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Summary

This paper is concerned with a striking visual experience: that of seeing geometric visual
hallucinations. Hallucinatory images were classified by Klüver into four groups called form
constants comprising (a) gratings, lattices, fretworks, filigrees, honeycombs and checker-
boards (b) cobwebs (c) tunnels, funnels, alleys, cones and vessels and (d) spirals. This
paper describes a mathematical investigation of their origin based on the assumption that
the patterns of connection between retina and striate cortex (henceforth referred to as V1)—
the retino-cortical map—and of neuronal circuits in V1, both local and lateral, determine
their geometry.

In the first part of the paper we show that form constants, when viewed in V1 coor-
dinates, correspond essentially to combinations of plane waves, the wavelengths of which
are integral multiples of the width of a human Hubel–Wiesel hypercolumn, about 1.33 −
2.00 mm. We next introduce a mathematical description of the large–scale dynamics of V1
in terms of the continuum limit of a lattice of interconnected hypercolumns, each of which
itself comprises a number of interconnected iso–orientation columns. We then show that
the patterns of interconnection in V1 exhibit a very interesting symmetry, i.e., they are
invariant under the action of the planar Euclidean group E(2)—the group of rigid motions
in the plane—rotations, reflections and translations. What is novel is that the lateral con-
nectivity of V1 is such that a new group action is needed to represent its properties: by
virtue of its anisotropy it is invariant with respect to certain shifts and twists of the plane.
It is this shift–twist invariance that generates new representations of E(2). Assuming that
the strength of lateral connections is weak compared with that of local connections, we
next calculate the eigenvalues and eigenfunctions of the cortical dynamics, using Rayleigh–
Schrödinger perturbation theory. The result is that in the absence of lateral connections,
the eigenfunctions are degenerate, comprising both even and odd combinations of sinusoids
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in φ, the cortical label for orientation preference, and plane waves in r, the cortical position
coordinate. ‘Switching–on’ the lateral interactions breaks the degeneracy and either even
or else odd eigenfunctions are selected. These results can be shown to follow directly from
the Euclidean symmetry we have imposed.

In the second part of the paper we study the nature of various even and odd combinations
of eigenfunctions or planforms, whose symmetries are such that they remain invariant under
the particular action of E(2) we have imposed. These symmetries correspond to certain
subgroups of E(2), the so–called axial subgroups. Axial subgroups are important in that
the equivariant branching lemma indicates that when a symmetric dynamical system goes
unstable, new solutions emerge which have symmetries corresponding to the axial subgroups
of the underlying symmetry group. This is precisely the case studied in this paper. Thus
we study the various planforms that emerge when our model V1 dynamics goes unstable
under the presumed action of hallucinogens or flickering lights. We show that the planforms
correspond to the axial subgroups of E(2), under the shift–twist action. We then compute
what such planforms would look like in the visual field, given an extension of the retino–
cortical map to include its action on local edges and contours. What is most interesting is
that given our interpretation of the correspondence between V1 planforms and perceived
patterns, the set of planforms generates representatives of all the form constants. It is
also noteworthy that the planforms derived from our continuum model naturally divide V1
into what are called linear regions, in which the pattern has a near constant orientation,
reminiscent of the iso–orientation patches constructed via optical imaging. The boundaries
of such regions form fractures whose points of intersection correspond to the well–known
‘pinwheels’.

To complete the study we then investigate the stability of the planforms, using meth-

ods of nonlinear stability analysis, including Liapunov–Schmidt reduction and Poincaré–

Lindstedt perturbation theory. We find a close correspondence between stable planforms

and form constants. The results are sensitive to the detailed specification of the lateral

connectivity and suggest an interesting possibility, that the cortical mechanisms by which

geometric visual hallucinations are generated, if sited mainly in V1, are closely related to

those involved in the processing of edges and contours.
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. . . the hallucination is . . . not a static process

but a dynamic process, the instability of which

reflects an instability in its conditions of origin

Klüver (1966a) in a comment on Mourgue (1932)

1 Introduction

1.1 Form constants and visual imagery

Geometric visual hallucinations are seen in many situations, for example: after being

exposed to flickering lights (Purkinje, 1918; Helmholtz, 1925; Smythies, 1960), after

the administration of certain anaesthetics (Winters, 1975), on waking up or falling

asleep (Dybowski, 1939), following deep binocular pressure on one’s eyeballs (Tyler,

1978), and shortly after the ingesting of drugs such as LSD and Marihuana (Oster,

1970; Siegel, 1977). Patterns that may be hallucinatory are found preserved in pet-

roglyphs (Patterson, 1992) and in cave paintings (Clottes & Lewis-Williams, 1998).

There are many reports of such experiences (Knauer & Maloney, 1913):

Immediately before my open eyes are a vast number of rings, apparently made
of extremely fine steel wire, all constantly rotating in the direction of the hands
of a clock; these circles are concentrically arranged, the innermost being in-
finitely small, almost pointlike, the outermost being about a meter and a half
in diameter. The spaces between the wires seem brighter than the wires them-
selves. Now the wires shine like dim silver in parts. Now a beautiful light violet
tint has developed in them. As I watch, the center seems to recede into the
depth of the room, leaving the periphery stationary, till the whole assumes the
form of a deep tunnel of wire rings. The light, which was irregularly distributed
among the circles, has receded with the center into the apex of the funnel. The
center is gradually returning, and passing the position when all the rings are in
the same vertical plane, continues to advance, till a cone forms with its apex
toward me . . . The wires are now flattening into bands or ribbons, with a sug-
gestion of transverse striation, and colored a gorgeous ultramarine blue, which
passes in places into an intense sea green. These bands move rhythmically, in a
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wavy upward direction, suggesting a slow endless procession of small mosaics,
ascending the wall in single files. The whole picture has suddenly receded, the
center much more than the sides, and now in a moment, high above me, is a
dome of the most beautiful mosiacs, . . . The dome has absolutely no discernible
pattern. But circles are now developing upon it; the circles are becoming sharp
and elongated . . . now they are rhombics now oblongs; and now all sorts of
curious angles are forming; and mathematical figures are chasing each other
wildly across the roof . . .

Klüver (1966b) organized the many reported images into four classes, which he called

form constants:(I) gratings, lattices, fretworks, filigrees, honeycombs and checker-

boards (II) cobwebs (III) tunnels and funnels, alleys, cones, vessels, and (IV) spirals.

Some examples of class I form constants are shown in figure 1, while examples of the

Figure 1: Left panel: ‘Phosphene’ produced by deep binocular pressure on the eyeballs. Re-
drawn from Tyler (1978). Right panel: Honeycomb hallucination generated by Marihuana.
Redrawn from Clottes & Lewis-Williams (1998).

other classes are shown in figures 2–4.

Such images are seen both by blind subjects and in sealed dark rooms (Krill,

Alpert, & Ostfield, 1963). Various reports (Klüver, 1966b) indicate that although

they are difficult to localize in space, they are stable with respect to eye movements,
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Figure 2: Funnel and Spiral hallucinations generated by LSD. Redrawn from Oster (1970)

Figure 3: Funnel and Spiral Tunnel Hallucinations generated by LSD. Redrawn from Siegel
(1977).
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Figure 4: Cobweb petroglyph. Redrawn from Patterson (1992).

i.e., they remain fixed in the visual field. This suggests that they are generated

not in the eyes, but somewhere in the brain. One clue on their location in the

brain is provided by recent studies of visual imagery (Miyashita, 1995). Although

controversial, the evidence seems to suggest that areas V1 and V2, the striate and

extra–striate visual cortices, are involved in visual imagery, particularly if the image

requires detailed inspection (Kosslyn, 1994). More precisely, it has been suggested

that (Ishai & Sagi, 1995):

[the] topological representation [provided by V1] might subserve visual imagery
when the subject is scrutinizing attentively local features of objects that are
stored in memory.

Thus visual imagery is seen as the result of an interaction between mechanisms sub-

serving the retrieval of visual memories and those involving focal attention. In this

respect it is interesting that there seems to be competition between the seeing of

visual imagery and hallucinations (Knauer & Maloney, 1913) :

...after a picture had been placed on a background and then removed “I tried to
see the picture with open eyes. In no case was I successful; only [hallucinatory]
visionary phenomena covered the ground”.
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Competition between hallucinatory images and after–images has also been reported

(Klüver, 1966b):

In some instances, the [hallucinatory] visions prevented the appearance of after–
images entirely; [however] in most cases a sharply outlined normal after–image
appeared for a while....while the visionary phenomena were stationary, the
after–images moved with the eyes

As pointed out to us by one of the referees, the fused image of a pair of random dot

stereograms also seems to be stationary with respect to eye movements. It has also

be argued that since hallucinatory images are seen as continuous across the mid–line,

they must be located at higher levels in the visual pathway than V1 or V2 [R. Shapley,

personal communication.] In this respect there is evidence that callosal connections

along the V1/V2 border can act to maintain continuity of the images across the

vertical meridian (Hubel & Wiesel, 1967).

All these observations suggest that both areas V1 and V2 are involved in the

generation of hallucinatory images. In our view such images are generated in V1

and stabilized with respect to eye movements by mechanisms present in V2 and else-

where. It is likely that the action of such mechanisms is rapidly fed–back to V1 (Lee,

Mumford, Romero, & Lamme, 1998). It now follows, since all observers report see-

ing Klüver’s form constants or variations, that those properties common to all such

hallucinations should yield information about the architecture of V1. We therefore

investigate that architecture, i.e., the patterns of connection between neurons in the

retina and those in V1, together with intracortical V1 connections, on the hypoth-

esis that such patterns determine, in large part, the geometry of hallucinatory form

constants, and we defer until a later study, the investigation of mechanisms that

contribute to their continuity across the midline and to their stability in the visual

field.

1.2 The human retino–cortical map

The first step is to calculate what visual hallucinations look like, not in the standard

polar coordinates of the visual field, but in the coordinates of V1. It is well established
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that there is a topographic map of the visual field in V1, the retinotopic representa-

tion, and that the central region of the visual field has a much bigger representation

in V1 than it does in the visual field (Sereno, Dale, Reppas, Kwong, Belliveau, Brady,

Rosen, & Tootell, 1995). The reason for this is partly that there is a non–uniform

distribution of retinal ganglion cells, each of which connects to V1 via the lateral

geniculate nucleus (LGN). This allows calculation of the details of the map (Cowan,

1977). Let ρR be the packing density of retinal ganglion cells, per unit area of the vi-

sual field, ρ the corresponding density per unit surface area of cells in V1, and [rR, θR]

retinal or equivalently, visual field coordinates. Then ρRrRdrRdθR is the number of

ganglion cell axons in a retinal element of area rRdrRdθR. By hypothesis these axons

connect topographically to cells in an element of V1 surface area dxdy, i.e. to ρdxdy

cortical cells. [V1 is assumed to be locally flat with Cartesian coordinates]. Empir-

ical evidence indicates that ρ is approximately constant (Hubel & Wiesel, 1974a,b),

whereas ρR declines from the origin of the visual field, i.e. the fovea, with an inverse

square law (Drasdo, 1977):

ρR =
1

(w0 + εrR)2
.

where w0 and ε are constants. Estimates of w0 = 0.087 and ε = 0.051 in appropriate

units can be obtained from published data (Drasdo, 1977). From this one can calculate

the Jacobian of the map and hence V1 coordinates {x, y} as functions of visual field

or retinal coordinates {rR, θR}. The resulting coordinate transformation takes the

form:

x =
α

ε
ln

[
1 +

ε

w0

rR

]
, y =

βrRθR

w0 + εrR

,

where α and β are constants in appropriate units. Figure 5 shows the map.
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Figure 5: The retino–cortical map. (a) Visual field, (b) The actual cortical map, comprising
right and left hemisphere transforms, (c) A transformed version of the cortical map. The
two transforms are realigned so that both foveal regions correspond to x = 0.

The transformation has two important limiting cases: (a) near the fovea, εrR < w0,

it reduces to:

x =
αrR

w0

, y =
βrR θR

w0

.

and (b), sufficiently far away from the fovea, εrR � w0, it becomes:

x =
α

ε
ln

ε rR

w0

, y =
βθR

ε
.

(a) is just a scaled version of the identity map, and (b) is a scaled version of the

complex logarithm as was first recognized by Schwartz (1977). To see this let zR =
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xR + iyR = rR exp [iθR], be the complex representation of a retinal point (xR, yR) =

(rR, θR) , then z = x + iy = ln ( rR exp [iθR] ) = ln rR + iθR. Thus x = ln rR, y = θR.

1.3 Form constants as spontaneous cortical patterns

Given that the retino–cortical map is generated by the complex logarithm (except

near the fovea), it is easy to calculate the action of the transformation on circles,

rays, and logarithmic spirals in the visual field. Circles of constant rR in the visual

field become vertical lines in V1, whereas rays of constant θR become horizontal lines.

Interestingly, logarithmic spirals become oblique lines in V1: the equation of such

a spiral is just θR = a ln rR whence y = ax under the action of zR → z. Thus

form constants comprising circles, rays, and logarithmic spirals in the visual field

correspond to stripes of neural activity at various angles in V1. Figures 6 and 7 show

the map action on the funnel and spiral form constants shown in figure 2.

Figure 6: Action of the retino–cortical map on the funnel form constant. (a) Image in the
visual field, (b) V1 map of the image.

A possible mechanism for the spontaneous formation of stripes of neural activity

under the action of hallucinogens was originally proposed by Ermentrout & Cowan

(1979). They studied interacting populations of excitatory and inhibitory neurons

distributed within a two–dimensional cortical sheet. Modeling the evolution of the

system in terms of a set of Wilson–Cowan equations (Wilson & Cowan, 1972, 1973)
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Figure 7: Action of the retino–cortical map on the spiral form constant. (a) Image in the
visual field, (b) V1 map of the image.

they showed how spatially periodic activity patterns such as stripes can bifurcate

from a homogeneous low–activity state via a Turing–like instability (Turing, 1952).

