Proceedings of Symposia in Pure Mathematics
Volume 40 (1983), Part 1

A DISCUSSION OF SYMMETRY
AND SYMMETRY BREAKING

MARTIN GOLUBITSKY' AND DAVID SCHAEFFER?

There is an intimate relationship between singularity theory and steady state
bifurcation theory. For the past several years we have been trying to make this
relationship precise (see [9, 10]) and have written several surveys on this material
[11, 12, 13, 21}. For the most part these reviews have been written for an applied
audience as has the review by Ian Stewart [28] which includes several of our
applications. In this review we want to emphasize those theoretical problems
whose resolution would lead to interesting applied mathematics. These are
problems about which we have limited knowledge and have made limited calcula-
tions. In particular, the problems revolve about the interaction of linear represen-
tations of compact Lie groups with the study of singularities of mappings and the
notions of “symmetry breaking” that they engender. This review is divided into
four parts: one states variable problems (the basic theory), bifurcation problems
with symmetry, spontaneous symmetry breaking, and symmetry breaking in the
equations. We shall give few proofs. The references include a complete listing of
the applications which have followed from this point of view. It seems to us that
the study of singularities of mappings which commute with a given representation
of a compact Lie group is a rich field in need of further investigation.

1. The one variable theory. A bifurcation problem with one state variable is a
germ g(x, A) in &,_,, the ring of C* germs based at the origin in R X R. The
variable x is a state variable and the parameter A is called the bifurcation
parameter. We shall call the (germ of the) zero set g(x, A) =0 the bifurcation
diagram of g and a point (x,, Ay) where g(x,, Ag) = 0 a solution of g. There are
two central issues in steady state bifurcation theory. The first issue concerns the
computation of the number of solutions to g for each fixed A, denoted by
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N(A, g). In the classical language a bifurcation occurs when the number N(A, g)
changes as A varies. Note that a necessary condition for bifurcationis g = g, = 0.
We call a point satisfying g = g, = 0 a singularity.
DEFINITION 1.1. Two bifurcation problems g and 4 are equivalent if
g(x, A) = S(x, A)a(X(x, A), A(X))
where S(0,0) > 0, X(0,0) = 0, A(0) = 0, X,(0,0) > 0, and A’(0) > 0.
Note that equivalence is just a special kind of contact equivalence where the

bifurcation parameter A is treated as distinguished in the change of coordinates.
In particular, this leads to the formula

(1.1) N(X, g) = N(A(X), k).
The singularity theory approach to the first problem is to show that under
certain conditions on the Taylor expansion of g at the origin, g is equivalent to

some simple normal form. In the terminology of C. T. C. Wall this is just the
recognition problem in singularity theory. Simple results are

PROPOSITION 1.2. (a) (The Pitchfork). If g =8, = 8., = 8, = 0, 8xx >0, and
g < 0at (0,0) then g is equivalent to x> — Ax.

(b) (The W’nged Cusp). Ifg S8xT AT 8xx T Bax T 0, 8xxx >0, and 8 >0
then g is equivalent to x> + A%

The bifurcation diagrams associated with the normal forms are given in Figure
1. Note that the pitchfork models a problem which transits from 1 to 3 solutions

X
< Lx _k
(a) X3-2x=0 (b) x3-2%:=0
FIGURE |

while the winged cusp has 1 solution x for each A. By the traditional definition
the origin is not a bifurcation point for the winged cusp, yet clearly something
singular is happening at A = 0.

The second principal issue is the question: Can one classify the perturbed
bifurcation diagrams of a given g? In bifurcation theory the problem goes under
the name of imperfect bifurcation while in singularity theory one uses the name
universal unfolding. We proceed with a discussion of these issues in the one
variable case.

DEFINITION 1.3. The restricted tangent space of g, denoted by RT(g), is the
ideal generated by g, xg,, and Ag, in &, ,. We shall use the notation ( Py,...,P;)
to indicate the ideal generated by P,,...,P, in &. So RT(g) = (g, xg,, Ag,)- The
restricted tangent space is obtained by considering all germs of the form

d
(1.2) ES(x,)\,t)g(X(x,A,t),?\) =0
where X(0,0, t) = 0, S(x, A,0) = 1 and X(x, A,0) = x.
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ReMARK. If one looks at germs f under right equivalence then the ideal
corresponding to RT(g) is IN- §( /) where §( /) is the Jacobian ideal of fand I
is the maximal ideal. The discussion which follows is an attempt to describe the
basic determinacy result * ' C IM?-§(f) = [ is k-determined with respect to
right equivalence in a bifurcation theory format.

