addressing step (2). In Sections 2 and 4 we will 
describe explicitly the five planar lattices and the fourteen three-dimensional 
lattices, the Bravais lattices. 
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Since the symmetry group F is compact, we expect V to be finite-dimen- 
sional. (This point will be discussed further.) Since V is F-invariant, and F 
is compact, we may write V as a direct sum of  F-irreducible subspaces 

v =  

A simple calculation shows that 

Fixv(Z) = Fixv,(22) @ . . .  | Fixvp(22). 

Hence, if dim Fixv(22) = 1, then Fixv(22) = Fixvj(22) for some V~. Thus, the 
first step in classifying the planforms associated with a fixed lattice 50 is to 
enumerate each irreducible subspace of F that can occur in the action of F 
on ~ e .  This we do in Section 2 for the planar lattices and in Section 4 for 
the primitive cubic lattice. 

Next we classify for each of the irreducible representations the isotropy 
subgroups 22 in F for which (1.8) is valid. There are two simplifications: 

(a) We need only classify conjugacy classes of  isotropy subgroups 
satisfying (1.8). 

(b) We may assume 

22m T " =  1. (1.9) 

We call those subgroups 22 of F that satisfy (1.9) translation f ree .  

The first simplification is standard; the second requires some comment.  
If an 5 ~ solution to (1.4) has a translation symmetry that is not in 
50, then there is a finer lattice (if Z ca T" is finite) or a lower dimensional 
lattice (if Z ca T" is continuous) that supports this solution. In either case the 
solution will appear on a lattice 50' as a solution associated with an 
isotropy subgroup 22' satisfying (1.9). In Section 2(a) we verify this state- 
ment. It is also true that if 22 satisfies (1.8) then so does Z'; see Dionne [6]. 

(e) Mul t ip l ic i ty  o f  solutions 

In the preceding discussion we assumed that a lattice 50 was fixed. There 
are two analytic simplifications that are obtained by assuming 5~ 
ity and they are worth noting here. (This discussion also shows how such an 
50 might be fixed for a specific partial differential equation and addresses 
step (1).) The two difficulties are: infinite dimensional eigenspaces and 
continuous spectra. We comment  on each in turn. 

Let L ) : ~ - - . o #  denote the linearization of  the PDE about the trivial 
solution. We define a plane  wave as a complex-valued function of the form 

wk(x)  = e i k  x (1.10) 

where k is a wave vector in R" and ~c = [k I is the wave number.  There is a 
large class of linear PDE admitting plane waves (with a specified wave 
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number)  as solutions; examples of  such PDE can be found in [9] and 
[13]. In particular, reaction-diffusion equations in n dimensions are exam- 
pies. 

Suppose that we relax the condition that we are looking only for 
&a-periodic solutions. We assume that there exist a smallest value of  
2c and a nonzero critical wave  n u m b e r  xc such that the plane waves wk 
with wave numbers Ik[ = ~:c and k E &a* are null vectors for L~ c. This 
gives an eigenvalue ,~c. For  each of  the PDE listed in the Introduc- 
tion (for instance), one can find such ,~c and xc. Now Euclidean equivari- 
ance of  L~ c guarantees that if wk is an eigenfunction, then so is 
wk,, for every k '  having the same wave number  as k. These wk generate 
an infinite dimensional function space. Hence, if there is a plane 
wave in the kernel of  L~ c, Euclidean equivariance implies that this 
kernel is infinite dimensional (when periodic boundary  conditions are 
omitted). 

Recall that we have fixed a lattice &a. For  this lattice the spectrum of  
Lzc contains at most a finite number  of  &a-periodic plane waves with wave 
numbers Ikl = Xc. Hence the kernel of  the linearization of (1.4) is finite 
dimensional, whereas the kernel of  the linearization of  (1.1) is infinite 
dimensional. This observation is related to the fact that the symmetry 
group F of  (1.4) is compact  while the symmetry group of  (1.1), the 
Euclidean group, is noncompact.  

If we think of  the bifurcation problem as one where we are looking for 
instability of  the trivial solution (to t ime-independent perturbations), as 2 
is increased, then the value 2c is the value where linear instability first 
occurs and that instability is to plane waves of  wave number  ~:c. We 
choose the lattice &a so that there are some critical plane waves that are 
&a-periodic. In fact, up to equivalence of  lattices, we can choose &a to be 
of  any lattice type. We now discuss this point in more detail. 

We begin by introducing the dual  latt ice &a*. Let 

&a* = {k  ~ R "  : e 2~ik'x is &a-periodic}. (1.11) 

It follows easily from (1.11) that the wave vectors k E &a* form a lattice. 
We assume that 5f and ~r can be chosen so that the &a-periodic functions 
of  f so  and ~/~ have Fourier  expansions in terms of  plane waves whose 
wave vectors are in &a*. 

As we discussed previously, the eigenfunctions of  the linearization Lz c 
are generated by plane waves whose wave vectors have wave number  Xc. 

Thus, for a critical plane wave to be &a-periodic, there must be some vector 
k e ~o,  such that Ikl-- c. When that happens, all wave vectors k s &a* 
having that critical wave number  are critical. Since &a* is a lattice the 
possible lengths of  wave vectors in &a* form a countable discrete set which 
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we denote by 

{0, M,, M2, M3,. . .  } 
where Mj < Mj+ 1 for all j. We call M, = ]Y*[ the length of  ~q~*. 

We claim that for each j we can always choose ~LP up to equivalence so 
that Mj = ~Cc. Thus, up to equivalence, we can choose ~ such that any given 
length Mj of  wave vectors in ~F* is the critical wave number.  It follows, 
therefore, that all of  the isotropy subgroups that we enumerate according to 
the previous discussion correspond to planforms that simultaneously bifur- 
cate for our given PDE as branches of  solutions from the trivial solution at 
2 = 2c. Moreover,  in order for this statement to be valid, all we need is for 
the PDE to have Euclidean invariance and for the eigenvalues of  ~ .  that go 
through zero to do so with nonzero speed. 

Next we prove the stated claim. Note that in order for e 2~ikx to be 
~ -pe r iod i c  we need k . ~ to be an integer for all t ~ ~ 5O. Let {~l, �9 �9 �9 ~n } be 
a basis for ~ .  Then the dual basis {kl, � 9  kn } is a basis for s where for 
all (;. 

kj  - ~ = 60.  

We can always find a lattice s equivalent to 5 ~ by multiplying all of  the 
vectors in ~ by a fixing positive scalar c. Then ( 2 " ) *  is obtained from ~ *  
by dividing all of  the wave vectors in s  by c. Choosing c appropriately 
verifies the claim. 

Remark. (a) In general, if we want the critical wave number  ~cc to 
correspond to the j - th  wave vector length Mj for some large j, then we have 
to take the length of  • to be very large. 

(b) In this discussion we have not mentioned the stability of  the 
bifurcating branches. We just note that in most applications it can be 
proved that the solutions corresponding to all lengths Mj except one are 
definitely unstable. Which Mj corresponds to solutions that are possibly 
stable depends on the particular PDE. 

2. Planforms in dimension two 

As indicated in the Introduction, our classification of  planforms requires 
three major  steps. 