The model also supports the formation of other periodic patterns such as hexagons

and squares—under the retino–cortical map these generate more complex hallucina-

tions in the visual field such as checkerboards. Similar results are found in a reduced

single–population model provided that the interactions are characterized by a mix-

ture of short–range excitation and long–range inhibition (the so–called ‘Mexican hat

distribution’).

1.4 Orientation tuning in V1

The Ermentrout–Cowan theory of visual hallucinations is over–simplified in the sense

that V1 is represented as if it were just a cortical retina. However V1 cells do much

more than merely signalling position in the visual field: most cortical cells signal

the local orientation of a contrast edge or bar—they are tuned to a particular local

orientation (Hubel & Wiesel, 1974a). The absence of orientation representation in

the Ermentrout–Cowan model means that a number of the form constants cannot

be generated by the model including lattice tunnels (figure 42), honeycombs and

certain checkerboards (figure 1), and cobwebs (figure 4). These hallucinations, except
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the checkerboards, are more accurately characterized as lattices of locally oriented

contours or edges rather than in terms of contrasting regions of light and dark.

(a)

(b)

(c)

Figure 8: (a) Orientation tuned cells in V1. Note the constancy of orientation preference at
each cortical location [electrode tracks 1 and 3], and the rotation of orientation preference
as cortical location changes [electrode track 2], (b) receptive fields for tracks 1 and 3,
(c) expansion of the recptive fields of track 2 to show rotation of orientation preferences.
Redrawn from Gilbert (1992).

In recent years much information has accumulated about the distribution of orien-

tation selective cells in V1, and about their pattern of interconnection (Gilbert, 1992).

Figure 8 shows a typical arrangement of such cells, obtained via microelectrodes im-

planted in Cat V1. The first panel shows how orientation preferences rotate smoothly

over V1, so that approximately every 300 µm the same preference reappears, i.e. the

distribution is π–periodic in the orientation preference angle. The second panel shows

the receptive fields of the cells, and how they change with V1 location. The third

panel shows more clearly the rotation of such fields with translation across V1.

How are orientation tuned cells distributed and interconnected? Recent work on

optical imaging has made it possible to see how the cells are actually distributed in

V1 (Blasdel, 1992), and a variety of stains and labels have made it possible to see
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how they are interconnected (Blasdel and Sincich, personal communication), (Eysel,

1999; Bosking, Zhang, Schofield, & Fitzpatrick, 1997). Figures 9–10 show such data.

Figure 9: Left panel: Distribution of orientation preferences in Macaque V1 obtained via
optical imaging. Redrawn from Blasdel (1992); Right panel: Connections made by an
inhibitory interneuron in Cat V1. Redrawn from Eysel (1999).

Thus, the left panel of Figure 9 shows that the distribution of orientation pref-

erences is indeed roughly π–periodic, in that approximately every 0.5 mm (in the

Macaque) there is an iso–orientation patch of a given preference, and Figure 10 that

there seem to be at least two length–scales:

(a) local – cells less than 0.5 mm apart tend to make connections with most of their

neighbors in a roughly isotropic fashion, as seen in the right panel of Figure 9,

and

(b) lateral – cells make contacts only every 0.5 mm or so along their axons with

cells in similar iso–orientation patches.

In addition, Figure 10 shows that the long axons which support such connections,

known as intrinsic lateral or horizontal connections, and found mainly in layers II

and III of V1, and to some extent in layer V (Rockland & Lund, 1983), tend to be

oriented along the direction of their cells preference (Gilbert, 1992; Bosking et al.,

1997), i.e., they run parallel to the visuotopic axis of their cell’s orientation preference.
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These horizontal connections arise almost exclusively from excitatory neurons (Levitt

& Lund, 1997; Gilbert & Wiesel, 1983), although 20% terminate on inhibitory cells

and can thus have significant inhibitory effects (McGuire, Gilbert, Rivlin, & Wiesel,

1991).

Figure 10: Lateral Connections made by V1 cells in Owl Monkey (Left panel) and Tree
Shrew (Right panel) V1. A radioactive tracer is used to show the locations of all terminating
axons from cells in a central injection site, superimposed on an orientation map obtained by
optical imaging. Redrawn from Blasdel & Sincich [personal communication] and Bosking
et al. (1997).

There is some anatomical and psychophysical evidence (Horton, 1996; Tyler, 1982)

that Human V1 has several times the surface area of Macaque V1 with a hypercolumn

spacing of about 1.33 − 2 mm. In the rest of this paper we work with this length–

scale to extend the Ermentrout–Cowan theory of visual hallucinations to include

orientation selective cells. A preliminary account of this was described in Wiener

(1994) and Cowan (1997).
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2 A model of V1 with anisotropic lateral connec-

tions

2.1 The model

The state of a population of cells comprising an iso–orientation patch at cortical

position r ∈ R2 at time t is characterized by the real–valued activity variable a(r, φ, t),

where φ ∈ [0, π) is the orientation preference of the patch. V1 is treated as an

(unbounded) continuous two-dimensional sheet of nervous tissue. For the sake of

analytical tractability, we make the additional simplifying assumption that φ and r

are independent variables – all possible orientations are represented at every position.

A more accurate model would need to incorporate details concerning the distribution

of orientation patches in the cortical plane (as illustrated in figure 9). It is known, for

example, that a region of human V1 roughly 2.67 mm2 on its surface and extending

throughout its depth contains at least two sets of all iso-orientation patches in the

range 0 ≤ φ < π, one for each eye. Such a slab was called a hypercolumn by (Hubel

& Wiesel, 1974b). If human V 1 as a whole (in one hemisphere) has a surface area of

about 3500 mm2(Horton, 1996), this gives approximately 1300 such hypercolumns.

So one interpretation of our model would be that it is a continuum version of a lattice

of hypercolumns. However, a potential difficulty with this interpretation is that the

effective wavelength of many of the patterns underlying visual hallucinations is of

the order of twice the hypercolumn spacing (see for example figure 2), suggesting

that lattice effects might be important. A counter argument for the validity of the

continuum model (besides mathematical convenience) is to note that the separation

of two points in the visual field—visual acuity—(at a given retinal eccentricity of

ro
R), corresponds to hypercolumn spacing (Hubel & Wiesel, 1974b), and so to each

location in the visual field there corresponds a representation in V1 of that location

with finite resolution and all possible orientations.

The activity variable a(r, φ, t) evolves according to a generalization of the Wilson–

Cowan equations (Wilson & Cowan, 1972, 1973) that takes into account the additional
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internal degree of freedom arising from orientation preference:

∂a(r, φ, t)

∂t
= −αa(r, φ, t) + µ

∫ π

0

∫
R2

w(r, φ|r′, φ′)σ[a(r′, φ′, t)]
dr′dφ′

π
+ h(r, φ, t)(2.1)

where α and µ are decay and coupling coefficients, h(r, φ, t) is an external input,

w(r, φ|r′, φ′) is the weight of connections between neurons at r tuned to φ and neurons

at r′ tuned to φ′, and σ[z] is the smooth nonlinear function

σ[z] =
1

1 + e−γ(z−ζ)
(2.2)

for constants γ and ζ. Without loss of generality we may subtract from σ[z] a constant

equal to [1+eγζ ]−1 to obtain the (mathematically) important property that σ[0] = 0,

which implies that for zero external inputs the homogeneous state a(r, φ, t) = 0 for

all r, φ, t is a solution to equation (2.1). From the discussion in section §1.4, we take

hypercolumn

lateral connections

local connections

Figure 11: Illustration of the local connections within a hypercolumn and the anisotropic
lateral connections between hypercolumns
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the pattern of connections w(r, φ|r′, φ′) to satisfy the following properties (see figure

11):

(a) There exists a mixture of local connections within a hypercolumn and (anisotropic)

lateral connections between hypercolumns; the latter only connect elements with

the same orientation preference. Thus in the continuum model w is decomposed

as

w(r, φ|r′, φ′) = wloc(φ − φ′)δ(r − r′) + wlat(r − r′, φ)δ(φ − φ′) (2.3)

with wloc(−φ) = wloc(φ).

(b) Lateral connections between hypercolumns only join neurons that lie along the

direction of their (common) orientation preference φ. Thus in the continuum

model

wlat(r, φ) = ŵ(R−φr) (2.4)

with

ŵ(r) =

∫ ∞

0

g(s) [δ(r − sr0) + δ(r + sr0)] ds (2.5)

where r0 = (1, 0) and Rθ is the rotation matrix

Rθ

(
x

y

)
=

(
cos θ − sin θ

sin θ cos θ

) (
x

y

)
.

The weighting function g(s) determines how the strength of lateral connections

varies with the distance of separation. We take g(s) to be of the particular form

g(s) = [2πξ2
lat]

−1/2e−s2/2ξ2
lat − Alat[2πξ̂2

lat]
−1/2e−s2/2ξ̂2

lat (2.6)

with ξlat < ξ̂lat and Alat ≤ 1, which represents a combination of short-range

excitation and long-range inhibition. This is an example of the Mexican hat

distribution. (Note that one can view the short–range excitatory connections

as arising from patchy local connections within a hypercolumn).
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q0

f0

f0

f0

Figure 12: Example of an angular spread in the anisotropic lateral connections between
hypercolumns with respect to both space (θ0) and orientation preference (φ0)

It is possible to consider more general choices of weight distribution w that (i)

allow for some spread in the distribution of lateral connections (see figure 12) and

(ii) incorporate spatially extended isotropic local interactions. An example of such a

distribution is given by the following generalization of equations (2.3) and (2.4):

w(r, φ|r′, φ′) = wloc(φ − φ′)∆loc(|r − r′|) + ŵ(R−φ[r
′ − r])∆lat(φ − φ′) (2.7)

with ∆lat(−φ) = ∆lat(φ), ∆lat(φ) = 0 for |φ| > φ0, and ∆loc(|r|) = 0 for r > ξ0.

Moreover, equation (2.5) is modified according to

ŵ(r) =

∫ θ0

−θ0

p(θ)

∫ ∞

0

g(s) [δ(r − srθ) + δ(r + srθ)] dsdθ (2.8)

with rθ = (cos(θ), sin(θ)) and p(−θ) = p(θ). The parameters φ0 and θ0 determine

the angular spread of lateral connections with respect to orientation preference and

space respectively, whereas ξ0 determines the (spatial) range of the isotropic local

connections.

2.2 Euclidean symmetry

Suppose that the weight distribution w satisfies equations (2.7) and (2.8). We show

that w is invariant under the action of the Euclidean group E(2) of rigid motions in

the plane, and discuss some of the important consequences of such a symmetry.

Euclidean group action The Euclidean group is composed of the (semi-direct)

product of O(2), the group of planar rotations and reflections, with R2, the group of
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planar translations. The action of the Euclidean group on R2 × S1 is generated by:

s · (r, φ) = (r + s, φ) s ∈ R2

θ · (r, φ) = (Rθr, φ + θ) θ ∈ S1

κ · (r, φ) = (κr,−φ),

(2.9)

where κ is the reflection (x1, x2) �→ (x1,−x2) and Rθ is a rotation by θ.

The corresponding group action on a function a : R2 × S1 → R where P = (r, φ)

is given by

γ · a(P ) = a(γ−1 · P ) for all γ ∈ O(2)+̇R2 (2.10)

and the action on w(P |P ′) is

γ · w(P |P ′) = w(γ−1 · P |γ−1 · P ′).
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Figure 13: Action of a rotation by θ: (r, φ) → (r′, φ′) = (Rθr, φ + θ)

The particular form of the action of rotations in (2.9) reflects a crucial feature of

the lateral connections, namely that they tend to be oriented along the direction of

their cell’s preference (see figure 11). Thus, if we just rotate V1, then the cells that are

now connected at long range will not be connected in the direction of their preference.

This difficulty can be overcome by permuting the local cells in each hypercolumn so

that cells that are connected at long range are again connected in the direction of
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their preference. Thus, in the continuum model, the action of rotation of V1 by θ

corresponds to rotation of r by θ while simultaneously sending φ to φ + θ. This is

illustrated in figure 13. The action of reflections is justified in a similar fashion.

Invariant weight distribution w. We now prove that w as given by equations

(2.7) and (2.8) is invariant under the action of the Euclidean group defined by (2.9).

(It then follows that the distribution satisfying equations (2.3)–(2.5) is also Euclidean

invariant). Translation invariance of w is obvious, that is,

w(r − s, φ|r′ − s, φ′) = w(r, φ|r′, φ′).

