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Abstract. We continue the study of arrays of coupled identical cells that possess both global
and internal symmetries, begun in part |. Here we concentrate on the ‘direct product’ case, for
which the symmetry group of the system decomposes as the direct poatugtof the internal
group £ and the global groug. Again, the main aim is to find general existence conditions
for symmetry-breaking steady-state and Hopf bifurcations by reducing the problem to known
results for systems with symmety or G separately.

Unlike the wreath product case, the theory makes extensive use of the representation theory
of compact Lie groups. Again the central algebraic task is to classify axiaCaadal subgroups
of the direct product and to relate them to axial ahxial subgroups of the two groups
andG. We demonstrate how the results lead to efficient classification by studying both steady
state and Hopf bifurcation in rings of coupled cells, whére- O(2) andG = D,,. In particular
we show that for Hopf bifurcation the case= 4 modulo 4 is exceptional, by exhibiting two
extra types of solution that occur only for those values of

AMS classification scheme numbers: 20xx, 57T05

1. Introduction

This paper continues the study of symmetric networks of coupled identical oscillators, each
having its own internal symmetries, begun in [6, 11]. There we identified two natural types
of symmetric coupling, leading to symmetry groups that are eithewtkath productC: G

or thedirect productL x G of the internal symmetry groug and the global symmetry group

G of the network. We developed a general theory of steady-state and Hopf bifurcation in
the wreath product case.

We now develop an analogous theory for the direct product. The analysis is more
delicate, and relies more heavily on the general machinery of group representation theory.
The results apply tany system with direct product symmetry, but we have found it
convenient to motivate the ideas in terms of a network of coupled symmetric oscillators.

Alexander and Fiedler [3], building on results of Alexander and Auchmuty [2], consider
coupled systems having direct product of internal and global symmetries. Some physical
systems whose models possess direct product symmetry are described in [11]. They
include hierarchical neural networks, discretizations of PDEs with range symmetries, and
the Couette—Taylor system. Other authors have studied specific examples of direct product
symmetry. Dangelmayet al [7, 8] study a hierarchical network witB; x D3z symmetry,
finding that in Hopf bifurcation there are 11 types of periodic solution whose isotropy
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subgroups have two-dimensional fixed-point spaces. Wegelin [19] studies Hopf bifurcation
in the case®(2) x 0O(2),D,, x O(2) (m not divisible by 4),D,, x D, (n not divisible

by 4). He finds, respectively, 6, 7 and 11 branches of solutions whose isotropy subgroups
have two-dimensional fixed-point spaces. He also studies the stability of these branches,
and more complex dynamics including heteroclinic cycles, quasiperiodic oscillations and
(possibly symmetric) chaos. Oppéanter [16] studie®,, x D, symmetry (mainly when

m = n = 3). He also mentions that some models of arrays of Josephson junctions possess
S, x S, symmetry, whereS, is the symmetric group of degree (But see [11] for an
argument that wreath product symmetries may also arise in models of such arrays.)

1.1. Internal and global symmetries

In [6] we observed that a natural form for systems\oidentical cells with identical coupling
is
dX; o
o = TXD+ Y Cl phXi, X)) (1.1)
i=1
for 1 < j < N where

(@) X; € Rf are the state variables for thih cell,

(b) f : R — R represents the internal dynamics of each cell,
(c) h(X;, X;) represents the coupling from célko cell j, and

(d) the N x N connectionmatrix is

1 if cell i is coupled to cellj

CGj)= { 0 otherwise.

The assumption of identical cells implies thatis independent ofi and the assumption
of identical coupling implies that is independent of botli and j. The vectorX =

(X1, ..., Xy) € (RYY denotes points in the state space for this system. Abstractly, we
shall refer to the system of differential equations as
X =F(X).

We now discuss the symmetries &f. There are two types of symmetries that we
consider:internal and global. The global symmetries are symmetries forced on (1.1) by
the pattern of coupling. Let € Sy be a permutation. The action ef on state space is:

o-X= (X(,—l(]_), ey XU*1(N)) .
Observe that is a symmetry of (1.1) if
cCol=cC, (1.2)

whereo is viewed as anV x N permutation matrix in (1.2). The global symmetry group
G consists precisely of all of these permutation symmetries. It follows that

Fo-X)=0-FX)

for all o € G. This equivariance condition encodes the information that these symmetries
permute the cells so that the differential equations do not change.

Next we discuss the local internal symmetry grodpc O(k). To be an internal
symmetry we require that € £ satisfy

fUX) =Lf(X)).
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Whether internal symmetries are symmetries of (1.1) depends on properties of the coupling
term k. As a minimum we require that whehacts simultaneously on each cell, then it is
a symmetry of the coupled cell system. That is, we require that

h(€X;, LX) = Lh(X;, X)) .
If we define

0-X =Xy,....tXy)
then

Ft-X)=1¢-F(X)
and¢ is a symmetry of (1.1).

It follows that the groupl x G consists of symmetries of (1.1) whefeis viewed as
the diagonal subgroup a". Note that if the coupling term is diagonal linear, that is

h(X:, X)) = X; — X;, (1.3)
then the direct product is a symmetry group of (1.1).

In [6] we also consider coupled systems where the actiohaf each cell individually

is a symmetry of (1.1). That is, we suppose
h(X;, £X;) = Lh(X;, X;) h(tX;, X;) = h(X;, X;) .

In this case, the groug” is a symmetry group of (1.1). Thereath productl: G is
the symmetry group generated by the groups and G; under these assumptions it is a
symmetry group of (1.1). In this paper we focus only on the direct product couplings such
as (1.3) which lead to the symmetry groilip= £ x G. As in [6] our results apply to any
system with this symmetry group, and not just the special form that occurs in (1.1).

In order to simplify the analysis we shall assume that the global symmetries act
transitively on the cells, that is, we assume

(H7) G is a transitive subgroup @y .

If the action ofG is intransitive, consideration of group orbits of cells ungereduces the
analysis to a finite list of cases in each of whidli{ holds.

In this paper we continue to develop a theory of how patterns formed through steady
state and Hopf bifurcations in such systems depend upon both the internal and global
symmetries. As noted in [6], it is well known in steady-state bifurcations that when isotropy
subgroups have one-dimensional fixed-point subspaces then generically the equivariant
branching lemma [12] guarantees the existence of solutions with that symmetry. We call a
subgroupX c TI' axial if it is an isotropy subgroup having a one-dimensional fixed-point
subspace.

Similarly, when studying Hopf bifurcations, the equivariant Hopf theorem [12] states
that branches of periodic solutions having symmaeirpccur generically wheneveX has
a two-dimensional fixed-point subspace. We call a subgrbug I' x St C-axial if it is
an isotropy subgroup having a two-dimensional fixed-point subspace.

Finding axial andC-axial subgroups when the coupling yields direct product symmetry
groups requires detailed information concerning the generalities of real irreducible
representations. In section 2 we discuss the linear theory of bifurcations based on this
representation theory. In section 3 we develop criteria for subgroups of direct products to
be axial. We then study the example of a ring ¥fcells G = Dy) when the internal
symmetry isL = O(2) in section 4. We discuss the group theory for Hopf bifurcation
for tensor product representations in section 5 @ndxial subgroups for tensor product
representations in section 6. Finally we apply the theor@¢@) x Dy Hopf bifurcation in
section 7.
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1.2. Hopf bifurcation for four cell rings witl®(2) symmetry

The remainder of this introduction is devoted to previewing our general results in the case
of Hopf bifurcation in a ring of four cells when the internal symmetry group in each cell is
L = 0(2). The symmetry group for this cell system is thEn= O(2) x D4. We assume
that X = 0 is an equilibrium in (1.1) and we imagine varying a parameter in (1.1) so that
the linearization(dF)q has eigenvalues on the imaginary axistaéi. Symmetry may force
these eigenvalues to be multiple.

