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Symmetries on the edge of chaos

Why should train wheels wear down symmetrically at high speeds but not at low speeds?

And what has chaos got to do with it?

Mike Field and Martin Golubitsky

THE WORDS “symmetry” and “chaos” have well understood
meanings in everyday language. Symmetry suggests balance,
equal proportion or repetition—in short, it implies order. Chaos,
on the other hand, suggests disorder: anarchy, confusion and
turmoil. In their technical usage these words carry similar
meanings, so it comes as something of a surprise to find physi-
cal systems that can be thought of as simultaneously having
characteristics of both.

Nevertheless, mathematicians have recently tried merging
symmetry and chaos, with two striking consequences. First, they
found that they can generate exceptionally beautiful pictures.
Secondly, the combination of symmetry and chaos provides an
intriguing new description of how patterns can form in the
physical world. These patterns do not appear instantaneously.
Instead, they are the product of time averages—we call them
“patterns on average”. Such patterns can show how complicated
motions which scientists describe as chaotic can combine with
natural processes such as abrasion to produce an ordered
pattern of wear which is an average over time.

Though the mathematical ideas of symmetry and chaos seem
like direct opposites, they both arise in attempts to answer
simplified questions about complex scientific issues. Examples
of such complex questions are how to describe atmospheric
motion, or how to determine the world’s population in 10 years’
time. But while these questions are extraordinarily difficult,
scientists have found that answers to simpler but related ques-
tions can give an insight into the more complicated ones. It is
in the study of these simpler questions that the ideas of

symmetry and chaos have proved useful. Before looking at how
these ideas might be combined, it is worth looking briefly at
how they have been used separately.

An object, a system, or something as abstract as a math-
ematical formula can have symmetry. Just as rotating a square
through 90 degrees leaves it looking just as it did before, in the
same way systematic changes to a mathematical formula can
leave it looking the same as it was before. As a simple example,
take x?. Changing x to —x in this formula gives (-x)2, which is the
same as x°.

Impossible questions

The relationship between mathematical symmetries and pat-
terns is suggested by models of the atmosphere. To make accu-
rate predictions of atmospheric motion it would be necessary,
as well as understanding how fluids move, to know the exact
shape of the Earth, including the location of mountains and the
boundaries between water and land, how much energy is
transferred to the Earth by the Sun, the effects of the rotation
of the Earth, and the gravitational effects of the Moon. Each of
these questions is impossibly difficult to answer in practice.
Rather than tackling such difficult problems head-on, scien-
tists often begin with simplified models. For example, it is a fair
guess that the atmosphere’s high-altitude jet streams arise in
some way through the Earth’s rotation. To test this hypothesis,
scientists can construct a simplified laboratory experiment.
Imagine cutting off the polar ice caps and straightening out the
Earth to form the surface of a cylinder. Next, imagine sticking
the atmosphere (which for convenience can be represented by
water) between the Earth cylinder and a second, larger
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cylinder. Will rotating these cylinders form “jet streams”? There
are several examples of experiments that use this geometry—
some of them better models of atmospheric motion than others.

One of them is the Couette-Taylor apparatus, which was
developed in 1886 in Paris by Maurice Couette to study shear
flow. Some of the most interesting experiments with the
Couette-Taylor apparatus were done in the mid-1980s by Harry
Swinney’s team at the University of Texas at Austin. Figure 1
shows four pictures of experiments performed in this laboratory.
To visualise the flow patterns, a syrup called kalliroscope, con-
taining many little silver platelets, is added to the water. Because
these platelets reflect light, the bright parts of the pictures indi-
cate fluid flow that is mainly vertical while the dark portions
indicate flows that are mainly horizontal. How are these re-
markably regular patterns formed?

The first picture is of “Couette flow”, which appears when the
inner cylinder is rotated very slowly. The fluid particles all travel
in circles about the cylinder axis, so there are no bright spots.
When the speed of the inner cylinder is increased, Couette flow

Patterns on average: the outcome of iterating mathematically
symmetrical equations can be plotted as points on a computer screen,
then given a colour according to how often each point is “hit". The
iterations are chaotic—each new point seems to be added at
random—but symmetry emerges over a period of time
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Figure 1 Flow patterns formed in a fluid _
sandwiched between two rotating cylinders,
one inside the other, are remarkably regular.
As the rotation speed of the inner cylinder is
increased (left to right) the flow becomes
more turbulent. But even when it reaches a
fully turbulent state that is chaotic, the ghost
of a regular pattern remains (far right)

is replaced by “Taylor vortex flow”, which
resembles a pile of exactly similar dough-
nuts. In the search for evidence that jet
streams are a product of rotating fluids,
we seem to have hit the jackpot here.
Though this experiment is too simple to
enable mathematicians to make a direct
link between the patterns seen in Taylor
vortices and jet streams in the atmosphere,
it does suggest that rotating fluids have a
definite tendency to form the right sort of regular patterns.

