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Abstract 

In this paper we analyze the steady-state bifurcations from the trivial 
solution of the reaction-diffusion equations associated to a model chemical 
reaction, the so-called Brusselator. The present analysis concentrates on the case 
when the first bifurcation is from a double eigenvalue. The dependence of the 
bifurcation diagrams on various parameters and perturbations is analyzed. The 
results of reference [-2] are invoked to show that further complications in the 
model would not lead to new behavior. 

1. Discussion of the problem 

In this paper we consider the one-dimensional reaction-diffusion equations 
associated with the so called tri-molecular model of LEFEVER & PRIGOGINE 
[1], less formally known as the "Brusselator". For the parameter range in which 
we are interested, this system exhibits bifurcation from a spatially and tem- 
porally homogeneous solution into steady-state, spatially inhomogeneous so- 
lutions. The first bifurcation may be from either a simple or a double eigen- 
value. Several authors [1, 5] have discussed the case of a simple eigenvalue, but 
rather less seems to be known about the non-simple case. Here we analyze the 
bifurcations of this system at the double eigenvalues as an application of the 
theory developed in [2, 3]. We obtain a rather complete classification of the 
possible bifurcation diagrams in the vicinity of such points. Some of our results 
were obtained earlier by KEENER [-6] by less rigorous method - his results are 
compared with ours at the end of w 1, 

The relevant equations for this model are 

~ y  3 2 X  X 2 
~ - : D l ~ 2  + Y - ( B + I ) X + A  

(1.1) 
8Y 82Y X2 
Ot = D 2 ~ 2  - Y + B X  
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subject to boundary conditions of Dirichlet type 

(1.2) X(0) = X(u) = A, Y(0) = Y(u) = B/A. 

Here the unknown functions X and Y are chemical concentrations, A and B are 
constant, externally controlled concentrations, and DDD 2 are diffusion coef- 
ficients. B plays the role of the bifurcation parameter; that is, we are interested 
in the bifurcation of new solutions of (1.1), (1.2) from the trivial solution 

(1.3) x=A,  Y=B/A 

as B is increased. To facilitate the analysis we define incremental variables 

u = X - A ,  v= Y - B / A ,  

we use the vector notation w=(u,v). These variables satisfy the 

0w 
- - = L w +  N(w) 
at 

for which 
equation 

(1.4) 

where 

(1.5) 

and 

(1.6) 

Both 

a2 (B-BI A2 L=(  D1 O02) ~2 7 t- _ a  2 ) 

time independent and time periodic solutions of (1.4) can bifurcate 
from the zero solution of this equation, depending on the various parameters. 
However if D 2 is rather larger than D 1, say D2/D 1 is at least 3, then the first 
bifurcation gives a time independent solution. (See [1] for proofs.) We consider 
only this case. 

Bifurcation of a steady state solution of(1.4) can only occur if the linear operator 
L in (1.5) is singular. To avoid confusion let us say explicitly that L operates on 
C~ ~],IR 2) with homogeneous Dirichlet boundary conditions. Since L com- 
mutes with (a/0~2), the eigenfunctions of L may be sought in the form 

where a, b are constants and 1 is an integer. The two eigenvalues of L associated 
to eigenfunctions of the form (1.7) are eigenvalues of the matrix 

A 2 (1.8) (B-I_B-12DI_ A2ll2D2 )" 
Zero is an eigenvalue of (1.8) if and only if B = B  l, where 

D1 2 A2 
(1.9) B, = 1 +~22 A +D  1 12 +D2 1~. 
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Thus the first bifurcation point of (1.4) is given by 

(1.10) minB t. 
l 

For most values of the parameters in the problem this minimum will be 
achieved for exactly one value of l, and then the first bifurcation will be from a 
simple eigenvalue. However if 

(1.11) A 2 ~- D 1D 2 kZ(k --~ 1) 2 

for some integer k, then the minimum in (1.10) is achieved at both l=k and l=k 
+ 1, and the eigenvalue is double. In other words, when the zero solution of (1.4) 
first loses stability, it loses stability simultaneously with respect to disturbances 
of wave number k and of wave number k +  1. This is the case we study in the 
present paper. 

Our task of analyzing the bifurcations of (1.l), (1.2) near a double eigen- 
value may be conveniently divided into two steps. It turns out that (in non- 
degenerate cases) either one or three new solutions bifurcate from the trivial 
solution at a double eigenvalue, and various combinations of stability or in- 
stability for the new solutions are possible. In all there are five different cases. 
Our first problem is to determine which case occurs as a function of the 
parameters A, D l, O 2. (Only two of these are really independent, as the 
requirement that a double eigenvalue occur leads to the condition (1.11).) The 
second step in the analysis is to study the effect of various perturbations on the 
bifurcation. There are two natural perturbations to consider in this connection. 
One is to change A, D 1, O 2 from unperturbed values which satisfy (1.11) exactly 
to perturbed values which satisfy (1.11) only approximately. Observe that, no 
matter what the values of these parameters, (1.3) still provides a spatially and 
temporally homogeneous solution of (1.1), (1.2). The effect of this perturbation is 
to split the double eigenvalue, so that two separate bifurcations from the trivial 
solution occur, both at simple eigenvalues. This perturbation induces secondary 
bifurcation away from the trivial solution. The other perturbation we consider is 
to replace the parameter A in (1.1) by the function 

coshW(  
(1.12) A(~)=Ao , 

cosh 1/~, 

which is motivated by the following considerations. In the derivation of (1.1) it is 
assumed that A measures a chemical concentration which is fixed by the 
experimenter. In practice concentrations can only be fixed at the boundary of 
the domain; in the interior the concentrations will be determined by solving a 
boundary problem 

?2A 
O~--~--eA=O on (0,~) 

A(0)  = A ( u )  = A o, 
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which has solution (1.12). Here e measures the rate at which A is depleted 
relative to its diffusivity. When ~=0, (1.12) reduces to the previous case, but 
when e > 0  an explicit, trivial solution of (1.1) analogous to (1.3) is no longer 
available. Indeed, as a result of this perturbation there may exist a range of B 
where (1.1) has no steady state solutions, spatially homogeneous or otherwise, at 
least not in the neighborhood of (1.3). The effect of this perturbation is similar to 
the effect of imperfections on bifurcation at a simple eigenvalue. (See for 
example [2, 9].) 

There is an important symmetry present in (1.4) that restricts considerably 
the possible behavior in this problem. Namely (1.4) commutes with the reflection 

(I.13) Rw(~)=w(g-~). 

In other words, no change in (1.4) occurs if one makes a coordinate transfor- 
mation 4 ' = g - ~  which interchanges right and left endpoints of the interval. 
Observe that 

Rsinl~=(--1)l+lsinl~. 

Thus one of the two eigenfunctions of L at the double eigenvalue is even and 
one is odd. The two perturbations of the problem mentioned above also 
commute with (1.13). 