For example, in systems wifB(2) symmetry, the critical eigenvalues may be forced to
be double. When this happens there are @vaxial subgroupsi; and A, corresponding
to rotating and standing waves [9, 12]. shanding waves a periodic solution that is fixed
by a reflectiork € O(2) for all time. A rotating waveis a periodic solution in which time
evolution is the same as spatial rotation.

Similarly, in systems witlD, symmetry critical eigenvalues may be forced to be double
and when this happens there are th@axial subgroupsss, B, and Bs [10, 12]. The first
two are discrete standing waves and the third is a discrete rotating waymoy &n a merry-
go-round The pattern associated with each of these solutions may be described in terms
of the four-cell coupled cell system where each cell has no internal symmetry. Solutions
of type B; have two pairs of adjacent cells oscillating in-phase with cells in different pairs
oscillating a half-period out-of-phase. Solutions of typehave one diagonal pair of cells
oscillating in-phase and the other pair of diagonal cells oscillating a half-period out-of-phase.
The in-phase cells oscillate at twice the frequency of the out-of-phase cells. Finally, the
discrete rotating wave solution has each cell oscillating according to the same wave form
with a quarter-period phase shift between adjacent cells.

As discussed in section 5, the linear theory of Hopf bifurcation for product groups
is driven by tensor products of representations of the individual groups. It is therefore
possible that the centre subspace for these coupled system€O@@jhx D; symmetry
will have Hopf bifurcations where the critical eigenvaluesi each have multiplicity four
yielding an eight-dimensional centre subspace. When this happens, our results show that
there are nineC-axial groups and nine families of periodic solutions. See proposition 7.1.
In proposition 6.4 we show that pairing ea€haxial subgroupA for £ with a C-axial
subgroupé for G yields aC-axial ‘twisted product’ subgroup fof x G which is denoted
by AxB. In this example we find six twisted produ€-axial subgroupsA;x B;. Our
calculations show that there are three additic®adxial groupsDy, I54[;<] and 54[%/<].

We now discuss the patterns of oscillation of each of these nine solutions. We view
these solutions in the following way. In each cell we project the molp@) into a plane
in which O(2) acts by its standard action. We can then view the oscillations of each cell as a
trajectoryz;(t) € C. Finally, we can draw each of these trajectories in the same plane (using
different colours to distinguish the four individual projections). With this presentation of
the periodic trajectories we can describe the patterns of oscillation forced by symmetry.

We first describe the motions associated with the rotating wﬁveln A]_XBg the four
cells traverse the same circle with adjacent cells a quarter-period out-of-phadex By
one pair of diagonal cells traverse the same circle a half-period out of phase while the other
diagonal pair of cells are forced by symmetry to be at the origin for all time. (The double
frequency motion is forced to zero by the additional symmetry. i B, the cells divide
into two pairs of adjacent cells. The motion in each pair is identical and in a circle and the
motions of cells in different pairs are a half-period out-of-phase.

The motions corresponding to the;x B; are similar. Here, however, the motions of
the cells are all in the same line rather than on circles.
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Figure 1. Rotating wave axialsi1xB: (a) B = B1, (b) B = By, (c) B = Ba.
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Figure 2. Standing wave axiald,x B: (a) B = By, (b) B = By, (c) B = Bs.
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Figure 3. Exceptional axials: &) Da, (b) Da[ %], (c) Da[«].

The three exceptional groups provide the most interesting patterns of oscillation. The
groupD, generates a motion where diagonally opposite cells move on the same line at points
z and—z, the two pairs of cells travel on lines at right angles, and of the two adjacent cells
one is in-phase and the other is a half-period out-of-phase. Moreover, after a half-period
the pointz moves to the point-z. The seven patterns of oscillation just described have
analogous patterns in rings of cells with O(2) symmetry. The last two solution types
only occur whenN =0 (mod 4.

The groupf);;[%x] also generates a motion where diagonally opposite cells move on
the same line at points and —z, and the two pairs of cells travel on lines at right angles.
For this group, however, adjacent cells are a quarter-period out-of-phase so that there are
no four-way collisions at the origin.

The last grouD4[«] generates a motion where the four cells are always at vertices of
a rectangle defined by points —z, —z andz. Moreover,z(¢) itself is a discrete rotating
wave; that is—iz(t) = z(t + %) whereT is the period of the motion.
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2. The linear theory for direct products

The theory of I'-equivariant bifurcations proceeds by first identifying the irreducible
representations df on state space. In this section we consider this issue whenl x G
and the state space I8¥ whereV = R*. Indeed, this state space is just® W where
W = R". Here® denotes the tensor product over the reals. We later also refer to tensor
products over the complex numbers, which we denotegly In this notationV is an
L-invariant space andV is a G-invariant space, so that @ W is al' = £ x G-invariant
space. The structure of this phase space involves subtleties in the theory of irreducible
representations over the reals, and we will be forced to consider these.

We begin by decomposiny into a direct sum ofZ-irreducible subspaces

V=Vi® ---® V,,
andRY into a direct sum ofj-irreducible subspaces
W=wW,® - dW,.

Then the state spacé ® W decomposes into the following direct sums Iofinvariant
subspaces

vew=@Fv.ew.
ij

If we were dealing with representation theory o@rthenV; ® W; would be irreducible,
and we would have written state space as a sum-mfeducible representations. However,
over R, the tensor product of irreducibles is not necessarily irreducible, and we digress to
describe what actually happens.

We begin by defining an isomorphism-invariant of a representatiorit is called the
algebra of commuting linear mapand is defined to be

Dr(X) ={a: X — X|a is linear andx(yx) = y(x(x)) Vy € I'}.

The real vector spac®r (X) is closed under composition of maps, and is thus an associative
R-algebra. Denote bR, C andH the R-algebras of real numbers, complex numbers, and
guaternions. These are division algebras over the reals, of dimensions 1, 2, 4 respectively.
Indeed:

Lemma 2.1. (Real version of Schur’s lemma). Xf is irreducible, therDr(X) is a division
algebra overR. Such algebra are (isomorphic to) eithB; C or H.

Proof. See Kirillov [13], section 8.2, theone 2 p 119. O

Accordingly, we say that an irreducible representatinis of real, complex or
guaternionic typeor, equivalently, of typeR, C, or H, respectively. Being of typ®
is the same as beingbsolutely irreducible A nonabsolutely irreducibleepresentation is
an irreducible representation of complex or quaternionic type.

The algebra of commuting linear maps behaves nicely with respect to tensor products,
as follows:

Lemma 2.2. LetU and V be representations of and g, respectively. Then
Drxg(U® V) =Dr(U) @ Dg(V) (2.1)

where= denotesR-algebra isomorphism.
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Proof. Note thatL x G is generated by. x 1 and1 x G. It follows that

DexgU®V)=Da(UV)NDyg(U V)
=D U)®V)NU Dg(V))
=D,U) @ Dg(V)

as claimed. 0
We now prove the following:

Theorem 2.3.Let U and V be irreducible representations of compact Lie groupand G,
respectively. Considet/ ® V as a representation of' = £ x G. Then the type of this
representation is given in table 1.

Table 1. Decomposition of tensor product representations.

Type of U TypeofV UQ®V Remarks

R w W is typeR

R C w W is typeC

R H w W is typeH

C C W1 W W; is typeC, W1 2 W»
Cc H wWew W is typeC

H H WeowWeWwWaeWwW WistypeR

Proof. The proof is a consequence of lemma 2.2 and the algebra isomorphisms proved in
Porteous [17]. They are:

R®R=R, R®C=C, R®HZ=H,
CRC=CopC, CRH=sLC), HRH=sLR).
O

We now make the following observation: see Golubitekgl [12] XIII, proposition 3.2.
Generically steady-state bifurcations correspond to kerfelsf linearized equations on
which the action of" on K is absolutely irreducible. Theorem 2.3 implies that absolutely
irreducible representations can appear in state space in one of two ways.