1. The enumerat ion of  lattices ~ .  
2. The enumerat ion of  the irreducible representations V of  the action of  

F = H-i- T" on f ~ .  
3. The enumerat ion of  conjugacy classes of  translation free (see (1.9)) 

isotropy subgroups 2; satisfying (1.8). 
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We list the results of each of these steps in Subsections (b)- (d) .  The 
enumeration of lattices is taken from Armstrong [1]. The enumeration of 
irreducible representations is simply explained and the proof is sketched in 
Subsection (c). The list of planforms is given in Subsection (d). This list 
leads to the statement of Theorem 2.3, which is the main result of this paper 
concerning planforms for planar systems of PDE. We begin in Subsection 
(a) with a discussion of translation free isotropy subgroups. 

(a) Translation free subgroups 

Our approach to finding planforms is to presume in advance both the 
periodicity (2,) and the symmetries (Z) of the planform P and try to prove 
the existence of 2,-periodic solutions with symmetry ~. As noted in the 
Introduction we can, without loss of generality, assume that ~ contains no 
translations. Let M = Z n T". We discuss this point in more detail here. We 
consider two cases: M finite and M infinite. 

When M is finite we can form a new lattice 2 , '  from 2 '  by adjoining 
to 2, those vectors in  R" that are obtained from 0 by translation using 
elements in M. Since M ~ T"--R"/2, ,  it follows that 2," is a lattice 
in R". Moreover, any S-periodic planform which is also M-invariant 
will be 2,'-periodic. Hence, we can find that solution supported on the 
lattice 2 , (  

Similarly suppose M ~ T" is a continuous subgroup. Since isotropy 
subgroups are closed, we see that M ~  connected component of the 
identity in M - - i s  a torus 3 -'~ of dimension m > 0. We can write ~--m as the 
projection of a subspace N c R" into T " =  R"/2,. Next, we observe that 
2 , '  = 2, n N • is an (n - m)-dimensional lattice in N • By assumption, the 
planform P may be thought of as being 2,'-periodic on N • and constant in 
the directions in N. This lowers the dimension of the problem we were 
considering; what remains of the symmetry of the planform is ~/M ~ whose 
intersection with T" is finite. If necessary, we may have to refine the lattice 
5 ~ in N • (as in the previous paragraph) to obtain a lattice on which the 
planform is translation free. 

Thus we have shown that any planform on a lattice ~o may be thought 
of as a solution on a refined lattice 2, ' ,  perhaps of lower dimension, on 
which the isotropy subgroup of that planform is translation free. 

We end this section with a remark. If there is a nontrivial translation 
t e T" that acts trivially on V, then every isotropy subgroup of the action of 
F on V contains t. So all planforms obtained from this V will be supported 
on another lattice, and we can ignore this V in our classification. We say 
that the representation of F on V is translation free if the only translation 
in 7" that acts trivially on V is the identity in T". 



Vol. 43, 1992 Planforms in two and three dimensions 43 

(b) The  latt ices 

On the line, (n = 1) there is, up to scaling, one lattice 2 '  with a basis 
vector ( = 1. The holohedry of  this lattice is Z2 (generated by x ~ - x )  and 
the group of  symmetries is F = Z2 -~ S t - 0(2). 

Armstrong [1] lists the Bravais lattices in dimension n = 2 (cf. [1], p. 
149); that list is reproduced in Table 1. We denote by Dm the dihedral  group 
of  order 2m. 

(c) Irreducible  representat ions  

In this section we enumerate all of  the irreducible subspaces V of  5cw 
under the action of  F = H 4- T" where H is the holohedry of  the lattice 5 ~ 
As we indicated in the Introduct ion we assume that the functions in Y'~ are 
regular enough to have Fourier  expansions in terms of  the plane waves 
Wk(X ) : e2~ik.x where k e 50*. 

We begin by noting that V must be a direct sum of  T"-irreducible 
subspaces. Since t E T" acts through the translation x - ,  x + t, we have 

t "  wk(x)  = Wk(X --  t.) = w k ( -  t )wk(x) .  (2.1) 

It follows that the two-dimensional subspace 

v k  - { R e ( z w k ( x ) )  " z C }  C 

Table 1 
Lattices in two dimensions 

Name Holohedry Basis of  2 '  Basis of 5o ,  

Hexagonal D 6 

Square D 4 

Rhombic D 2 

g l =  ,1 k l = ( 0 , 1 )  

(1 = (1, O) k~ = (1, O) 
f2  = (0,  1) k 2 = (0,  1) 

(t  = (1, --cot  O) k 1 = (1, O) 
d 2 = (0,  CSC O) k 2 = (COS O, s in  O) 

0 < 0 < ~ , 0 # ~  

Rectangular D 2 El = (1,0) kl = (1, 0) 

O < c < l  

Oblique Z 2 tfl I ~ ](2 I 
(1 " E2 r 0 
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is T" invariant.  Note  that  V_k = Vk. Indeed, a calculation shows that  T" 
acts irreducibly on Vk and that  the representat ion of  T" on Vt, and Vk, are 
distinct unless k = _+ k ' .  It follows that  the irreducible representat ion V of  
F mus t  have the form 

v = v , , i  G . . . | v , ,s  c s 

for some set of  dual  wave vectors K 1 , . . . ,  Ks. 

(2.2) 

Proposition 2.1. The space V in (2.2) is F-irreducible if and only if the 
set of  2s dual vectors {-L-_ K1 . . . .  , • Ks } is an orbit  in ~8" of  the action 
of  the holohedry  H. 

Proof. Note  that  an element h in the holohedry is an or thogonal  matrix 
and acts on the plane wave wt, by 

h ' w k ( x )  = w k ( h - l x )  

= e 2 n i k  �9 h -  i x  

= e2~Z i (hk )  - x 

= Whk(X). (2.3) 

In particular,  the holohedry  H always contains the reflection r(x)  = - x  and 
r " W  k = W _  k .  

The proposi t ion  is now easily verified. [] 

Remark.  It follows f rom Proposi t ion 2.1 that  the number  s of  summands  
V x  in (2.2) divides ]HI, where IHI denotes the order of H. In fact, s divides 
]HI/2 because r :  Vk ~ Vk. (Indeed,  f rom the definition of  Vk ~ C i n  (2.1) we 
see that  r acts as complex conjugat ion on Vk.) 

It is now instructive to discuss the case n = 1. Since the holohedry when 
n = 1 is Z2, it follows f rom the remark  that  s = 1 in (2.2). So the irreducible 
representat ions of  0 (2)  are just  Vk = {Re(ze2~ikx)} where k = 0, 1, 2 , . . . .  
Note  that  the action of  F on Vk is t ranslat ion free only when k -- 1 since 
x ~ x + ( 1 / k )  acts trivially on Vk. As we noted  previously we need consider 
only translat ion free actions, and the only irreducible representat ion of  
0(2)  that  we need consider when finding planforms is ( the s tandard action 
on) V1. 

Next  we discuss the planar  lattices listed in Table 1. A short  calculation 
shows that  none  of  the irreducible representations V of  the rectangular and 
oblique lattices are translat ion free. For  example, it follows f rom the remark  
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above that all irreducible representation of  the symmetries of  the oblique 
lattice have V--  Vk for some wave vector k. Since T 2 acts orthogonally on 
Vk and dim Vk = 2, there is a circle in T 2 that acts trivially on Vk. 

