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Sensitive Signal Detection Using a Feed-Forward Oscillator Network
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We present the results of an experimental investigation of a network of nonlinear coupled oscillators
which are coupled in feed-forward mode. By exploiting the nonlinear response of each oscillator near its
intrinsic Hopf bifurcation point, we have found remarkable amplification of small signals over a narrow
bandwidth with a large dynamic range. The effect is exploited to extract a small amplitude periodic signal
from an input time series which is dominated by noise. Specifically, we have used this relatively simple
experimental system to measure responses with a bandwidth of ~1% of the central frequency, amplifi-
cations of ~60 dB, and a dynamic range of ~80 dB and can extract signals from a time series with a

signal to noise ratio of ~ — 50 dB.
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Systems that can detect and amplify signals at specific
frequencies are commonplace in the natural world and
most notably in the visual and auditory systems of animals
[1]. These have excellent filtering characteristics, and they
operate over a remarkably wide range of levels. Scientists
and engineers frequently take inspiration from Nature, and
signal detection is one area where biology has excelled in
producing systems with superior characteristics over man-
made devices [2]. A measure which can be used to char-
acterize the quality of a system is the ratio of the minimum
to the maximum amplitude of signal that can be usefully
detected, and this is termed the dynamic range of the
system. For example, the human auditory system has a
quasilogarithmic amplitude response and a dynamic
range covering several orders of magnitude in sensitivity
(> 120 dB) [3]. It has been suggested that obtaining larger
amplifications for lower forcing and saturation at large
input amplitudes, which is termed dynamic compression,
could be produced by making use of the nonlinear growth
characteristic of Hopf bifurcations [4—6]. Several models
exist which employ active elements which mimic the
auditory network, where cells are tuned close to a Hopf
bifurcation. Cells with properties which are qualitatively
similar to van der Pol oscillators are believed to be respon-
sible for amplification in some of these cases [7].
Physiological evidence exists for this active audition due
to Hopf bifurcations for a range of animals and insect
auditory systems [§—11]. Models have also been proposed
which make use of coupling between limit cycles, which
result from Hopf bifurcations, to produce significant am-
plification in insect hearing [12,13].

Current signal detectors used in lock-in amplifiers usu-
ally have a small dynamic range compared to those found
in the natural world. This is because of their linear ampli-
tude response, necessitating advanced electronic circuitry
to extend their range. Previous work on nonlinear ampli-
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fiers include using the sensitivity close to period doubling
and Hopf bifurcations [14—16] to provide nonlinear ampli-
fication. They found that a period-doubling instability was
a good candidate for amplification of small signals and that
tuning closer to the bifurcation point produces greater
amplification.

In this Letter, we present results of an investigation of a
system for small signal detection using a feed-forward
network. Specifically, experimental observations are re-
ported for a system of three coupled electronic oscillators,
which demonstrate nonlinear amplification over a narrow
bandwidth and wide dynamic range. This is achieved using
nonlinear processes motivated by those reported for natural
systems. Thus, advantages are provided over devices cur-
rently used in signal processing.

Recently, an interesting set of predictions arose out of a
theoretical and numerical investigation of a set of identical
coupled ordinary differential equations which we will call
a coupled cell system. In this, the elements were coupled
identically in a specific way to form a network [17]. The
system comprised a 3-cell feed-forward linear array of
identical oscillators as shown schematically in Fig. 1,
which also includes external forcing. In order to maintain
symmetry of the equations, additional external self-

FIG. 1. A schematic of the 3-cell feed-forward network with
periodic forcing. Three identical oscillators (or cells) are coupled
unidirectionally as indicated by the arrows. A small forcing
signal with amplitude ¢ and frequency wj is put into cell 1,
triggering oscillation in the system.

© 2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.98.254101

PRL 98, 254101 (2007)

PHYSICAL REVIEW LETTERS

week ending
22 JUNE 2007

coupling of the first cell is added. This system can be
expressed in the form

X3 = flx3, x5, A),
(D

X =flx,x, ), d= flxpx,A),

where A is a bifurcation parameter which is identical in all
three cells. A Hopf bifurcation exists in the system at a
particular value of A = A_ such that stable periodic solu-
tions existed in cells 2 and 3 above A., while cell 1 re-
mained at a stationary fixed point. One surprising result
was that the growth in amplitude of the limit cycle in cell 3
was found to scale as A!/° rather than the usual A!/2
dependence for the growth after a standard Hopf bifurca-
tion [18,19]. This suggests that resonant forcing of the third
cell is more important than for a simple Hopf bifurcation.