Proposition 2.4. With the above notation, and in the generic case, the kekhas an
absolutely irreducible representation if and only if one of the following cases holds:

(a) V; and W; are absolutely irreducible representations 6fand G, respectively, and
K = V; ® W, is a representation of = £ x §.
(b) V; and W; are both irreducible representations of typeand

VieW,ZUsoUasUaU, (2.2)
where Z U.

Proof. Generically, IC is an irreducible component of typR of someV; ® W;. By
theorem 2.3 eitheV; and W; are both irreducible of typ® and (a) holds, or they are
both of typeH and (b) holds. O

We note that case (b) can occur:
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Example 2.5.Let SU(2) denote the group of unit quaternions. This actd-bon the left,
y-h=yh (yeSUR2),heH).

The action is irreducible of typH: the commuting linear maps are just right multiplication
by elements ofH, see Montaldiet al [15]. Let £L = G = SU(2),U = V = H, so that
SU(2) x SU(2) acts diagonally oH®@H. By theorem 2.3, we haud@H = WeWoWow
whereW is irreducible of typeR.

The same argument applies to the diagonal subgroup<of acting onU @ U whenever
U is anH-type irreducible forC. For instanceC can be taken to be the quaternion grag
of order 8, which is a finite group of global symmetries suitable for a network of oscillators.
See Ashwin and Stork [4]. Indeed, we can also t&ke SU(2) andG = Qs.

Similarly, generically, Hopf bifurcations occur when the generalized eigenspace
corresponding to the complex conjugate purely imaginary eigenvaluEssimple. This
is possible whenever an absolutely irreducible representation is repeated or when a
nonabsolutely irreducible representation occurs. From theorem 2.3 we see that all
combinations are possible.

3. Axial subgroups

We now make a more detailed study of conditions under which a subgroup can be proved
to be axial. By proposition 2.4 there are two cases (a) and (b). For applications, case (a) is
by far the commonest. We divide this section into three subsections: the first is applicable
only to case (a); the second is applicable to both cases; and the third is applicable only to
case (b).

3.1. Tensor product of real irreducibles

In this subsection we assume thatx G acts onU ® V whereU and V are absolutely
irreducible representations af and G, respectively. We will prove theorems about axial
subgroups and in so doing we will compute fixed-point subspaces using the following result:

Lemma 3.1.Let A C £ and B C G be subgroups. Then
Fixygv (A x B) = Fixy(A) ® Fixy (B).
Proof. Observe thatA x B is generated by x 1 and1 x B. Hence
Fixygv (A x B) = Fixpgy (A x 1) N Fixyey (1 x B)
Fixy(A) ® VN U ® Fixy (B)
Fixy (A) ® Fixy (B)
as claimed. O

Let A C £ and B Cc G be axial. Since dimFix(A) = 1, either N;,(A) = A or
Ny(A)/A = Z, where Nz (A) is the normalizer ofA in £. In the latter case, elements of
N;-(A) — A act as—1I on Fixy(A). A similar conclusion holds foB. Define

AxB = A x BU(N;(A) — A) x (Ng(B) — B).

If either Nz(A) = A or Ng(B) = B then the second term in the union is empty and can be
neglected. Thus eithet x B is equal toAx B or it is an index two subgroup o x B. In
either case

FiXU®V(A).(B) = FiXU®V(A X B). (31)



Coupled cells with internal symmetry: I 583

This is trivial if AxB = A x B. If not, elements inAxB — A x B have the form(s, )
wheres € Nz(A) — A andr € Ng(B) — B. Then(s, ) (u®v) = (—u) ® (—v) = u ® v, as
required.

Lemma 3.2. Suppose that € £, g € G, u € U is nonzero, and € V is nonzero. Then
£ uv)=u®v
if and only if either

lu=u and gu=uv (3.2)
or

fu=—u and gu=—v. 3.3)
Proof. The sufficiency of this condition is clear. To prove necessity{det,, ..., u,} be

a basis forU and write

N
lu = au + bju; .
j=2

Then

0= (Eu)@(gv)—u@v:u®(agv—v)+Zuj®(bjgv).

j=2

Sinceu, uy, ..., u, are linearly independent, it follows thagv = v andb;gv = 0. Since
v # 0 it follows that botha # 0 andgv # 0. Thush; =0, fu = au andgv = %v. Finally,
since the linear mapping is orthogonala = +1, which proves necessity. O

Proposition 3.3.Let A C £ and B C G be axial. ThenA x B is axial.

Proof. We begin by showing that Figy (Ax B) is one-dimensional. Lemma 3.1 and (3.1)
imply
FiXU®V(A>.(B) = FiXU®V(A X B) = FlXU(A) ® FiXV (B).

Axiality of A and B implies that the space on the right is one-dimensional.

We must also show that x B is an isotropy subgroup. Lex > Ax B be the isotropy
subgroup of a poini ® v € Fixygy (Ax B). SinceA leaves Fixgy (A x B) invariant it is
a subgroup of the normalizer of x B in £ x G. This normalizer is jusiV;(A) x Ng(B).
It is easy to check, using lemma 3.2, that the element¥40A) x Ng(B) that are not in
Ax B act as—1I on Fixygy (A x B). ThusA = AxB. O

Proposition 3.4.Let P C L x G be axial, letA = PN (L x 1) andletB = PN (1 x G).
Suppose
() dimFixy(A) =1,
(i) there is an elemenb € G such thatw acts as—7 on V.
ThenP = Ax B whereA and B are axial.
Proof. SinceP O A x B, it follows that
FlXU(A) (24 FlXV(B) B FiXU®V(P) 75 {O} .

Therefore Fix (B) # {0}. In addition, since dimFix(A) = 1, we can choosa # 0 in
Fixy (A) and write any vectomw € Fixy (A) ® Fixy(B) asw = u ® v wherev € Fixy (B).
Next we choose a nonzeio € Fixygy (P) and writew = u ® v, wherev # 0 in Fixy (B).
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The isotropy subgroufx, of u must beA. Certainly,X, D A. Butif £ € X, then
€, Du®v)=(Hu)®v=u®v. Hence(¢, 1) € P and¢ € A. Similarly, B is the isotropy
subgroup ofv € G. We have now proved tha is axial.

Let (¢, g) be in P. Either (3.2) holds, in which casg, g) € A x B, or (3.3) hold. In
the latter casef € N.(A) — A, andwg fixes v sincew acts as—1 on V. Thuswg € B
since B is the isotropy subgroup af. Therefore

P C ((Nz(A) — A) x wB) U (A x B).

Now suppose € Fixy (B); then P fixesw = u ® 0. This is true sinceb is certainly
fixed by any element oft x B and a calculation shows thatis fixed by (N;(A)—A) x wB
and hence byP. SinceP is axial, w is a scalar multiple ofv and ¢ is a scalar multiple
of v. It follows that dim Fix, (B) = 1, Ng(B) = B U wB, and B is axial. O

Remark 3.5. Suppose that-I ¢ G and thatP is an axial subgroup of x G that fixes the
vectoru ® v. We can still use proposition 3.4 to determine the formPoby using the
following trick. ExtendgG to G = G @ Z»(—1) and letP be the isotropy subgroup ef® v

in £ xG. Let B= PN (1xG). Proposition 3.4 states that is an axial subgroup of
and thatP = Ax B. We can now computé by the relationshipP = P N (£ x G).

3.2. Representation-theoretic criteria for axiality

We now develop criteria for a subgroup to be axial that make more explicit use of
representation theory. We begin by stating another representation-theoretic result. Let
U and V be representations of a compact Lie grobp Define Dr(U, V) to be the
vector space of linear mappings 6f to V that commute with the actions df. Note
that Dr (U, U) = Dr(U), which was defined previously.

Lemma 3.6.Let U and V be irreducible representations of a compact Lie grdupThen

(a) dimFixygy (') = dimDr (U, V).
(b) Dr(U, V) =0if and only if U and V are nonisomorphic representations.