The list of  distinct translation free irreducible representations for the 
three remaining planar lattices is given in Table 2. It is worth commenting 
here on the results enumerated in Table 2. It is straightforward to show that 
the only four- and six-dimensional translation free representations are the 
ones listed here. For  instance, the six-dimensional representations are of  the 
form (2.2) with 

/(1 = ~ k l  + ~ k 2  

K 2 = - -  ~ k  2 

K3 = - ~ k l  

where a is a positive integer. If ~ > 1, the vector (1/~)Yl is a nontrivial 
translation acting trivially on the representation. 

Table  2 
Trans l a t ion  free i r reducible  represen ta t ions  

Basis for A ~  d im VKI~'' "(~ [/Ks 

R h o m b i c  

/)2 

Square  
D4 

H e x a g o n a l  
D6 

k I = ( 1, O) K 1 = k I 
k 2 : (cos 0, sin 0) 4 K 2 = k 2 

7~ ~z 
o < o < ~ , o #  5 

kl = (I ,  0) 
k2 = (0, l)  

k~ = (o, l)  

12 

K l = k  l 
/(2 = kz 

/(1 = ~kl +/~k2 
K 2 = - i l k  I + ~k 2 
K3 = flka + ~ 2  
K4 = - ~ k l  + ilk2 

and  fl are integers,  
~>fl>0, 

+ f l  is odd  and  (~,fl)  = 1. 

K 1 = k 1 + k2 
K2 = -k2 
K 3 = - k  1 

Kl = ~kl + ilk2 

/c3 = - / ~ k l  + (~ - /~ )k2  
K 4 = r162 I + (~ -- fl)k 2 
K5 = - / ~ k l  - ~k2 
/(6 = ( - .  +/~)k~ +/~k2 

and  fl are integers,  
>/~  >~ / /~  > 0 ,  

( ~ , f l ) = l  a n d ( 3 , ~ + f l ) = l .  
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It is also straightforward to enumerate the eight-dimensional representa- 
tions of  the square lattice and the twelve-dimensional representations of  the 
hexagonal lattice by the two integers ~ and ft. That  these integers must be 
relatively prime in order to generate translation free irreducible representa- 
tions is also easy to show. What  is less clear is which of  the remaining 
irreducible representations are actually translation free. 

For  the eight-dimensional irreducible representations where both in- 
1 1 tegers e and fl are odd, one can explicitly find a translation (by t - - (5 ,  7)) 

showing that the representation is not  translation free. Thus we may assume 
that one of  e and fl is even and the other is odd. That  these remaining 
eight-dimensional representations are in fact translation free is verified in 
Lemma 2.2. 

Similarly, the translation free, twelve-dimensional irreducible represen- 
tations are completely characterized by the conditions (3, e + f l ) - -1  and 
(c~, f l ) =  1. When 3 divides ~ + fl, the translation t defined by t ' k l  = 

1 
t '  k 2 --= I (namely, t = �89 + gg2) acts trivially on the twelve-dimensional 
representations. So we may assume that (3, ~ + fl) = 1. Similarly, if 7 > 1 is 
a common factor of  ~ and fl, then  translation by (1/7)((1 + E2) acts trivially. 
Hence we can assume (c~, fi) = 1. The fact that the remaining twelve-dimen- 
sional irreducible representations are translation free is verified in Lemma 
2.2. 

Lelnma 2.2. (a) The eight-dimensional irreducible representations on 
the square lattice are translation free when (cq fl) = 1 and c~ + fl is odd. 

(b) The twelve-dimensional irreducible representations on the hexago- 
nal lattice are translation free when (e, fl) = 1 and (3, ~ + fl) = 1. 

Proof. (a) To show that the stated conditions are sufficient to charac- 
terize the translation free eight-dimensional irreducible representations on 
the square lattice, we show that if t is a translation acting trivially on an 
eight-dimensional representation, then t = 0  in T 2. Let u = k l "  t and 
v = k2 �9 t. We may assume that 0 <- u, v < 1; if not, we can always add to t 
a linear combination of  E1 and Y2 with integer coefficients to make that so. 
F rom K1 �9 t - K 4 "  t 6 Z and /(2" t + K 3 �9 t e Z, we get that 2eu e Z and 
2~v e Z. Therefore, u = p/(2e)  and v --- q/(2e) for some positive integers p 
and q. Substituting these expressions for u and v in to / f j  �9 t ~ Z for j = 1, 2, 
3 and 4, we obtain: 

pc~ + qfl - 0 (mod 2e) (2.4) 

q~ - p f l  -- 0 (mod 2~) (2.5) 

q~ +pf l  - 0 (mod 2c0 (2.6) 

-pc~ + qfl - 0 (mod 2c~) (2.7) 
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From (2.4) and (2.7), we find that 2qfl =- 0 (mod 2a). Since (a, fi) = 1, it 
follows that 

q - 0  ( m o d e ) .  

Similarly, f rom (2.5) and (2.6), we get that 

p - 0 ( m o d c  0. 
1 Hence, u, v = 0 or 5. Since c~ + fi is odd, only t = (u, v) = (0, 0) satisfies 

Kj .  t e Z  for j = 1, 2, 3 and 4. 
(b) To show that the stated conditions are sufficient to characterize the 

translation-free twelve-dimensional irreducible representations, we now 
show that if t is a translation acting trivially on a twelve-dimensional 
representation, then t = 0 in T 2. Let u = kt " t and v = k2 �9 t. As in (a), we 
may assume that 0 - < u , v < l .  From / ( 4 " t - K 3 " t ~ Z  and K 6 " t -  
/ ( 2 " t e Z ,  we get that ( c ~ + f l ) u ~ Z  and ( c ~ + f l ) v e Z .  Therefore, u =  
p/(~ + fl) and v = q/(c~ + fi) for some positive integers p and q. Substituting 
these expressions for u and v into Kj �9 t e Z for j = 1, 2, 4, 5, we obtain: 

pe + qfl -- 0 (mod c~ + fl) (2.8) 

- ( p + q ) e + p f l - 0  ( m o d e + f l )  (2.9) 

( p + g ) o ~ - q f l - O  ( m o d ~ + f l )  (2.10) 

p f l + q a - - O  ( m o d e + f l )  (2.11) 

F rom (2.9) and (2.10), we find that pfl =qfl (mod  a +fl) .  Since 
(~, fl) = 1 and (c~ + fl, fl) -- 1 it follows that 

p - q  (rood ~ + fl). 

Similarly, f rom (2.8), (2.9) and (2.11), we get that 

p - - ( p + q )  ( m o d a + f l ) .  

Hence, 3p - 0 (rood a + fl). Since (3, c~ + fl) = 1, we get that 

p - q = - O  (rood c~ + fl). 

Finally, since u and v are positive integers less than l, u = v = 0 and t = 0 
in T 2. [ ]  

(d) The plan forms in two dimensions 

We now enumerate  the translation free isotropy subgroups of  the 
translation free irreducible representations listed in Table 2. We also de- 
scribe the form that the resulting planforms must have. 