We study the equilibrium equation associated to (1.4), namely 

(1.14) Lw+ N(w)=O, 

by means of the Lyapunov-Schmidt reduction. (See w for details.) At a double 
eigenvalue this procedure reduces (1.14) to a system of two equations in two 
unknowns, depending on a parameter. Let us write the reduced equations 

(1.15) __G(_x, 2) = 0 

where __G: ~,.2x IR " ')  ]R 2. Here _x=(x,y) parametrizes the kernel of L and 2 = B  
- B o ,  where B o is the bifurcation point. Our notation in (1.15) does not indicate 
explicitly the other parameters in the problem. We will show below that at a 
double eigenvalue the reduced equations may be written 

(1.16) 
[x2--F rl y2 + ).x] 

__G(_x,~.)= \ cxy+,~y ]' 

where c e ~  and tl= _+1. (This equation holds modulo cubic terms, and in 
nondegenerate cases the cubic terms may be transformed away by a change of 
coordinates.) The symmetry of (1.14) with respect to the transformation (1.13) is 
reflected in the fact that the first component of (1.16) is even with respect to y 
while the second is odd. Thus the bifurcation diagram 

(1.17) {(x__, 2)e lR 2 x IR: _G_G(_x, 2 ) = 0 }  

is invariant under the reflection y ~ - y .  
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The first step in our analysis is to compute the coefficients c and q in (1,16) as 
functions of the various parameters in the problem. It is then a simple matter to 
determine the type of the bifurcation diagram by invoking the classification 
results of [3]. (Strictly speaking to obtain the stability properties of the bifur- 
cation solutions the arguments of [3] must be supplemented, which is done in 
w167 and 7 of the present paper.) This solves our first problem, that of describing 
the bifurcation diagrams at the double eigenvalue proper. For the perturbed 
problems we again refer to [3], this time for a result that an arbitrary small, 
symmetry preserving perturbation of (1.16) may be described, up to a certain 
equivalence, by two parameters. In more technical language, an appropriate 
universal unfolding of (1.16) requires two parameters. (See w for greater detail.) 
The fact that two parameters suffice depends strongly on the presence of the 
symmetry (1.13) - without this, five parameters would be required [2]. The two 
parameters of the universal unfolding may be identified with the two per- 
turbations of the physical problem discussed above. The fact that two parame- 
ters suffice for the unfolding means that additional perturbations of (1.4) - one 
might for example treat B as a variable concentration, partially depleted in the 
interior, or one might consider boundary conditions other than (1.2) - would not 
lead to more complicated behavior than that already obtainable with the two 
perturbations considered. 

This paper has much in common with KEENER [6], a reference kindly 
brought to our attention by W. H. RAY. We feel that our paper sheds new light 
on the subject on several accounts, quite apart from questions of rigor. Perhaps 
most important, the existence of a universal unfolding with a known, finite 
number of unfolding parameters ensures that the sort of parameter exploration 
undertaken in these papers is a terminating process - although new com- 
plications may be introduced into the model indefinitely, no qualitatively new 
behavior will result after the parameters of the universal unfolding are repre- 
sented. Secondly, the present paper emphasizes the importance of symmetry in 
this problem, without which a number of qualitatively new phenomena could 
occur. For example the occurrence of secondary bifurcation depends on sym- 
metry. Consider a perturbation of the reduced equation (1.16) of the form 

(1.17a) G(_x, 2) + M_x, 

where M is a 2 x 2 matrix. Such perturbations do not affect the existence of the 
trivial solution x = 0  but (in general) so split the double eigenvalue. It can be 
shown that if, say c <0  and r/= + 1, then secondary bifurcation occurs for the 
perturbed problem if and only if M is upper triangular (non-zero diagonal 
entries permitted). Here bifurcation means the crossing of solution branches, not 
merely the existence of a limit point. The first perturbation discussed above, 
namely moving A, Di, D 2 slightly away from values satisfying (1.11), may be 
represented in the form (1.17a), where however the fact that the perturbation 
preserves symmetry implies that M is diagonal. In particular M is upper 
triangular, so secondary bifurcation does occur. Of course for a symmetry 
breaking perturbation no such special form may be expected. A final difference 
between [6] and the present paper is that we consider the two distinct per- 
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(1,2) 

(2~3) 

(3,~) 
(~,5) 
(5,6) 

A 

Fig. 1.1 

turbations - KEENER does not consider (1.12). From our point of view it is 
natural to try to find physical representations for both of the unfolding parame- 
ters in the universal unfolding, not to mention the considerable physical interest 
of (1.12). 

The following notation will be used throughout this paper. Let O=D2/D ~ 
and let ,4=O-~A. Equation (1.11) may be re-written 

(1.18) A =  k(k + 1) D, 

where D without a subscript indicates D~. In Figure 1.1 the lines labeled (k, k+  1) 
indicates the lines in the (A,D) plane where (1.18) is satisfied. Between the lines 
(k - 1, k) and (k, k + 1) the first eigenvalue is simple and the associated eigenfunc- 
tion has spatial dependence sink~. If (1.18) is satisfied, the first bifurcation oc- 
curs when 

(1.19) B=(I  + DIzO(I + D#2), 

where ~t 1 - k  2 and/~2 = ( k +  1) 2. 

2. Statement of  results 

In this section we present our main results, deferring the proofs for later 
sections. Illustrations of the bifurcation diagrams, as defined by (1.17), offer the 
most convenient format for this presentation. Some comments about Figures 
2.2-4 below may help in their interpretation. These figures are intended to 
represent three dimensional bifurcation diagrams, the three coordinates being 2, 
the bifurcation parameter; x, the amplitude of the eigenfunction whose profile is 
symmetric with respect to (1.13); and y, the amplitude of the anti-symmetric 
eigenfunction. The orientation of these coordinates shown in Figure 2.2 is 
retained throughout. The "Y" or diamond shaped figure at the ends of some of 
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these bifurcation diagrams is intended as an aid to visualization and does not 
represent part of the diagram itself. In Figure 2.2 we have shown the bifurcation 
diagrams of the unperturbed problem as a union of straight lines through the 
origin. Here " T "  denotes the trivial solution, which coincides with the )~-axis. 
The branches labeled T and 1 span the plane of symmetry {y=0}, while 
branches 2 and 3, when present, are located symmetrically in a plane {c x + 2  
=0} perpendicular to the plane of symmetry. (Cf. (1.16).) In the perturbed 
diagrams, Figures 2.3 and 2.4, we have labeled the solution branches far away 
from the bifurcation point by the closest solution branch of the unperturbed 
problem. In all cases the perturbed diagram consists of two conic sections, the 
branches T and 1 lying in the plane {y=0}, the other branches lying symmetri- 
cally in a plane {c x +.~-- const}. 

In our bifurcation diagrams the various solution branches have stability 
assignments determined by the spectrum of the linearized equation. We claim 
that at most two eigenvalues of the linearized equations lie in the unstable 
(right) half plane - this follows by perturbation theory from the observation that 
the unperturbed problem has a double eigenvalue at zero and the remaineder of 
its spectrum lies in a half plane {(: R I G <  -~}, where ~>0. In the figures we 
indicate the three cases of zero, one, or two eigenvalues in the right half plane by 
labels +s,  - ,  +u,  respectively. Here the sign gives the Leray-Schauder degree, 
while the letter distinguishes between the stable und unstable cases with positive 
degree. 

We should caution the reader that our representation of the bifurcation 
diagrams is purely local. It is known [1] that for sufficiently small ). the solution 
of (1.4) is unique and that for 2 bounded the solutions satisfy an a priori 
estimate. Thus the bifurcation solutions must turn around in the large, as 
indicated in Figure 2.5 for the unperturbed case I 0 (notation defined below). 