The basic analytic result about R7(g) is

THEOREM 1.4. Let & C &, be a subspace. Suppose that RT(g + p) = RT(g) for
all p in 0. Then g + p is equivalent to g for all p in .

In trying to solve the recognition problem for bifurcation problems one needs
to be able to compute a subspace < which satisfies the hypothesis of Theorem 1.4.
There is a natural space to consider. One wants to know which terms in the
Taylor expansion of A can be ignored in determining whether / is equivalent to a
given g. Moreover, one would like to be able to find these terms by looking only
at g. This consideration leads to the following definition.

DEFINITION 1.5. Let g be in & ,. Define 9(g) = {p € &, | RT(h + p) =
RT(h) for all h equivalent to g}.

It turns out that a notion of intrinsic ideals due to B. L. Keyfitz leads to a
method of computing ¢(g) rather explicitly. In particular, one can prove that
%P(g) is a subspace of &, , and apply Theorem 1.4 to ’(g). We now explain this
method.

DEFINITION 1.6. An ideal § C &, is intrinsic if whenever g is in § and h is
equivalent to g then 4 is in 9.

Note that the only intrinsic ideals relative to ordinary contact equivalence of
finite codimension are ¥, the powers of the maximal ideal 9. What makes this
concept interesting is the existence of the distinguished parameter A. For example
(X is an intrinsic ideal. Since sums and products of intrinsic ideals are intrinsic
one has that any ideal of the form

(1.3) MK+ MK (N Y+ -+ DMk (A
where0 </, < --- <[l <kand k >k, + 1, > -+ >k, + [ areintrinsic and of
finite codlmenslon Note that we make the convention ‘711) = &, , and observe

that the restrictions on the /’s and & ’s are made to avoid trivial rt.dunduncies. Itis
not difficult to prove

LEMMA 1.7.  is an intrinsic ideal of finite codimension in &, iff § has the form
(1.3}

Given any ideal § in &, , there is a largest intrinsic ideal contained in § (since
sums of intrinsic ideals are intrinsic). We call this subideal the intrinsic part of
and denote it by Itr(§).

We can now state the main general result about (g).

THEOREM 1.8. Let g be in &, . Assume that RT(g) has finite codimension. Then
P(g) is an intrinsic ideal and

(1.4) It(9M - RT(g)) € 9(g) C Iir(RT(g)).
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We now compute several examples using Theorem 1.8.

(15) M+ M2 (AYC P(x* — Ax) COM3- (),
' M+ M- (RYC P(x* + R) CM> + (W),
Using the following lemma one can compute %(g) precisely for the examples in
(1.5).

LEMMA 1.9. If Ng and Ax?g,, are in - RT(g) then Itr({xg, Ag, x’g,, Ag.))
C P(g).

It follows from Lemma 1.9 that

(16) 9(x* —Ax) = + M- (A) + (¥,
' P(x? + N) = OM* + M- (A).

Now using (1.6) it is straightforward to prove Proposition 1.2. We indicate the

details for the pitchfork. We want to find conditions on 4 to determine whether or

not 4 is equivalent to the pitchfork x> — Ax. Using Taylor’s Theorem one shows

that

h=a+bx+ch+dx®+ex\+ fx*>+ p(x,A)

where p € P(x* — Ax). It is clear that the constant and linear terms in 4 must
vanish if & is equivalent to g. Also the first nonvanishing power of x is an
invariant of equivalence. So we must assume a =b=c=d=0and e # 0 # f.
In order to preserve orientation one must assume f > 0 and e < 0. After rescaling
x and A one has that & is equivalent to x> — Ax + p. The result follows from
Theorem 1.4.