On the line, the only irreducible representation that occurs is the 
standard action of  0(2)  on C. The only nontrivial isotropy subgroup of  this 
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action is Z2, generated by a reflection on the line. This isotropy subgroup 
has a one-dimensional fixed-point subspace and generates a solution known 
as rolls in the convection literature. 

For the two-dimensional lattices the classification is more complicated. 
Our results are given in Table 3. We comment on these results here. In his 
thesis, Swift [12] enumerated the isotropy subgroups of the four-dimen- 
sional representations on the rhombic and square lattices. He showed that 
in each case there are two maximal isotropy subgroups having one-dimen- 
sional fixed-point subspaces, one corresponding to rolls and the other 
corresponding to rectangular or square symmetry, depending on the lattice. 
Swift also showed that generically steady-state bifurcations with these 
symmetries produce no other solutions. Similarly, Buzano and Golubitsky 
[3] show that the only isotropy subgroups corresponding to the six-dimen- 
sional irreducible representation on the hexagonal lattice having one-dimen- 
sional fixed-point subspaces correspond to rolls and hexagons, and that 
generically bifurcations on this lattice produce no other solutions. (It should 
be noted here that degenerate bifurcation problems on the hexagonal lattice 
can lead to solutions with submaximal symmetry [3], but that issue is not 
pursued here.) 

Previous results for higher dimensional irreducible representations on 
the square and hexagonal lattices are more limited. Kirchg/issner [10] 
studies the twelve-dimensional irreducible representations finding a number 
of solutions (corresponding to one-dimensional fixed-point subspaces). The 
only one that is translation free has hexagonal symmetry. To our knowledge 
no one has previously considered the eight-dimensional representations of 
the square lattice. Here we find two non-conjugate isotropy subgroups that 
are isomorphic, both having square symmetry and one-dimensional fixed- 
point subspaces. The first group (D +) corresponds to solutions that are 
invariant under both rotation by 90 ~ and reflections across the axes. The 
second group (D~-) corresponds to solutions that are invariant under the 
rotation, but are taken to a shift of themselves by (�89 �89 when reflected 
across an axis. 

Table 3 
Isotropy subgroups having one-dimensional fixed-point subspaces 

dim Isotropy Subgroups E Planform 

Rhombic 4 D 2 Rectangles 

Square 4 D4 Simple squares 
8 D~- Squares 

D 4 Anti-squares 

Hexagonal 6 D 6 Simple Hexagons 
12 D 6 Hexagons 
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In the next section we discuss in more detail our method of proof of 
these statements. Now we summarize our bifurcation results. 

Theorem 2.3. Given a system of PDE in the plane depending on a 
bifurcation parameter 2 and satisfying: 

(a) Euclidean equivariance. 
(b) A trivial translation invariant equilibrium for each 2. 
(c) This equilibrium loses stability at 2 = 2c ; that is, the linearized PDE 

has solutions at 2 = 2c with nontrivial spatial dependence (and no 
nonzero constant solution). 

(d) The spaces Y" and ~ are chosen so that a Liapunov-Schmidt 
reduction to the kernel of the linearized equations defined on Y'r 
and o ~  is possible. 

Then there are branches of (Euclidean group orbits of) planforms bifurcat- 
ing from the trivial solution at 2 = 2, that correspond to each of the 
following: 

1. Rolls 
2. Rectangles (a continuum, one for each 0) 
3. Simple Squares 
4. Simple Hexagons 
5. Squares (a countable number, one for each of the specified 0~, j~) 
6. Anti-squares (a countable number, one for each of the specified 0~,/~) 
7. Hexagons (a countable number, one for each of the specified ~, fl) 

We remark that this theorem is incomplete in two respects. We do not 
know whether generically solutions with other isotropies are possible in the 
eight-dimensional irreducibles for the square lattice and the twelve-dimen- 
sional irreducibles for the hexagonal lattice. In addition, there will be 
kernels of the linearized equations restricted to certain lattices for which the 
corresponding representations are reducible. In these cases planforms, in 
addition to those that we have enumerated, can be expected. 

In the next section we will discuss the proof of Theorem 2.3. In the 
remainder of this section we discuss the symmetries and form of the seven 
types of planforms whose existence is asserted by Theorem 2.3. We also 
include pictures of the planforms. These figures are obtained as follows: 
each planform in Table 3 corresponds to an 5~-periodic mapping that is a 
linear combination of exponentials with wave vectors listed in Table 2. In 
our figures we give contour plots and 3-D graphs of these functions. 

It is worth noting the difference between Simple squares and Squares 
and between Simple hexagons and Hexagons. In the 3-D graphs one can see 
that the number of minima along the right-hand side of the graph increases 
as you go from the planform associated with the lower dimensional repre- 
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: 
- I  -0.5 0 0.5 1 

Figure 1 
Simple Squares. (a)  con tou r  p lo t  wi th  four  cells (b) 3D plo t  o f  one  cell. 

sentation to the one associated with the higher dimensional representation. 
This happens even though the symmetries of the pairs of planforms are 
identical. One should also note the symmetry of Anti-Squares. These 
planforms are invariant under rotation by 90 ~ but not under any reflection 
of the square. Another symmetry of  Anti-Squares is obtained by reflecting 

-2  

-2  -1 0 1 2 

Figure 2 
Squares with a = 2, fl = 1. (a)  c o n t o u r  p lo t  wi th  four  cells (b)  3D p lo t  o f  one  cell. 
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- - 2  - I  0 1 2 

Figure 3 
Anti-Squares with c~ = 2, 3 = t. (a) contour plot with four cells (b) 3D plot of one cell. 

about the diagonal of the square and then translating along that diagonal 
by half a cell. This symmetry is most easily seen on the contour plot in Fig. 
3(a). 

Finally, as suggested by Figs. 1 to 5, Theorem 2.3 may be used to study 
problems posed on square or hexagonal domain with boundary conditions 
other than periodic (for instance, with Neumann boundary conditions). We 
will not elaborate on this topic here. 

0. 

i 

- 0 .  

- 2  - 1 . 5  - I  - 0 . 5  0 0.'5 1 1.5 2 

Figure 4 
Simple Hexagons. (a) contour plot including seven cells (b) 3D plot including one cell. 
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2 -1 0 1 

Figure 5 
Hexagons with e = 3,/~ = I. (a) contour  plot including one cell (b) 3D plot including one cell. 

3. Proof of the classification theorem 

In this section we complete the proof of Theorem 2.3 by computing up 
to conjugacy all translation free isotropy subgroups having a one-dimen- 
sional fixed-point subspace. In the first subsection, we explain our general 
procedure. The details of the proof are given in the last two sections. 

As mentioned in Section 2(d), the existence of branches of planforms 
corresponding to Rolls, Rectangles, Simple Squares and Simple Hexagons 
has been proved before. Here we prove the existence of branches of 
planforms corresponding to Squares, Anti-Squares and Hexagons. 

(a) Procedure 

As in the previous section, 5e is an n-dimensional lattice in R" with 
holohedry H and F -- H + T" where T" -- R"/Sf, and V is a F-absolutely 
irreducible subspace of the form (2.2). Before discussing our procedure we 
prove two preliminary results. 