First we consider the unperturbed case when (1.18) is satisfied exactly. As 
mentioned above, either one or three non-trivial solutions of (1.4) may bifurcate 
from the trivial solution at the double eigenvalue. If one new solution bifurcates, 
it may be either unstable or stable, while if three such bifurcate, either zero, one, 
or two of them may be stable. We refer to these cases as I o, 11, I I I  o, 1111, I I I  2 
respectively - the Roman numeral indicates the number of bifurcation solutions 
and the subscript the number of them which are stable. It turns out that which 
case occurs depends on /1  and D but not on 0. The type of the bifurcation as a 
function of these two parameters may be determined from Figure 2.1, where we 
have identified two sets of five regions in the A, D plane in which different 
behavior obtains. The two different partitions correspond to k odd or even. 
Equations for the boundaries of these regions are given in w We have sketched 
in Figure 2.2 bifurcation diagrams for each of the five cases. (In this paper we do 
not consider the degenerate cases when (/1, D) lies on the boundary between two 
regions in Figure 2.1.) 

We now consider the effects of changing the parameters A and D, the first of 
our two perturbations. (As above the bifurcation diagram does not depend on 0.) 
If (ft,, D) varies along one of the lines (k, k + 1) in Figure 2.1, no qualitative change 
in the bifurcation diagram will occur unless (,4, D) crosses into a different region. 
(This is of course a local statement - the size of the neighborhood in which it is 
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k odd 

(o,1) 

a) 

k even 

~o,1) 

~ 1 , 2 )  
Q 

(1.o) g. 
D 

@ | 

c~,~l / / c2.31 
\ / / iii, 
0 \ / 0  I11o 

~ ,  ~ / "  16,7) 

(~,o) 

Fig. 2.1 

valid decreases as the boundary is approached.) Thus only one of these parameters 
has a qualitative effect on the nature of the bifurcation diagram. Let us take 6, 
the change in D. Making 8 non-zero splits the double eigenvalue into two simple 
eigenvalues, causing secondary bifurcation. We illustrate the effect of this 
perturbation for the five cases above in Figure 2.3. The diagram depends on the 
sign of cS and the parity of k as indicated. Note that the 2-axis, representing the 
trivial solution, is a part of all these diagrams. Of course the effect of the 
perturbation is strongest near the center of the diagram - although the per- 
turbation is uniformly small throughout the interval, the unperturbed problem 
is rather singular near the double eigenvalue proper and hence more sensitive to 
perturbations. Perhaps the most noteworthy feature of these diagrams occurs in 
Figure 2.3b 1. (Let us remark that the circle in this diagram lies in a plane 
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Fig. 2.2c. Unperturbed I I I  o 

1 

2~ +u 

T L 
T 

+s ~ 2  

1 
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q 

+u  - -  T 

T §  

1 
Fig. 2.3a 1. Io, ( -  1)k~>0 

1 

+u T 

T 

1 

Fig. 2.3a 2. Io, ( -  1)ks<0 

§ - 

Fig. 2.3b 1. 11, ( -  1)k6>0 

+U 

- _ §  

+ 5  

Fig. 2.3b 2. I~, ( -  1)k6 < 0 

perpendicular to the two lines, as also in Figure 2.3a.) The solution branch that 
originates from the first bifurcation exists only for a small interval above the 
bifurcation point before it is reabsorbed by a secondary bifurcation. A similar 
phenomenon occurs in Figure 2.3e 2. It is also worth remarking that the first 
bifurcation can be either super-, trans-, or sub-critical. 

As to the second perturbation, we have sketched in Figure 2.4 the bifur- 
cation diagrams which result from taking e > 0  in (1.12). The outcome depends 
on the region and on the parity of k in a somewhat confusing manner. For 
example, the unperturbed diagrams when (/1, D) belongs to region 1 or 5, k odd 
or even, are all the same, namely 1111; above if 64=0 the perturbed diagram 
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2 

3 2 

1 

Fig. 2.3c 1. IIio,  ( -  1)k6>o 

3 
1 _ 2 

y1~ _~.~t~ y 

3 

Fig. 2.3c 2. I I I  o, ( -  1)k6 <0  

I 

2 ~  ~ +u _T 
T +s - ~ 2  

I 
Fig. 2.3d 1 . I I I  l, ( -  1)k0 >0  

1 

2 

T .s 7 

1 

Fig. 2.3d 2. 1111, ( -  1)k~<0 

depends on the parity of  k but not  the region, while here if e > 0  the diagram 
depends on the region but  not  the parity of  k. 

Negative values of  ~ would lack physical significance. As it happens, however, 
for the various unper turbed diagrams of  type III ,  the diagram which would 
result if e < 0  occur anyway for (A, D) in a different region and k of  the opposite 
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Fig. 2.4a 2. Io, unphysical 
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Fig. 2.4b 1. 11, unphysical 
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Fig. 2.4b 2. 11, g > 0  
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§ 

Fig. 2.4c 2. I I io ,  e>O, k odd 
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1 

T +s 

+u T 

1 

Fig. 2.4d 1. 1111, e > 0 ,  region 5, k odd or even 

1 

1 

Fig. 2.4d 2. lllpe>O, region 1, k odd or even 

2 3 

+u T 

3 

Fig. 2.4e~. 1112, ~>0 ,  k odd 

2 3 

+T +S 

~ -,4 ~ ~ . ~ - - ~ ) x  
3 2 

Fig. 2.4e z. llIz,~>O,k even 
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+.5 

f 

§  

Fig. 2.5. Behavior in the large 

parity. This diplication does not occur for the cases I 0 or 11. We have none the 
less included the diagrams for e < 0  with the label "unphysical", since these 
diagrams could well appear if the perturbation were caused by some other 
mechanism without a definite sign, as for example imposing boundary con- 
ditions slightly different from (1.2). We do not analyze such possibilities here, 
but only mention that no matter how complicated the perturbing mechanism 
(assumed symmetric),the diagram which results is determined qualitatively by the 
values of the two parameters in the universal unfolding of (1.16). (See [2] 
concerning non-symmetric perturbations.) This consideration gives the diagrams 
here a greater significance than otherwise apparent. 

By far the most interesting of these diagrams is that of Figure 2.4e 1. (We 
caution the reader not to try to imagine a surface spanned by solution branches 
1 and 2 or 1 and 3 - rather think of 2 and 3 as lying in a plane cx+)L=0.)  Here 
the two non-trivial solution branches of positive degree change from unstable to 
stable as 2 is increased, without ever encountering a zero eigenvalue - in other 
words, they undergo a Hopfbifurcation! As mentioned above a Hopf  bifurcation 
can sometimes occur from the trivial solution in the unperturbed problem, but 
only at much larger values of B; indeed the Hopf bifurcation of Figure 2.4e 1 can 
occur for parameter values where the unperturbed problem does not admit any 
Hopf  bifurcations. Because the eigenvalues must be close to zero, the period of 
the associated limit cycles will be large, specifically O(~-1/2). 