When the inner cylinder is speeded up, Taylor vortex flow is
replaced by wavy vortex flow in which the doughnuts are wavy
and move around the circumference of the cylinder. When the
speed of the inner cylinder is further increased, the doughnuts
become more and more irregular until finally they reach the
state called “turbulent Taylor vortices”. But the key thing to
notice is that even though that state is turbulent, the remnants
of a perfectly regular pattern appear to persist.

Go with the flow

The pictures in Figure 1 suggest great regularity. Indeed, much
mathematical effort has been spent in the past decade showing
that the regularity of these flows is intimately tied to the math-
ematical symmetries in the equations that describe the flows.
In this, and in many other physical systems, the formation of
regular patterns is found to be virtually synonymous with the
presence of symmetry. But these patterns have been produced
using rather simple motions. Could patterns be formed using
more complicated, or even chaotic, dynamics?

Scientists find chaotic dynamics useful in explaining observed
phenomena such as the way populations grow. A major task in
population dynamics is to find models that will accurately pre-
dict population sizes in the future. The simplest model for
studying population dynamics is called the logistic equation. Its

Harry L. Swinney
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derivation is based on three premises: that
next year's population can be computed
from the knowledge of this year’s; that
births each year occur as a percentage of
population size; and that there is a maxi-
mum population size that the environ-
ment can support. In the simplest case
these assumptions lead to a quadratic
polynomial equation (see Box).

A procedure called iteration is used to
create dynamics from this equation. The
idea is quite simple. From the population
in year 1 the equation is used to compute
the population in year 2. Applying the
equation again gives the population in
year 3, and so on. So the logistic equation

Figure 2 Even though the symmetry of the

equations does not change, the symmetry

of the pictures can. In either case, the more
points that are added, the more exact is

M. Field & M. Golubitsky

of a regular polygon (see Box for details).

There is an immediate surprise—the
symmetry of the pictures can change, even
though the symmetry of the equations
does not. Iterating these equations on a
computer produces pictures that have dif-
ferent types of symmetry, depending on
the particular equation used. Figure 2
shows the result of iterating an equation
with triangular symmetry. For one value of
the parameters in the equation, we obtain
the top picture with just a reflectional,
“mirror image”, symmetry. When we chose
a slightly different value of the parameters
we obtained the lower picture with full
triangular symmetry.

can be used to compute the population for
every future year, one year at a time. In
1976 Robert May observed that such a scheme can lead to at
least three outcomes: populations tend to a fixed number, or
they oscillate between a large number and a small, or they keep
changing, admitting no pattern whatsoever. The meandering
without pattern is called chaotic dynamics and it was a major
triumph to observe that such a simple equation could produce
such complicated dynamics. And since population evolution is
at least as complicated as the logistic equation, we should not
be surprised by very complicated changes in population sizes.
So in one simplified model, patterns form, and the math-
ematical basis for pattern formation is symmetry; in the other,
iterating even simple equations can create very complicated
chaotic motion. The picture of turbulent Taylor vortices in Fig-
ure 1 (right) shows that this flow has both of the properties
already described, at least approximately. Its motion is too
complicated to define in rigorous mathematical terms as chaos—
though mathematicians are pretty sure that’s what it is—but it
also has something resembling a well-defined pattern. The
properties of symmetry and chaos exist simultaneously in this flow.
But seeing evidence of simultaneous symmetry and chaos in
this experiment does not mean the way it arises can be de-
scribed mathematically. Even though the Couette-Taylor model
is relatively simple (at least by comparison with the atmos-
phere), the accurate numerical simulation and mathematical
analysis of turbulent Taylor vortices is beyond the current
abilities of mathematicians. Even if such a simulation were pos-
sible, it is far from clear whether it would help to explain how
symmetry and chaos apparently coexist in the experiment.
However, it ought to be possible to create a simpler math-
ematical model in which symmetry and chaos do coexist.
Although very complicated,
the equations that model
Taylor-Couette flow have
symmetries that correspond
to the symmetries of the
experimental apparatus. For
example, the apparatus has
rotational symmetry about
its axis—and so do the
mathematical equations. We
have constructed simple
equations that, like the
logistic equation, have built-
in symmetries. More specifi-
cally, we construct equations
that have the symmetry
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the symmetry of the picture