Invariance with respect to a rotation by θ follows from

w(R−θr, φ − θ|R−θr
′, φ′ − θ)

= wloc(φ − φ′)∆loc(|R−θ[r − r′]|) + ŵ(R−φ+θR−θ(r − r′))∆lat(φ − φ′)

= wloc(φ − φ′)∆loc(|r − r′|) + ŵ(R−φr)∆lat(φ − φ′)

= w(r, φ|r′, φ′)

Finally, invariance under a reflection κ about the x-axis holds since

w(κr,−φ|κr′,−φ′) = wloc(−φ + φ′)∆loc(|κ[r − r′]|) + ŵ(Rφκ(r − r′))∆lat(−φ + φ′)

= wloc(φ − φ′)∆loc(|r − r′|) + ŵ(κRφ(r − r′))∆lat(φ − φ′)

= wloc(φ − φ′)∆loc(|r − r′|) + ŵ(R−φ(r − r′))∆lat(φ − φ′)

= w(r, φ|r′, φ′)

We have used the identity κR−φ = Rφκ and the conditions wloc(−φ) = wloc(φ),

∆lat(−φ) = ∆lat(φ), ŵ(κr) = ŵ(r).
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Implications of Euclidean symmetry Consider the action of γ on equation (2.1)

for h(r, t) = 0:

∂a(γ−1P, t)

∂t
= −αa(γ−1P, t) + µ

∫
R2×S1

w(γ−1P |P ′)σ[a(P ′, t)]dP ′

= −αa(γ−1P, t) + µ

∫
R2×S1

w(P |γP ′)σ[a(P ′, t)]dP ′

= −αa(γ−1P, t) + µ

∫
R2×S1

w(P |P ′′)σ[a(γ−1P ′′, t)]dP ′′

since d[γ−1P ] = ±dP and w is Euclidean invariant. If we rewrite equation (2.1) as

an operator equation, namely,

F[a] ≡ da

dt
− G[a] = 0,

then it follows that γF[a] = F[γa]. Thus F commutes with γ ∈ E(2) and F is said

to be equivariant with respect to the symmetry group E(2) (Golubitsky, Stewart, &

Schaeffer, 1988). The equivariance of the operator F with respect to the action of E(2)

has major implications for the nature of solutions bifurcating from the homogeneous

resting state. Let µ be a bifurcation parameter. We show in §4 that near a point

for which the steady–state a(r, φ, µ) = 0 becomes unstable, there must exist smooth

solutions to the equilibrium equation G[a(r, φ, µ)] = 0 that are identified by their

symmetry (Golubitsky et al., 1988). We find solutions that are doubly periodic with

respect to a rhombic, square or hexagonal lattice by using the remnants of Euclidean

symmetry on these lattices. These remnants are the (semi–direct) products Γ of the

torus T2 of translations modulo the lattice with the dihedral groups D2, D4 and

D6, the holohedries of the lattice. Thus, when a(r, φ, µ) = 0 becomes unstable,

new solutions emerge from the instability with symmetries that are broken compared

with Γ. Sufficiently close to the bifurcation point these patterns are characterized

by (finite) linear combinations of eigenfunctions of the linear operator L = D0G

obtained by linearizing equation (2.1) about the homogeneous state a = 0. These

eigenfunctions are derived in §3.
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2.3 Two limiting cases

For the sake of mathematical convenience, we restrict our analysis in this paper to the

simpler weight distribution given by equations (2.3) and (2.4) with ŵ satisfying either

equation (2.5) or (2.8). The most important property of w is its invariance under the

extended Euclidean group action (2.9), which is itself a natural consequence of the

anisotropic pattern of lateral connections. Substitution of equation (2.3) into equation

(2.1) gives (for zero external inputs)

∂a(r, φ, t)

∂t
= −αa(r, φ, t) + µ

[∫ π

0

wloc(φ − φ′)σ[a(r, φ′, t)]
dφ′

π
(2.11)

+β

∫
R2

wlat(r − r′, φ)σ[a(r′, φ, t)]dr′
]

where we have introduced an additional coupling parameter β that characterizes the

relative strength of lateral interactions. Equation (2.11) is of convolution type, in that

the weighting functions are homogeneous in their respective domains. However, the

weighting function wlat(r, φ) is anisotropic, since it depends on φ. Before proceding to

analyze the full model described by equation (2.11), it is useful to consider two limiting

cases, namely the ring model of orientation tuning and the Ermentrout–Cowan model

(Ermentrout & Cowan, 1979).

The Ring model of orientation tuning

The first limiting case is to neglect lateral connections completely by setting β = 0

in equation (2.11). Each point r in the cortex is then independently described by

the so–called ring model of orientation tuning (Hansel & Sompolinsky, 1997; Mundel,

Dimitrov, & Cowan, 1997; Ermentrout, 1998; Bressloff, Bressloff, & Cowan, 2000a):

∂a(r, φ, t)

∂t
= −αa(r, φ, t) + µ

∫ π

0

wloc(φ − φ′)σ[a(r, φ′, t)]
dφ′

π
(2.12)

Linearizing this equation about the homogeneous state a(r, φ, t) ≡ 0 and considering

perturbations of the form a(r, φ, t) = eλta(r, φ) yields the eigenvalue equation

λa(r, φ) = −αa(r, φ) + µ

∫ π

0

wloc(φ − φ′)a(r, φ′)
dφ′

π
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Introducing the Fourier series expansion a(r, φ) =
∑

m zm(r)e2imφ + c.c. generates the

following discrete dispersion relation for the eigenvalue λ:

λ = −α + σ1µWm ≡ λm (2.13)

where σ1 = dσ[z]/dz evaluated at z = 0 and

wloc(φ) =
∑
n∈Z

Wne2niφ (2.14)

Note that since wloc(φ) is a real and even function of φ, W−m = Wm = Wm.

Let Wp = max{Wn, n ∈ Z+} and suppose that p is unique with Wp > 0 and

p ≥ 1. It then follows from equation (2.13) that the homogeneous state a(r, φ) = 0

is stable for sufficiently small µ, but becomes unstable when µ increases beyond

the critical value µc = α/σ1Wp due to excitation of linear eigenmodes of the form

a(r, φ) = z(r)e2ipφ + z(r)e−2ipφ, where z(r) is an arbitrary complex function of r. It

can be shown that the saturating nonlinearities of the system stabilize the growing

pattern of activity (Ermentrout, 1998; Bressloff et al., 2000a). In terms of polar

coordinates z(r) = Z(r)e2iφ(r) we have a(r, φ) = Z(r) cos(2p[φ − φ(r)]). Thus at

each point r in the plane the maximum (linear) response occurs at the orientations

φ(r) + kπ/p, k = 0, 1, . . . , p − 1 when p �= 0.

Of particular relevance from a biological perspective are the cases p = 0 and

p = 1. In the first case there is a bulk instability in which the new steady state shows

no orientation preference. Any tuning is generated in the genico–cortical map. We

call this the ‘Hubel–Wiesel’ mode (Hubel & Wiesel, 1974a). In the second case the

response is unimodal with respect to φ. The occurrence of a sharply tuned response

peaked at some angle φ(r) in a local region of V1 corresponds to the presence of

a local contour there, whose orientation is determined by the inverse of the double

retino–cortical map described in §5.1. An example of a typical unimodal tuning

curve is shown in figure 14, which is obtained by taking wloc(φ) to be a difference–of–

Gaussians over the domain [−π/2, π/2):

wloc(φ) = [2πξ2
loc]

−1/2e−φ2/2ξ2
loc − Aloc[2πξ̂2

loc]
−1/2e−φ2/2ξ̂2

loc (2.15)
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Figure 14: Sharp orientation tuning curves for a Mexican hat weight kernel with ξloc = 20o,
ξ̂loc = 60o and Aloc = 1. The tuning curve is marginally stable so that the peak activity a

at each point in the cortical plane is arbitrary. The activity is truncated at σ = 0 in line
with the choice of σ[0] = 0.
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with ξloc < ξ̂loc and Aloc ≤ 1.

The location of the center φ(r) of each tuning curve is arbitrary, which reflects

the rotational equivariance of equation (2.12) under the modified group action θ :

(r, φ) → (r, φ+θ). Moreover, in the absence of lateral interactions the tuned response

is uncorrelated across different points in V1. In this paper we show how the presence

of anisotropic lateral connections leads to periodic patterns of activity across V1 in

which the peaks of the tuning curve at different locations are correlated.

The Ermentrout–Cowan model

The other limiting case is to neglect the orientation label completely. Equation (2.11)

then reduces to a one-population version of the model studied by Ermentrout &

Cowan (1979):

∂

∂t
a(r, t) = −αa(r, t) + ν

∫
Ω

wlat(r − r′)σ [a(r′, t)] dr′ (2.16)

In this model there is no reason to distinguish any direction in V1, so we assume that

wlat(r− r′) → wlat(|r− r′|), i.e. wlat depends only on the magnitude of r− r′. It can

be shown that the resulting system is equivariant with respect to the standard action

of the Euclidean group in the plane.

Linearizing equation (2.16) about the homogeneous state and taking a(r, t) =

eλta(r) gives rise to the eigenvalue problem

λa(r) = −αa(r) + νσ1

∫
Ω

wlat(|r − r′|)a(r′)dr′,

which upon Fourier transforming generates a dispersion relation for the eigenvalue λ

as a function of q = |k|, i.e.

λ = −α + νσ1W̃ (q) ≡ λ(q)

where W̃ (q) = w̃lat(k) is the Fourier transform of wlat(|r|). Note that λ is real. If we

choose wlat(|r|) to be in the form of a Mexican hat function, then it is simple to estab-

lish that λ passes through zero at a critical parameter value νc signalling the growth of
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spatially periodic patterns with wavenumber qc, where W̃ (qc) = maxq{W̃ (q)}. Close

to the bifurcation point these patterns can be represented as linear combinations of

plane waves

a(r) =
∑

i

cie
iki·r

with |ki| = qc. As shown in Ermentrout & Cowan (1979) and Cowan (1982), the un-

derlying Euclidean symmetry of the weighting function together with the restriction to

doubly periodic functions then determines the allowable combinations of plane waves

comprising steady state solutions. In particular, stripe, checkerboard and hexagonal

patterns of activity can form in the V1 map of the visual field. In this paper we gener-

alize the treatment by Ermentrout & Cowan to incorporate the effects of orientation

preference—and show how plane waves of cortical activity modulate the distribution

of tuning curves across the network and lead to contoured patterns.

3 Linear stability analysis

The first step in the analysis of pattern forming instabilities in the full cortical model is

to linearize equation (2.11) about the homogeneous solution a(r, φ) = 0 and to solve

the resulting eigenvalue problem. In particular, we wish to find conditions under

which the homogeneous solution becomes marginally stable due to the vanishing of

one of the (degenerate) eigenvalues, and to identify the marginally stable modes. This

will require performing a perturbation expansion with respect to the small parameter

β characterizing the relative strength of the anisotropic lateral connections.
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3.1 Linearization

We linearize equation (2.11) about the homogeneous state and introduce solutions of

the form a(r, φ, t) = eλta(r, φ). This generates the eigenvalue equation

λa(r, φ) = −αa(r, φ) + σ1µ

[∫ π

0

wloc(φ − φ′)a(r, φ′)
dφ′

π

+β

∫
R2

wlat(r − r′, φ)a(r′, φ)dr′
]

(3.1)

Because of translation symmetry, the eigenvalue equation (3.1) can be written in the

form

a(r, φ) = u(φ − ϕ)eik·r + c.c. (3.2)

with k = q(cos ϕ, sin ϕ) and

λu(φ) = −αu(φ) + σ1µ

[∫ π

0

wloc(φ − φ′)u(φ′)
dφ′

π
+ βw̃lat(k, φ + ϕ)u(φ)

]
(3.3)

Here w̃lat(k, φ) is the Fourier transform of wlat(r, φ).

Assume that wlat satisfies equations (2.4) and (2.5) so that the total weight distri-

bution w is Euclidean invariant. The resulting symmetry of the system then restricts

the structure of the solutions of the eigenvalue equation (3.3):

(i) λ and u(φ) only depend on the magnitude q = |k| of the wave vector k. That

is, there is an infinite degeneracy due to rotational invariance.

(ii) For each k the associated subspace of eigenfunctions

Vk = {u(φ − ϕ)eik·r + c.c : u(φ + π) = u(φ) and u ∈ C} (3.4)

decomposes into two invariant subspaces

Vk = V +
k ⊕ V −

k , (3.5)

corresponding to even and odd functions respectively

V +
k = {v ∈ Vk : u(−φ) = u(φ)} and V −

k = {v ∈ Vk : u(−φ) = −u(φ)}.
(3.6)
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As noted in greater generality by Bosch Vivancos, Chossat, & Melbourne (1995),

this is a consequence of reflection invariance, as we now indicate. That is, let κk

denote reflections about the wavevector k so that κkk = k. Then κka(r, φ) =

a(κkr, 2ϕ − φ) = u(ϕ − φ)eik·r + c.c. Since κk is a reflection, any space that it

acts on decomposes into two subspaces – one on which it acts as the identity I

and one on which it acts as −I.

Results (i) and (ii) can also be derived directly from equation (3.3). For expanding

the π-periodic function u(φ) as a Fourier series with respect to φ

u(φ) =
∑
n∈Z

Ane2niφ (3.7)

and setting wlat(r, φ) = ŵ(R−φr) leads to the matrix eigenvalue equation

λAm = −αAm + σ1µ

[
WmAm + β

∑
n∈Z

Ŵm−n(q)An

]
(3.8)

with Wn given by equation (2.14) and

Ŵn(q) =

∫ π

0

e−2inφ

[∫
R2

e−iq[x cos(φ)+y sin(φ)]ŵ(r)dr

]
dφ

π
(3.9)

It is clear from equation (3.8) that item (i) holds. The decomposition of the eigen-

functions into odd and even invariant subspaces, see equation (3.5) of item (ii), is a

consequence of the fact that ŵ(r) is an even function of x and y, see equation (2.5),

and hence Ŵn(q) = Ŵ−n(q).

3.2 Eigenfunctions and Eigenvalues

The calculation of the eigenvalues and eigenfunctions of the linearized equation (3.1),

and hence the derivation of conditions for the marginal stability of the homogeneous

state, has been reduced to the problem of solving the matrix equation (3.8), which

we rewrite in the more convenient form[
λ + α

σ1µ
− Wm

]
Am = β

∑
n∈Z

Ŵm−n(q)An (3.10)
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We exploit the experimental observation that the intrinsic lateral connections appear

to be weak relative to the local connections, i.e. βŴ � W . Equation (3.10) can

then be solved by expanding as a power series in β and using Rayleigh–Schrödinger

perturbation theory.

Case β = 0 In the limiting case of zero lateral interactions equation (3.10) reduces

to (2.13). Following the discussion of the ring model in §2.3, let Wp = max{Wn, n ∈
Z+} > 0 and suppose that p = 1 (unimodal orientation tuning curves). The homoge-

neous state a(r, φ) = 0 is then stable for sufficiently small µ, but becomes marginally

stable at the critical point µc = α/σ1W1 due to the vanishing of the eigenvalue λ1. In

this case there are both even and odd marginally stable modes cos(2φ) and sin(2φ).