Finally, let us suppose that both 6 and e are non-zero. Then there exist six 
regions of the 6, e plane where the perturbed diagrams exhibit different struc- 
ture, as indicated in Figure 2.6 for the case I I I  o. Note that regions 1, 2, 4, and 5 
in the figure only contain points (6, e) for which ~=0(62).  We feel that regions 3 
and 6 must be regarded as the generic cases, since points (6, e) whose com- 
ponents are of the same order will belong to these regions. The diagrams 
corresponding to regions 3 and 6 are those illustrated in Figures 2.4c 1 and 2.4c 2, 
respectively; the diagrams corresponsing to the four thin regions are required to 
effect the transition between regions 3 and 6. It is quite possible to imagine 
situations where these transition diagrams are relevant, but we suspect that their 
detailed structure is too specialized for the model at hand. We refer the 
interested reader to [3] for a more complete discussion. 
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+ 
Fig. 2.6 

3. Review of the classification results of [3] 

In the next section we will apply the Lyapunov-Schmidt reduction to the 
equilibrium equation (1.14) and will obtain a system of the form 

(3.1) 
a x z + a2 y2 q._ b l 2x  = 0 

a 3 x y + b 2 2 y = O ,  

at least modulo cubic terms. These equations represent the most general reduced 
equations at a double eigenvalue for a system governed by a quadratic non- 
linearity and possessing the symmetry 

(3.2) 

where J is the matrix 

J G ( J x ,  2)=G_(x, 2), 

 -(10 _~ 
In this section we recall some of the definitions and results of [-3] concerning the 
classification of such problems. 

Let G,H:  ~2)< ~_~....~2 be two reduced bifurcation problems, defined near 
the origin. We shall call G and H contact equivalent if there exists an invertible, 
2 x 2 matrix-valued function zx, x and a diffeomorphism on IRZx lR of the form 
(x, 2)~---,(p(x, 2), A(2)) such that 

(3.3) /-/(~, ~)= ~ .  o(p(~, ,~), A (,~)). 

We are primarily interested in bifurcation diagrams such as (1.17), and it is clear 
that the bifurcation diagram of G is not changed at all by multiplication by an 
invertible matrix. The diffeomorphism (p ,A)  represents only an inessential 
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change of coordinates in the problem, which will not change the qualitative 
nature of the bifurcation diagram. These remarks are intended to motivate our 
definition. (In general transformations such as (3.3) can change the stability 
assignments of the various solution branches in a bifurcation diagram. However 
the degree of a solution branch is well defined since we require that vxa and dp, 
the differential of p, have positive determinants. We ignore the stability issue for 
the time being, returning to it in w 

The above definition neglects the symmetry of (3.1). The appropriate coor- 
dinate transformations (p, A) which preserve symmetry must satisfy (3.2) and the 
matrices ~xa must satisfy 

(3.4) j -- 1 72jx ' 2'. j = 7~xa" 

(In practice (3.4) simply means that the diagonal entries of r are even functions 
of y; the off diagonal entries, odd . )We shall call two problems G and H 
equivar iant ly  contact  equivalent  if (3.3) is satisfied and all functions have the 
appropriate symmetry. Usually we abbreviate this phrase to equivalent .  

It is shown in [3] that the classification of problems of the form (3.1), up to 
equivalence, depends only on 

b l a 3  
(3.5) c -  and q =sign(a 1 a2). 

b z  a l  

In other words (3.1) is equivalent to (1.16), where c and q are given by (3.5). The 
type of the bifurcation diagram as a function of the parameters c and t/is given 
in Figure 3.1. Strictly speaking any two problems of the form (1.16) with 
different values of c are inequivalent, but in practice the qualitative features of 
the bifurcation diagram are unchanged if c remains within one of the intervals of 
Figure 3.1. Moreover, provided c avoids the boundaries of these intervals, the 
higher order terms that were neglected in writing (3.1) may in fact be transform- 
ed away be an auspicious choice of ~, p, A. 

c<O O<c<l  c > l  

~1 = + 1 I o I o 1111 
11 = - 1 I I I  o 1112 11 

Fig. 3.1 

Reference [-3] also considers perturbations of (3.1), in terms of the following 
specific definition. By an unfolding of a bifurcation problem G: lR 2 x ]R----~]R 2 we 
mean a smooth map F: ]R_Zx lR X ]Pxl----~ 2 such that F(x ,  2,0)=G(x, ~). The l 
variables in the third argument of F will be called unfolding parameters. We 
show in [3] that 

(3.6) 
IX2 -~- f ly  2-~- 2X +~x 

_F(x, 2, ~, fl, 7)= \ ( c + 7 ) x y + ( 2 + f l ) y ]  
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is a universal unfolding of (1.16) relative to equivalence, assuming c=t=0, 1. This 
means in particular that given an unfolding of (1.16) of the form F ( . ,  . , e ) = G  
+ e l l ,  there exist smooth functions ~(e), fl(e), 7(e), defined for small e, such that 
G o + e l l  is equivalent to F( ' , ' ,~(e),f i(e),7(e)) .  See [3] for a more thorough 
discussion of these issues. 

The reader will note that our universal unfolding (3.6) contains three 
unfolding parameters, while we indicated above that two parameters suffice to 
describe perturbations of (1.16). The explanation of this discrepancy is as 
follows. The parameter  c determines the overall character of the bifurcation, but, 
as noted above, once it is restricted to one of the intervals in Figure 3.1, small 
changes in this parameter  do not affect the qualitative nature of the bifurcation. 
Thus we regard 7 as an inessential parameter  for out present purposes. 

The following table indicates the correspondence between the notation of the 
present paper and that of [3] in naming the various cases which arise. 

Present notation I o 11 I I I  o I I I  a 1112 

Notation of [3] 2h 2e 4e 0 4h 4e~ 

Fig. 3.2 

4. The Lyapunov-Schmidt reduction for the unperturbed case 

Let us begin our discussion with some comments about the interpretation of 
(1.4) and its associated equilibrium equation (1.14). We consider (1.4) as an 
evolution equation on the Banach space X = C~ n], IR2). We could of course 
regard Las  an unbounded linear operator on X with domain 

D= {w~ C2([0, rd, ~2): w(0)= w(r0 = 0}, 

but we prefer to regard L as a bounded linear operator  L: D--+X, where D has 
the C 2 topology. Moreover  N, considered as a map from D into X, is C ~ 
Fr6chet differentiable - indeed N is already smooth considered as a map from 
X into itself. Thus the right hand side of (1.4), namely L + N ,  defines a C ~ 
mapping ~b: D-+X.  Note that (d~b)o=L, which is a Fredholm operator  of index 
zero. 

Let X o = k e r L  and X l = r a n g e L .  We shall assume below that X admits the 
decomposition 

(4.1) X = X o @ X  1. 

This means that all the generalized eigenfunctions of L associated to the 
eigenvalue zero already belong to ke rL;  in other words, ke rL  z = k e r L .  We also 
suppose that the spectrum of L restricted to X 1 is properly contained in the 
stable half plane, say 

(4.2) cr(L]X i) c {~: RIG < - e} 
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where e>0 .  Since Xo~D,  it follows that D=Xo@D1,  where DI=Dc~X 1. Also, 
L: D I o X  1 is a linear isomorphism between the two Banach spaces. Let Eo,E 1 
be the projections associated to the decomposition (4.1). 