Proof. Part (b) is just one version of the standard Schur’'s lemma. Begin the proof of (a)
by noting that sincd™ is compact, the representationsiofon U and U* are isomorphic.
This point is proved by choosing B-invariant inner product-, -) and constructing an
isomorphism fromU to U* by u*(w) = (u, w). Observe that

y-utw) = (u,y " tw) = (u, y'w)
sincey is orthogonal. Therefore

y -ut(w) = (yu, w) = (yu)*(w).

Next let L(U, V) be the space of (real) linear mappings 6fto V. The groupl’
acts onL(U, V) by y - A(u) = y'A(yu). Note that matrices that are fixed by this action
are precisely the matrices - (U, V). To prove (a), recall thaU* @ V = L(U, V).
Moreover, the isomorphism is given by ® v — A(u) = u*(w)v. A calculation shows
that this isomorphism is B-equivariant isomorphism. HendgU, V) = U*QV = UQV
asT representations. O

We assume now thaf x G acts onU ® V whereU is a representation of andV is
a representation df. Let

My:LxG— L and Mg:LxG—>G
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be projections. Given a subgroupC £ x G, we define representations #fon U and V
as follows:

pu = nuelly and pv = nyellg.

Proposition 3.7. Let P be an axial subgroup of xG. Then there is precisely one irreducible
representation of the actiopy of P on U that is isomorphic to precisely one irreducible
representation of the actiopy, of P on V. Moreover, these representations Bf are
absolutely irreducible.

Proof. Let P C £ x G be a subgroup. Suppose that
U=U1®---@U; and V=Vi® -V

where thel; andV; are irreducible representations Bfon U andV, respectively. Observe
that

FiXU®V(P) = @ FiXUi®‘/j (P) (34)
ij

Since P is axial, dim Fixyey (P) = 1. For the right-hand side to sum to 1, it is necessary
that Fixy,v,(P) = 0 for all pairsi, j except one. Lemma 3.6(a) implies that for all of
these pairsDr(U;, V;) = 0 and lemma 3.6(b) implies thdf; and V; are nonisomorphic
representations. Lemma 3.6 also implies that for this one exceptional/p&irV;. Since
dim(Dr(U;)) = 1, it follows from theorem 2.3 thal/; is absolutely irreducible. O

Corollary 3.8. Let P C £ x G be axial and letA = I1.(P). WriteU = U1 @ --- ® U, as
a direct sum ofd-irreducible representations. Then at least one of theis A-absolutely
irreducible and distinct from the othev;.

Proof. The main point in the proof of this corollary is that the matrices in the representation
ny of A are identical with the matrices in the representatignof P. Therefore ifU is
irreducible (or absolutely irreducible) for one of these representations, then it is irreducible
(or absolutely irreducible) for the other.

Suppose that all of th&/; are nonabsolutely irreducible fot. Since Fixgy (P) is
nonzero by assumption, proposition 3.7 implies #iats isomorphic to some-irreducible
representation itv¥. Then lemma 3.6 and theorem 2.3 imply that dimkix(P) > 1. Thus
someU; must beA-absolutely irreducible. If all absolutely irreducible representations have
multiplicity greater than one, then proposition 3.7 also implies that dimdiixP) > 1,
which again contradicts the assumption tlfats axial. |

Corollary 3.9. Let P C £ x G be axial and letA ¢ £ and B C G be the projections of.
Suppose thaB acts faithfully on each irreducible representatid®f. ThenB is isomorphic
to a quotient group ofA.

Proof. Let U; be the irreducible representation afthat matches up with the irreducible
representationV; of B to produce a one-dimensional fixed-point subspace Hoas in
proposition 3.7. The corresponding representationf afre isomorphic, so that

P/ker(py,) = P/ker(py,) . (3.5

We make the following group-theoretic observation. SupposethatA — X is a
group homomorphism. Recall thét; : P — A is a surjective homomorphism and note
thatp = noll; : P — X is a homomorphism. SincH, is surjective,

A/ ker(n) = imag€n) = imag€p) = P/ ker(p) .
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In this case we let)y, denote the representation df on U; and takeX to begl, (R).
Observe thapy, = ny,-I1,. Since the same construction works ®randIlg, we conclude
from (3.5) that

A/ ker(ny,) = B/ ker(ny,) . (3.6)
Since the actions oB are faithful, ketny,) is trivial, so B is isomorphic to a quotient of.
([l

Remark 3.10. We will use corollary 3.9 in the following way. We fix a finite grolpC G
and ask whether for each subgrodpc L there is an axial groug® C A x G such that
[Ig(P) = B and Il (P) = A. Corollary 3.9 implies that the only that we need check
are those with a quotient equal B2 Moreover, if the actions of thesé on the varioudJ;
are also faithful, then the isomorphism (3.6) implies tHa& B, since A must also be a
quotient group ofB.

3.3. Tensor product of quaternionic irreducibles

Throughout this sectio/ and V are irreducible representations of typeof £ and G
respectively, and the zero eigenspakesatisfies (2.2), which we repeat for convenience in
the form:

vev=weowoWeoeWw

where the representatiol is irreducible of typeR. Suppose thaP c £ x G is axial.
Then dimFixy(P) = 1 and dimFixgy(P) = 4. The representation-theoretic result that
we need in this section is:

Lemma 3.11.Suppose thaf™ acts irreducibly onX, with typeA = R,C, or H. Then
dim Fix(X) is a multiple ofdim A.

Proof. SinceX is a representation df over A, it restricts to a representation &f over A.
Therefore, FiXX2) is a A-vector subspace of and hence of real dimension a multiple of
dimA. |

Lemma 3.12.Let A C £ and B C G be subgroups.

(@) If P Cc A x B then eitherdim Fixy (A) = 0 or dim Fixy (B) = 0.

(b) If P > A x B thendimFixy(A) > 4 anddim Fixy (B) > 4.

Proof. (a) SinceA x B O P, Fixy(A) ® Fixy (B) C Fixygy (P), whence
dim Fixy (A) - dim Fixy (B) < dimFixygy (P) = 4.

But both factors on the left-hand side are multiples of 4, by lemma 3.11. Therefore at least
one is zero.
(b) SinceA x B C P,
dim Fixy (A) - dim Fixy (B) > dimFix(P) = 4.
Therefore both factors on the left-hand side are nonzero, and since they are both multiples
of 4, each is at least 4. O

Corollary 3.13. The axial subgroupP cannot be of the formrA x B whereA c £ and
B CG.
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Recall example 2.5 where we noted that representations of quaternionic type do occur
in oscillator systems. LeE be a group that acts irreducibly din as a representation of
guaternionic type. Lef = G = X and letU = V, so thatY x ¥ acts diagonally o/ Q U.

Recall from theorem 2.3 thdf ® U = W* whereW is a representation & x X of type
R. Let P = {(g, 2)|g € X} be the diagonal subgroup. Then dimfix’) = 1 and P is an
axial subgroup of the representation Bfx X on W. The verification of this dimension
calculation can be done with character theory.

4. Steady-state bifurcation in rings of coupled cells

We now consider an example whefe= O(2) andG = Dy both act irreducibly on two-
dimensional spaces which we identify wit. (This implies thatv > 3.) We assume

that these actions are the standard ones for these groups. We use the following notation
for elements of the ‘standardy: we write ¢ for the rotationR,,,y and«; for complex
conjugation. The elements and x; generateDy. When N is odd all reflections are
conjugate toc;. WhenN is even there are two conjugacy classes of reflections; the second
one is generated by, = k1. In O(2) all reflections are conjugate to the standard reflection

Kk, which acts in the same way as.

Proposition 4.1. AssumeN > 3. Then there are precisely three conjugacy classes of axial
groupsP C O(2) x Dy acting onC ® C. Representatives are:

(1) Da[x]xDafx1],

(2 even Dq[k]xD1[«] if N is even

(2 Ogid) (I, D), (k, 1), (—1,k2), (—k, k2)} if N is odd,
(3) Dy ={(y,v) : v € Dy} = Dy.