DW

dl

b = 0 b << 1

lm

ms1

0

l1

lm'

Figure 15: Splitting of degenerate eigenvalues due to anisotropic lateral connections be-
tween hypercolumns.

Case β > 0 If we now switch on the lateral connections, then there is a q–dependent

splitting of the degenerate eigenvalue λ1 that also separates out odd and even solu-

tions. Denoting the characteristic size of such a splitting by δλ = O(β), we impose

the condition that δλ � µσ1∆W , where

∆W = min{W1 − Wm, m �= 1}.



Geometric Visual Hallucinations P. C. Bressloff and others 33

This ensures that the perturbation does not excite states associated with other eigen-

values of the unperturbed problem, see figure 15. We can then restrict ourselves to

calculating perturbative corrections to the degenerate eigenvalue λ1 and its associated

eigenfunctions. Therefore, introduce the power series expansions

λ + α

σ1µ
= W1 + βλ(1) + β2λ(2) + . . . (3.11)

and

An = z±1δn,±1 + βA(1)
n + β2A(2)

n + . . . (3.12)

where δn,m is the Kronecker delta function. Substitute these expansions into the

matrix eigenvalue equation (3.10) and systematically solve the resulting hierarchy

of equations to successive orders in β using (degenerate) perturbation theory. This

analysis, which is carried out in appendix A.1, leads to the following results: (i)

λ = λ± for even (+) and odd (−) solutions where to O(β2)

λ± + α

σ1µ
= W1 + β

[
Ŵ0(q) ± Ŵ2(q)

]
+ β2

∑
m≥0,m 	=1

[
Ŵm−1(q) ± Ŵm+1(q)

]2

W1 − Wm

≡ G±(q)

(3.13)

and (ii) u(φ) = u±(φ) where to O(β)

u+(φ) = cos(2φ) + β
∑

m≥0,m 	=1

u+
m(q) cos(2mφ) (3.14)

u−(φ) = sin(2φ) + β
∑
m>1

u−
m(q) sin(2mφ) (3.15)

with

u+
0 (q) =

Ŵ1(q)

W1 − W0

, u±
m(q) =

Ŵm−1(q) ± Ŵm+1(q)

W1 − Wm

, m > 1 (3.16)
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3.3 Marginal stability

Suppose that G±(q) has a unique maximum at q = q± �= 0 and let qc = q+ if

G+(q+) > G−(q−) and qc = q− if G−(q−) > G+(q+). Under such circumstances, the

homogeneous state a(r, φ) = 0 will become marginally stable at the critical point

µc = α/σ1G±(qc) and the marginally stable modes will be of the form

a(r, φ) =
N∑

i=1

cie
iki.ru(φ − ϕi) + c.c. (3.17)

where ki = qc(cos ϕi, sin ϕi) and u(φ) = u±(φ) for qc = q±. The infinite degeneracy

arising from rotation invariance means that all modes lying on the circle |k| = qc

become marginally stable at the critical point. However, this can be reduced to a

finite set of modes by restricting solutions to be doubly periodic functions. The types

of doubly periodic solutions that can bifurcate from the homogeneous state will be

determined in §4.

As a specific example illustrating marginal stability let ŵ(r) be given by equation

(2.5). Substitution into equation (3.9) gives

Ŵn(q) =

∫ π

0

e−2inφ

[∫ ∞

0

g(s) cos(sq cos φ)ds

]
dφ

π

Using the Jacobi-Anger expansion

cos(sq cos φ) = J0(sq) + 2
∞∑

m=1

(−1)mJ2m(sq) cos(2mφ)

with Jn(x) the Bessel function of integer order n, we derive the result

Ŵn(q) = (−1)n

∫ ∞

0

g(s)J2n(sq)ds (3.18)

Next substitute equation (2.6) into (3.18) and use standard properties of Bessel func-

tions to obtain

Ŵn(q) =
(−1)n

2

[
e−ξ2

latq
2/4In(ξ2

latq
2/4) − Alate

−ξ̂2
latq

2/4In(ξ̂2
latq

2/4)
]

(3.19)
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Figure 16: (a) Plot of marginal stability curves µ±(q) for g(s) given by the difference–of–
Gaussians (2.6) with ξlat = 1, ξ̂lat = 3, Alat = 1 and β = 0.4W1. Also set α/σ1W1 = 1.
The critical wavenumber for spontaneous pattern formation is qc. The marginally stable
eigenmodes are odd functions of φ. (b) Plot of critical wavenumber q± for marginal stability
of even (+) and odd (−) patterns as a function of the strength of inhibitory coupling Alat. If
the inhibition is too weak then there is a bulk instability with respect to the spatial domain.

where In is a modified Bessel function of integer order n. The resulting marginal

stability curves µ = µ±(q) = α/σ1G±(q) are plotted to first order in β in figure 16(a).

The existence of a non–zero critical wavenumber qc = q− at µc = µ−(qc) is evident,

indicating that the marginally stable eigenmodes are odd functions of φ. The inclusion

of higher–order terms in β does not alter this basic result, at least for small β. If we

take the fundamental unit of length to be about 400 µm then the wavelength of a

pattern is 2π(0.400)/qc mm, about 2.66 mm at the critical wavenumber qc = 1 (see

figure 16(b)).

An interesting question concerns under what circumstances can even patterns

be excited by a primary instability rather than odd, in the regime of weak lateral

interactions. One example occurs when there is a sufficient spread in the distribution

of lateral connections along the lines shown in figure 12. In particular, suppose that

ŵ(r) is given by equation (2.8) with p(θ) = 1 for θ ≤ θ0 and zero otherwise. Equation
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(3.18) then becomes

Ŵn(q) = (−1)n sin(2nθ0)

2nθ0

∫ ∞

0

g(s)J2n(sq)ds (3.20)

To first order in β the size of the gap between the odd and even eigenmodes at the

critical point qc is determined by 2Ŵ2(qc), see equation (3.13). It follows that if

θ0 > π/4 then Ŵ2(q) reverses sign suggesting that even rather than odd eigenmodes

become marginally stable first. This is confirmed by the marginal stability curves

shown in figure 17.

m

q
qc

1 2 3 4 5

0.94

0.96

0.98

0.92

even

odd

0.90

Figure 17: Same as figure 16 except that Ŵ (q) satisfies equation (3.20) with θ0 = π/3
rather than (3.18). It can be seen that the marginally stable eigenmodes are now even
functions of φ.

Choosing the bifurcation parameter

It is worth commenting at this stage on the choice of bifurcation parameter µ. One

way to induce a primary instability of the homogeneous state is to increase the global

coupling parameter µ in equation (3.13) until the critical point µc is reached. However,

it is clear from equation (3.13) that an equivalent way to induce such an instability is

to keep µ fixed and increase the slope σ1 of the neural output function σ. The latter

could be achieved by keeping a non-zero uniform input h(r, φ, t) = h0 in equation (2.1)
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so that the homogeneous state is non-zero, a(r, φ, t) = a0 �= 0 with σ1 = σ′(a0). Then

variation of the input h0 and consequently σ1, corresponds to changing the effective

neural threshold and hence the level of network excitability. Indeed, this is thought

to be one of the possible effects of hallucinogens. In summary, the mathematically

convenient choice of µ as the bifurcation parameter can be reinterpreted in terms

of biologically meaningful parameter variations. It is also possible that hallucino-

gens act indirectly on the relative levels of inhibition and this could also play a role

in determining the type of patterns that emerge—a particular example is discussed

below.

3.4 The Ermentrout–Cowan model revisited

The marginally stable eigenmodes (3.17) identified in the analysis consist of spatially

periodic patterns of activity that modulate the distribution of orientation tuning

curves across V1. Examples of these contoured cortical planforms will be presented

in §4 and the corresponding hallucination patterns in the visual field (obtained by

applying an inverse retino–cortical map) will be constructed in §5. It turns out

that the resulting patterns account for some of the more complicated form constants

where contours are prominent, including cobwebs, honeycombs and lattices (figure

4). However, other form constants such as checkerboards, funnels and spirals (figures

6 and 7) comprise contrasting regions of light and dark. One possibility is that these

hallucinations are a result of higher level processes filling in the contoured patterns

generated in V1. An alternative explanation is that such regions are actually formed in

V1 itself by a mechanism similar to that suggested in the original Ermentrout–Cowan

model. This raises the interesting issue as to whether or not there is some parameter

regime in which the new model can behave in a similar fashion to the ‘cortical retina’

of Ermentrout–Cowan, that is, can cortical orientation tuning somehow be switched

off? One possible mechanism is the following: suppose that the relative level of local

inhibition, which is specified by the parameter Aloc in equation (2.15), is reduced (e.g.,

by the possible (indirect) action of hallucinogens.) Then W0 = max{Wn, n ∈ Z+}
rather than W1, and the marginally stable eigenmodes will consist of spatially periodic
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patterns that modulate bulk instabilitities with respect to orientation.

To make these ideas more explicit, we introduce the perturbation expansions

λ + α

σ1µ
= W0 + βλ(1) + β2λ(2) + . . . (3.21)

and

An = zδn,0 + βA(1)
n + β2A(2)

n + . . . (3.22)

Substituting these expansions into the matrix eigenvalue equation (3.10) and solving

the resulting equations to successive orders in β leads to the following results:

λ + α

σ1µ
= W0 + βŴ0(q) + β2

∑
m>0

Ŵm(q)2

W0 − Wm

+ O(β3)

≡ G0(q)

(3.23)

and

u(φ) = 1 + β
∑
m>0

u0
m(q) cos(2mφ) + O(β2) (3.24)

with

u0
m(q) =

Ŵm(q)

W0 − Wm

(3.25)

Substituting equation (3.24) into (3.17) shows that the marginally stable states are

now only weakly dependent on the orientation φ, and to lowest order in β simply

correspond to the spatially periodic patterns of the Ermentrout–Cowan model. The

length–scale of these patterns is determined by the marginal stability curve µ0(q) =

α/σ1G0(q), an example of which is shown in figure 18.

The occurrence of a bulk instability in orientation means that for sufficiently

small β the resulting cortical patterns will be more like contrasting regions of light

and dark rather than a lattice of oriented contours (see §4). However, if the strength

of lateral connections β were increased then the eigenfunctions (3.24) would develop

a significant dependence on the orientation φ. This could then provide an alternative

mechanism for the generation of even contoured patterns—recall from §3.3 that only

odd contoured patterns emerge in the case of a tuned instability with respect to

orientation, unless there is significant angular spread in the lateral connections.
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Figure 18: Plot of marginal stability curve µ0(q) for a bulk instability with respect to
orientation and g(s) given by the difference–of–Gaussians (2.6) with ξlat = 1, ξ̂lat = 3,
Alat = 1.0, β = 0.4W0 and α/σ1W0 = 1. The critical wavenumber for spontaneous pattern
formation is qc.

4 Doubly–periodic planforms

As we found in §3.3 and §3.4, rotation symmetry implies that the space of marginally

stable eigenfunctions of the linearized Wilson–Cowan equation is infinite–dimensional,

that is, if u(φ)eik·r is a solution then so is u(φ−ϕ)eiRϕk·r. However, translation symme-

try suggests that we can restrict the space of solutions of the nonlinear Wilson–Cowan

equation (2.11) to that of doubly–periodic functions. This restriction is standard in

many treatments of spontaneous pattern formation, but as yet it has no formal jus-

tification. There is however a wealth of evidence from experiments on convecting

fluids and chemical reaction-diffusion systems (Walgraef, 1997), and simulations of

neural nets (von der Malsburg & Cowan, 1982), which indicates that such systems

tend to generate doubly–periodic patterns in the plane, when the homogeneous state

is destabilized. Given such a restriction the associated space of marginally stable

eigenfunctions is then finite–dimensional. A finite set of specific eigenfunctions can

then be identified as candidate planforms in the sense that they approximate time–
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independent solutions of equation (2.11) sufficiently close to the critical point where

the homogeneous state loses stability. In this section we construct such planforms.

4.1 Restriction to doubly periodic solutions

Let L be a planar lattice; that is, choose two linearly independent vectors �1 and �2

and let

L = {2πm1�1 + 2πm2�2 : m1, m2 ∈ Z}.

Note that L is a subgroup of the group of planar translations. A function f : R2 ×
S1 → R is doubly periodic with respect to L if

f(x + �, φ) = f(x, φ)

for every � ∈ L. Let θ be the angle between the two basis vectors �1 and �2. We

can then distinguish three types of lattice according to the value of θ: square lattice

(θ = π/2), rhombic lattice (0 < θ < π/2, θ �= π/3) and hexagonal (θ = π/3). After

rotation, the generators of the planar lattices are given in Table 1 (for unit lattice

spacing).

Lattice �1 �2 k1 k2

Square (1, 0) (0, 1) (1, 0) (0, 1)

Hexagonal (1, 1√
3
) (0, 2√

3
) (1, 0) 1

2
(−1,

√
3)

Rhombic (1,− cot η) (0, csc η) (1, 0) (cos η, sin η)

Table 1: Generators for the planar lattices and their dual lattices.

Restriction to double periodicity means that the original Euclidean symmetry

group is now restricted to the symmetry group of the lattice, ΓL = HL+̇T2, where

HL is the holohedry of the lattice, the subgroup of O(2) that preserves the lattice, and

T2 is the two torus of planar translations modulo the lattice. Thus, the holohedry of

the rhombic lattice is D2, the holohedry of the square lattice is D4 and the holohedry
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of the hexagonal lattice is D6. Observe that the corresponding space of marginally

stable modes is now finite–dimensional—we can only rotate eigenfunctions through a

finite set of angles (for example, multiples of π/2 for the square lattice and multiples

of π/3 for the hexagonal lattice).