In the Lyapunov-Schmidt  reduction one eliminates all but a finite number  of 
components of w in (1.14) by inverting the non-singular part of L. Specifically 
define a mapping W: X o ~ D  1 implicitly by 

(4.3) E~ (b(x+ W(x))=O 

for x e X  o. It follows from the implicit function theorem that (4.3) is soluble in 
some neighborhood of zero. Let G: X o ~ X  o be defined by 

(4.4) G(x) = E o crp(x + W(x)). 

Then x + W(x) is a solution of (1.14) if and only if G(x)=0,  and every solution of 
(1.14) has this form. 

For computations it is convenient to have a reformulation using coordinates 
of the Lyapunov-Schmidt  reduction, carrying explicitly the bifurcation parame- 
ter 2. Let Wl, w 2 be a basis for X 0. If we parametrize X o by IR 2 via the map 
X_----~X W 1 -{-yw2, then we may rewrite (4.3) as 

(4.5) LW(x_, 2 )+E1N(xw 1 + y w  2 + W(x, 2))=0. 

Let w*, w* be a basis for ker L*, where L* is the adjoint of L, normalized so that 

(4.6) (w*, w j) = ~'JU 

for some positive constant e. (Here and below ( . , . )  denotes the L 2 inner 
product.) Then, in terms of the coordinates on X 0 above, E o has the repre- 
sentation 

(4.7) Eo w =((w~, w), (w~, w)). 

Thus equation (4.4), defining the reduced mapping __G:IR 2 x lR-,IR 2, may be 
rewritten in components as 

(4.8) 6,(x, 2)= (w/*, a~(x Wl + y w2 + w(~ 2))5, 

where i =  1, 2. We shall always take w I to be even with respect to (1.13) and w 2 
odd; w* and w* inherit the corresponding parities by (4.6). 

We may perhaps avoid confusion if we introduce notation to indicate the 
dependence on B that is implicit in L. Let us write L = L o + 2 M ,  where L o is 
given by (1.5), with B fixed at the bifurcation point, and 

1 
(4.9) Mw=U ( _  l ). 

Using the fact that L*ow*=O we may rewrite (4.8) as 

(4.10) _G,(x_, 2)= (w*,(2 M + N)(x w 1 + y w 2 --]-- W (x.x.x.x.~ 2))). 
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We now start the computation of the coefficients in (3.1) as functions of the 
various parameters in our problem. In the following lemma dZN denotes the 
second Fr6chet derivative of N, a bilinear mapping X x X ~ X .  

Lemma 4.1. The second order derivatives of the reduced map G_ at the origin 
are given by 

~2 Gi 
w* =( i, d2N(wj,wt) ) 

c~xj~?x t 
and 

~2G i 
- (w*, Mwj). 

0x~2  

Proof. It follows by differentiation of (4.10) that (when 2=0)  

02 Gi w*, d 2 N wj - - -  +-4--,wl+ + w * , d N . - - ~ .  
(4.11) c~xj c~x I cxj c~xj c3xt/ 

However dN is zero at the origin. This means that the second term in (4.11) 
0W 

vanishes at the origin and that, by (4.5), = -  also vanishes there. This verifies the 
c3x j 

first formula in the lemma, and the argument for the second is similar. The proof 
is complete. 

We do not reproduce the details of the computation of the coefficients in 
(3.1), but only record the landmarks as a guide to the reader. It follows from 
(1.6) that at the origin 

(4.12) 

The eigenfunctions of L and L* at the double eigenvalue are given by 

I OD#I 1 w2(~)=s in (k + l )~ /  OD/2z 
(-- 1 --D/21 ] \-- 1 -D#2!  

Wl(~)= sin k~ 

(4.13) [ w*(~)=sink~(l+Dp2] w*(~)=flsin(k+l)~(l+D/21) ' 
\ D#2 ] \ D/2t 

where 

(4.14) f l  -- 0/21 --/22 +D/21/22(0 - -  1) 
0 / 2 2  --/21 -b D/21/22( 0 -- 1) 

is a correction factor required by the normalization (4.6). The reader will note 
that if k is odd, then w 1 in (4.13) is even with respect to the symmetry (1.13). 
Suppose that the two wave numbers at the double eigenvalue are l and l+  1. 
If I is odd, we shall use (4.13) with k=l; if I is even, we shall use (4.13) with 
k = - ( l +  1). By this ruse we can always arrange that the smaller wave num- 
ber (in the algebraic sense) at the double eigenvalue is odd. In this way we may 
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observe the parity convention introduced above and still avoid carrying two sets 
of formulas for the eigenfunctions. 

On substitution of (4.9), (4.12), and (4.13) into the formulas of Lemma 4.1, 
one finds after appropriate manipulation, the following formulas for the coef- 
ficients in (3.1). 

#, D#I ) 
(4.15a) a,= ~ - 2 l + D l ~ z ~ I  1 

(4.15b) a - S l a 2 -  D#2 } t  2 
2 - ~ / q  2 1 + D p  1 

{ I+D/~ID#t DP2 ; (4.15c) a3 = 2 f l  1 1 +Dkt2jI2 

(4.15d) b 1 =~ODpl 

(4.15e) b2=fl ~OOp2. 

Here we have used the notation 

,t 
11 = OAB S sin3k ~ d~ 

0 

12 = O AB ~ sin k r sin-' (k + 1) ~ d ~. 
o 

Note that 11,12 have the same sign as k. 
According to the results of [3] quoted in w of the present paper, the 

qualitative type of the bifurcation diagram associated to (3.1) can change only if 
one of the following equations is satisfied. 

(a) a l = 0  (b) az=O 
(4.16) 

(c) a3=0  (d) bta3=b2al 

Let us consider the simplest of these equations, (4.16c). On multiplying (4.15c) 
by (1 +Dpl)(1 +Dp2) and dividing by a non-zero factor we may rewrite (4.16c) 
as 

1 - - D Z p l / / 2 = 0 .  

We may combine the definitions of w 1 to show that ~2 =D 2/~1 #2, from which it 
follows that (4.16c) is satisfied if and only if .4= 1. The reader will note that this 
line appears as one of the dividing curves in Fig. 2.1, both cases (a) and (b). 

Consideration of equations (4.16a) and (4.16b) is similar. First invoke (4.15) 
to show that these equations are satisfied if and only if 

(4.17) (a) Dp 2 = l (b) D#I = 1 

respectively, and then use the definitions of w to express (4.17) in terms of the 
parameters / [  and D. If k is positive, the result is that (4.16a or b) is satisfied if 
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and only if 

(a) D = ( A -  1) 2, A < 1 
(4.18) 

(b) D = ( / I - 1 )  2, /1>1 

respectively; if k is negative, the formula D = ( A - 1 )  2 remains valid but the 
inequalities in (4.18) are reversed. The reader will again note that the parabola 
D ( / I - 1 )  2 occurs as a dividing curve in Figure 2.1. The remaining, unidentified 
dividing curve in the figures is of course associated with (4.16d). Its equation 
may be written 

(4.19) 

where 

2fz(1 - D  2/t I / /2) - (1  + D p l )  (1 - D,u2)-- 0 , 

3(k+ 1) 2 
f 2  = 1 2 / 1 1  - (k + 2) (3 k + 2)' 

but (4.19) does not seem to admit a simple representation as a function of ,4  and D. 
In Figure 4.1 we have tabulated the signs of the coefficients (4.15) in the 

various regions using the notation (3.5). The type of the bifurcation diagram 
may be determined by comparison with Figure 3.1. 