Proof. Since —I € O(2) we can use proposition 3.3 to classify the axial subgroBps
where dimFix (B) = 1. Here we use the notation of the previous section, in which
A=PN(OR) x1) andB = PN (1x Dy). Note that this proposition implies that we
can assume thak is axial. Up to conjugacy the possible subgroupsire D1[«;] (for all

N) andD1[«7] (when N is even). Similarly, proposition 3.3 guarantees that axial and
hence, in this case, up to conjugady= Di[x]. Thus Dy[x]xD1[k1] is axial (for all N)
andD1[x]xD1[ky] is axial (whenN is even). Thus we may assume that dimyRiR) = 2.

When N is even,—I € Dy and we may reverse the roles af and B. When we
do this, we find no new axial subgrougs and we may assume that dimpigd) = 2.
When N is odd, we use remark 3.5 to complete the analysis of this case. Note that
G =Dy ® Z2(—1) = Day. Now there is a new axial group = D1[«x]xD1[«2]. It is easy
to check thatP = P N (G x £) is the group listed in (2 odd). Thus we may also assume
that dimFix; (A) = 2 whenN is odd.

There are no axial subgroups whely = Z, since the representations zf on C are
either nonabsolutely irreduciblé& (> 3) or the direct sum of two isomorphic irreducible
representationsk(= 1 or k = 2). Here we use corollary 3.8.

We can therefore writé® as a twisted group of the form

P () = {(@(y),y) 1y € Dy}

where¢ : Dy — O(2) is an isomorphism onto the standddgd c O(2). Observe tha® («)
is of order two and is conjugate 0in O(2). Suppose this conjugacy is given pyso that
yé(k)y~—t = k. Then conjugatingP*(¢) by (y, 1) puts¢ in the form

P (k) =« and @) =¢"
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wherek and¢ are coprime. Moreover, we can conjugaté(¢) by « to obtain 1< £ < g
Let ¢1(y) = y. If ¢ # ¢, then the irreducible representations of P*(¢) on U and py
of P¥(¢) on V are not isomorphic. To see this observe tR&t¢) = D, andU = V = C.
The actionpy of D; on C is the standard one while the actipp of D, on C is generated

by
pu (k) =k and pu () =¢".

A direct calculation shows thap, are py are not isomorphic unles¢ = 1. Then
proposition 3.7 implies that these twisté#d (¢) are not axial. We can assume

P=PI)={(y.y):y eDy),

whenceP c D,. Now maximality of P implies thatP = D,,. O

5. Hopf bifurcation

We now review the general theory for equivariant Hopf bifurcation. We emphasize the
natural complex structure that occurs in these bifurcations.

Let I" be a compact Lie group, acting on a finite-dimensional real vector sfaead
let f: X x R — X be al'-equivariantC>® mapping. Consider the ODE

dx

4 =/@» (5.1)
wherex € X, andx € R is a bifurcation parameter. Suppose thfg0, 0) = 0 and that at
A = 0 the linearizationdf)o has a nonresonant complex conjugate pair of purely imaginary
eigenvaluestwi wherew # 0. Then (see Golubitsky and Stewart [9], Golubitskyal [12])
periodic solutions to (5.1) of period neaf72» are in one-to-one correspondence with zeros
of a reduced bifurcation equation

gly,\)=0

where Y is the +iw real eigenspace ofdf)o, and whereg : ¥ x R — Y is C* and
I' x St-equivariant. Here the circle group action is induced by the linear flowdgho
onY.

Periodic solutions in Hopf bifurcations are identified using the group structure of
' =T x St acting onY as follows. As shown in [9, 12] there are branches of periodic
solutions corresponding t@-axial subgroups of™*. A subgroup® c I'* is C-axial if
3 is an isotropy subgroup satisfying dim i) = 2. Note that if(y, 8) € T then the
corresponding periodic solution(r) to (5.1) satisfiesc(r + 6) = yx(¢), thus yielding a
mixed spatio-temporal symmetry.

5.1. Complex structure

We denote elements &' by 6 < [0, 27). By nonresonance this action fixed-point free
that is, if@ -y =y for 6 e St andy € Y thenf =0 ory = 0.

By Golubitsky et al [12], XVI, proposition 1.4 the centre subspaeis generically
[-simple that is, either

Y =W @ W whereW is absolutely irreducible unddr or
Y is nonabsolutely irreducible undé.
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We can use thSl—action to giveY the structure of a complex vector space. To do this,
let z € C, wherez = ré?, r > 0, andd € S'. Define

y=0-ry)=r@-y). (5.2)

Because theSt-action is fixed-point free, it follows that if, y # 0 thenzy # 0. The
remaining properties of a complex vector space are easily verified. We call this complex
vector spacdc =Y ® C.

Lemma 5.1. The following statements are equivalent:

(a) Y is I'-simple as a real representation.
(b) Y ® C is a real irreducible representation df x S* of complex type.
(c) Y¢ is a complex irreducible representation Bf

Proof. See Golubitskyet al [12], XVI, proposition 3.5. O

We can now redefin€-axial subgroups using the complex structureYgn A subgroup
¥ is C-axial if it is an isotropy subgroup with a complex one-dimensional fixed-point
subspace. Note th&t-axial subgroups are maximal isotropy subgroups.

It is shown in Golubitskyet al [12] that, in the case of'-simple centre subspaces,
isotropy subgroups of'* always have the form of a twisted subgroup twisted subgroup
is a subgroups = A? C T' x St where A C T is the projection ofX into I', the map
¢ : A — S'is a homomorphism, and

A? = {(a, ¢ (a)) :a € A}.

In short, in a twisted subgroup there are no elements of the far®) whered = 0 and
this point follows from the assumption in Hopf bifurcation that the critical centre subspace
is I'-simple.

5.2. Complex tensor product representations

We now specialize to the case of interest in this paper, Hopf bifurcationdrsgmmetric
network of £L-symmetric cells. Thel = £L x G andX = U ® V as before. By lemma 5.1,
generically the action oL x G on the imaginary eigenspadg is a complex irreducible
representation of x G, and we henceforth assume this. A crucial simplification occurs in
this case, as follows:

Lemma 5.2. As a complex representation bf= L x G,
Ye=U @ V' (5.3)

where U’ is a C-irreducible representation of and V’ is a C-irreducible representation
of G.

Proof. Every complex irreducible fof x G is a tensor product of a complex irreducible for
and a complex irreducible f@, see Bocker and tom Dieck [5], chapter 2, proposition 4.14.
U

Suppose that thE-simple real representation has the form= (UQV)® (U ®V) where
U andV are absolutely irreducible representationsCoand G, respectively. The’ and
V’in lemma 5.2 can easily be identified. They &fe= U ®C andV’ = V ®C; that is,U’
andV’ are the complexifications df andV. When thel'-simple representation is obtained
in a different way (the full list of ways can be found by consulting theorem 2.3), then the
identification of U’ and V'’ is more difficult to describe. From the point of view of the
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discussion here, the main point is that the complex representdtionad V' always exist

and we can proceed with a general discussion of Hopf bifurcation under this assumption.
For simplicity of notation we henceforth omit the primes 6 and V', so that

Yc = U ® V whereU is C-irreducible for£ andV is C-irreducible forg.

5.3. Circle actions and tensor products

We aim to relate Hopf bifurcation for the symmetry grodpx G to Hopf bifurcation for

L and G separately—in part because much is known about Hopf bifurcation for particular
groups such a®©(2), SO(2), SO3), Dy, Zy, and Sy. To do this it turns out to be
convenient to work in a group slightly larger th&nx G x St, defined as follows. Let

L*=LxS
Gr=G xS
Q=L'xG" =LxS xGxS.
There is a homomorphism
O:Q—LxGxs (5.4)
O, ¢,8.P)=(,8.¢+Y).
The kernel of® is the antidiagonal subgroup
A={1¢,1 —¢) =S
We define an action af2 on Y¢ by

€d. 80 -y=0¢,g W -y=(0g ¢+ y=V, g y. (5.5)
This is the action induced from th&x G x St-action via the homomorphisi®. Therefore,
Yc is Q-irreducible.
Formula (5.5) implies that the complex tensor product is compatible witlstastions
of £ = L x St andG* = G x St in the following sense:
(€ h, 8, W) - (u®cv) =L, g) (@)
=PV (L u) ®c (g-v)
= (€€ -u) @ (€Y -v)
=((6,¢) - u) @ (g, P) - v).
In particular, the antidiagonal group acts trivially onU ®. V, as by definition it must do.