In order to resolve the issue of imperfect bifurcation, one must be able to find
universal unfoldings relative to equivalence. The relevant definition is

DEFINITION 1.10. The formal tangent space of g, denoted by 7(g), is the
subspace

(8, gx>+ REAY

where &, is the space of smooth germs in the one variable A.
The elements of T(g) are obtained by computing all possible germs of the form

%S(x, A n)g(X(x, A, 1), A(x, A)) =0

where S(x, A,0) = 1, X(x, A,0) = x, and A(A,0) = A.

Note that T(g) differs from R7(g) in two regards. First we have allowed
proper changes of coordinates in the A-variable (respecting the notion of equiva-
lence, of course) and we have permitted the change of coordinates to move the
origin when 7 # 0. Observe that T(g) is not, in general, an ideal.
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The basic result about unfoldings is

THEOREM 1.11. Let f(x, X, a) € &,  , be a k-parameter unfolding of g(x, X)
(i.e. g(x, A) = f(x, \,0) as germs and a € R*). Then f is a universal unfolding of g
if and only if

6., = T(g) + R{%(x, A,O),...,ank(x, )\,0)}

where the notation R{p,,...,p,} means the vector subspace of &, generated by
p l PRI ,pk-

The following proposition due to J. Damon resolves the issue of when a germ g
has finite codimension.

PROPOSITION 1.12. codim T(g) is finite if and only if codim RT(g) is finite.

Now define the codimension of g to be the codimension of 7(g) in &, ,.
Theorem 1.11 implies that a germ has a universal unfolding precisely when it has
finite codimension.

It is easy to compute
T(x> = Ax) =M* + M- (A)+ R{3x? — A, x},

T(x* +A%) = M3 + (N)+ R{x?, 7).
It follows from (1.7) that

(1.7)

PROPOSITION 1.13. (a) x> — Ax + Bx? + a is a universal unfolding of x> — A x.
(b) x3 + X2 + « + Bx + yx\ is a universal unfolding of x* + N2.

We have one theoretical issue left to resolve. Suppose that one has a universal
unfolding f(x, A, a) of a germ g(x, A). (WLOG, one can assume that f and g are
polynomials.) How does one actually solve f(x, A, a) = 0 for various choices of
a? Part of the answer is given by the following theorem. First we make some
definitions.

B = {a|Ixy, A With f = f, = fy = 0 at (x4, Ag, @)},
I = {a|Ixg, Ag with f = f, = f,, = 0 at (xg, Ay, @)},
DL = {a | Ix, # x5, Ag with f = f, = 0 at (x;, A, @)},
S=RBUIHUDE.

THEOREM 1.14. Z is (the germ of ) a codimension one semialgebraic variety in R,
If a) and a, are in the same connected component of R~ 3, then f(-, -, a,) and
f(-, -, ay) are equivalent.

To make this theorem precise, one would have to specify definite neighbor-
hoods of the origin on which the equivalences hold (see [9]).

In Figures 2 and 3 we present the computation of 2 for the two examples of
universal unfoldings given in Proposition 1.13.
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H, a=B3/27

1 4

FIGURE 2. X for the pitchfork

¥ <0 ¥ =0 ¥ >0

FIGURE 3. Z for the winged cusp

The drawing for the winged cusp in Figure 3 is given by sections of y = constant.
In each figure the connected components of the complement of = are enumerated.
The perturbed bifurcation diagrams which correspond to the various components
are given in Figures 4 and 5.

C_ S
K{QL

FIGURE 4. Perturbations of the pitchfork



DISCUSSION OF SYMMETRY AND SYMMETRY BREAKING 505
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FIGURE 5. Perturbations of the winged cusp

For an application of the winged cusp in a chemical system see Golubitsky and
Keyfitz [6) or the surveys [12, 13, 28].

2. Bifurcation with symmetry. The imposition of symmetry is a common thread
in the idealization of many problems in classical applied mathematics. For
example, in the planar theory of buckling of a column one implicitly imposes a
reflection (Z,) symmetry in the assumption that buckling to the left or right has
the same potential energy. If one allows the column to buckle in three
dimensional space then one obtains a symmetry group O(2). As another example
thermal convection in the molten inner layer of the Earth is first approximated by
convective fluid flow between two spherical shells. If the rotation of the Earth is
neglected (after scaling it is a “small” parameter) one obtains a problem with
O(3) symmetry. If the rotation is included then the resulting mathematical
problem has SO(2) + Z, symmetry. A third example is the buckling of a
rectangular plate. One obtains a problem with Z, ® Z, symmetry while in the
buckling of a triangular beam one has the permutation group S, (acting as
symmetries of an equilateral triangle) as a group of symmetries. The list goes on
(see Sattinger [19, 20]).