It remains to determine the space KL of marginally stable eigenfunctions and the

action of ΓL on this space. In §3 we showed that eigenfunctions either reside in V +
k

(the even case) or V −
k (the odd case) where the length of k is equal to the critical

wavenumber qc. In particular the eigenfunctions have the form u(φ−ϕ)eik·r where u

is either an odd or even eigenfunction. We now choose the size of the lattice so that

eik·r is doubly periodic with respect to that lattice, that is, k is a dual wave vector for

the lattice. In fact, there are infinitely many choices for the lattice size that satisfies

this constraint—we select the one for which qc is the shortest length of a dual wave

vector. The generators for the dual lattices are also given in Table 1 with qc = 1. The

eigenfunctions corresponding to dual wave vectors of unit length are given in Table 2.

It follows that KL can be identified with the m–dimensional complex vector space

spanned by the vectors (c1, . . . , cm) ∈ Cm with m = 2 for square or rhombic lattices

and m = 3 for hexagonal lattices. It can be shown that these form ΓL-irreducible

representations. The actions of the group ΓL on KL can then be explicitly written

down for both the square or rhombic and hexagonal lattices in both the odd and even

cases. These actions are given in appendix A.2.

Lattice a(r, φ)

Square c1u(φ)eik1·r + c2u(φ − π
2
)eik2·r + c.c.

Hexagonal c1u(φ)eik1·r + c2u(φ − 2π
3

)eik2·r + c3u(φ + 2π
3

)eik3·r + c.c.

Rhombic c1u(φ)eik1·r + c2u(φ − η)eik2·r + c.c.

Table 2: Eigenfunctions corresponding to shortest dual wave vectors.
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4.2 Planforms

We now use an important result from bifurcation theory in the presence of symmetries,

namely, the equivariant branching lemma (Golubitsky et al., 1988). For our particular

problem, the equivariant branching lemma implies that generically there exists a

(unique) doubly periodic solution bifurcating from the homogeneous state for each

of the axial subgroups of ΓL under the action (2.9)—a subgroup Σ ⊂ ΓL is axial if

the dimension of the space of vectors that are fixed by Σ is equal to one. The axial

subgroups are calculated from the actions presented in appendix A.2 (see Bressloff,

Cowan, Golubitsky, & Thomas (2000b) for details) and lead to the even planforms

listed in Table 3 and the odd planforms listed in Table 4. The generic planforms

can then be generated by combining basic properties of the Euclidean group action

(2.9) on doubly periodic functions with solutions of the underlying linear eigenvalue

problem. The latter determines both the critical wavenumber qc and the π–periodic

function u(φ). In particular, the perturbation analysis of §3.3 and §3.4 shows that

(in the case of weak lateral interactions) u(φ) can take one of three possible forms:

i) even contoured planforms (3.14) with u(φ) ≈ cos(2φ)

ii) odd contoured planforms (3.15) with u(φ) ≈ sin(2φ).

iii) even non–contoured planforms (3.24) with u(φ) ≈ 1

Each planform is an approximate steady–state solution a(r, φ) of the continuum

model (2.11) defined on the unbounded domain R2 × S1. To determine how these

solutions generate hallucinations in the visual field, we first need to interpret the

planforms in terms of activity patterns in a bounded domain of V1, which we denote

by M ⊂ R. Once this has been achieved, the resulting patterns in the visual field

can be obtained by applying the inverse retino–cortical map as described in §5.1.

The interpretation of non–contoured planforms is relatively straightforward, since

to lowest order in β the solutions are φ–independent and can thus be directly treated

as activity patterns a(r) in V1 with r ∈ M. At the simplest level such patterns can

be represented as contrasting regions of light and dark depending on whether a(r) > 0
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Lattice Name Planform Eigenfunction

square even square u(φ) cos x + u
(
φ − π

2

)
cos y

even roll u(φ) cos x

rhombic even rhombic u(φ) cos(k1 · r) + u(φ − η) cos(k2 · r)
even roll u(φ) cos(k1 · r)

hexagonal even hexagon (0) u(φ) cos(k1 · r) + u
(
φ + π

3

)
cos(k2 · r) + u

(
φ − π

3

)
cos(k3 · r)

even hexagon (π) u(φ) cos(k1 · r) + u
(
φ + π

3

)
cos(k2 · r) − u

(
φ − π

3

)
cos(k3 · r)

even roll u(φ) cos(k1 · r)

Table 3: Even planforms with u(−φ) = u(φ). The hexagon solutions (0) and (π) have the
same isotropy subgroup, but they are not conjugate solutions.

or a(r) < 0. These regions form square, triangular, or rhombic cells that tile M as

illustrated in figures 19 and 20.

(a) (b)

Figure 19: Non–contoured axial eigenfunctions on the square lattice. (a) square (b) roll.

The case of contoured planforms is more subtle. At a given location r in V1 we

have a sum of two or three sinusoids with different phases and amplitudes (see Tables

3 and 4), which can be written as a(r, φ) = A(r) cos[2φ − 2φ0(r)]. The phase φ0(r)

determines the peak of the orientation tuning curve at r (see figure 14). Hence the
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Lattice Name Planform Eigenfunction

square odd square u(φ) cos x − u
(
φ − π

2

)
cos y

odd roll u(φ) cos x

rhombic odd rhombic u(φ) cos(k1 · r) + u(φ − η) cos(k2 · r)
odd roll u(φ) cos(k1 · r)

hexagonal odd hexagon u(φ) cos(k1 · r) + u
(
φ + π

3

)
cos(k2 · r) + u

(
φ − π

3

)
cos(k3 · r)

triangle u(φ) sin(k1 · r) + u
(
φ + π

3

)
sin(k2 · r) + u

(
φ − π

3

)
sin(k3 · r)

patchwork quilt u
(
φ + π

3

)
cos(k2 · r) − u

(
φ − π

3

)
cos(k3 · r)

odd roll u(φ) cos(k1 · r)

Table 4: Odd planforms with u(−φ) = −u(φ).

(a) (b)

Figure 20: Non–contoured axial eigenfunctions on rhombic and hexagonal lattices. (a)
rhombic (b) hexagonal.
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(a) (b)

Figure 21: Contours of even axial eigenfunctions on the square lattice. (a) square (b) roll.

(a) (b)

Figure 22: Contours of odd axial eigenfunctions on the square lattice. (a) square (b) roll.
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(a) (b)

Figure 23: Contours of even axial eigenfunctions on the rhombic lattice. (a) rhombic (b)
roll.

(a) (b)

Figure 24: Contours of odd axial eigenfunctions on the rhombic lattice. (a) rhombic (b)
roll.
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(a) (b)

Figure 25: Contours of even axial eigenfunctions on the hexagonal lattice. (a) π–hexagonal
(b) 0–hexagonal.

(a) (b)

Figure 26: Contours of odd axial eigenfunctions on the hexagonal lattice. (a) triangular
(b) 0–hexagonal.
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contoured solutions generally consist of iso–orientation regions or patches over which

φ0(r) is constant but the amplitude A(r) varies. As in the non–contoured case these

patches are either square, triangular, or rhombic in shape. However, we now represent

each patch to be represented by a locally oriented contour centered at the point of

maximal amplitude A(rmax) within the patch. The resulting odd and even contoured

patterns are shown in figures 21 and 22 for the square latttice, in figures 23 and 24 for

the rhombic latttice and in figures 25 and 26 for the hexagonal lattice. Note that our

particular interpretation of contoured planforms breaks down in the case of an odd

triangle on a hexagonal lattice: the latter comprises hexagonal patches in which all

orientations are present with equal magnitudes. In this case we draw a ‘star’ shape

indicating the presence of multiple orientations at a given point, see figure 26(b).

5 From cortical patterns to visual hallucinations

In §4 we derived the generic planforms that bifurcate from the homogeneous state

and interpreted them in terms of cortical activity patterns. In order to compute what

the various planforms look like in visual field coordinates, we need to apply an inverse

retino–cortical map. In the case of non–contoured patterns this can be carried out

directly using the (single) retino–cortical map introduced in §1.2. On the other hand,

for contoured planforms it is necessary to specify how to map local contours in the

visual field as well as position—this is achieved by considering a so called double

retino–cortical map. Another important feature of the mapping between V1 and the

visual field is that the periodicity of the angular retinal coordinate θR implies that

the y–coordinate in V1 satisfies cylindrical periodic boundary conditions (see figure

5). This boundary condition should be commensurate with the square, rhombic or

hexagonal lattice associated with the doubly periodic planforms.

5.1 The double retino–cortical map

An important consequence of the introduction of orientation as a cortical label is that

the retino–cortical map described earlier needs to be extended to cover the mapping
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of local contours in the visual field—in effect to treat them as a vector field. Let

φR be the orientation of such a local contour, and φ its image in V1. What is the

appropriate map from φR to φ that must be added to the map zR → z described

earlier? We note that a line in V1 of constant slope tanφ is a level curve of the

equation

f(x, y) = y cos φ − x sin φ

where (x, y) are Cartesian coordinates in V1. Such a line has a constant tangent

vector

v = cos φ
∂

∂x
+ sin φ

∂

∂y
.

The pre–image of such a line in the visual field, assuming the retino–cortical map

generated by the complex logarithm is obtained by changing from cortical to retinal

coordinates via the complex exponential, is:

f(x, y) → f̃(rR, θR) = θR cos φ − log rR sin φ

the level curves of which are the logarithmic spirals

rR(θR) = A exp(cot(φ)θR).

It is easy to show that the tangent vector corresponding to such a curve takes the

form

ṽ = rR cos(φ + θR)
∂

∂xR

+ rR sin(φ + θR)
∂

∂yR

.

Thus the retinal vector field induced by a constant vector field in V1 twists with the

retinal angle θR and stretches with the retinal radius rR. It follows that if φR is the

orientation of a line in the visual field, then:

φ = φR − θR, (5.1)

i.e. local orientation in V1 is relative to the angular coordinate of visual field position.

The geometry of the above setup is shown in figure 27.

The resulting double map {zR, φR} → {z, φ} has very interesting properties. As

previously noted, the map zR → z takes circles, rays, and logarithmic spirals into
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Figure 27: The geometry of orientation tuning.

vertical, horizontal and oblique lines, respectively. What about the extended map?

Because the tangent to a circle at a given point is perpendicular to the radius at that

point, for circles, φR = θR + π/2, so that φ = π/2. Similarly, for rays, φR = θR, so

φ = 0. For logarithmic spirals we can write either θR = a ln rR or rR = exp[bθR]. In

retinal coordinates we find the somewhat cumbersome formula

tan φR =
brR sin θR + ebθR cos θR

brR cos θR − ebθR sin θR

.

However this can be rewritten as tan(φR − θR) = a, so that in V1 coordinates,

tan φ = a. Thus we see that the local orientations of circles, rays and logarithmic

spirals, measured in relative terms, all lie along the cortical images of such forms.

Figure 28 shows the details.

5.2 Planforms in the visual field

In order to generate a visual field pattern we split our model V1 domain M into two

pieces each running 72 mm along the x direction and 48 mm along the y direction,

representing the right and left hemifields in the visual field (see figure 5). Since the

y coordinate corresponds to a change from −π/2 to π/2 in 48 mm which meets up

again smoothly with the representation in the opposite hemifield, we must only choose

scalings and rotations of our planforms that satisfy cylindrical periodic boundary
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Visual Field

Striate Cortex

y

x

p/2
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p/2
p/2
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Single Map

y
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p/2

-p/2

p/2
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Double Map

Figure 28: Action of the single and double maps on logarithmic spirals. Dashed lines show
the local tangents to a logarithmic spiral contour in the visual field, and the resulting image
in V1. Since circle and ray contours in the visual field are just special cases of logarithmic
spirals, the same result holds also for such contours.

conditions in the y direction. In the x direction, corresponding to the logarithm of

radial eccentricity, we neglect the region immediately around the fovea as well as the

far edge of the periphery, so we have no constraint on the patterns in this direction.

Recall that each V1 planform is doubly periodic with respect to a spatial lattice

generated by two lattice vectors �1, �2. The cylindrical periodicity is thus equivalent

to requiring that there be an integral combination of lattice vectors that spans Y =

96 mm in the y direction with no change in the x direction:(
0

96

)
= 2πm1�1 + 2πm2�2 (5.2)

If the acute angle of the lattice η′ is specified, then the wavevectors ki are determined
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by the requirement

ki · �j =

{
1, i = j

0, i �= j.
(5.3)

The integral combination requirement limits which wavelengths are permitted for

planforms in the cortex. The length scale for a planform is given by the length of the

lattice vectors |�1| = |�2| := |�|:

|�| =
96√

m2
1 + 2m1m2 cos(η′) + m2

2

(5.4)

The commonly reported hallucination patterns usually have thirty to forty repetitions

of the pattern around a circumference of the visual field, corresponding to length scales

ranging from 2.4−3.2 mm. Therefore, we would expect the critical wavelength 2π/qc

for bifurcations to be in this range. [see § 3.3] Note that when we rotate the planform

to match the cylindrical boundary conditions we rotate k1 and hence the maximal

amplitude orientations φ0(r) by

cos−1[
m2|�|

Y
sin(η′)] + η′ − π/2.

The resulting non–contoured planforms in the visual field obtained by applying the

inverse single retino–cortical map to the corresponding V1 planforms are shown in

figures 29 and 30.

Similarly the odd and even contoured planforms obtained by applying the double

retino–cortical map are shown in figures 31 and 32 for the square latttice, in figures

33 and 34 for the rhombic latttice, and in figures 35 and 36 for the hexagonal lattice.

One of the striking features of the resulting (contoured) visual planforms is that

only the even planforms appear to be contour completing and it is these that recover

the remaining form constants missing from the original Ermentrout–Cowan model.

The reader should compare, for example, the pressure phosphenes shown in figure 1

with figure 35(a), and the cobweb of figure 4 with figure 31(a).
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(a) (b)

Figure 29: Action of the single inverse retino–cortical map on non–contoured square plan-
forms. (a) square (b) roll.