The dimension of the fixed-point subspace of a finite subgroup Y~ of F 
may be computed using the trace formula (cf. [8], p. 76), which is: 

1 
dim Fix(E) = ~E~ ~zZ tr(a) (3.1) 

where [Z[ is the order of E. Using (2.1) and (2.3) we compute the trace of 
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(h, t )  e F  as: 

tr(h, t) = ~ 2 cos(2rc0j) (3.2) 
J 

where the sum is over all j such that  K i is fixed by h and 0 s = - K j  �9 h -  I t .  

Let HH be the project ion (a group epimorphism) f rom F to H defined 
by 

I-Ix(h, t) = h. 

Since the kernel of  Fix is T", the translat ion free (isotropy) subgroups of  F 
are i somorphic  by 1-Ix to subgroups of  H. 

Lemma 3.1. Assume that  d im V = [HI. Then all t ranslat ion free isotropy 
subgroups Z of  F having a one-dimensional  fixed-point subspace are 
i somorphic  by H~  to H. 

Proof. Irreducibility (see Proposi t ion 2.1) implies that  H acts transitively 
on the wave vector _+ Kj generating V and there are IH[ of  them. Hence there 
does not  exist a Kj which is fixed by some h e H with h • 1. It follows f rom 
(3.2) that  tr(a) = 0 for all a ~ Z, a r 1, and f rom the trace formula  that  

tr(1) d im V 
dim F i x ( Z ) -  tZ t - IZ [ 

Therefore dim Fix(Z) = 1 only if Z and H are of  the same order; namely, Z 
is i somorphic  by II~r to H. D 

Before stating the second result we introduce some notat ion.  Let Z~ denote  
the isotropy subgroup for a vector z = (zl, �9 � 9  zs) e V. Let A~ be the set of  
wave vectors { _+Kj : zj ~ 0} and let A~ be the corresponding set o f  wave vector 
pairs {(Kj, - K j ) : z j  r 0}. Note  that H acts naturally on wave vector pairs. 

Proposition 3.2. Let Z~ be an isotropy subgroup having a one-dimensional  
fixed-point subspace. Then Hx(Z=) acts transitively on A~. 

Proof. We begin by showing that  HH(Z~) acts transitively on the set A '  
of  wave vector pairs. We first assume that  there exists a nonempty  subset 
B '  c A~ which is invariant under  the action of  FIn(Zz). 

Define x ~ C s by 

{ ~  if Kj ~ B" 
xj = otherwise. 

The vectors x and z must  be linearly dependent  since they ate fixed by Zz and 
d im Fix(Z~) = 1. Hence x = z and B'  = A'. 
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Next we assume that IIH(Zz) acts transitively on the set A; of  wave vector 
pairs. Let B c A z be nonempty and IIH(Z=)-invariant; to complete the proof  
we must show that B = A=. Without  loss of generality we may assume K1 e B. 

Note that since IIH(Zz) acts transitively on A~ either 1-IH(E=) acting on 
K1 is all of A~ (in which case B = A~ and the proof  is complete) or half of 
Az. In the latter case, the action of II/~(E~) on K~ reaches tgK j for each 
Kj ~ Az where ~ = 1 and ~j = 1 or - 1 for all j -r 1. Now define x ~ C s by: 

xJ = {ojtZ j if Kj ~ A~ 
otherwise. 

Since the element x is in Fix Zz, it must be a multiple of z. In fact, we must 
have that x = z. [] 

To compute (representatives of the conjugacy classes of) translation free 
isotropy subgroups of F having one-dimensional fixed-point subspaces, we 
proceed as follows. 

First, we eliminate certain conjugacy classes of subgroups of H alto- 
gether. To do this, we use the trace formula, equations (3.1) and (3.2), to find 
a lower bound for dim Fix(s over all subgroups E isomorphic by II• to G. 
The main point is that (3.2) implies that tr(h �9 t) -> - 2 N  where N is the 
number of wave vectors Kj fixed by h. 

A consequence of Proposition 3.2 is that we can also eliminate those G 
that do not act transitively on any set of wave vectors of the form { + Kj :j ~ J} 
where J is a subset of {1, 2 . . . .  , s}. Moreover, since we are looking for 
translation free subgroups, we can also eliminate those G such that when they 
do act transitively on a set of wave vectors of the form { +_ ~ :j e J} where 
J is a subset of { 1, 2 . . . .  , s}, there is always a nontrivial translation acting 
trivially on the coordinates associated to these wave vectors. 

Second, for those representatives G of conjugacy classes of subgroups of  
H that remain, we compute the possible generators of the subgroups of F 
isomorphic by IIH to G. Let g l , g 2 , . . .  ,gr be the generators of G, the 
generators of  a subgroup Z of F isomorphic by HH to G are of the form 
( g l ,  t l ) ,  ( g 2 ,  t2 ) ,  �9 �9 �9 , (gr, tr) where the t /s  are determined by the order of the 
elements of Z. (The computations done here are similar to the computations 
needed to classify the crystallographic space groups.) 

Third, for the subgroups Z obtained in the second step, we compute 
Fix(E) to eliminate those that do not have one-dimensional fixed-point 
subspace. We also delete those that are not isotropy subgroups. 

(b) 12-Dimensional representations of  the hexagonal lattices 

It is relatively easy to compute the translation free isotropy subgroups 
of F = D 6 4- T 2 having a one-dimensional fixed-point subspace where F is 
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acting on a twelve dimensional, translation free, absolutely irreducible 
subspace V. This subspace V is of the form (2.2) where s = 6 and the wave 
vectors K/s are given in Table 2. 

Since dim V--ID6[, the translation free isotropy subgroups of F having 
one dimensional fixed-point subspaces are isomorphic by FI ,  to D6. The 
subgroups of F isomorphic by H ,  to D 6 are generated by (0~/3, tl) and (rx, t2) 

where 0./3 is the rotation by hi3 about the origin and Zx is the flip across the 
x-axis. The elements Q~/3 and ~x are generators of 06.  

Note that after an initial conjugacy using an element of T 2 we may 
assume that tl = 0. Hence we only have to compute the subgroups Z of F 
generated by ~/3 and (rx, t), and isomorphic by IIH to 06.  

Since E is isomorphic by H ,  to 06 ,  the element (zx, t) is of order two 
because -cx is. Hence 

1 = ('Cx, t) 2 = ( 1, rx r -t- t)  

and z~t + t ~ ~ .  If we substitute t = t lkl  + t2k2, we get that (tl + 2tz)k2 ff 2~ 
and tl + 2t2 -= 0 (rood 1). 

The product of (z~, t) and (~/3, 0), namely (zx~/3, t), is an element of 
order two in Z since zx~o~/3 is of order two. Hence 

1 ---- (ZxO~/3, t) 2 = (1, zx~/3t + t) 

and "CxQ~/3t q-t E ~ .  Again, if we substitute t = t~k~+ t2kz, we get that 
- t2kl + 2t2kz ~ 5~ and t2 = 0 (mod 1). 

Therefore, the only translation free subgroup of F isomorphic by 1-i, to 
D6 is D6 itself. 

It is now easy to check that D6 is an isotropy subgroup with 

Fix(D6) = R{(1, 1, 1, 1, 1, 1)}. 

To see this, we note that the actions of 0~/3 and ~ on V induce the following 
actions of 0~/3 and Zx on C 6. 