The idea here is to use such a network to selectively
amplify an input signal at a specific frequency, the one
which arises at the Hopf bifurcation of the system wg. The
investigation was focused on the configuration shown in
Fig. 1, with small harmonic forcing with an amplitude &
and variable frequency wr. The system can then be mod-
eled by

X1 = f(xy, x; + ecos(wp), A), Xy = flxp, X1, A),

X3 = f(x3, xp, A). (2)

Experimental investigations were carried out using a set
of coupled electronic circuits. The individual “cells” of
the array were modified van der Pol autonomous oscilla-
tors. Each element consisted of an LCR loop in parallel
with a chain of diodes which provided a nonlinear element
[20]. Details of the circuit and the report of an extensive
investigation of its dynamics can be found in Refs. [21,22].
A modification to the original design was used in the
present circuit in that a solid-state gyrator replaced the
LCR loop element of the circuit. This had the effect of
reducing the effects of external noise, since this is known to
produce additional dynamical effects near Hopf bifurca-
tion points [23]. Coupling was achieved using high gain
operational amplifiers to unidirectionally connect the cir-
cuits without feedback [24,25]. Although our experimental
system was manufactured from individual elements, the
design is such that it should be possible to construct it
entirely on a single chip in the future. The coupling
strength between the cells was kept fixed at ~10%; i.e.,
the connecting circuits between the oscillators had a set
reduction of ~90% in amplitude. A water-cooled copper
heat sink and a thermally insulating enclosure were used to
stabilize the temperature environment of the devices to
within 0.02 °C. This was required since it is known both
that nonlinear oscillators are sensitive to noise close to
bifurcation points and that thermal fluctuations can influ-
ence the nonlinear elements which causes the Hopf bifur-
cation point to “drift” in A [23].

The initial investigation was focused on the response of
cell 3 as a function of w when forcing near wy. The
amplitude responses of cells 2 and 3, A, and A;, respec-
tively, are shown in Fig. 2 for a forcing amplitude of & ~
5X 107* V. A sharp response can be seen around wy =
wy in cell 3, decaying quickly as |wy — wy| increases.
The amplification enhancement from cell 2 to cell 3 can
clearly be seen. The bandwidth of the frequency-amplitude
curve, measured as the full width at half maximum fre-
quency spread, is Sw = 1% of the central frequency. This
corresponds to a quality factor Q =~ 100, demonstrating
that the system has a narrow passband.

The system was found to exhibit much greater amplifi-
cation for lower forcing amplitudes, which highlights the
nonlinear nature of the response. An amplitude response
curve which was measured over a range of ¢ at fixed wyp =
wpy 1s shown in Fig. 3. Values of the amplitude of the third
cell A; for a range of forcing amplitudes & are given in
decibels, relative to the noise level ». The system can
be seen to have a wide dynamic range, measured to be
= 80 dB, which compares well to the figure of 120 dB
given for biological systems [3]. It can be proved that, for a
sufficiently small epsilon, the response of the system varies
linearly with € [5], and the data in Fig. 3 are in accord with
this as indicated by the line of slope 1. Montgomery,
Silber, and Solla [26] find a ““phase transition” in a related
system, where for larger £ a high power response is seen,
which is qualitatively similar to the results reported here.
This is an indication of the dynamic compression arising
out of the nonlinear response of the system.