(a) (b)

Figure 30: Action of the single inverse retino–cortical map on non–contoured rhombic and
hexagonal planforms. (a) rhombic (b) hexagonal.
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(a) (b)

Figure 31: Action of the double inverse retino–cortical map on even square planforms. (a)
square (b) roll.

(a) (b)

Figure 32: Action of the double inverse retino–cortical map on odd square planforms. (a)
square (b) roll.
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(a) (b)

Figure 33: Action of the double inverse retino–cortical map on even rhombic planforms.
(a) rhombic (b) roll.

(a) (b)

Figure 34: Action of the double inverse retino–cortical map on odd rhombic planforms.
(a) rhombic (b) roll.
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(a) (b)

Figure 35: Action of the double inverse retino–cortical map on even hexagonal planforms.
(a) π–hexagonal (b) 0–hexagonal.

(a) (b)

Figure 36: Action of the double inverse retino–cortical map on odd hexagonal planforms.
(a) triangular (b) 0–hexagonal.
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6 The Selection and stability of patterns

It remains to determine which of the various planforms we have presented above

are actually stable in our model, for biologically relevant parameter sets. So far

we have used a mixture of perturbation theory and symmetry to construct the lin-

ear eigenmodes (3.17) that are candidate planforms for pattern forming instabilities.

To determine which of these modes are stabilized by the nonlinearities of the sys-

tem we use techniques such as Liapunov–Schmidt reduction and Poincaré–Lindstedt

perturbation theory to reduce the dynamics to a set of nonlinear equations for the

amplitudes ci appearing in equation (3.17) (Walgraef, 1997). These amplitude equa-

tions, which effectively describe the dynamics on a finite–dimensional center manifold,

then determine the selection and stability of patterns (at least sufficiently close to the

bifurcation point). The symmetries of the system severely restrict the allowed forms

(Golubitsky et al., 1988). On the other hand, the coefficients in this form are inher-

ently model–dependent and have to be calculated explicitly.

In this section we determine the amplitude equation for our cortical model up

to cubic order and use this to investigate the selection and stability of both odd

patterns satisfying u(−φ) = −u(φ) and even patterns satisfying u(−φ) = u(φ). A

more complete discussion of stability and selection based on symmetric bifurcation

theory, which takes into account the possible effects of higher–order contributions to

the amplitude equation, will be presented elsewhere (Bressloff et al., 2000b).

6.1 The Cubic amplitude equation

Assume that sufficiently close to the bifurcation point at which the homogeneous

state a(r, φ) = 0 becomes marginally stable, the excited modes grow slowly at a rate

O(ε2) where ε2 = µ−µc. One can then use the method of multiple–scales to perform

a Poincaré–Lindstedt perturbation expansion in ε. First Taylor expand the nonlinear

function σ[a] appearing in equation (2.11),

σ[a] = σ1a + σ2a
2 + σ3a

3 + . . .
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where σ1 = σ′[0], σ2 = σ′′[0]/2, σ3 = σ′′′[0]/3! etc. Then perform a perturbation

expansion of equation (2.11) with respect to ε by writing

a = εa1 + ε2a2 + . . .

and introducing a slow time–scale τ = ε2t. Collecting terms with equal powers of ε

then generates a hierarchy of equations as shown in appendix A.3. The O(ε) equation

is equivalent to the eigenvalue equation (3.10) with λ = 0, µ = µc and |k| = qc so

that

a1(r, φ, t) =
N∑

j=1

cj(t)e
ikj .ru(φ − ϕj) + c.c. (6.1)

with kj = qc(cos ϕj, sin ϕj). Requiring that the O(ε2) and O(ε3) equations in the hi-

erarchy be self–consistent then leads to a solvability condition which in turn generates

evolution equations for the amplitudes cj(t) (see appendix A.3).

Square or rhombic lattice First, consider planforms (6.1) corresponding to a

bimodal structure of the square or rhombic type (N = 2). That is, take k1 = qc(1, 0)

and k2 = qc(cos(θ), sin(θ)), with θ = π/2 for the square lattice and 0 < θ < π/2,

θ �= π/3 for a rhombic lattice. The amplitudes evolve according to a pair of equations

of the form

dc1

dt
= c1 [Λ − γ0|c1|2 − 2γθ|c2|2]

dc2

dt
= c2 [Λ − γ0|c2|2 − 2γθ|c1|2]

(6.2)

where Λ = µ − µc measures the deviation from the critical point, and

γϕ =
3α|σ3|

σ1

Γ(3)(ϕ) (6.3)

for all 0 ≤ ϕ < π with

Γ(3)(ϕ) =

∫ π

0

u(φ − ϕ)2u(φ)2dφ

π
(6.4)
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Hexagonal lattice Next consider planforms on a hexagonal lattice with N = 3,

ϕ1 = 0, ϕ2 = 2π/3, ϕ3 = −2π/3. The cubic amplitude equations take the form

dcj

dt
= cj

[
Λ − γ0|cj|2 − 2γ2π/3(|cj+1|2 + |cj−1|2)

]
+ ηcj−1cj+1 (6.5)

where j = 1, 2, 3 mod 3, γ2π/3 is given by (6.4) for ϕ = 2π/3, and

η =
ασ2

σ1

√
σ1W1

Γ(2) (6.6)

with

Γ(2) =

∫ π

0

u(φ)u(φ − 2π/3)u(φ + 2π/3)
dφ

π
(6.7)

In deriving equation (6.5) we have assumed that the neurons are operating close to

threshold such that σ2 = O(ε).

The basic structure of equations (6.2) and (6.5) is universal in the sense that it only

depends on the underlying symmetries of the system and on the type of bifurcation

that it is undergoing. On the other hand, the actual values of the coefficients γϕ

and η are model–dependent and have to be calculated explicitly. Moreover, these

coefficients are different for odd and even patterns due to the fact that they have

distinct eigenfunctions u(φ). Note also that because of symmetry the quadratic term

in equation (6.5) must vanish identically in the case of odd patterns.

Even contoured planforms Substituting the perturbation expansion of the eigen-

function (3.14) for even contoured planforms into equations (6.7) and (6.4) gives

Γ(2) =
3

4
β[u+

2 (qc) − u+
0 (qc)] + O(β2) (6.8)

Γ(3)(θ) =
1

8

[
2 + cos(4θ) + 4βu+

3 (qc) cos(4θ) + O(β2)
]

(6.9)

with the coefficients u+
n defined by equation (3.16).
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Odd contoured planforms Substituting the perturbation expansion of the eigen-

function (3.15) for odd contoured planforms into equations (6.7) and (6.4) gives

Γ(2) = 0 (6.10)

Γ(3)(θ) =
1

8

[
2 + cos(4θ) − 4βu−

3 (qc) cos(4θ) + O(β2)
]

(6.11)

with the coefficients u−
n defined by equation (3.16). Note that the quadratic term in

equation (6.5) vanishes identically in the case of odd patterns.

Even non–contoured planforms Substituting the perturbation expansion of the

eigenfunction (3.24) for even non–contoured planforms into equations (6.7) and (6.4)

gives

Γ(2) = 1 +
3

2
β2

∑
m>0

[
u0

m(qc)
]2

cos(2mπ/3) + O(β3) (6.12)

Γ(3)(θ) = 1 + β2
∑
m>0

[
u0

m(qc)
]2

[1 + 2 cos(2mθ)] + O(β3) (6.13)

with the coefficients u0
n defined by equation (3.25).

6.2 Even and odd patterns on square or rhombic lattices

We now use equation (6.2) to investigate the selection and stability of odd or even

patterns on square or rhombic lattices. Assuming that γθ > 0 and Λ > 0, three types

of steady state are possible.

1. The homogeneous state: c1 = c2 = 0.

2. Rolls: c1 =
√

Λ/γ0e
iψ1 , c2 = 0 or c1 = 0, c2 =

√
Λ/γ0e

iψ2 .

3. Squares or rhombics: c1 =
√

Λ/[γ0 + 2γθ]e
iψ1 , c2 =

√
Λ/[γ0 + 2γθ]e

iψ2 .
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for arbitrary phases ψ1, ψ2. The non–trivial solutions correspond to the axial plan-

forms listed in Tables 3 and 4. A standard linear stability analysis shows that if

2γθ > γ0 then rolls are stable whereas the square or rhombic patterns are unstable.

The opposite holds if 2γθ < γ0. These stability properties persist when higher order

terms in the amplitude equation are included (Bressloff et al., 2000b).

Using equations (6.3), (6.9), (6.11) and (6.13) with 3α|σ3|/σ1 = 1, we deduce that

2γθ = γ0 + 1 + O(β)

for non–contoured patterns, and

2γθ = γ0 + [1 + 2 cos(4θ)]/8 + O(β)

for (odd or even) contoured patterns. Hence, in the case of a square or rhombic lattice

we have the following results concerning patterns bifurcating from the homogeneous

state close to the point of marginal stability (in the limit of weak lateral interactions):

For non–contoured patterns on a square or rhombic lattice there exist stable

rolls and unstable squares.

For (even or odd) contoured patterns on a square lattice there exist stable rolls

and unstable squares. In the case of a rhombic lattice of angle θ �= π/2, rolls

are stable if cos(4θ) > −1/2 whereas θ–rhombics are stable if cos(4θ) < −1/2,

that is, if π/6 < θ < π/3.

It should be noted that this result differs from that obtained by Ermentrout & Cowan

(1979) in which stable squares were shown to occur for certain parameter ranges

[see also Ermentrout (1991)]. We attribute this difference to the anisotropy of the

lateral connections incorporated into the current model and the consequent shift-twist

symmetry of the Euclidean group action. The effects of this anisotropy persist even

in the limit of weak lateral connections, and preclude the existence of stable square

patterns.
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6.3 Even patterns on a hexagonal lattice

Next we use equations (6.5) and (6.6) to analyze the stability of even planforms on a

hexagonal lattice. On decomposing ci = Cie
iψi , it is a simple matter to show that two

of the phases ψi are arbitrary while the sum ψ =
∑3

i=1 ψi and the real amplitudes Ci

evolve according to the equations

dCi

dt
= ΛCi + ηCi+1Ci−1 cos ψ − γ0C

3
i − 2γ2π/3(C

2
i+1 + C2

i−1)Ci (6.14)

and

dψ

dt
= −η

3∑
i=1

Ci+1Ci−1

Ci

sin ψ (6.15)

with i, j = 1, 2, 3 mod 3. It immediately follows from equation (6.15) that the stable

steady state solution will have a phase ψ = 0 if η > 0 and a phase ψ = π if η < 0.

From equations (6.3) (6.9) and (6.13) with 3α|σ3|/σ1 = 1 we see that

2γ2π/3 = γ0 + 1 + O(β2)

for even non–contoured patterns, and

2γ2π/3 = γ0 + βu−
3 (qc) + O(β2)

for even contoured patterns. In the parameter regime where the marginally stable

modes are even contoured planforms (such as in figure 17) we find that u+
3 (qc) > 0.

This is illustrated in figure 37.

Therefore, 2γ2π/3 > γ0 for both the contoured and non–contoured cases. Standard

analysis then shows that (to cubic order) there exists a stable hexagonal pattern

Ci = C for i = 1, 2, 3 with amplitude (Busse, 1962)

C =
1

2[γ0 + 4γ2π/3]

[
|η| +

√
η2 + 4[γ0 + 4γ2π/3]Λ

]
(6.16)

over the parameter range

−η2

4[γ0 + 4γ2π/3]
< Λ <

2η2[γ0 + γ2π/3]

[γ0 − 2γ2π/3]2
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Figure 37: Plot of the even eigenfunction coefficient u+
3 (q) of equation (3.16) as a function

of wavenumber q. Also plotted is the O(β) contribution to the even eigenvalue expan-
sion, equation (3.13), w+(q) = Ŵ0(q) + Ŵ2(q). The peak of w+(q) determines the critical
wavenumber qc (to first order in β). Same parameter values as figure 17.

The maxima of the resulting hexagonal pattern are located on an equilateral triangu-

lar lattice for η > 0 (0–hexagons) whereas the maxima are located on an equilateral

hexagonal lattice for η < 0 (π–hexagons). Both classes of hexagonal planform have

the same D6 axial subgroup (up to conjugacy), see Table 7 in appendix A.2. One can

also establish that rolls are unstable versus hexagonal structures in the range

0 < Λ <
η2

[γ0 − 2γ2π/3]2
(6.17)

Hence, in the case of a hexagonal lattice we have the following result concerning the

even patterns bifurcating from the homogeneous state close to the point of marginal

stability (in the limit of weak lateral interactions):

For even (contoured or non–contoured) patterns on a hexagonal lattice, stable

hexagonal patterns are the first to appear (subcritically) beyond the bifurcation

point. Subsequently the stable hexagonal branch exchanges stability with an

unstable branch of roll patterns as shown in figure 38.

Techniques from symmetric bifurcation theory can be used to investigate the effects

of higher order terms in the amplitude equation (Buzano & Golubitsky, 1983): in
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mc m

p-hexagons

0-hexagons

rollsC

RA

Figure 38: Bifurcation diagram showing the variation of the amplitude C with the param-
eter µ for even hexagonal and roll patterns with η > 0. Solid and dashed curves indicate
stable and unstable solutions respectively. Also shown is a secondary branch of rectangular
patterns RA. Higher–order terms in the amplitude equation are needed to determine its
stability.

the case of even planforms the results are identical to those obtained in the analysis

of Bénard convection in the absence of midplane symmetry. For example, one finds

that the exchange of stability between the hexagons and rolls is due to a secondary

bifurcation that generates rectangular patterns.

6.4 Odd patterns on a hexagonal lattice

Recall that in the case of odd patterns, the quadratic term in equation (6.5) vanishes

identically. The homogeneous state now destabilizes via a (supercritical) pitchfork

bifurcation to the four axial planforms listed in Tables 3 and 4. In this particular case

it is necessary to include higher–order (quartic and quintic terms) in the amplitude

equation to completely specify the stability of these various solutions, and to identify

possible secondary bifurcations. Unfortunately one cannot carry over previous results

obtained from the study of the Bénard convection problem with midplane symmetry,
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even though the corresponding amplitude equation is identical in structure at cubic

order (Golubitsky, Swift, & Knobloch, 1984): higher–order contributions to the am-

plitude equation will differ in the two problems due to the radically different actions of

the Euclidean group and the resulting differences in the associated axial subgroups1.