Region number a I a 2 a 3 c c -  1 ~/ Type of diagram 

1 + + + + + + 1 1 1 1  

2 - + + - - - I I I  o 

3 - + - + - - 1 1 I  2 

4 - - - + - + I o 

5 - - - + + + 1 1 1 1  

Fig. 4.1a. k positive 

Region number a I a 2 a 3 c c -  1 t/ Type of diagram 

1 - - - + + + 1111 

2 - + - + + - 11 

3 - + - + - - 1112 

4 - + + - - - 111 o 

5 + + + + + + I I 1 1  

Fig. 4.lb. k negative 

5. Lyapunov-Schmidt calculations for the perturbed problems 

It may perhaps give a clearer exposition if we indicate how to compute the 
unfolding parameters in (3.6) for a general perturbation of the equilibrium 
equation (1.14), although for the problem at hand we are able to avoid the most 
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unpleasant aspects of this calculation. Suppose (1.14) is modified by a per- 
turbation term to read 

(5.1) ~(w)+eP(w)=O. 
Let E o, E 1 be defined as in w to be the projections relative to the decomposition 
(4.1), this data being computed only for e=0.  We define the reduced equations, 
depending on e, as follows. Let W: X o x IR--,D 1 be defined implicitly by 

E , ( ~ +  ~P)(x + W(x, ~))=o (5.2) 

and let 

(5.3) 

Translation 

O(x, ~) = Eo(4' + ~ p) (x + Wix, ~)). 

of these expressions into coordinate notation poses no special 
difficulties, although it should be mentioned that, unlike in w the function W 
plays a role here. It follows from the natural analogue of (4.5) that at the origin 

OW 
(5.4) C3 8 -- L-1E1 P, 

where L-  1 is the generalized inverse of L. Suppose we define coefficients for the 
perturbed problem by 

Gi(x'8)-Gi(x'O)=8{~176 - k h O t ' j = l  

where the higher order terms include terms of order e 2, ex 2, e). 2. A straightfor- 
ward calculation shows that 

(5.5 a) ~, = (w*, P )  

(5.5b) flij ~- (w*, dP(wj)-d2N(L 1E 1 P, Wj)> 

(5.5c) flio = w*,c?2-ML-1gle �9 

The only significant difference between these formulas and those of Lemma 4.1 
is the appearance of a second term in the inner products of(5.5b and c), and this 
difference is a direct consequence of (5.4). 

Let us first compute the unfolding parameters for the perturbation associated 
to (1.12). It is readily seen that 

A (~) = A o - ~ ~(~-- ~) + 0 (g2). 

Note that A appears only in the first equation of (1.1), and there only additively. 
(Remark: In the passage to (1.4) we still linearize about a constant function, 
namely X =A 0, Y=B/Ao. ) Thus in the notation of (5.1) we should define 
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a perturbation which is independent of w. We compute from (5.5a) that e2 =0,  as 
required by symmetry, and that 

(5.7) ~1 = - 2~3~ +Dktz). 

The computation of the first order terms/~ij would be rather tedious because of 
the presence of L -1 in the relevant formulas. However, we recall from w that 
the zeroth order coefficient e in (3.6) dominates the first order coefficient /~, 
provided they are of the same order, which is the case here, since (5.7) shows 
that c~ is non-vanishing. Thus the effect of the perturbation (5.6) is determined by 
the sign of e (negative) and the sign of the coefficients in Figure 4.1. The reader 
may consult [3] to check the validity of the diagrams of Figure 2.4. 

The perturbation associated to changes in the diffusion coefficient D admits 
the representation 

(10 (5.8) Pw = c~2, 

which depends linearly on w. We could easily substitute (5.8) into (5.5) and 
evaluate the resulting expressions - this perturbation differs from the preceding 
one in that here P vanishes at the origin, eliminating the troublesome terms with 
L-  1. However, there is a direct way to assess the effect of (5.8), which moreover 
sheds some insight on the problem. This perturbation splits apart the double 
eigenvalue but does not affect the existence of the trivial solution. We may see 
from (3.6) that there is essentially only one way to do this, namely to change/~ 
but to keep e equal to zero. Thus to describe the perturbed diagram we need 
only know which mode bifurcates from the trivial solution first, and we can 
decide this by an independent argument. 

Let us recall (1.9), the formula for the bifurcation point of the mode with 
wave number l from the trivial solution 

A 2 A 2 
(5.9) B z = 1 + ~ - +  D/2 -~ OD12 U 

Observe that we may write (5.9) as a function of a real variable Dl 2, say B~ 
=f(Dl2). By hypothesis 

min { f  (Dl2): l= 1, 2, 3, ...} 
I 

is assumed at two distinct integers k and k+  1, as indicated in Figure 5.1. It may 
be seen by inspection that increasing D lowers B k and raises Bk+ 1. In other 
words, increasing D makes the mode with smaller wave number (in absolute 
value) bifurcate first. This is the behavior portrayed in Figure 2.2. To facilitate 
the reader's checking this statement, we mention that the solution points of the 
mode with odd wave number are located in the plane of symmetry of the 
bifurcation diagram, while those with even wave number occur in symmetric 
pairs. 
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I 
t 
I 
I 
I 
I 
I 
I 
I 
k k+l 

Bk=Bk+ 1 

Fig. 5.1 

6. On the relation between the Lyapunov-Schmidt 
and center manifold reductions 

The Lyapunov-Schmidt reduction enumerates all rest points of (1.4) but 
provides no information about the dynamical behavior of this equation. In this 
respect reduction of (1.4) via the center manifold theorem is preferable, although 
somewhat less straightforward. We begin this section with a brief review of the 
properties of the center manifold, referring to [4] or [9] for details not provided 
below. We continue to use the notation introduced in w for the Lyapunov- 
Schmidt reduction. 

The center manifold M is a finite dimensional submanifold of X param- 
etrized by x e X  o. More precisely 

(6.1) M = { x +  V(x): x E X  o close to zero} 

where V: X o ~ D  1 satisfies 

(6.2) (E 1 - d V. Eo) q)(x + V(x))  = O. 

The reduced mapping H: X o ~ X  o in the center manifold context is defined by 

(6.3) H (x) = E o q)(x + V (x)). 

Thus {x+ V(x): H(x)=0} provides an alternative enumeration of the solutions 
of (1.14). At the same time, however, the trajectories of (1.4) tend to trajectories 
of the ordinary differential equation 

(6.4) d x  
dt H ( x )  
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in the following sense. Let U be an appropriately small neighborhood of zero in 
X, let w(t) be a solution of (1.4) such that w(t)e U for 0 < t < T, and let 

d(t)= lIE1 w(t ) -  V(E o w(t))ll , 

the distance between w(t) and its projection into M. Then 

6(t) < Ce-et/2 (~(0) 

for 0_< t < T, where e is defined by (4.2). The constant C depends only on U in 
the above data. Unfortunately this result does not state in general to what extent 
the projection x(t)= E o w(t) is approximated by a solution of (6.4), but if 6(0)= 0 
(i.e., if w(O)EM), then x(t) is actually a solution of (6.4). Moreover if S c X 0 is an 
attracting set for (6.4), then {x+ V(x): x~S} is attracting for (1.4). 