An indication that the device has good filtering charac-
teristics can be gleaned from Fig. 3, where the data suggest
that periodic signals with a low signal to noise ratio can be
detected. We illustrate this by showing the results of an
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FIG. 2. Responses of the 3-cell feed-forward network, on
variation of the drive frequency w. The responses of cells 2
and 3 are plotted separately to show the enhancement in ampli-
tude obtained by adding a third cell. A sharp peak can be seen
when the forcing frequency wp is around w; = wpy, the natural
frequency of the system at the Hopf bifurcation.
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FIG. 3. The amplitude found in cell 3 relative to the noise floor

is shown on a log scale, plotted as a function of the signal-noise

ratio. The line has a slope of one, which indicates that the growth

in amplitude is approximately linear for small . The decrease in

gradient for large values of & demonstrates the dynamic com-
pression which arises from the nonlinear response of the system.

investigation of extracting a small amplitude periodic sig-
nal from an input which was dominated by broadband
noise. An example of the time sequence used is shown in
the inset in Fig. 4(a). We also show the averaged power
spectrum of the input and output signals in Fig. 4 plotted on
(a) a linear and (b) a log scale. The response frequency wg
remained locked to the input (wp) because of frequency
entrainment.

A striking feature of the original unforced model is the
prediction of A!'/¢ amplitude growth for the third cell, as
compared with the A'/2 amplitude growth for the second
cell [17,19]. This result motivates the investigation of the
signal amplification of the forced system in cells 2 and 3.
The growth rates in the unforced system suggest that, when
the periodic forcing is near the Hopf frequency, there
should be substantial amplitude growth in the third cell
when compared to that of the second cell. This can be seen
in Fig. 2.

In the experiment, we measured the ratio of the ampli-
tude responses of cells 2 and 3 over a narrow range of
forcing frequencies. The resulting plot of the amplification
of A, and A; (I';, and I';, in decibels) for data across a range
of wp close to the peak response is shown in Fig. 5. Also
plotted in Fig. 5 is a line with slope m = 1/3. A linear
relationship can be seen, with a least squares fit estimate of
the amplitude ratio of 0.3687 = 0.001 602. Although the-
ory does not predict a scaling law in the amplitude re-
sponse of the second cell as a function of wr — wy, it is
curious that the slope that appears in the amplitude of
solutions is the same one that appears in solutions emanat-
ing from a Hopf bifurcation in the unforced system as A is
varied. This perhaps suggests that the 1/3 power amplitude
growth between neighboring cells is robust.
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FIG. 4 (color online). Plots of typical power spectra of the
forcing signal and output of cell 3, respectively. In (a), a linear
scale is used, and a log scale is used in (b), demonstrating that
the output signal is almost purely harmonic. The time series were
sampled at 1 kHz for ten seconds to enable good averages for the
spectra to be obtained. The insets show example portions of the
time sequences of the respective signals.

In summary, we have demonstrated how a coupled non-
linear oscillator system can be used to detect small periodic
signals embedded in large amplitude broadband noise. The
exact mechanism underlying the resonant interaction in the
chain of coupled oscillators is not well understood at
present. Encouraging results have been obtained using a
relatively simple experimental setup to produce significant
amplification over a very narrow bandwidth. The system
required careful balancing for optimal results, but once this
was achieved, the theoretically predicted amplitude en-
hancement in the third cell was found. Crucially, the
system has a wide dynamic range and many features
comparable to that in natural auditory systems, providing
a good model for mechanisms involved in hearing. In this,
we envisage a bank of such resonant cells arranged in
parallel and all tuned to slightly different frequencies to
cover a broad spectral range.

These desirable features give the system advantages
over existing techniques used in science and industry for
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FIG. 5. The amplification found in cells 2 and 3 (I'; and I7,
respectively) in the range of wy between 129.5 and 130 Hz are
shown, in decibels. The line indicates a gradient of 1/3 over this
range of wp.

signal detection. This prototype system would benefit from
further development using high-tolerance, well-balanced,
and controlled circuits which could be done using modern
chip technology. Indeed, biological systems are believed to
achieve the control required close to bifurcation points
using a feedback mechanism termed ‘‘self-tuned Hopf
bifurcation’’ [27], which has been extensively investigated
theoretically [28,29]. A signal detector based on the prin-
ciples introduced in this Letter could provide significant
advantages over current devices. In addition, not only
electronic oscillators could be used as the basic cells of
the system. The model providing the motivation for the
current study is generic to any type of oscillator close to a
Hopf bifurcation. Therefore, in principle, other physical
systems could be constructed which operate over a wide
range of frequencies. Applications using the principles
outlined here might include coupled lasers, neural net-
works, or mechanical systems.
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