The effects of such contributions on the bifurcation structure of odd (and even) cor-

tical patterns will be studied in detail elsewhere (Bressloff et al., 2000b). Here, we

simply describe the more limited stability results that can be deduced at cubic order.

1 2 3 4 5

-0.4

-0.2

0.2

0.4

q

qc

f(q)

w-(q)

u3(q)
-

Figure 39: Plot of the odd eigenfunction coefficient u−
3 (q) of equation (3.16) as a function of

wavenumber q. Also plotted is the O(β) contribution to the odd eigenvalue expansion, equa-
tion (3.13), w−(q) = Ŵ0(q)−Ŵ2(q). The peak of w−(q) determines the critical wavenumber
qc (to first order in β). Same parameter values as figure 16.

A basic question concerns which of the four odd planforms on a hexagonal lattice

(hexagons, triangles, patchwork quilts and rolls) are stable. It turns out that if

2γ2π/3 > γ0 then rolls are stable, whereas if 2γ2π/3 < γ0 then either hexagons or

triangles are stable (depending upon higher–order terms). Equations (6.4) and (6.11)

with 3α|σ3|/σ1 = 1 imply that

2γ2π/3 = γ0 + βu−
3 (qc) + O(β2) (6.18)

In the parameter regime where the marginally stable modes are odd contoured plan-

forms (such as in figure 16) we find that u−
3 (qc) < 0, and thus 2γ2π/3 < γ0. This is

1Interestingly, there does exist an example from fluid dynamics where the modified Euclidean
group action (2.9) arises (Bosch Vivancos et al., 1995)
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Figure 40: Bifurcation diagram showing the variation of the amplitude C with the param-
eter µ for odd patterns on a hexagonal lattice. Solid and dashed curves indicate stable and
unstable solutions respectively. Either hexagons (H) or triangles (T) are stable (depending
on higher–order terms in the amplitude equation) whereas patchwork quilts (PQ) and rolls
(R) are unstable. Secondary bifurcations (not shown) may arise from higher–order terms
(Bressloff et al., 2000b).

illustrated in figure 39. Hence, in the case of a hexagonal lattice we have the following

result concerning the odd patterns bifurcating from the homogeneous state close to

the point of marginal stability (in the limit of weak lateral interactions):

For odd (contoured) patterns on a hexagonal lattice there exist four primary

bifurcation branches corresponding to hexagons, triangles, patchwork quilts and

rolls. Either the hexagons or the triangles are stable (depending on higher–order

terms through a secondary bifurcation) and all other branches are unstable.

This is illustrated in figure 40.



Geometric Visual Hallucinations P. C. Bressloff and others 67

7 Discussion

This paper describes a new model of the spontaneous generation of patterns in V1

(seen as geometric hallucinations). Whereas the earlier work of Ermentrout & Cowan

started with a general neural network and sought the minimal restrictions necessary

to produce hallucination patterns, the current model incorporates data gathered over

the last two decades to show that common hallucinatory images can be generated by

a biologically plausible architecture in which the connections between iso–orientation

patches in V1 are locally isotropic, but non–locally anisotropic. As we, and Ermen-

trout & Cowan before us show, the Euclidean symmetry of such an architecture, that

is, the symmetry with respect to rigid motions in the plane, plays a key role in deter-

mining which patterns of activation of the iso–orientation patches appear when the

homogeneous state becomes unstable, presumed to occur, for example, shortly after

the action of hallucinogens on those brain stem nuclei that control cortical excitability.

There are, however, two important differences between the current work and that

of Ermentrout & Cowan in the way in which the Euclidean group is implemented:

(a) The group action is different and novel, and so the way in which the various

subgroups of the Euclidean group are generated is significantly different. In

particular, the various planforms corresponding to the subgroups are labeled

by orientation preference, as well as by their location in the cortical plane. It

follows that the eigenfunctions which generate such planforms are also labeled

in such a fashion. This adds an additional complication to the problem of cal-

culating such eigenfunctions and the eigenvalues to which they belong, from the

linearized cortical dynamics. Assuming that the non–local lateral or horizon-

tal connections are modulatory and weak relative to the local connections, we

show how the methods of Rayleigh–Schrödinger degenerate perturbation the-

ory can be used to compute, to some appropriate level of approximation, the

requisite eigenvalues and eigenfunctions, and therefore the planforms. Given

such eigenfunctions we then make use of Poincaré–Lindstedt perturbation the-

ory to compute the stability of the various planforms that appear when the

homogeneous state becomes unstable.
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(b) Since we include orientation preference in the formulation, we have to consider

the action of the retino–cortical map on oriented contours or edges. In effect we

do this by treating the local tangents to such contours as a vector field. As we

discussed, this is carried out by the tangent map associated with the complex

logarithm, one consequence of which is that φ, the V1 label for orientation

preference, is not exactly equal to orientation preference in the visual field, φR,

but differs from it by the angle θR, the polar angle of receptive field position.

We called the map from visual field coordinates {rR, θR, φR} to V1 coordinates

{x, y, φ} a double map. Its possible presence in V1 is subject to experimental

verification. If the double map is present, then elements tuned to the same

relative angle φ should be connected with greater strength than others; if only

the single map {rR, θR} → {x, y} obtains, then elements tuned to the same

absolute angle φR should be so connected. If in fact the double map is present,

then elements tuned to the same angle φ should be connected along lines at that

angle in V1. This would support Mitchison & Crick’s hypothesis on connectivity

in V1 (Mitchison & Crick, 1982) and would be consistent with the observations

of Blasdel and Sincich [personal communication] and Bosking et al. (1997). In

this connection it is of interest that from equation (5.1) it follows that near the

vertical meridian (where most of the observations have been made), changes

in φ approximate closely changes in φR. However, a prediction of the double

map is that such changes should be relatively large and detectable with optical

imaging, near the horizontal meridian.

The main advance over the Ermentrout–Cowan work is that all the Klüver form

constants can now be obtained as planforms associated with axial subgroups of the

Euclidean group in the plane, generated by the new representations we have discov-

ered. There are several aspects of this work which require comment:

(a) The analysis indicates that under certain conditions the planforms are either

contoured or else non–contoured, depending on the strength of inhibition be-

tween neighboring iso–orientation patches. If such inhibition is weak, individual

hypercolumns do not exhibit any tendency to amplify any particular orientation.
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In normal circumstances such a preference would have to be supplied by inputs

from the LGN. In this case, V1 can be said to operate in the Hubel–Wiesel

mode [see § 2.3]. If the horizontal interactions are still effective, then plane

waves of cortical activity can emerge, with no label for orientation preference.

The resulting planforms are called non–contoured, and correspond to a subset

of the Klüver form constants: tunnels and funnels, and spirals. Conversely,

if there is strong inhibition between neighboring iso–orientation patches, even

weakly biased inputs to a hypercolumn can trigger a sharply tuned response

such that, under the combined action of many interacting hypercolumns, plane

waves labeled for orientation preference can emerge. The resulting planforms

correspond to contoured patterns and to the remaining form constants described

by Klüver—honeycombs and checkerboards, and cobwebs. Interestingly, all but

the square planforms are stable. But there do exist hallucinatory images that

correspond to square planforms. It is possible that these are just transitional

forms.

(b) Another conclusion to be drawn from this analysis is that the circuits in V1

which are normally involved in the detection of oriented edges and the forma-

tion and processing of contours, are also responsible for the generation of the

hallucinatory form constants. Thus, we introduced in § 2.1 a V1 model circuit in

which the lateral connectivity is anisotropic and inhibitory. [We noted in § 1.4

that 20% of the (excitatory) lateral connections in layers II and III of V1 end on

inhibitory inter–neurons, so the overall action of the lateral connections could

become inhibitory, especially at high levels of activity.] As we demonstrated in

§ 3.3 the mathematical consequences of this is the selection of odd planforms.

But these do not form continuous contours [see § 5.2]. This is consistent with

the possibility that such connections are involved in the segmentation of visual

images (Li, 1999). In order to select even planforms, which are contour forming

and correspond to seen form constants, it proved sufficient to allow for deviation

away from the visuotopic axis by at least 45o in the pattern of lateral connections

between iso–orientation patches. These results are consistent with observations

that suggest that there are two circuits in V1, one dealing with contrast edges,
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in which the relevant lateral connections have the anisotropy found by Blasdel

and Sincich [personal communication] and Bosking et al. (1997), and another

that might be involved with the processing of textures, surfaces and color con-

trast, and which has a much more isotropic lateral connectivity (Livingstone &

Hubel, 1984). One can interpret the less anisotropic pattern needed to generate

even planforms as a composite of the two circuits.

There are also two other intriguing possible scenarios which are consistent with

our analysis. The first was referred to in § 3.4. In case V1 is operating in the

Hubel–Wiesel mode, with no intrinsic tuning for orientation, and if the lateral

interactions are not as weak as we have assumed in our analysis, then even con-

toured planforms can form. The second possibility stems from the observation

that at low levels of V1 activity, lateral interactions are all excitatory (Hirsch

& Gilbert, 1991), so that a bulk instability occurs if the homogeneous state

becomes unstable, followed by secondary bifurcations to patterned planforms

at the critical wavelength of 2.4 − 3.2 mm, when the level of activity rises and

the inhibition is activated. In many cases secondary bifurcations tend to be

associated with complex eigenvalues, and are therefore Hopf bifurcations (Er-

mentrout & Cowan, 1980) that give rise to oscillations or propagating waves.

In such a case it is possible for even planforms to be selected by the anistropic

connectivity and odd planforms by the isotropic connectivity. In addition such

a scenario is actually observed: many subjects who have taken LSD and sim-

ilar hallucinogens report seeing bright white light at the center of the visual

field which then explodes into a hallucinatory image (Siegel & Jarvik, 1975) in

about 3 sec, corresponding to a propagation velocity in V1 of about 2.4 cm per

sec. suggestive of slowly moving epileptiform activity (Milton, Mundel, an der

Heiden, Spire, & Cowan, 1995; Senseman, 1999).

(c) One of the major aspects described in this paper is the presumed Euclidean

symmetry of V1. Many systems exhibit Euclidean symmetry, but what is novel

here is the way in which such a symmetry is generated. Thus equation (2.9)

shows that the symmetry group is generated, in large part, by a translation or
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shift {r, φ} → {r + s, φ} followed by a rotation or twist {r, φ} → {Rθr, φ + θ}.
It is the final twist φ → φ + θ which is novel, and which is required to match

the observations of G. G. Blasdel and L. Sincich [personal communication] and

Bosking et al. (1997). In this respect it is of considerable interest that Zweck

& Williams (2000) have introduced a set of basis functions with the same shift–

twist symmetry as part of an algorithm to implement contour completion. Their

reason for doing so is to bind sparsely distributed receptive fields together func-

tionally, so as to perform Euclidean invariant computations. It remains to ex-

plicate the precise relationship between the Euclidean invariant circuits we have

introduced here, and the Euclidean invariant receptive field models introduced

by Zweck & Williams.

Figure 41: Tunnel hallucination generated by LSD. Redrawn from Oster (1970),

(d) Finally it should also be emphasized that many variants of the Klüver form

constants have been described, some of which cannot be understood in terms of

the simple model we have introduced. For example the Tunnel image shown in

figure 41(a) exhibits a reversed retino–cortical magnification, and corresponds

to images described in Knauer & Maloney (1913). It is possible that some

of the circuits beyond V1, for example, those in the dorsal segment of medial

superior temporal cortex (MSTd) that process radial motion, are involved in
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the generation of such images, via a feedback to V1 (Morrone, Burr, & Vaina,

1995).

Figure 42: Left panel: Lattice–tunnel hallucination generated by Marihuana. Reproduced
from Siegel (1977), with permission from Alan D. Iselin. Right panel: A simulation of the
Lattice Tunnel.

Similarly, the Lattice–tunnel shown in the left panel of figure 42 is more com-

plicated than any of the simple form constants shown earlier. One intriguing

possibility is that such images are generated as a result of a mismatch between

the planform corresponding to one of the Klüver form constants, and the un-

derlying structure of V1. We have (implicitly) assumed that V1 has patchy

connections that endow it with lattice properties. It should be clear from Fig-

ures 9 and 10 that such a cortical lattice is somewhat disordered. Thus one

might expect some distortions to occur when planforms are spontaneously gen-

erated in such a lattice. The right panel in Figure 42 shows a computation of

the appearance in the visual field of a hexagonal roll on a square lattice, when

there is a slight incommensurability between the two.

As a last example we show in figure 43 another hallucinatory image triggered

by LSD. Such an image does not fit very well as a form constant. However there

is some secondary structure along the main (horizontal) axis of the its major

components. [This is also true of the funnel and spiral images shown in figure 2,
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Figure 43: Complex hallucination generated by LSD. Redrawn from Oster (1970).

also triggered by LSD.] This suggests the possibility that at least two differing

length scales are involved in their generation, but this is beyond the scope of

the model described in the current paper. It is of interest that similar images

have been reported following stimulation with flickering light (Smythies, 1960).
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A Appendices

A.1 Perturbation expansion of the eigenfunctions

We summarize here the derivation of equations (3.13)–(3.15). This involves solving the
matrix equation [

λ + α

σ1µ
− Wm

]
Am = β

∑
n∈Z

Ŵm−n(q)An (A.1)

using a standard application of degenerate perturbation theory. That is, we introduce the
perturbation expansions

λ + α

σ1µ
= W1 + βλ(1) + β2λ(2) + . . . (A.2)

An = z±1δn,±1 + βA(1)
n + β2A(2)

n + . . . (A.3)

and substitute these into the eigenvalue equation (3.10). We then systematically solve the
resulting hierarchy of equations to successive orders in β.