The local steady state bifurcation problems which are derived from the above
examples can, after the imposition of some classical applied mathematics—the
Liapunov-Schmidt method—be reduced to the following situation:

Let g be a germ of a mapping of R” X R — R” based at the origin. Let I' be a
compact Lie group acting linearly on R"—in fact, we may assume that I' C O(n)
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is a subgroup. Then g is a bifurcation problem with symmetry group T if

g(yx,A) =vg(x,A) Vy€eT;
that is, g commutes with T. Let g(l‘ ) denote the space of all germs g which
commute with the action of T'.

The first observation about g(I‘) is that it is a module over the ring of invariant
functions &(T"). More precisely, f(x, A) is in &(T) if f(yx, ) = f(x, A) for all
y € I'. Also, if f is invariant and g is in &(T') then f- g is in &(T). Using theorems
of Schwarz [25] and Poenaru [18] it is possible to calculate this module structure
explicitly for a number of examples. .

(1) T = Z, acting on R. &(Z,) consists of even functions and &(Z,) consists of
odd functions. Hence g has the form g(x, A) = a(u, A)x where u = x2.

(2) T = O(2) acting on R2, &(0O(2)) consists of all smooth functions of the form
f(x* + y*) and mappings g: R? X R - R? in £(0(2)) having the form g(x, y, A)
= a(u, \)(x, y) where u = x2 + y2.

(3) T = S; acting on R?* = =C as symmetries of the triangle. The action of S; is
generated by z —» Z and z — "z where § = 27 /3. Invariant functions have the
form f(u, v) where u =| z|? and v = Re(z*). Mappings g in &(S,) have the form
8(z, A) = a(u, v, \)z + b(u, v, \)z? where a and b are (real-valued) smooth
germs.

In a way analogous to the theory outlined in §1, one can define equivalence and
prove unfolding theories for bifurcation problems with symmetries (see [10].) The
basic definition is

DEFINITION 2.1. Let g and 4 be bifurcation problems with symmetric group T,
i.e. g, h € &(T). Then g and h are I'-equivalent, i.e.

g(x, &) = S(x, A)a(X(x, A), A(A)),

and the equivalence respects I'. Here S(x,A) is an n X n matrix satisfying
S(yx, M)y = v8(x, A) where y € T C O(n) is viewed as a matrix and X(yx, A)=
YX(x, A). Note that S(0,0) commutes with . We put a further restriction on S as
follows. Let L(T') be the group of invertible n X n matrices which commute with
I and let L%T) be the connected component of the identity in L(I"). Assume that
$(0,0) and (d, X)(0,0) are in L°(T") where d,_ X is the n X n Jacobian matrix of X
obtained by differentiation in the x-directions only.

As examples, we describe the bifurcation problems with I'-codimension 0 in the
above cases.

(MT =2Z,,g=(xu=X)x = £x? = \x, the pitchfork.

)T =0Q2), g=(xu=Nx, y) = (=(x2+ y?) = A)(x, y), the pitchfork of
revolution.

B)I'=8;8(z,A\)= Az =372

Note that if g commutes with T then g vanishes on orbits of T. It is therefore
desirable to draw—schematically— the bifurcation diagrams g = 0 in the space of
orbits (see Figure 6). Below each diagram in orbit space we give the diagram in
the appropriate R” X R space. The diagrams for Z, and O(2) symmetry are fairly
obvious. We concentrate on the S, case.
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FIGURE 6. Various codim I' = 0 bifurcation problems

We assume that g: C X R - C has the form
g(z,\) = a(u,v,A)z + b(u, v, A)Z?,

where u =| z|* and v = Re(z*). There are three types of solutions:

(I) The trivial solution z = 0.

(II) Solutions where z and 2 are nonzero and parallel in the complex plane;
that is z3 is real. Note that z* is real on the three lines containing the cube roots of
unity. These lines are mapped onto each other by the group S;. Since g vanishes
on orbits one need only find those solutions when Im(z) = 0. Writing z = x + iy
and setting y = 0 one finds such solutions by solving @ + xb = 0.