Figure 3 Symmetry and chaos can coexist in some physical systems.
Averaging the chaotic vibrations of the surface of a fluid (left) over
time produces a symmetric pattern (right)

The pictures on the previous page are
produced by choosing equations similar to
those described in the Box, and iterating them to plot new
points on the computer screen. Each pixel on the screen is given
a colour depending on the number of times iterates fall onto
that pixel. Roughly speaking, the colour of a pixel represents the
chance that iterates will fall onto that pixel. Pixels with the same
colour have equal chance of being visited during the iteration.
This probabilistic interpretation means that the pictures are not
exactly regular. However, the more iterations you use to obtain
the picture the more exact will be the symmetry.

These computer experiments tell us two things. First, even
though it is not apparent from the pictures, the iterations that
produced them are chaotic. As the computer builds up the pic-
ture, points seem to be added at random. Only as the points
accumulate does the overall pattern emerge. Symmetry and
structure may arise from this chaos, but this is not seen over a
short timescale. Rather, the symmetry of the pictures we see
represents the average behaviour over time. Secondly, the
resulting averaged picture often has the full symmetry of the
equation, although it may have less. This is consistent with what
is seen in the Couette-Taylor experiment. The different states
pictured in Figure 1 have different symmetries even though the
equations always have the same symmetry.

Do these mathematical models just generate pretty pictures
or are they indicative of a more basic scientific principle? Theo-
retical results obtained during the past few years suggest that
there is more to these pictures than pleasing shapes. Pascal
Chossat of the University of Nice and one of the authors (MG)
first discussed how symmetry might be seen in chaotic dynam-
ics and pictures in 1988, and in 1991 Ian Stewart and Greg King
at the University of Warwick looked at pictures of symmetric
attractors and discussed how
symmetry could be be found
in chaotic time series. Sym-
metry and chaos is under
study at the Universities
of Houston, Warwick, Nice
and Hamburg.

These ideas are even help-
ing engineers to study the
motion of train wheels. For a
number of years, engineers
have known that trains’
wheels may move chaotically.
Train wheels are designed to
allow sideways motion: this
is clearly needed on curves,

Jerry P. Gollub
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Pictures from equations

IF x, denotes the ratio of the population in
year n to the maximum population, then
the logistic equation has the form x,., =
px,(1-x,). The number W is called the ef-
fective growth rate. (This number y is re-
stricted to lie between zero and four so that
the value of the ratio x never exceeds one.)
To understand how population dynamics
can be created from this equation, let’s
suppose that | is 2 and that the population
in year one, X, is 0+4. The equation pre-
dicts that the second year's population, x,,
will be 2 x 0-4 x (1-0-4) = 0-48 and that
the third year's population, x,, will be 2 x
0-48 x (1-0-48) = 0:4992, This process,
iteration, can be continued indefinitely.
Now, what will happen if we continue it-
erating? In other words, what is the long-
term behaviour of the population? These
experiments can be done on a hand calcu-
lator. With p = 2, the population (ratio) x,
will approach 05 as the years go by. In

short, the population will stabilise.

We can ask the same question for differ-
ent values of . For example, if p is 2-1,
then the population will stabilise at
0-5238. ... However, if we take u to be
3-1, a new type of behaviour occurs. After
a few years, the population alternates
between x = 0-5580 .. .and 0:7646. . ..

So even in this simple model, a popula-
tion can oscillate. A high growth rate will
result in a small population increasing, but
a large population comes too close to the
carrying capacity of the land and competi-
tion for resources forces the population
down. What will happen when the effective
growth rate, 1, is further increased?

It was Robert May in 1976, and later
Mitchell Feigenbaum in 1978 who made
the astonishing observation that when |1 is
large enough, say about 3+7, the population
apparently never settles down, The popu-
lation takes on various values, large and
small, but there is no obvious pattern in the
number of years separating transitions

il
between large and small populations;siére
appears to be almost no correlation
between the magnitude of one years
population and the next- Even though the
population evolution was determined by
this simple formula, it seemed to behave ran-
domly. Worse still, small changes in the pop-
ulation at year one will lead to large changes
in the populations predicted for any given
year. This kind of motion is called chaotic.