0r~/3(Z1, Z2 , " " " , -76 )  : (Z2, Z3, Z1, Z5, Z6, Z4) 

" ~ x ( Z 1 ,  Z 2 ,  . . . , Z6) = (Z6, Z 5 ,  Z 4 ,  7-3, Z 2 ,  Z1). 

Moreover, since the representation of F on V is translation free, D 6 is a 
translation free isotropy subgroup having a one-dimensional fixed-point 
subspace. 

(c) Eight-dimensional representations for the square lattices 

The computations of the translation free isotropy subgroups of 
iv' --= 04  ~ T 2 having one-dimensional fixed-point subspaces are similar to the 
computations of the previous subsection. Here F is acting on an eight-dimen- 
sional, translation free absolutely irreducible subspace V of the form (2.2) 
where s = 4 and the wave vectors K/s are given in Table 2. 
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Since IDa l = dim V, we have that the translation free subgroups of F 
having one-dimensional fixed-point subspace are isomorphic by 1-IH to D4. 
Moreover,  as in the previous subsection, we only have to compute the 
subgroups s of F generated by 0~/2 and (rx, t), and isomorphic by H~r 
to D 4. 

Since % is an element of order two, the element (rx, t) is of order two. 
Hence, rxt + t ~ ~ .  If we substitute t = t l k l  + t2kz into this expression, we 
find that 2ilk1 ~ ~ and, therefore, 2h = 0 (mod 1). 

The product  of(v,,, t) and (0./2, 0), namely (rx0~/2, t), is an element of order 
two in 2. Hence, rxO~/2t + t ~ 5~ and, after having substituted t = t~kl + t2kz, 
we get that (fi - t2)kl + ( - t~ + t2)k2 ~ ~ .  Therefore, t~ = t2 (mod 1). 

We conclude that there are two subgroups of F which are isomorphic by 
I I ~  to 04:  the group D + , which is the group D 4 itself, and the group D 4  
generated by ~/2 and (rx, (1/2, 1/2)). 

We now show that both D 2  and D 4  are translation free isotropy 
subgroups of F having one-dimensional fixed-point subspaces. Recall that 
and fl in the definition of the Kfs  in Table 2 are not  both odd nor both 
even. Hence, 

(1/2, 1/2) "z = --z. 

Moreover,  the actions of 0./2 and % on V induce the following actions 
of 0~/2 and rx on C 4. 

Qg/2(Z1,Z2, Z3, Z4) = (Z2, Z1, Z4, Z3) 

rx(Z1, Z2, Z3, Z4) = (Z4, Z3, Z2, Z1) 

It is now easy to check that 

Fix(D + ) = R{(1, 1, 1, 1)} 

F ix(D2)  = R{(1, 1, - 1 ,  - 1 ) } .  

Finally, D 2  and D 4  are translation free isotropy subgroups of F 
because the representation of F on V is translation free. These groups are 
not conjugate since no element of F maps (1, 1, 1, 1) to a scalar multiple of 
(1, 1, --1, --1). 

4. Planforms in dimension three 

From the Introduction, we recall that the major steps required to 
classify the planforms are. 

1. The enumerat ion of the three-dimensional Bravais lattices 5e, 
2. The enumerat ion of the translation free, absolutely irreducible repre- 

sentations V of the action of F = H 4- T" on Y'~. 
3. The enumeration of conjugacy classes of translation free (see 1.9)) 

isotropy subgroups E satisfying (1.8). 
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The enumeration of the Bravais lattices can be found in Miller ([11], p. 
51). We reproduce this list in Table 4. We adopt the following convention. 
A rotation by 0 radians about a line I is denoted by 00,~. The particular case 
of a rotation by rc about a line l (or, equivalently, a flip across this line) is 
denoted by ft. The orientation of a rotation is given by the right hand rule 
where the axis of rotation is pointing in the half space x > 0 or in the first 
quadrant  of the y, z plane if the axis is in this plane. 

Remark. Since we know the classification of planforms associated to the 
one- and two-dimensional lattices, we may ignore all absolutely irreducible 
representations which are only supported by one wave vector Kj (the 
two-dimensional representations) or by two coplanar wave vectors K/s. The 
solutions that we get from the representations supported by coplanar wave 
vectors correspond to planforms classified in Section 2 except for the fact 
that they are constant along the lines perpendicular to the plane containing 
the wave vectors. We can make a similar observation for the solutions 
obtained from two-dimensional representations. 

Moreover, a Bravais lattice may not support translation free irreducible 
representations of all acceptable dimensions (since the dimension of the 
representation must be divisible by till~2). 

In the next two subsections, we elaborate on steps (2) and (3) above in 
the special case when the lattice 5 ~ is the primitive cubic lattice. We prove: 

Theorem 4.1. Given a system of PDE in R 3 depending on a bifurcation 
parameter 2 and satisfying the hypotheses of Theorem 2.3. Then there are 
branches of (Euclidean group orbits of) planforms bifurcating from the 
trivial solution at 2 = 2c that are periodic with respect to the primitive cubic 
lattice and have the isotropy subgroups of Table 7 as symmetry groups. 

The complete classification of the planforms in three dimensions can be 
found in Dionne [6] and [7]. 

(a) Irreducible representations 

Basic vectors for the dual lattice of the primitive cubic lattice are: 

ks = (1, 0, 0) 

t,2 = (0,  1, 0) 

k3 = (0, 0, 1). 

In Table 5, we list the translations free irreducible representations 
supported by this lattice. For the cubic lattices, there are two types of 
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Table 4 
Bravais lattices 

Name  Holohedry  Genera tors  Basis o f  

Primitive 0 @ Z~ O,~/2,x ~ = ( 1, O, O) 
Cubic Q,~/2,y g2 = (0, 1, O) 

- I d  [3 = (0, 0, 1) 

Body Centered g't = (1, 0, 0) 
Cubic {2 = (0, 1, 0) 

[s  = (1/2, 1/2, I/2) 

Face Centered ( l  = (1/2, 1/2, O) 
Cubic e 2 = ( - 1/2, 1/2, O) 

e 3 = (0, 1/2, 1/2) 

Hexagonal  1)6 �9 Zg ~/3,~ g'i = ( x ~ / 2 ,  1/2, O) 
~y r = (0, 1, O) 
- I d  { 3 = (0, 0, a) 

a > 0  

Primitive O 4 ~ Z~ 0,~/2,z [l = ( 1, O, O) 
Tetragonal  Zy ~2 = (0, 1, O) 

- I d  I s  = (0, 0, a) 
a > 0  and a v a l  

Body Centered [ l = (1, 0, 0) 
Tetragonal  e 2 = (0, 1, 0) 

( 3 = (1/2, 1/2, a/2) 
a > 0 a n d a # l  

Rhombohedra l  /)3 ~ Z~ e2,/3,z d1 = (nf3/2,  - 1/2, 0) 
~'y [ 2 = ( 0 ,  l ,  0)  
- I d  [ 3 = (x/3/6,  - 1 / 2 ,  a/3) 

a s ~ 0  

Primitive D 4 ~ Z~ z z 
Or thorhombic  Zy 

- I d  

Body Centered 
Or thorhombic  

ff I = ( a ,  0 ,  0 )  
E2 = (0, b, 0) 
~3 = (0, 0, c) 
a , b , c  >O 
a 4 : b ~ c , ~ a  

f l = (a, O, O) 
[2 = (0, b, O) 
E 3 = (a/2, b/2, c/2) 
a , b , c  > 0  and a 4:b 