(11I) Solutions where z and z? are not parallel are given by a = b = 0. Recall
that the isotropy group of an x in R” is the subgroup 2, = {y €T | Y x =x}.
The isotropy subgroups of solutions of type (I), (II), (III) are S,;, Z,, {1}
respectively. Note that Z, is generated by the element z — Z in ;.

For the normal form g = 72— Az there are no solutions of type (III) as
b =1 % 0 and there is one nontrivial solution of type (II) given by x = A, y = 0.
Thus the orbit space bifurcation diagram is the one in Figure 6. Since each
solution of type (II) has isotropy group Z,, it follows that there are three
solutions in each orbit. Hence the actual bifurcation diagram g = 0 has 4 lines in
R? X R, the trivial line z = 0 and the 3 symmetry related nontrivial lines. The S3
symmetric bifurcation problem given here along with a more degenerate g is
described in [14]. These bifurcation problems also appear in work of Ball and
Schaeffer [1] and Buzano, Geymonat, and Poston [2].

This example leads to some interesting observations about the nature of
spontaneous symmetry breaking which we describe in the next section.

There is one unresolved question which comes directly from the definition of
I'-equivalence.

In applications one would like to make as many germs as possible equivalent
while not changing the inherent structure of the problem. In the case of TI'-
equivalence, the following question arises: “Are there more equivalences of
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bifurcation problems which leave é(l‘ ) invariant than just I-equivalences?” The
answer is surely yes. Let S(x, A) be an n X n matrix in T for each (x, A). Then

(2.1) S(x,}\)_'g(S(x,A)x,)\) =g(x,A)

for every g commuting with I'. Of course such I'-equivalences do not make more
g’s equivalent than were already equivalent by I'-equivalences.

In his thesis [16) Hummel observed that there are equivalences of the form
(2.2) h(x,A) =T(x,\)g(x,])
such that 4 is in g(l‘) whenever g is in g(I‘) yet T does not satisfy the
equivariance condition T(yx, A)y = yT(x, A). That is, T is not a I'-equivalence.
However, he also observed that if 4 and g are related as in (2.2) and I' is compact
then (by integrating over I') one can replace T by an equivariant S. So no new
germs are equivalent.

The question remains: Suppose there is an equivalence pair 7(x, A), Y(x, A)
such that

(2.3) h(x, M) = T(x,A)g(¥(x, A), A)
isin 5( I') for every g in g(l‘ ). Is there a I'-equivalence S, X such that
h(x,A) = S(x,A)g(X(x,A),A)?

We conjecture that the answer is yes. More precisely, let H(I') be the group of
I-equivalences and let %(T) be the group of equivalences as in (2.3) which leave
&(T) invariant. Let T be the group of smooth mappings of (x, A) - I which act
on g trivially as in (2.1). Let S(T) be the group of invertible matrices found by
Hummel which leave &(T') invariant.

Conjecture 1. 5(T) is the (semidirect) product F(I') where J(I') = H(I') X T
x $(I).

We can more or less prove this conjecture in the case of I' = O(2) acting on R?
and will use this fact in §4.

We end this section with a discussion of linearized stability. Consider the
system of ordinary differential equations
% + g(x,A) =0.
An equilibrium solution g(x,, A,) is stable if all of the eigenvalues of the
Jacobian matrix (d,g)(xq, Ag) lie in the right half plane, and unstable otherwise.
We ask the question: “To what extent are the signs of the real parts of the
eigenvalues of (d, g) at solutions invariants of equivalence?” The answer is: To a
greater extent than one might think. Consider the general equivalence as a three
stage process:

(a) g(x, A) — g(x, A(A)),

(b) g(x, A) — g(X(x, A)A),

(©) g(x, A) = S(x, A)g(x, ).
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In stage (a) one just reparametrizes A and does not change the linearized
stability of g. We claim that stage (b) can be converted into stage (c). Consider the
vector field change of coordinates

X,(g) = (dX)'g(X(x, M), A).

At solutions the Jacobian d.(X,g) is similar (as matrices) to d.g and the
eigenvalues are the same. Now write g(X(x,A), A) = (dX)- X,(g). Since the
stability assignment to solution of X, g is the same as that of g we have shown
that stability assignment are invariants of equivalence precisely when there are
invariants of stage (c).