O(β) terms Setting m = 1 in equation (A.1) yields the O(β) equation

Ŵ0(q)z1 + Ŵ2(q)z−1 = λ(1)z1

Combining this with the conjugate equation m = −1 we obtain the matrix equation(
Ŵ0(q) Ŵ2(q)
Ŵ−2(q) Ŵ0(q)

) (
z1

z−1

)
= λ(1)

(
z1

z−1

)
(A.4)

Equation (A.4) has solutions of the form

λ(1) = Ŵ0(q) ± Ŵ2(q) (A.5)

z−1 = ±z1 (A.6)

where + and − denote the even and odd solutions. We have used the result Ŵ−2 = Ŵ2.
The O(β) terms in equation (A.1) for which m �= ±1 generate the corresponding first-order
amplitudes

A(1)
m =

Ŵm−1(q)z1 + Ŵm+1(q)z−1

W1 − Wm
(A.7)



Geometric Visual Hallucinations P. C. Bressloff and others 75

O(β2) terms The O(β2) contribution to equation (A.1) for m = 1 is∑
n	=±1

Ŵ1−n(q)A(1)
n +

[
Ŵ0(q) − λ(1)

]
A

(1)
1 + Ŵ2(q)A

(1)
−1 = λ(2)z1

Combining with the analogous equation for m = −1 yields the matrix equation(
Ŵ0(q) − λ(1) Ŵ2(q)

Ŵ−2(q) Ŵ0(q) − λ(1)

) (
A

(1)
1

A
(1)
−1

)
=

(
B1(q)
B−1(q)

)
(A.8)

where

B1(q) = λ(2)z1 −
∑

n	=±1

Ŵ1−n(q)A(1)
n (A.9)

Multiplying both sides of equation (A.8) on the left by (z−1, z1) and using equation (A.4)
implies that B1(q) = 0. This together with equation (A.7) determines the second–order
contribution to the eigenvalue:

λ(2) =
∑

m	=1,m≥0

[
Ŵ1−m(q) ± Ŵ1+m(q)

]2

W1 − Wm
(A.10)

Having obtained λ(2) we can then use equations (A.8) and (A.5) to obtain the result

A
(1)
−1 = ±A

(1)
1 (A.11)

The unknown amplitudes z1 and A
(1)
1 are determined by the overall normalization of the

solution.
Finally, combining equations (A.2), (A.5), (A.6), and (A.10) generates equation (3.13).

Similarly, combining equations (A.3), (A.6), (A.7), (A.11) and (3.7) yields the pair of equa-
tions (3.14) and (3.15).

A.2 Construction of axial subgroups

We sketch how to construct the axial subgroups from the irreducible representations of the
holohedry HL corresponding to the shortest dual wave vectors as given in Table 2. By
rescalings we can assume that the critical wavenumber qc = 1 and that the doubly periodic
functions are on a lattice L whose dual lattice L∗ is generated by wave vectors of length
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1. There are two types of irreducible representations for each lattice corresponding to the
cases u(φ) odd and u(φ) even. We derive the explicit action of ΓL on these subspaces and
determine the axial subgroups.

The action of the torus T2 on the subspace KL is derived as follows. Write θ ∈ T2 as

θ = 2πθ1�1 + 2πθ2�2.

Using the fact that ki · �j = δij , the result of the translation action is given in Table 5.

Lattice Torus Action

Square (e2πiθ1c1, e
2πiθ2c2)

Hexagonal (e2πiθ1c1, e
2πiθ1c2, e

−2πi(θ1+θ2)c3)
Rhombic (e2πiθ1c1, e

2πiθ2c2)

Table 5: Torus action on ΓL-irreducible representation.

The holohedries HL are D4, D6, and D2 for the square, hexagonal, and rhombic lattices,
respectively. In each case the generators for these groups are a reflection and a rotation. For
the square and hexagonal lattices, the reflection is κ, the reflection across the x axis where
r = (x, y). For the rhombic lattice, the reflection is κη. The counterclockwise rotation ξ,
through angles π

2 , π
3 , and π, is the rotation generator for the three lattices. The action of

HL for the various lattices is given in Table 6.
Finally, for each of the six types of irreducible representations, we compute the axial

subgroups, those isotropy subgroups Σ that have one–dimensional fixed–point subspaces
Fix(Σ), in each irreducible representation. The computations for the square and rhombic
lattices are straightforward since we can use the T2-action in Table 5 to assume, after
conjugacy, that c1 and c2 are real and nonnegative. The computations on the hexagonal
lattice are more complicated (Bressloff et al., 2000b). The results, up to conjugacy, are
listed in Tables 7 and 8.
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D2 Action D4 Action D6 Action

1 (c1, c2) 1 (c1, c2) 1 (c1, c2, c3)
ξ (c1, c2) ξ (c2, c1) ξ (c2, c3, c1)
κη ε(c2, c1) ξ2 (c1, c2) ξ2 (c3, c1, c2)
κηξ ε(c2, c1) ξ3 (c2, c1) ξ3 (c1, c2, c3)

κ ε(c1, c2) ξ4 (c2, c3, c1)
κξ ε(c2, c1) ξ5 (c3, c1, c2)
κξ2 ε(c1, c2) κ ε(c1, c3, c2)
κξ3 ε(c2, c1) κξ ε(c2, c1, c3)

κξ2 ε(c3, c2, c1)
κξ3 ε(c1, c3, c2)
κξ4 ε(c2, c1, c3)
κξ5 ε(c3, c2, c1)

[θ1, θ2] (e−2πiθ1c1, e
−2πiθ2c2) (e−2πiθ1c1, e

−2πiθ2c2, e
2πi(θ1+θ2)c3)

Table 6: (Left) D2+̇T2 action on rhombic lattice; (Center) D4+̇T2 action on square lattice;
(Right) D6+̇T2 action on hexagonal lattice. For u(φ) even, ε = +1; for u(φ) odd, ε = −1.

Lattice Subgroup Σ Fix(Σ) Name

square D4(κ, ξ) (1,1) even square
O(2) ⊕ Z2(κ) (1,0) even roll

rhombic D2(κη, ξ) (1,1) even roll
O(2) (1,0) even rhombic

hexagonal D6(κ, ξ) (1,1,1) even hexagon (0)
D6(κ, ξ) (-1,-1,-1) even hexagon (π)

O(2) ⊕ Z2(κ) (1,0,0) even roll

Table 7: Axial subgroups when u(−φ) = u(φ). O(2) is generated by [0, θ2] ∈ T2 and
rotation by π (ξ on rhombic lattice, ξ2 on square lattice, and ξ3 on hexagonal lattice).
The points (1, 1, 1) and (−1,−1,−1) have the same isotropy subgroup (D6) — but are not
conjugate by a group element. Therefore, the associated eigenfunctions generate different
planforms.
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Lattice Subgroup Σ Fix(Σ) Name

square D4

(
κ

[
1
2 , 1

2

]
, ξ

)
(1,-1) odd square

O(2) ⊕ Z2

(
ξ2κ

[
1
2 , 0

])
(1,0) odd roll

rhombic D2

(
κη

[
1
2 , 1

2

]
, ξ

)
(1,1) odd rhombic

O(2) ⊕ Z2

(
ξ2κ

[
1
2 , 0

])
(1,0) odd roll

hexagonal Z6(ξ) (1,1,1) odd hexagon
D3(κξ, ξ2) (i,i,i) triangle
D2(κ, ξ3) (0,1,-1) patchwork quilt

O(2) ⊕ Z4

(
ξ3κ

[
1
2 , 0

])
(1,0,0) odd roll

Table 8: Axial subgroups when u(−φ) = −u(φ). O(2) is generated by [0, θ2] ∈ T2 and
rotation by π (ξ on rhombic lattice, ξ2 on square lattice, and ξ3 on hexagonal lattice).

A.3 Derivation of the amplitude equation

Assume that sufficiently close to the bifurcation point at which the homogeneous state
a(r, φ) = 0 becomes marginally stable, the excited modes grow slowly at a rate O(ε2) where
ε2 = µ− µc. We use the method of multiple–scales to derive the cubic amplitude equations
(6.2) and (6.5).

Multiple–scale analysis We begin by rewriting equation (2.11) in the more compact
form

da

dt
= −αa + µw ∗ σ[a] (A.12)

with

w ∗ σ[a] =
∫ π

0
wloc(φ − φ′)σ[a(r, φ′, t)]dφ′ + β

∫
R2

wlat(r − r′, φ)σ[a(r′, φ, t)]dr′ (A.13)

µ = µc + ε2. Taylor expand the nonlinear function σ[a] appearing in equation (A.12):

σ[a] = σ1a + σ2a
2 + σ3a

3 + . . .

where σ1 = σ′[0], σ2 = σ′′[0]/2, σ3 = σ′′′[0]/3! etc. Then perform a perturbation expansion
of equation (A.12) with respect to ε by writing

a = εa1 + ε2a2 + . . .
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and introducing a slow time-scale τ = ε2t. Collecting terms with equal powers of ε then
generates a hierarchy of equations of the form

La1 = 0, Lan = bn, n > 1 (A.14)

where

La = αa − µcσ1w ∗ a

and

b2 = µcσ2w ∗ a2
1 (A.15)

b3 = µcσ3w ∗ a3
1 + 2µcσ2w ∗ a1a2 −

[
da1

dτ
− σ1w ∗ a1

]
(A.16)

Solvability conditions The first equation in the hierarchy is equivalent to the eigen-
value equation (3.10) with λ = 0, µ = µc and |k| = qc. Therefore, the relevant classes of
solution are of the form (6.1):

a1(r, φ, t) =
N∑

j=1

cj(t)eikj .ru(φ − ϕj) + c.c. (A.17)

Following §4 we restrict solutions to the space of doubly periodic functions on a square or
rhombic lattice (N = 2) or a hexagonal lattice (N = 3). Next define the inner product of
two arbitrary functions a(r, φ), b(r, φ) according to

〈a|b〉 =
∫

Ω

∫ π

0
a(r, φ)b(r, φ)

dφ

π
dr

where Ω is a fundamental domain of the periodically tiled plane (whose area is normalized
to unity). The linear operator L is self-adjoint with respect to this inner product, that is,
〈a|Lb〉 = 〈La|b〉. Therefore, defining

vl(r, φ) = eikl.ru(φ − ϕl),

we have 〈vl|Lan〉 = 〈Lvl|an〉 = 0 for n = 2, 3, . . . . Since Lan = bn, we obtain a hierarchy of
solvability conditions

〈vl|bn〉 = 0
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From equation (A.15) the lowest order solvability condition is µcσ2〈vl|w ∗ a2
1〉 = 0. It turns

out that in the presence of lateral interactions the inner product 〈vl|w ∗ a2
1〉 can be non-

vanishing (in the case of even patterns) which leads to a contradiction when σ2 �= 0. This
can be remedied by assuming that σ2 = εσ′

2+O(ε2) and considering the modified solvability
condition 〈vl|ε−1b2 + b3〉 = 0. This generates the equation

〈vl|
da1

dτ
− σ1w ∗ a1〉 = µcσ3〈vl|w ∗ a3

1〉 + µcσ
′
2〈vl|w ∗ a2

1〉 (A.18)

An alternative approach to handling the non-vanishing of the inner product 〈vl|w ∗ a2
1〉

would be to expand the bifurcation parameter as µ = µc + εµ1 + ε2µ2 + . . . . This would
then give a quadratic (rather than a cubic) amplitude equation describing the growth of
unstable hexagonal patterns. In the case of odd patterns 〈vl|w ∗ a2

1〉 ≡ 0 and no restriction
on σ2 is required. However, for ease of exposition we treat the odd and even cases in the
same way.

Amplitude equations In order to explicitly derive the amplitude equations (6.2) and
(6.5) from the solvability condition (A.18), we need to evaluate inner products of the form
〈vl|w ∗ an

1 〉. Since vl is a solution to the linear equation (A.14), it follows that

〈vl|w ∗ an
1 〉 = 〈w ∗ vl|an

1 〉 =
α

µcσ1
〈vl|an

1 〉 (A.19)

Thus, substituting equation (A.17) into the left-hand side of equation (A.18) and using
(A.19) shows that

〈vl|
da1

dτ
− σ1w ∗ a1〉 =

[
1 + Γ(1)

] dcl

dτ
−

[
σ1W01 + Γ̂(1)

]
cl (A.20)

with Γ(1), Γ̂(1) = O(β). The β–dependent factors appearing on the right–hand side of equa-
tion (A.20) are eliminated from the final amplitude equations by an appropriate rescaling
of the time τ and a global rescaling of the amplitudes cj . Similarly,

〈vl|a2
1〉 = Γ(2)

3∑
i,j=1

cicjδ(ki + kj + kl) (A.21)

and

〈vl|a3
1〉 = 3cl

Γ(3)(0)|cl|2 + 2
∑
j 	=l

Γ(3)(ϕj − ϕl)|cj |2
 (A.22)
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with Γ(2) and Γ(3) given by equations (6.12) and (6.13). Note from equation (A.21) that
the inner product 〈vl|a2

1〉 is only nonvanishing when N = 3 (corresponding to hexago-
nal planforms) since we require

∑N
j=1 kj = 0. One possible set of wave vectors is kj =

qc(cos(ϕj), sin(ϕj)) with ϕ1 = 0, ϕ2 = 2π/3, ϕ3 = −2π/3. Also note that if u(φ) is an odd
eigenfunction then it immediately follows that Γ(2) = 0.

Finally, substitute equations (A.19), (A.20), (A.21) and (A.22) into (A.18) and perform
the rescaling εcl →

√
σ1W1 + Γ̂(1)cl. After an additional rescaling of time we obtain the

amplitude equation (6.2) for N = 2 and (6.5) for N = 3.
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