6. C-axial subgroups

In this section we adapt the results of section 2 to the case WhamdG are compact Lie
groups acting on complex vector spadésand V, respectively. The real tensor product
U ® V will now be replaced by the complex tensor prodlt. V. Until further notice
‘one-dimensional’ will mean ‘one-dimensional as a vector space Qverfor clarity we
use the notation digmfor the complex dimension.

By (5.5),if P C £L x G x St and Q = ®~1(P) where® is defined in (5.4), then

Fixy (P) = Fixy(Q). (6.1)

Thus we have:
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Lemma 6.1. There is a one-to-one correspondence betw@eaxial subgroupsP C L x
G x S' and C-axial subgroupsQ c Q. This correspondence is given y= ©~1(P).

Proof. Since P and Q fix the same set of points in Y, we see that if one is an isotropy
subgroup, then so is the other. Similarly, if one has a one-dimensional fixed-point subspace,
then so does the other. O

Note thatQ is not a twisted subgroup.

6.1. Twisted subgroups i x G

There is a simple way to combine twisted subgrow¥sc £* and B¥ c G* to get the
twisted productsubgroupA? x BY ¢ £ x G x St as follows.
Twist the direct productA x B C £ x G using the homomorphisr + ( defined by
(¢ + W) (a, b) = ¢(a) + Y(b). Equivalently,
A?xBY = ©(A? x BY). (6.2)
Note that
O 1(A?%xBY) = (A? x BY) x A. (6.3)
We now have the complex analogue of lemma 3.1:
Lemma 6.2.
dime Fixyeev (A? x BY) = dimc Fixy (A?) - dimc Fixy (BY) .
Proof. By (6.1)
FiXyeev (A?x BY) = Fixpg.v (©71(A? x BY))
and by (6.3) this is equal to
FiXyeev ((A? x BY) x A)
which in turn is the same as
Fixpgev (A? x BY)
since A acts trivially. The proof now follows from the complex analogue of lemma B11.

This leads to a simple way to obtaff+axial subgroups of2 from C-axial subgroups
of £* andG*. But first we prove a lemma. We assume tiatandG* have unitary actions
on the complex vector spacés and V, respectively. It follows that there is a notion of
length for vectors in these spaces using the group-invariant (Hermitian) inner product.

Lemma 6.3.Let U and V be complex vector spaces with nonzero equal length vectors
Uy, up € U and vy, 2 € V. Then

U1 ®c v1 = €913 ®c vz
if and only if

ug = €%y and vy = ¥y,
wherey, + ¢, = ¢.

Proof. Supposey; andv, are linearly independent ii. Thenu; ®c v1 — (€%u2) ®c v, = 0
implies thatu; = 0 contradicting the assumption that these vectors are nonzero.vT hasl
vp are dependent which implies that = cv, for some complex scalaft. Since|vy| = |vy|,
lc| = 1 andv, = €% v,. It follows that (€% u; — €%u) @c vo = 0. Henceuy = d@~¥y,.
So we may choosw#, = ¢ — {,,. O
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Proposition 6.4. Suppose that? c £* and BY C G* are C-axial. ThenP = A?xBY C
L x G x Stis C-axial.

Proof. Lemma 6.2 states thaP has a complex one-dimensional fixed-point subspace.
Therefore we need show only th&tis an isotropy subgroup. By the proof of lemma 6.1 it
is equivalent to show tha® = ®~1(P) is an isotropy subgroup. Lei, € U be a nonzero
fixed point of A? and letvg € V be a nonzero fixed point oBY. Thenwgy = up ®c vo

is a nonzero fixed point oP, so P is contained is the isotropy subgroup ©§. We now
suppose that¢, ¢, g, P) € L* x G* fixes wo; that is,

1o ®c vo = €9 (£ - ug) ®c €¥(g - vo)
=W (¢ ug) ®c (g - vo) .

By lemma 6.3
L-ug= e‘i@uo (64)
g vo=e " (6.5)

for some#, and 6, such thatg, + 6, = ¢ + Y. Therefore(¢, 6,) € A? since A? is the
isotropy subgroup ofig. Similarly, (g, 6,) € B¥. SinceA? and BY are twisted subgroups,
we see thabt, = ¢ (¢), 6, = P(g). Hence(¢, 0,, g, 0,) € A? x BY. Sincety + 0, = ¢ + Y
it follows that (¢, g, ¢ + W) € A?x BY. O

There is a partial converse to proposition 6.4 given as follows.

Proposition 6.5.Let P C £ x G x S' beC-axial. LetQ = © 1(P). DefineA = oNL* and
B = 0 N G*. Suppose thadimc Fixy (A) = 1. ThenA and B are C-axial and P = A x B.

Proof. By lemma 6.2, Fiyg.v(Q) is one-dimensional. Sinc@ D A x B we have

Fixy (A) ®c Fixy (B) D Fixyev (Q) # {0},

so that Fix (B) # {0}. Since ding Fixy (A) = 1 we may choose a vectare U that spans
Fixy (A) overC. Letw span Fixg.v(Q) over C; thenw is of the formw = u ®. v for
somev € Fixy (B).

First, we claim that the isotropy subgrou, of u in £* is equal toA. Certainly
¥, D A. Butif o € ¥, so that(o, 1) € £* x G*, then(o, 1) (4 ®cv) = (0u) ®c v = U Qc v.
Hence(s, 1) € P ando € A. Similarly, B is the isotropy subgroup of in G*. Note that
we have not yet proved that i is. aX|aI since we have not yet computed le‘nxv(B) We
have however shown tha® > A x B from which it follows thatP > Ax B.

Now suppose thatt, g) € Q wheret € L*, g € G*. Then

(€, 8) (u®cv)=u®cv,
or equivalently
(€-u)@c(g-v)=u®v
By lemma 6.3, there exis& ¢ S' such that
C-u=¢€ g~v=e_i9v
That is,
U, —0)ex, =A (g.0) € =, =B.
Therefore,
(,—6,8,0) € (Ax B)x A.
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HenceQ C (A x B) x A and P C Ax B. Since
dime Fixygv (P) = dime Fixy (A) - dime Fixy (B),
it follows that dime Fixy (B) = 1 and B is axial. O

6.2. Representation-theoretic criteria f@-axiality

We now present the analogue of proposition 3.7. Let
Mgt Q— LF and g : Q2 — G*

be the canonical projections. Given a subgr@ur 2, we define representations ¢f on
U andV as follows:

pu = Nyl and py = nvellg:,
whereny andny are the given representations 6f andG* on U and V, respectively.

Proposition 6.6.Let Q9 c © be a maximal isotropy subgroup. Tigehas a one-dimensional
fixed-point subspace if and only if there is precisely one irreducible representation of the
action py of Q on U that is isomorphic to precisely one irreducible representation of the
actionpy of Q onV.

Proof. The proof is just like the proof of proposition 3.7, but with one simplification. Over
C Schur's lemma implies that difdr vy = 1 if U and V are isomorphic irreducible
representations. See (3.4). |

6.3. Complexification of irreducibles of real type

In many applications the representations of the grodpsnd G on U and V are of real
type, that is,

H) UZUs®Us=2Up®C and VEVid Vp=EVy®C.