Equation (6.2) expresses the condition that the flow direction ~b(w) be 
tangent to M when w~M. To see this let us define a smooth mapping f :  X ~ X  1 
by 

f (w) = E  a w -  V(E o w), 

so that M =f-1(0) .  We may write the condition of tangency as 

d f(w(t))=O. 

d w  . 
Since M is contained in D, dr- 1s well defined for weM. Application of the chain 
rule leads to (6.2). 

In one sense (6.2) is a small perturbation of (4.3); namely, since dE ~, and 
E 0. d~  all vanish at the origin the perturbing term may be expected to be small 
near zero. On the other hand the new term in (6.2) involves derivatives of V,, 
which makes an existence proof for (6.2) by a direct perturbation argument 
problematic. Indeed this existence question is discussed in [4] in terms of the 
non-linear semigroup of transformations generated by ~. Moreover because of 
the singular nature of this perturbation, (6.2) does not necessarily admit C ~ 
solutions. Although there are C k solutions for arbitrarily large k, the size of the 
domain of existence decreases as k increases. However, the fact that dV, ~, and 
E o �9 d~ all vanish at the origin does have the following consequence: in comput- 
ing derivatives of V at the origin from (6.2), the second term will always 
contribute to lower order than the first. Thus for example 

3ZV 
(6.5) c~xi~x j -  L l d2dp(ei, ej) 

where L - l :  X I ~ D  ~ is a pseudo-inverse and {ei} is a basis for Xo; the same 
formula holds for r W/c~xi ?,xj. 

There is a minor technical issue to be addressed before the results of [4] are 
formally applicable. We must modify (1.4) outside of a neighborhood of zero in 
order to verify the hypotheses of [4]. Let Z be a C ~ function with compact 
support on the finite dimensional space Xo, Z - 1  near zero. We modify (1.4) to 
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read 

~w 
Ot L(w)+ g(E~ 

so that the equation is linear when E o w is large. It is then a simple matter  to 
verify the estimates needed in [4] to construct the center manifold. For this 
verification the reader should note the following fact: N(w) vanishes to second 
order, so by restricting the support of 7~ we may arrange that z N  and its first 
derivatives are as small as may be necessary. Also if q~ depends smoothly on a 
finite number of parameters, it is shown in [4] that the center manifold depends 
Ck-smoothly on those parameters. 

The fact that the center manifold is only finitely differentiable would lead to 
certain technical complications if we at tempted to apply the center manifold 
theorem directly. The following lemma provides a relation between the center 
manifold and the Lyapunov-Schmidt  reductions that may be exploited to avoid 
these complications. The matrix a x in the lemma depends on the parameters 
B, A, D i in the problem but we do not indicate this dependence explicitly. 

Lemma 6.1. There exists a C k matrix-valued function r such that the reduced 
mappings G and H of formulas (4.4) and (6.3) are related by 

(6.6) H(x) = a x. G(x). 

Moreover ~x is invertible and ax=I  +O(x2). 

Proof. As a technical device we introduce additional parameters into the 
arguments of G and H. Let us define an extended function 4~: D x X o ~ X  by 

,b(w, y)= q,(w) + y. 

We redefine all the functions above to include these extra parameters, indicating 
the change with a tilde. Thus for example 12: X 0 x X o ~ X  1 is defined by 

(6.7) (E 1 - d  x (/. Eo) cb(x + (/(x, y ) ) - d  x (/. y =0 ,  

where we have used the relation E~ y = 0  to discard a term. It turns out that 

(6.8) (~(x, y) = G(x) + y. 

It is clear from this equation that 

(6.9) {(x, y): (~(x, y) = 0} 

is a smooth submanifold of X o x Xo, which is the reason for introducing the 
additional parameters. 

The fundamental observation in this proof  is that (~(x,y)=0 if and only if 
/ 4 (x ,y )=0  - both reductions yield all rest points of the equation. Therefore 
each component  of /4(x,  y) vanishes on the smooth manifold (6.9), so by Taylor 's 
theorem each such component  may be written as a linear combination (with 
variable coefficients) of the functions defining (6.9), namely the components of 
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itself. In other words we have 

(6.10) /4(x, y ) -  a:,y G(x, y) 

for some matrix-valued function a. We obtain (6.6) on restricting (6.10) to y=0 .  
The proof that Gx = I  + O(x 2) is based on the computation of various derivatives 
of (6.10) indicated below. Given this, it follows that G is invertible for small x. 

The derivatives we shall need first are 

0~ ~2G 
(6.11) ~x =O, dyG=I, - 0  

~X i ~Yj 

for x = y = 0 .  The last two relations are obvious, in view of (6.8), and the first 
follows from (4.4) on observing that 

(6.12) E0 .dq,=0.  

We claim t h a t / t  satisfies the same relations (6.11). Now 

(6.13) /4(x, y ) = E  o q'(x+ l?(x, y))+y. 

The first two relations in (6.11) follow immediately from (6.13) by differentiation, 
if (6.12) is recalled. As to the third relation in (6.11), we have 

(6.14) (~2/~ ( eiq 6~Xi Oyj] OXi ?~ y~ -- E o d e ~ 

again making use of (6.12) to drop a term. We argue that 0I?/0yj=0 as follows. 
Differentiate (6.7) with respect to x i and evaluate at x = y = 0 .  This yields simply 

(6.15) E, . d ~ - ~ x  =0;  

the terms involving dV. E 0. q~ and dV/.y do not contribute to (6.15) because of 
(6.12) and because y=0 ,  respectively. But E 1 . d ~ = L i s  one-to-one on D1, the 
space to which I? belongs, so 0(//•xi=0. Similarly differentiation of (6.7) with 
respect to y; leads to the conclusion c~l?/~yj=0; in this case (6.15) may be used 
to drop the last term of (6.7). This proves the claim above. 

On differentiating (6.10) with respect to y and evaluating at x = y = 0  we find 
that 

dy/4 = axy. dG, 

where we have discarded a term containing (~(0,0), which vanishes. It follows 
from (6.11) that axy=I  when x = y = 0 .  Taking mixed second derivatives of (6.10) 
yields the relation 

0o 0=Edd; 
here we have used (6.11) to discard one term on the left and three on the right. 
Therefore c3a/c~xi=O at the origin, and the proof is complete. 
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Of course when the center manifold reduction is implemented for (1.4) in the 
coordinates on X 0 introduced in w the reduced mapping H will possess the 
symmetry (3.2) and the matrix cr of Lemma 6.1 will satisfy (3.4). 

7. Stability of the bifurcating solutions 

The goal of the present section is to verify the stability assignments made in 
drawing the bifurcation diagrams of w We do this by ad hoc arguments which 
depend strongly on the symmetry (1.13). 