Based Centered z= 
Or thorhombic  zu 

- I d  

Face Centered 
Or thorhombic  

e, = (a, b, 0) 
e2 = (0, 1, 0) 
~3 = (0, 0, c) 
a , b , c > O ;  a Z + b  2 = 1  
a ~ ~ / 2  

[ l  = (a, b, 0) 
~2 = (0, 1, O) 
e3 = (a/2, (b + 1)/2, c/2) 
a , b , c  >O and a2 + b  2=1  

Primitive Z 2 ~ Z~ zz 
Monocl in ic  - Id 

r = (a, b, O) 
[2 = (0, 1, O) 
E 3 = (0, O, c) 
a , b , c  >O and a2 +b2=~ l 
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Table 4 (continued) 

59 

Name Holohedry Generators Basis of  

Based Centered ~ = (a, b, O) 
Orthorhombic  ~2 = (0, 1, O) 

~3 = (o ,  1/2, c /2 )  
a , b , c  > O  a n d  a 2 + b 2 r  l 

Triclinic Z-~ - I d  ~ ,  ~2 and (3 do not  
Orthorhombic  satisfy any of  the 

previous cases. 

We denote by the letter u the line containing the bisector of  the angle between 
(i  and ~ 

Table 5 
Translation free irreducible representations for the primitive cubic lattice 

dim V x ,  0 "  " "@ VK,  dim V K ,  @" " " G  V K  s 

24 K~ = fik~ + o:k 2 - -  f l k  3 48 K~ = ek 1 + flk 2 - -  7k3 

1st type K 2 = flk 1 + flk 2 + c~k 3 K 2 = ak I + 7k 2 + flk 3 
K 3 = f l k  1 - o~k 2 -4- f l k  3 K 3 = o&, - -  f l k  2 + 7 k  3 

1~ 4 = f l k  I - -  f l k  2 - o:k 3 K 4 = o~k 1 - ~ k  2 - f l k  3 

K 5 = flk~ + o:k 2 + f l k  3 K 5 = ~ k  I + f lk  2 + y k  3 

K 6 = f lk  1 - f l k  2 + ~ k  3 K 6 = ~ k  I - -  y k  2 + ilk3 
K 7 = f l k  1 - o:k 2 - f l k  3 K7  = ~ k  1 - 13k 2 - -  7k3  

K 8 : f l k  1 "Jr- f l k  2 - o~k 3 K 8 = o:k 1 + 7k2  - f l k  3 

K 9  = O:kl + f l k  2 + f l k  3 K9  = f l k  I + ~k 2 ~t- o:k3 

Klo  := ~k  I - -  f l k  2 + i lk3 Klo = f l k  I - ~ k  2 + 7k3 

K H = o~k x - f l k  2 - -  f l k  3 /i'll = f l k  t - -  7k2 + ~k  3 

/(12 ~ ~k  1 + f l k  2 - f l k  3 KI2 = f l k  I - ~ k  2 + ~k3 
and fl are integers. KI3 = f l k  1 - 7k2 + ~ k  3 

( ~ , f l )  : 1 K l 4 = f l k  1 - ~ k  2 - ~ k  3 
odd and fl even. K15 = f l k  I + y k  2 - o~k 3 

K l 6 = f l k  l + ~ k  2 + 7k3 

24 K 1 = o~k 2 + f l k  3 I(17 = 7 k  1 + f l k  2 + o:k 3 

2nd type K 2 = - - i l k  2 + o~k 3 KI8 = ?kj  - ~ k  z 4- file 3 

g 3 = ~ k  2 - i l k  3 K 1 9 = T k l - f l k  2 - ~ k  3 

K 4 = f l k  2 + ~ k  3 K20 = 7 k  I + ~ k  z - f l k  3 

K s = f lk  1 + ~ k  2 K2j  = y k  I - f l k  2 + ~ k  3 

K 6 = f l k  1 + o:k 3 K22 : 7k1 - -  ~k  2 - -  f l k  3 

K 7 = f l k  1 - o:k 2 /(23 = 7kl  + f l k  2 - o~k 3 

K 8 = f l k  1 - o:k 3 K2n = 7 k  I + o~k 2 + f l k  3 

K9 = ~tkl + ilk2 ~,/~, y are integers. 
K l o = o ~ k  1 + i l k  3 ~ > f l  > y  > 0  
Kit = ~k~ - flk 2 a,/~, ? do not have 
K12 = ~k  I - -  i lk  3 a common  factor 

and fl are integers, other than 1. 
(~, fl) = 1 Only one of  ~, fl 

odd and fl even. and y is odd. 

K!  = k  1 

/(1 = k2 
K 3 = k 3 
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Table 6 
Subgroups  that may  have one-dimensional  fixed- 
point  subspaces. 

Z Generator 

01~  Z~ 0~/2 . . . .  O=/2,y, - I d  
T ~ Z~ 02,~/3., 02=/3,w, - Id 
0 O=/2,x' O~/2,y 
0 - 02~/3., -- Ido,~/2,z 
D 4 ~ Z~ 0~/2.., %, - Id 
D 3 ~ Z~ 02=/3., %, - Id 

The line x = y, z = 0 is denoted by the letter u, 
The line - x  = y = z is denoted by the letter v. 
The line x = y = z is denoted by the letter w. 

24-dimensional, translation free absolutely irreducible representations. They 
differ by the action of the holohedry on the wave vectors supporting the 
representation. The primitive cubic lattice does not support translation free 
irreducible representations of  dimensions other than 6, 24 and 48. In Table 
5, we give necessary and sufficient conditions to have translation free 
representations. 

(b) The plan forms 

In Table 7, we list for each translation free,  a b s o l u t e l y  i r r educ ib l e  
representation the translation free, isotropy subgroups having one-dimen- 
sional, fixed-point subspaces. 

Table 7 
I so t ropy  subgroups  having one-dimensional  fixed-point subspaces for the primitive cubic lattice. 

Dim Isot ropy Subgroup  s Generator 

6 O @ Z ~  
24 O ~ Z3 
1st type 

O ~ |  
0 ~ 
T b ~ Z~ 

o~z~ 
when ~ = 1. 

24 O ~ Z~ 
2nd type 

O *  ~C-5 
O *  
T *  ~ Z ~  

48 O ~ Z~ 
O b ~ Z g  
O *  @ Z ~  
O* | Z~ 

Q=/2,x, ~n/2,y, --  Id  
Q=/2,x, Q~/2,y, - I d  

1 1 (Q~/~,x, (�89 �89 o)), (o~/~,,, (o, > 9), -~d 
(a;c/2,x, (~,-~"~', 0)), (Qn/2,y, (0, �88 O) 

(~, O, 5))' Q2n/3,w, --Id (Q2=/3,v, i 1 

02~/3#, (%, (�89 �89 �89 - I d  

0~/2,~, Q=/2,y, - Id 

(O./2,x, (�89 O, 0)), (~/2,y, (0, �89 0)), - - Id  
(~/~,x, (~, ~ ,  o)), (~/~,~, (o, �88 o)) 
(Qz~/3.v, t , 5, 5)), 02~/3,w, - I d  
Q,~i2,~, Q*tl2,y, -- Id 
(Q=12,x' (! l ,  1 2, 0)), (O=/2.y, (0, 5, �89 - I d  
(Q=/z,x, (�89 O, 0)), (O=/2,y, (0, �89 0)), - I d  
(Q=/2,~, (0, �89 0)), t - I d  (e./2,y, (0, 0, 5)), 

The line x = y, z = 0 is denoted by the letter u. 
The line - x = y = z is denoted by the letter v, 
The line x = y = z is denoted by the letter w. 