If this hypothesis holds, then we can add extra detail. Observe the following isomorphism
of complex vector spaces:

(U@ V) ®C=(Uo®C)Q: (Vo ®C). (6.6)

Henceforth we omit the subscripts @iy and Vp, so that what we have previously calléd
andV now become/ U =Z=U ®CandV & V =V ® C. We introduce the notation

Ye=U®0)Q:(V®C).

Next, we wish to state and prove the corollary analogous to corollary 3.8. In order to
do this we need to discuss the relationship between real irreducible representations and their
complexifications. We summarize this discussion in the following lemma.

Lemma 6.7. Let the groupd act irreducibly on the real vector spade and letX = A x S.
Then

(a) = acts irreducibly on/ ® C as a complex representation if and onlifacts absolutely
irreducibly onU.

(b) If U is of complex type, thel ® C = W @ W, whereW is a representation oE of
complex type andV and W are distinct.

(c) If U is of quaternionic type, thety ® C = W & W, whereW is a representation ot
of complex type.
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Proof. With one exception the proof follows directly from theorem 2.3 using the observation
that St acts onC as an irreducible representation of complex type.

(a) An irreducible representatidii tensored with an irreducible representation of complex
type can be irreducible only i/ is of real type.

(b) The tensor product of two irreducible representations of complex type has the desired
form. SinceU is of complex type there exits a linear mappifig U — U that commutes

with A and for whichJ2 = —I. ThenW = {u+iJu:uec U} andW = {u —iJu :u € U}

where we identifyU ® C = U @ iU. A calculation shows that there are no linear
isomorphisms fromi¥ to W that commute withs.

(c) The tensor product of two irreducible representations, one of quaternionic type and one
of complex type, has the desired form. O

Corollary 6.8. Assume hypothesis (H1). Suppose hat @~1(P) is an isotropy subgroup
with a (complex) one-dimensional fixed-point subspace ALetI1,(Q) and

U=U10---0U;,

where theU; are A-irreducible subspaces. Then at least one of theis A-absolutely
irreducible and distinct from the othéyv;.

Proof. The matrices ofQ acting onU ® C by py,|Q are the same as those Bf= A x st
acting onU ® C by ny,| 2. Therefore, a subspace bf® C is Q-irreducible if and only if
it is X-irreducible.

Similarly, we defineB = Tg(Q), write V. = V1 @ --- ® V, as a direct sum oB-
irreducible representations, and note that the matricag atting onV ® C by py,|Q are
the same as those @f = B x S* acting onV ® C by nv|T.

The dimension of the fixed-point subspace @fis given by the number of common
representations of) using py and py. See proposition 6.6.

We can writeU ® C as

UC=U190C)@---®(U; ®0C) (6.7)

a direct sum ofz-invariant subspaces. Similarly fof.

We first prove that at least one of tlig is A-absolutely irreducible. Suppose that
all of the U; are nonabsolutely irreducible. Thé&f ® C is the sum of twox-irreducible
representations of complex type. If one of these representations is isomorphié t® @
representation, then there must be two pairs of isomorphic representations (see lemma 6.7)
and the complex dimension of FiX Q) > 1.

If all of the absolutely irreducible representatiaiis have multiplicity greater than one,
then theX-irreducible representatiort$; ® C have multiplicity greater than one, and again
dimc Fixy.(Q) > 1. O

Corollary 6.9. Suppose thaQ = ®~1(P) is an isotropy subgroup with a one-dimensional
fixed-point subspace. Lét = ITg(Q) and

U=U10---0U;

where theU; are C-irreducible subspaces fot. Then at least one of thig; is distinct from
the other U;.

Proof. As in the real case, corollary 3.8. O
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7. Hopf bifurcation in rings of coupled cells

In this section we derive th€-axial subgroups 00D(2) x Dy whereO(2) andDy each
have critical eigenvalues that are double. More precisely, we assum@®{Batacts on
U = C by the standard representation; that is, the actio® ) is generated by

Kz =72 ¢~z=ei¢z.

Similarly, we assume thddy acts onV = C by its standard representation generated by
and

-z ="z,
We consider Hopf bifurcation dD(2) x Dy corresponding to the action dhQ V = C®QC.
The critical eigenspace for this bifurcation will be eight-dimensional (&®R)eand have the
form (U ® V) ® C.
We begin by recalling from Golubitsky and Stewart [9] and Golubitekwl [12] that
O(2) Hopf bifurcation, when the critical eigenvalues are double, leads to two branches of
periodic solutions: rotating wave$, and standing waves, where

ArL=1{(0,1,0) € O@2) x Dy x S}}

Ay =Di(k,1,0) ® Zo(m, 1, 7).
With later discussion in mind, we have written these groups as subgro@@p& Dy x St.
Similarly, Golubitsky and Stewart [10] and Golubitsky al [12] study Hopf bifurcation in
the presence oDy symmetry. When the critical eigenvalues are double, there are three
C-axial subgroups for eac—the precise form of these axial subgroups depends on the

parity of N. See table 2. Thegg-axial subgroups represent discrete rotating wasand
two types of discrete standing wavss and B,. Define

- -2
Zn = {(1,gk,N”k> € 0(2) x Dy xslzo<k<N—1}.
For eachN Hopf bifurcation ofO(2) x Dy produces oné&-axial group in addition to
the expected twisted product groups. Let
Dy ={(3.8.0) € O(2) x Dy x S': g € Dy}.

When N = 0mod 4, Hopf bifurcation produces two additior@axial subgroups. Let
T € D4 C Dy be a reflection and léb4[z] € O(2) x Dy x S' be the subgroup generated
by (3,57, %) and(z, 7, 0).

Proposition 7.1. When the critical eigenvalues have multiplicity four in@@) x Dy Hopf
bifurcation problem, then up to conjugacy tfieaxial groups are enumerated as follows:
(a) A;xB; wherei =1,2andj =1,2,3.

(b) Dy &Zo(r, L),

() Dalx] ® Z2(r, w, 0) and Dy[ 5] @ Z2(7r, r, 0) whenN = O mod 4

Table 2. Isotropy subgroups iy Hopf bifurcation.

N odd N even

B1  Di1(1,x,00 Di(1,«,0) @& Z2(1, 7, 7)
B, Di(Lk,7m) D11,k 0)®Z2(1, 7, )
B3 ZN ZN
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The groups in (b) and (c) are not conjugate whgn= 4.

Proof. Proposition 6.4 proves that the twisted product groups in (a) ar€-akial. Let
P C O(2) x Dy x St be aC-axial subgroup. LetB = P N (1 x Dy x S') and let
A=PNOE) x 1x 8. If either dim: Fixygc(B) = 1 or dime Fixygc(A) = 1, then
proposition 6.5 implies thaP? = Ax B.

The otherC-axial groupsP must satisfy dirg Fixyec(B) = 2 and ding Fixygc(A) = 2.
This implies thatd = Z,(x, 1, 7) and

B { 1 if N is odd
| Z:(4, 7w, ) if N is even

Proposition 6.6 implies that the subgroup in (b) has a one-dimensional fixed-point space.
The corresponding isotropy subgroup would have to contain the group in (b). However,
any larger group would introduce extra elements into either B. Hence the group in (b)
is an isotropy subgroup and @&-axial. Similarly proposition 6.6 implies that the subgroups
in (c) have a one-dimensional fixed-point subspaces.

The remainder of the proof is devoted to showing that up to conjugacy there are no
additional C-axial subgroups. The group = Ilp, (P) is isomorphic toP/Z,(x, 1, ).
Since B C Dy, eitherB = Z, or B = D, wherek divides N. Corollary 6.8 implies that
B = Z, cannot occur. SimilarlyA = I (P) C O(2) is a finite subgroup and hence is
isomorphic to eitheZ,. or D;,. Again, corollary 6.8 implies that, cannot occur. Finally,
by counting the order of we see that

k/—{Zk if N is odd
|k if N is even

We claim that, after a conjugacy a?f, there is a reflectionr in D, ¢ Dy so that
(x,k,0) € P. There is an elementr, «x,0) € P. If t is a reflection, then, since all
reflections inO(2) are conjugate, we may conjugafe by an element inO(2) so that
T is conjugated tac, as claimed. Suppose is not a reflection. Sinceé projects onto
Dy c O(2), there is an element i® whose first coordinate’ is a reflection. If the
second coordinate is also a reflection, we can use the previous argument to show that, after
a conjugacy, an element of the foréw, «, 6) is in P. Hence, if(k, o, ) € P whereo
is a rotation, then(zx, ko, 6 + ) € P and again the first two coordinates are reflections.
Finally, since(k, «, 8) € P it follows that either = 0 (which verifies the claim) of = 7.