Pictures of symmetric chaos (see previ-
ous page) can be obtained by using a for-
mula that is similar to the logistic equation.
Using the complex numbers 2z to denote
points, we can define a formula with the
symmetry of a regular m-sided polygon by
2.1 = pz.(1-|2/D+7(E)™". In this for-
mula, triangular symmetry corresponds to
m = 3, square symmetry to m = 4, pen-
tagonal symmetry to m = 5, and so on.
When this equation is used to produce a
sequence of points z,, the result can have a
variety of symmetries, depending on the
numbers m, j and ¥.

but less obviously it is also needed on straight stretches, as
tracks are not always perfectly aligned. Chaotic motion of the
wheels does not bode well for the comfort of passengers, nor
for the durability of the wheels.

During the past year, three Danish engineers working at the
Technical University of Denmark, Carsten Knudsen, Rasmas
Feldberg and Hans True, have been studying a detailed model
of the side-to-side motion of train wheels. Like all models of
train wheels, theirs has a single left/right symmetry—reflec-
tional symmetry about a line perpendicular to the axle that
connects the wheels. The equations of motion that describe this
system have reflectional syminetry too. But the solutions to
these equations may or may not be symmetric—that is, the
wheels need not stay “centred” on the rails.

Sideways bias

What the engineers found from their model is that at slow
speeds, of about 40 kilometres per hour, the sideways motion
of the wheels can be chaotic—but asymmetric. More precisely,
the lateral position of the wheels relative to the track is biased
either towards the right or towards the left. At such speeds,
small imperfections in the track have the tendency to force the
train to position its wheels in one preferred direction. This
preference can cause one of the wheels, say the left, to wear
down more quickly than the right; the difference in the diam-
eters of the wheels then forces the wheels to turn towards the
side with the preferential wear, in this case the left, which
results in even greater differential wear.

At higher speeds of about 50 or 60 kilometres per hour, their
model predicts a transition to motion that looks equally cha-
otic—if not more so—but that is symmetric on average. This
discovery suggests that wheel repairs might be needed more
often when trains travel at slower, not at faster, speeds. Of
course, once such a phenomenon is identified, the design of the
wheels can be adapted to guard against such differential wear.
But it is an intriguing example of how symmetry creation in
chaotic dynamics can turn up in practical engineering problems.

Another fluid dynamical experiment is based on one sug-
gested by Michael Faraday in the last century as a way of
studying how vibration causes surface waves. In this experi-
ment, a layer of fluid in a container is vibrated up and down at
constant amplitude and frequency. When the amplitude of the
vibration is small, the surface remains flat. From the point of
view of pattern formation, this surface is rather uninteresting
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and analogous to Couette flow. When the amplitude is
increased, however, the surface resonates and deforms. The
resulting surface waves often form symmetric patterns.

During the past decade, numerous groups have performed the
Faraday experiment. The physicist Jerry Gollub and his group
at Haverford College near Pennsylvania have studied its sym-
metry. Working with John David Crawford at the University of
Pittsburgh, they have shown that symmetry is important in
understanding the relationship between standard mathematical
models of fluid dynamics and the Faraday experiment.

Within the past six months, motivated by the pictures of sym-
metric chaos, Gollub, with Bruce Gluckman, Philippe Mareq and
Joshua Bridger have devised a new kind of experiment on the
Faraday model to investigate the preserice of patterns on aver-
age. They increased the amplitude of the vibration to a point
where the wave patterns appeared to be varying chaotically.
This is shown in Figure 3. When the deformed surface is con-
cave up, transmitted light is dispersed and the area appears
dark; when the deformed surface is concave down, transmitted
light is focused and the area appears bright. Gollub and his
colleagues then averaged the intensity of the transmitted light
over time. They found a strikingly regular symmetric pattern
appearing—ijust as was suggested by the simplified mathemati-
cal model based on iterations of symmetric equations.

In the past, most studies of pattern formation have relied on
very simple dynamics. This merger of symmetry and chaos
relies on complicated chaotic motion and so provides a new
mechanism for pattern formation. The effect of such patterns
will be seen most directly in processes where the time average
itself is important such as in the chaotic trains or, indeed, in any
process based on wear or growth.

In physics and engineering symmetry has proved
important both for understanding observations of the physical
world and in relating experiments to theory, Examples range
from particle physics and the shape of galaxies through
crystallography and the analysis of animal gaits. Until recently
most of this work focused on systems that were not chaotic. But
it seerns that if observations are based on time averages, rather
than being time instantaneous, symmetry can play an important
role even in the understanding of chaotic systems. Order and
chaos can coexist, entwined in the same natural phenomenon. O
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