Vol. 43, 1992 Planforms in two and three dimensions 61 

To produce this table, we follow the procedure outlined in Section 3(a). 
We only sketch the computations for the first type of 24-dimensional 
representation; the details can be found in Dionne [6]. Let H be the 
holohedry O �9 Z~ of the primitive cubic lattice and F = H -~ T 3. From the 
trace formula 3.1, we get that a subgroup s c F may have a one-dimen- 
sional fixed-point subspace if Z is isomorphic by HH to one of the 
subgroups of H given in Table 6. 

Two of the subgroups in Table 6 can be ignored. From Proposition 3.2, 
no subgroup 5; c F isomorphic by I-IH to O -  can have a one-dimensional 
fixed-point subspace. Since O -  acts transitively on the set of wave vector 
pairs {(Kj,-Kj.)  :j = 1, 2 , . . . ,  12}, all the coordinates of z e Fix(s are 
either zero or nonzero. Since O -  does not act transitively on the set of wave 
vectors {+_Kj :j = 1, 2 , . . . ,  12}, Proposition 3.2 can not be satisfied. 

Moreover, no isotropy subgroup Z c F isomorphic by IIH to O 4 (~ Z~ 
can have a one-dimensional fixed-point subspace and be translation free. 
Suppose that 2~ is an isotropy subgroup having a one-dimensional fixed- 
point subspace and isomorphic by FI,v to D 4 (~ Z~. To satisfy Proposition 
3.2, the nonzero coordinates of z must be associated to a set of wave vectors 
of the form A = { + K : : j e J }  where J is a subset of {1,2 . . . .  ,12} and 
D4 @ Z~ acts transitively on A. The only two subsets of wave vectors of this 
form are: 

{+Kj :j = 1, 3, 5, 7} 

and 

{___~ :j # 1, 3, 5, 7}. 

But, (I/a, l/a, 0) (respectively, (0, 0, l/a)) is a nontrivial translation that 
acts trivially on the coordinates zfs associated with the wave vectors of the 
first (respectively, second) set above. In either case, s is not translation 
free. For similar reasons, when 7 r 1, no isotropy subgroups Z c F isomor- 
phic by HH to 1)3 (~ Z~ can have a one-dimensional fixed-point subspace and 
be translation free. 

For the three remaining subgroups G of H, we proceed as in Sections 
3(b) and (c) to compute the subgroups 2; of F that are isomorphic by 1-IH 
to G. For instance, there are four subgroups of F that are isomorphic by I'IH 
to O G Z~; they are generated by 

~/2,~, , -~, 0 , 0~/2,y, 0, -~, , and - I d .  

for n , m  = 0  or 1. 
Finally, a direct calculation determines which of the subgroups 5; are 

translation free isotropy subgroups having one-dimensional fixed-point 
subspaces. For instance, of the four groups isomorphic by I-IH to O �9 Z~, 
only two have one-dimensional fixed-point subspaces. They are given by 
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n = rn = 0 and n = m = 1. These subgroups are translation free isotropy 
subgroups when the representation is translation free. 

Acknowledgement 

We are grateful to Ian Melbourne for many valuable conversations. 
Some of  the ideas concerning the structure of  the classifications theorems we 
present evolved during these conversations. We also wish to thank the 
referee for making a number of  helpful suggestions. 

References 

[ 1] M. A. Armstrong, Groups and Symmetry, Undergrad. Texts in Maths. Springer-Verlag, New York 
1988. 

[2] F. H. Busse, Pattern of convection in spherical shells. J. Fluid Mech. 72, 65-85 (1975). 
[3] E. Buzano and M. Golubitsky, Bifurcation on the hexagonal lattice and the planar Bknard problem. 

Phil. Trans. R. Soc. Lond. A 308, 617-667 (1983). 
[4] P. Chossat, Solutions avec symdtrie diddrale dans les probl~mes de bifurcation invariants par symOtrie 

sphdriques. C. R. Acad. Sci. Paris 300 Ser. I, No. 8, 639-642 (1983). 
[5] P. Chossat, R. Lauterbach and I. Melbourne, Steady-state bifurcation with O(3)-symmetry. Arch. 

Rat. Mech. Anal. 113, No. 4, 313-376 (1991). 
[6] B. Dionne, Spatially Periodic Patterns in Two and Three Dimensions. Thesis, University of Houston, 

August, 1990. 
[7] B. Dionne, Planforms in three dimensions. ZAMP (submitted). 
[8] M. Golubitsky, I. N. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory: 

Vol. H. Appl. Math. Sci. Ser. 69, Springer-Verlag, New York 1988. 
[9] F. John, Partial Differential Equations, Appl. Math. Sci. Ser. 1, Springer-Verlag, New York 1982. 

[10] K. Kirchg/issner, Exotische Ldsungen des BOnardschen Problems. Math. Meth. Appl. Sci. i, 
453-467 (1979). 

[11] W. Miller Jr., Symmetry Groups and their Applications. Academic Press, New York 1972. 
[12] J. W. Swift, Bifurcation and Symmetry in Convection. Thesis, Dept. of Physics, U.C. Berkeley 1984. 
[13] F. Treves, Basic Linear Partial Differential Equations. Pure arid Appl. Math. 62, Academic Press, 

Orlando 1975. 

Summary 

When solving systems of PDE with two space dimensions it is often assumed that the solution is 
spatially doubly periodic. This assumption is usually made in systems such as the Boussinesq equation 
or reaction-diffusion equations where the equations have Euclidean invariance. In this article we use 
group theoretic techniques to determine a large class of spatially doubly periodic solutions that are 
forced to existence near a steady-state bifurcation from a translation-invariant equilibrium. 

This type of bifurcation problem has been considered by many authors when studying a number of 
different systems of PDE. Typically, these studies focus at the beginning on equilibria that are spatially 
periodic with respect to a fixed planar lattice type--such as square or hexagonal. Our focus is different 
in that we attempt to find all spatially periodic equilibria that bifurcate on all lattices. This point of view 
leads to some technical simplifications such as being able to restrict to translation free irreducible 
representations. 

Of course, many of the types of solutions that we find are well-known--such as hexagon and roll 
solutions on a hexagonal lattice. This coordinated group theoretic approach does lead, however, to 
solutions which seem not to have been discussed previously (antisquare solutions on a square lattice) as 
well as to a more complete classification of the symmetry types of possible solutions. Moreover, our 
methods extend to triply periodic solutions of PDE with three spatial variables. Some of these results, 
namely those concerned with primitive cubic lattices, are presented here. The complete results on triply 
periodic solutions may be found in [6, 7]. 
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