Next observe that if & = Sg, then & = 0 iff g = 0. Moreover, one can compute

(dwh) |h=0 =S (drg) |g=0'

So stability assignments are invariants if whenever one multiplies by an allowable
matrix S, one does not change the signs of the real parts of the eigenvalues of

(d.8)

LEMMA 2.2. When n =1, linearized stability assignments are invariants of
solutions.

PROOF. See Definition 1.1 to recall that whenn =18 > 0.

In general, when n = 2, the linearized stability assignment is not an invariant
of equivalence. It is, however, often an invariant of I'-equivalence.

Observe that the fact that g(yx, A) = yg(x, A) implies that

(2.4) (d.g)(yx, A)y = y(d.g)(x, 7).

Hence, if v is in the isotropy subgroup Z, then (d,g)(x, A) commutes with y. The
same is true for S(x, A) satisfying

S(yx, A)y = vS(x, A).

Suppose now that I acts irreducibly. Then (d,g )0, A) commutes with I'. Suppose
that T acts absolutely irreducibly; that is, the only matrices commuting with T are
multiplies of the identity. Then (d,g)(0, A) is a constant multiple of the identity.
The restrictions on S in the definition of I-equivalence (Definition 2.1) suffice to
show that S is a positive multiple of the identity. Hence the stability assignment
of the trivial solution is an invariant of I'-equivalence.

We consider now the example of S, acting on R? = C. For solutions of type (1)
the isotropy group is Z, where Z, is generated by z — z. The matrix representa-
tion of z - 7 is (} _%) which has distinct eigenvalues. So if (d,g) and S commute
with z — 2 (as follows from (2.2)) they must be diagonal matrices. Since S(0, 0) is
constrained to be a positive multiple of the identity, the stability assignments of
solutions of type (II) are invariants of S;-equivalence. We do not know if stability
assignments for solutions of type (III) are always invariants. However, for certain
singularities they are. (see [14]).
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What one sees here is that the singularity theory of equivariant mappings has
invariants which are present because of the existence of a symmetry group. To our
knowledge, this information has not been exploited in a coherent way.

Problem 2. For which groups I and which representations of I" do there exist
codimension 0 bifurcation problems?

A necessary condition is that the representation of I' be absolutely irreducible.
However, this condition is not sufficient since there are no bifurcation problems
with codimension 0 commuting with the standard action of the dihedral group D,
on R% One should note that there is a bifurcation problem in 5(D4) with
codimension 1, modality 1, and topological codimension 0. Perhaps the above
problem should state that if I' acts absolutely irreducibly then there exist
bifurcation problems with topoplogical codimension 0.

Conjecture 3. The stability assignment of branches emanating from (topologi-
cal) codimension 0 bifurcation problems are invariants of I'-equivalence.

See [3] for another example of a group for which these conjectures hold.

3. Spontaneous symmetry breaking. Suppose g is in ET}(I‘ ) where I is a subgroup
of O(n) acting strongly irreducibly on R”. The symmetry of a solution x is usually
defined to be the isotropy subgroup =,. Note that =, =T; that is, the trivial
solution x = 0 enjoys the full symmetry of the group, and since I acts irreducibly,
g(0, A) = 0. One usually speaks of spontaneous symmetry breaking in the follow-
ing context. Suppose there is a singularity of g at the origin and suppose the
trivial solution is stable (in the dynamic sense) for A <0 and is unstable for
A > 0. Then, as A is varied through 0, the system jumps to a new state x # 0
(which we assume to be an equilibrium point of the system). This new state will
have an isotropy subgroup which is not T'; that is, the new solution will have less
symmetry than the old. The symmetry has broken spontaneously.

One can see this process occurring in the simplest situations. Consider the
buckling of an Euler column. In the planar model the vertical column enjoys Z,
symmetry before it buckles and no symmetry after. In the 3-dimensional model,
the column enjoys O(2) symmetry before it buckles and no symmetry after.

It is an interesting problem to determine in advance what the likely symmetries
are after bifurcation. The singularity theory response is somewhat surprising. The
suggestion is that one will bifurcate to a solution which has an isotropy group
corresponding to a solution appearing on a branch from a codimension zero
bifurcation problem. The following example should help in understanding this
last statement.