The bifurcation diagram 

(7.1) {(x, )~): H(x, ,~) = 0} 

enumerates the equilibrium solutions of (1.4). Here H is the reduced mapping on 
the center manifold, as defined by (6.3). In the discussion below we suppress the 
dependence of H on all external parameters, including the bifurcation parameter 
)~. According to w the stability or instability of any equilibrium solution 
parameter 2. According to w the stability or instability of any equilibrium 
solution of (1.4) enumerated by (7.1) is determined by the stability or instability 
of the corresponding rest point of the ordinary differential equation (6.4). 
However by Lemma 6.1 we may express H in terms of G, the reduced mapping 
of the Lyapunov-Schmidt reduction, and G in turn may be expressed in terms of 
the universal unfolding (3.6), 

(7.2) G = r x F o p. 

On combining these observations we see that (6.4) may be written 

dx 
dt-a~rxF~ 

If we introduce the change of coordinates x '=  p(x), we may compute that 

(7.3) dx' 
dt = ~ F(x'), 

where ~=dp.a x. ~ .  To summarize, we saw in w that the rest points of (1.4) may 
be enumerated by the zeros of F; here we see that the stability properties of 
these rest points may also be obtained from F through analysis of (7.3). 

The stability or instability of rest points of (7.3) is of course determined by 
the real parts of the eigenvalues of the Jacobian of this equation, which at a rest 
point of (7.3) equals ~xdE But the stability assignments on the bifurcation 
diagrams in w were made by an inspection of the eigenvalues of dF, or in other 
words, were made according to the stability of 

(7.4) dx ~S=V(x). 
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Thus our task in the present section is to show that the real parts of the 
eigenvalues of dF are not changed by multiplication by ~x. 

The basic fact we will use in this derivation is that ~x satisfies (3.4), which 
follows from the fact that each of the factors in the definition of 7x satisfies (3.4). 
Thus in the plane of symmetry (i.e., when y = 0), ~x is diagonal. We claim in fact 
that the diagonal entries of 7~ are both positive in this plane. It suffices to look 
at the origin, since % is non-singular and cannot have a vanishing diagonal 
entry. At the origin a ~ = I  and may be ignored. Taking an appropriate mixed 
derivative of (7.2) we find that at the origin 

dG OF 

only one non-zero term results from differentiation on the right since F vanishes 

to second order. However it may be seen from (3.6) that d ~ =I ,  and d ~ 

is a diagonal matrix with entries bl, b 2 given by (4.15), both positive. Thus the 
diagonal entries of the product z~.dp are positive at the origin, and being 
diagonal, these matrices commute. This proves the above claim. In the following 
we shall omit the bar in ~x, as we have no further occasion to refer to the 
individual factors in this matrix. 

If the parameters c and ~ in (3.6) have the same sign, we claim that (7.3) and 
(7.4) admit a common Lyapunov function, and hence have the same stability 
properties. The Lyapunov function is 

X 3 X 2 

(7.53 49(x, y)= T +  rlx y2 + )~ T-{ rl()~ + f) y2 + ~x, 
C' 

where c '=  c +  ~. We suppose that 7 is small so that c' and ~/also have the same 
sign. To check that (7.5) is a Lyapunov function for (7.4), we compute that 

(7.6) 

Thus 

2 2 / /  , (F, grad(&=(x2 +~yZ + )~x +cO +~;~(c xy+(2+fl)y) 2. 

(F, grad q~) >ELF] 2 

where e=min(1,2q/c'), so q~ does indeed increase along the orbits of (7.4). For 
(7.3) we must compute (ZxE grad ~b). Let us write zx=Zo +~'x, where % is the 
value of % at the origin. Now z o is a positive definite, diagonal matrix, and it is 
easily seen that 

(7.7) (~os grad 4)) > 61"CxFI 2, 

for some appropriately small positive 6. On the other hand (z'xF, grad~b ) 
vanishes to higher order at the origin and may be dominated by (7.7) in a 
sufficiently small neighborhood. This proves the above claim and thereby 
verifies the stability assignments made for the three cases Io, IIio, 1111. 
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(Incidentally since (7.4) admits a Lyapunov function, no Hopf bifurcation is 
possible for these cases. Ct~ below.) 

It remains to verify the stability assignments for the two cases 11 and III2, in 
which c>0,  ~/<0. (The case c<0,  q > 0  does not occur for the problem at hand.) 
The bifurcation diagram 

{(x, )L): F(x, 2)= 0} 

consists of two conic sections, one in the plane of symmetry y = 0 and one in the 
plane 

(7.8) c'x + i~ + fl=O. 

We refer to these as the symmetric and asymmetric solutions respectively. The 
stability properties of the symmetric solutions present no problem, because in 
the plane of symmetry ~x and dF are diagonal matrices, the entries of Tx being 
positive; thus the eigenvalues of dF and of v~.dF are real and have the same 
signs. Our analysis of the asymmetric solutions is based on the following two 
facts, proved below. In these statements large only means close to the boundary 
of an appropriate neighborhood of zero. 

(7.9) In case I I I  2, the asymmetric solutions are unstable for sufficiently large 
negative 2 and stable for sufficiently large positive )~. 
(7.10) At most one Hopf bifurcation is encountered along the asymmetric 
branches as 2 is increased from large negative values to large positive values. 

Assuming (7.9) and (7.10) the reader may verify our assignments of stability 
in the remaining diagrams of w by tracing the various solution branches in from 
large values of ,~, using the principle of exchange of stability at bifurcation 
points. The essential idea here is that the stability assignment along a smooth 
branch of the bifurcation diagram can only change at a Hopf bifurcation point, 
and (7.10) provides the necessary control to show that there is a unique 
assignment possible. For example in Figure 2.4e 2 no Hopf bifurcation is 
possible, while in Figure 2.4e 1 a Hopf bifurcation is required. It should be 
mentioned that Figure 2.4b I was drawn assuming 1 < c < 2 ;  a slightly different 
diagram results if c>2,  and we exclude the degenerate case c = 2  from con- 
sideration below. 

Both (7.9) and (7.10) follow from the same estimates. On using (7.8) to 
eliminate x from the first equation in (3.6) we find that the asymmetric solutions 
lie on the conic section 

1 1 2 fl ,7.11, 

Now along the asymmetric solutions 

\c 'y  
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Thus det dF = 2c'  y2~ 0, SO both eigenvalues have real parts of  the same sign; the 
same statement holds for z x. dE and we may determine the sign by examinat ion 
of the trace. A trivial calculation yields 

(7.12) tr zx.dF=z11(2x + 2)+ Zlz(C y)+ %l(-2y). 

We remind the reader that z12 and r2~ are odd functions of  y, so that the last 
two terms in (7.12) are O(y2). If we use (7.8) and (7.11) to eliminate x and y from 
(7.12) we find that 

where terms that are of  order  22, e, or/~ are called higher order, as the first term 
in (7.13) will dominate  the others if the parameters  are appropriately restricted. 

In case III2, we have 0 < c < 1, so that the coefficient of  2 in (7.13) is negative. 
Thus trzx.dF is positive for large negative 2, indicating eigenvalues with 
positive real part  or instability as claimed in (7.9); and similarly for large 
positive 2. A H o p f  bifurcation can occur only if (7.13) vanishes, which will 
happen for exactly one value of  2, say 2*. If  2* yields real solutions y in (7.11) 
the associated bifurcation diagram will possess a H o p f  bifurcation point ;  
otherwise not. 
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