In the latter case, recall that, 1, 7) € P and hence thatrx, «, 0) € P. Now conjugate
P by /2 € O(2) to see thaix, «,0) € P, as required.

It follows that P is contained in one of the groups listed in (a) whes 1. Hence we
may assume that > 2.

Suppose thaw is odd. Then

P=A=Dy =D, ®Zym, 1, 7).

Indeed, letr € Dy be a rotation that generat@s, c Dy and choose, = (t, 0, ¢) € P.
Then P = Dy @ Z,(w, 1, ) where D, is generated b)pf and (x, «, 0). We verify this
point as follows. Ifo is a reflection, therp? = (2, 1,2¢) € P which implies that
p? € Zy(m, 1, ). Hence eithek = 2 or k = 4 which is not possible sindedivides N and
N is odd. It follows thats is a rotation and hence that= ™ for some integem. We can
conjugateD; C Dy so that 1< m < k/2. Finally, we apply the proof of proposition 6.6 to
see that FixP) = {0} unlessm = 1. It follows thatP = {(g, g,0) : g € Dy} D Zo(7, 1, 7).
Note thatk > 3 (which follows sincek > 1 is odd) andP is contained inside the group
listed in (b). This completes the enumeration of @@xial subgroups whew is odd.
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When N is even, we proceed as above, noting thiat= k in this case. Now when
k = 2 it also follows thatP is contained in one of the groups listed in (a). Hence we
may assume that > 3. Again we can choose € D, c O(2) to be a rotation that
generateZ; and we can choosg, = (z, g, ¢) € P. We show that wheN = 2 mod 4 that
P =Dy & Zy(m, 1, 7) whereD, is generated by, and (k, «, 0). As above, wherm is a
reflection, we find that either = 2 ork = 4. Sincek > 3, k divides N, and N = 2 mod 4;
neither of these is possible. We can now proceed as above. Note that theg eagmod 4
may be solved using proposition 7.3 below.

When N = 0mod 4, then the argument is more complicated. Wheg 4, we can
proceed as above. However, now we must consider the icasel more carefully. We
chooser € Z4 C O(2) to be a generator. That is, we choase- 7. Choose(7, 0, ¢) € P.

If o is a rotation, then proceed as above. Suppose nowstigaa reflection. This possibility
cannot be eliminated whelv = Omod4. Observe that, o, ¢)? = (r,1,2¢) € P.

It follows that ¢ = +7. Since (1,7, 7) € P we can assume that = 7 and that
5,0, %) € P. We know that an element of the for@, «, 0) € P wherex is a reflection
in D4. Up to conjugacy there are two types of reflectionOp and this fact leads to the

two different C-axial subgroups in (c). It follows that7«, ok, 3) € P where 7« is a
reflection. Squaring yieldgl, (cx)?, ) € P. Thus (a/c)g = andok = £% which we

may rewrite ass = +%«. The two reflections;« and —Z« are conjugate by in Dy

since N is even. Hence we may conjugakeby (0, «, 0) to show thatP is generated by
(«,k,0), (3, 5k, 5) and (w, 7, 0), as claimed. Th&-axial subgroups obtained in (b) and

(c) are not conjugate—since the twisted reflections in these subgroups are of nonconjugate
types. (I

Remark 7.2. We can now explain how the figures in the introduction illustrating the nine
patterns of oscillation ifD(2) x D4 systems were derived. We consider the two subgroups
listed in proposition 7.1(c) and leave the remaining seven as an exercise. We number the
four cells as in figure 4.

O—-~(>®

(D)—)

The Hopf bifurcation considered in proposition 7.1(c) occurs only if the state space of
each individual cell contains a standard two-dimensional irreducible representatii®)of
moreover, we can identify this two-dimensional space wW@dthWe project the 2-periodic
trajectory X (1) = (X1(¢), X2(t), X3(t), Xa(t)) into C* and identify these coordinates as
(z1(2), z2(2), z3(2), z4(t)). The symmetryZ,(z, 7, 0) implies thatzz(r) = —z1(¢) and
z4(t) = —z2(2).

The symmetry(x, «, 0) in the first subgroup implies that(¢) = 71(z) andzz(z) = z2(¢).

Thus solutions of the first subgroup will have the form

(z(), —z(t), —z(1), z(1)) .

Finally, the symmetry 7, S«, %) implies the spatio-temporal symmetryr + %) = —iz(1).
See figure 3).

Figure 4. Four cells in a ring.
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The symmetry (5«, 5«,0) in the second group impliesi(t) = izi(r) (so that
z1(t) = x(1)(A + i) wherex(r) € R) and z4(r) = iz2(t). Sinceza(t) = —z2(f) we see
thatz(r) = y(1)(1 —i) wherey(t) € R. Finally, the spatio-temporal symmet(§, 7«, %)
implies thaty(t) = x(t + %). Thus, in these coordinates, trajectories for the second group
will have the form

(@)L +1), x(t + Z)(l —i), —x()(L+1), —x (z + 7;)(1 —)).

See figure 3§).

Proposition 7.3.Let £ act U and let Z,(r) act nontrivially onR. Then theC-axial
subgroupsP C £ x Z,(t) x St all have the formPy @ Z,(1, t, 7) wherePy C £ x 1 x St
is a C-axial subgroup.

Proof. Let B = P N (1 x Zy(x) x SY. Since P is C-axial, dimFix(B) = 1 and
B= Z,(1, 7, m) since the grou@,(1, t, ) is the kernel of the representationf(r) x St
on R ® C. Proposition 6.5 implies thaP = PyxZ»(1, T, 7). SinceZ,(1, T, ) commutes
with Py, we can writeP = PyxZy(1, t,7) = Po® Z>(1, 1, ). O

We end this section by describing how our general results make it possible to recover
the results of Dangelmayet al [7] on D3 x D3 Hopf bifurcation. Given our discussion
on O(2) x D3 Hopf bifurcation it is a simple matter to recover the existence of the eleven
families of periodic solutions found in [7]. We hasten to add, however, that Dangekhayr
al do much more than find the existence of these periodic solutions—they also determine
their stability for a reduced centre manifold vector field in normal form. They also discuss
solutions in this normal form vector field that are more complicated than periodic.

Proposition 7.4. (Dangelmayr et al [7]). Consider a Hopf bifurcation in the presence of
D3 x D3-symmetry, where each of the critical eigenvalues has multiplicity four. Byet

B, and B3 be the three isotropy subgroups 8f; x St acting onC ® C obtained in Hopf
bifurcation with D3-symmetry. Then up to conjugacy there are eleven families of periodic
solutions:

() BixB; wherei =1,2,3andj = 1,2, 3.
(b) D3 = {(¢,£,0) : £ € D3}.
(c) D3 = {(¢, £, Y(¥)) : ¢ € D3} where

(ﬁ)— 0 ifZGZ:g
qJ - T ifEEDg—Zg.

Proof. The structure of the proof is identical to that of proposition 7.1. The groups in
statement (a) are obtained as productedixial groups forDz while the remaining two
groups are found by a similar argument to that in proposition 7.1. Indeed it is simpler
because in this case @-axial subgroupP projects isomorphically onto botB; x St
factors. O

A similar approach also allows us to recover the existence results of Wegelin [19] for
Hopf bifurcation in the case®(2) x O(2), D,, x O(2), andD,, x D,.
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