Consider the implication of this statement for the example of S, acting on C.
The set of points z € C which have isotropy group (1} is open and dense in C
(being the complement of the three lines Im(z?) = 0). Yet the prediction here is
that the initial bifurcation will be to a solution which enjoys Z, symmetry. The
reader is referred to the four papers [14, 1, 2, 4] where exactly this fact is observed
in different physical contexts.
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The problem to which this observation leads is: Classify the isotropy groups
which correspond to solutions of (topological) codimension 0 bifurcation prob-
lems. A natural conjecture given the examples we have computed is the following,
Consider the lattice of isotropy subgroups of I' ordered by inclusion. Then
solutions to (topological) codimension 0 bifurcation problems have isotropy
subgroups which are maximal subgroups in this lattice.

4. Symmetry breaking in the equation. At the beginning of §2 we listed several
examples where the process of idealization introduces an exact symmetry into the
mathematical formulation and where that exact symmetry is not present in the
original problem. For example, a column is never completely symmetric; the
Earth is not really spherical; and rotation of the Earth is a small but not entirely
negligible parameter. In such a situation it is not sufficient to just analyse the
ideal symmetric problem; one also has to analyse the perturbed problem where
the perturbation breaks symmetry. Exactly how to proceed with such a theory for
symmetry breaking is not clear. The main point here is that when a bifurcation
problem commutes with a continuous group I" then it has infinite codimension
with respect to perturbations which destroy this symmetry. In this section we
outline a suggestion for how to handle such problems. In addition, we present the
results of one calculation which indicates that the suggestion is reasonable.

When T is a finite group then bifurcation problems in &(T') which have finite
I'-codimension have finite codimension when the group structure is ignored. For
example, the pitchfork x* — Ax has Z,-codimension 0 and codimension 2. In §1
we described the universal unfolding of the pitchfork (see Figures 2 and 4). It
should be clear from Figure 2 that although regions (1)-(4) occur as small
perturbations of the pitchfork, there should be some sense in which regions (1)
and (2) are more likely. That is, the most frequently observed perturbations of the
pitchfork should be those which come from regions (1) and (2) (see Figure 7). We
have inserted the appropriate stability assignments on the diagrams in Figure 7,
having proved in §2 that they are invariants of equivalence. One way to formalize
this observation is to note that if g(x, A, u) is a 1-parameter family of bifurcation
problems, depending on g, such that at p =0 g(x,A,0) = x> — Ax, then g
corresponds (via the unfolding theorem) to a curve through the origin in the af
plane of Figure 2. If this curve satisfies the genericity condition that it is
transverse to « = 0 then the bifurcation diagrams observed when u # 0 will be
those of Figure 7. Also note that any such curve will be stable to small
perturbation—as long as it is forced to go through the origin.

I U S

1 Pitchfork 2
FIGURE 7
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Now for a continuous group I' one does not have the universal picture of
Figure 2 since the symmetric problem has infinite codimension. So one purpose of
the following definition is to finesse the problem of infinite codimension. We
consider families of bifurcation problems g(x, A, 1), g:R* X R X R - R" where
for p = 0 g commutes with a group I' and for g # 0 g commutes with a subgroup
A of T'. Two such families g and 4 are equivalent if

(4.1)  glx, A, 1) = S(x, A, p)A(X(x, A, ), A, ), pM(X, 1))

where for p =0 (4.1) defines a I'-equivalence and for u # 0 (4.1) defines a
A-equivalence. We make two observations about (4.1). First, the form of the
change of coordinates in g, namely, p — pM(A, p), is given so that p =0 is
preserved. Second, we really want to assume that g(x, A,0) = hA(x, A,0) though
we need not demand that the equivalence at g = 0 is the identity equivalence.

For the case of the pitchfork, we have been able to show that the formal
tangent space to g(x, A, p) = x> — Ax + pg(x, A, p) where g(0,0,0) # 0 relative
to the equivalence in (4.1) has codimension 0. This suggests the phrase that the
“stable ways to break symmetry in the pitchfork™ are given in Figure 7.
Unfortunately if one makes the same computations for I' = O(2) and the pitch-
fork of revolution, one finds that the formal tangent space always has infinite
codimension.

One can remedy this situation by returning to the enlarged group of equiva-
lences for &(T') described in §2; namely K(T'). For example, consider the rotation
of the plane through angle 8, R,. Let

(4.2) glx, yo A, 1) = (u—A)(x, y) +pg(x, y, A, 1)

where u = x? + y?; that is; g is a family which breaks the O(2) symmetry of the
pitchfork of revolution. Observe that R_;g(Re(x, y), A, p) = (u — A)(x, y) +
R _4q(Ry(x, y), A, p). The action of R, on ¢ may be nontrivial even though the
action of R, on the pitchfork of revolution is trivial as in (2.1). This computation
leads to the following definition.

DEFINITION 4.1. Two families g(x, A, p) and A(x, A, p) are equivalent if

(4.3)  glx, A p) =S(x, A, wh(X(x, A, p), A(A, 1), pM(A, p))

where for p = 0 the equivalence (4.3) is in F(T) and for p # 0 the equivalence
(4.3)is in K(A).

With this generalized definition of equivalence one can show that the formal
tangent space corresponding to (4.2) has codimension 0 if ¢(0,0, 0, 0) is a nonzero
vector in R?,

Calculations by J. Damon [30] prove that the unfolding theory for such families
is valid. In particular, this fact implies that there is a stable way to break
symmetry for the pitchfork of revolution—even though this bifurcation problem
has infinite codimension.
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One can compute the bifurcation diagrams associated to this stable g for p # 0
and they are given in Figure 8. Note that the perturbed diagrams are the same as
those for the pitchfork but the stability assignments are different. In particular,
there must be a zero eigenvalue corresponding to a solution on the pitchfork of
revolution. (In general, for g € &(I") there are dim(I'/Z ) zero eigenvalues for
the Jacobian (d, g)(x, A) if g(x, A) = 0.) Also, on the trivial branch two eigenval-
ues cross zero. We have indicated the signs of the eigenvalues in the diagrams in
Figure 8 by s for stable (real part > 0), u for unstable (real part < 0), and 0 for
real part equal to 0.

Note that one now has an interesting difference between the planar theory for
column buckling (Z, symmetry) and the three-dimensional theory (O(2) symme-
try). In the first case after symmetry is broken there are two stable equilibrium
solutions corresponding to buckling left or buckling right. If the column buckles
left one can “kick” it through to the other stable state. In the O(2) case there is
only one stable equilibrium after symmetry is broken. Suppose the column
buckles in some direction, let us call it left. Now if you “kick” the column
through to the buckled right state it should slowly rotate back to its original
equilibrium (following the ghost of the pitchfork of revolution).

There are some surprising consequences of this calculation which were brought
to our attention through discussions with J Guckenheimer. Consider (4.2) with

(4.4) q(x,y,ku)=((l))+M(_01 (l))(;)

where M is a constant. Since ¢(0,0,0,0) # 0, the bifurcation diagrams of this
problem are those depicted in Figure 8, with three equilibria for A > 0. However,
for A sufficiently large there is only one rest point of the flow, a source, which is
encircled by a periodic orbit along the ghost of the original pitchfork of
revolution. The two flows are sketched in Figure 9, and the global bifurcation
diagram for g > 0 in Figure 10. (N.B. There are no self-intersections in Figure
10.) The transition between flows at A = A, (notation of Figure 10) occurs when
the saddle and the sink in Figure 9a approach one another, merge, and finally
disappear, thereby transforming the saddle-sink connections of Figure 9(a) into
the periodic orbit of Figure 9(b). The surprising fact is that A\, » 1/M? as p — 0;
A, does not tend to 0 as p — 0, so the periodic orbit lies outside the scope of a local
theory. Of course if M is large, A, is close to zero; in our opinion, the natural way
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to treat such a problem with local methods is to break symmetry in two steps, wth
separate parameters for each step. The first perturbation, here the M( _‘,’{))(;)
term, would preserve SO(2) symmetry. The second, the (})) term, would destroy all
symmetry but would also be much smaller than the first. We have not pursued
these ideas yet.

One calculation does not make a theory. Nevertheless, these calculations

suggest that Definition 4.1 is a good place to start in developing a theory for
symmetry breaking of the equation.
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