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Synchrony-Breaking Bifurcation at a Simple Real Eigenvalue
for Regular Networks 1: 1-Dimensional Cells∗
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Abstract. We study synchrony-breaking local steady-state bifurcation in networks of dynamical systems when
the critical eigenvalue is real and simple, using singularity theory to transform the bifurcation
into normal form. In a general dynamical system, a generic steady-state local bifurcation from a
trivial state is transcritical. In the presence of symmetry, a pitchfork is also possible generically.
Network structure introduces constraints that may change the generic behavior. We consider regular
networks, in which all cells have the same type and all arrows have the same type, and every cell
receives inputs from the same number of arrows. A characterization of all smooth admissible maps
permits a singularity-theoretic analysis based on Liapunov–Schmidt reduction. Assuming that the
cells have 1-dimensional internal dynamics, we give conditions on the critical eigenvectors of the
linearization and its transpose that determine when a generic bifurcation is transcritical, pitchfork,
or more degenerate. We prove that for all regular n-cell networks, such bifurcations are generically
n-determined. In the path-connected case, this is improved to (n− 1)-determined. In bidirectional
networks, generic bifurcation is transcritical or pitchfork, but the role of symmetry is minor. In
the general case, degenerate cases can occur: the network must have at least 4 cells (5 in the
path-connected case). We give examples of networks for which generic bifurcations are degenerate,
including a 6-cell network with a normal form that is determined only at degree 6 and a path-
connected 5-cell network with a normal form that is determined only at degree 4.
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1. Introduction. In a 1-parameter family of dynamical systems, generic steady-state bi-
furcation from a trivial branch is transcritical and occurs at a simple real eigenvalue. However,
what is generic can change if the system has special features. For instance, in the presence
of Z2 symmetry acting nontrivially on the critical eigenspace, generic symmetry-breaking bi-
furcation from a trivial branch is a pitchfork. We investigate whether these results remain
valid for a network of coupled dynamical systems [7, 9, 21]. The dynamics and bifurcations
of networks are known to be constrained by the network architecture [4, 15]. Even the linear
structure may be degenerate: multiple eigenvalues and nontrivial Jordan blocks can occur
generically for particular network architectures [15], and any Jordan normal form for a fixed
imaginary or zero eigenvalue can be generic in a suitable network [3].
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NETWORK BIFURCATION AT A SIMPLE EIGENVALUE 1405

Here we make a systematic study of local steady-state bifurcation in network dynamics at
a simple real eigenvalue. We impose a strong constraint on the network topology by assuming
it to be regular : that is, it has one type of cell and one type of coupling, and all cells receive the
same number of inputs, called the valency. We also assume that the cells of the network have
1-dimensional internal dynamics, a restriction that simplifies the calculations considerably. In
a second paper [20] we will discuss higher-dimensional cells, showing that the main results
of this paper extend to higher-dimensional cells for some networks but not for others. This
extension to higher dimensions relies on the 1-dimensional case, so this paper is a necessary
step towards the general case.

We obtain necessary and sufficient conditions for generic synchrony-breaking steady-state
bifurcation at a simple real eigenvalue to be transcritical or pitchfork, expressed as algebraic
properties of the critical eigenvectors of the adjacency matrix of the network and its transpose.
We also exhibit network architectures for which these conditions are not satisfied for any
ODE compatible with the network structure, so generic bifurcations for these networks are
always more degenerate. These exceptional networks appear to be rare, but their existence is
surprising and shows that the network architecture can cause generic bifurcations to be more
degenerate than they are for general or equivariant dynamical systems.

Throughout the paper we adopt the formalism of [7, 9], which permits multiple arrows
and self-loops. In particular, an ODE is admissible if it respects the network architecture
(Definition 2.1). Define a network to be path-connected if any pair of distinct cells can be
connected, in either direction, by a sequence of directed edges (other terms for this property
are strongly connected and transitive). A network that is not path-connected is feed-forward.

The examples of degenerate bifurcation that we construct arise in networks with few cells
but having arrows of high multiplicity. We briefly explain why such networks, which may
appear artificial, are significant. First, our main aim is to discover the possible phenomena in
this area and to prevent fruitless attempts to prove that transcritical and pitchfork bifurcations
exhaust the generic possibilities. Second, multiple arrows can be removed by appealing to the
lifting theorem [18, 19], which proves that any network with self-loops and multiple arrows
is a quotient (see below or [9]) of a network with no self-loops and no multiple arrows. This
construction, applied to any of our examples, leads to a conventional single-arrow network with
a number of cells that is roughly comparable to the original arrow multiplicities; it remains
regular. The precise relationship is derived in [19]. The corresponding bifurcation for the lifted
network remains degenerate. Even if that eigenvalue is not simple in the lifted network, the
lift will have a degenerate branch of equilibria because the eigenvalue in the original network
is simple. For applications, the most useful results are Theorem 5.2 and Corollary 5.5, which
give necessary and sufficient conditions for transcritical and pitchfork bifurcations to occur.

This paper was motivated by the systematic study of regular 3-cell networks in Leite
and Golubitsky [15]. Their Theorem 2.4 classifies all connected regular 3-cell networks of
valency 2, finding 38 distinct topological types, in agreement with the enumeration of Aldosray
and Stewart [1], 34 of which have distinct spaces of admissible vector fields. Assuming 1-
dimensional cell phase spaces, which causes no loss of generality in the linear theory, these
authors analyze all possible generic synchrony-breaking steady-state and Hopf bifurcations in
these systems. Their Table 3 lists the possibilities for simple critical eigenvalues, case S1 of the
analysis. For steady-state bifurcation, 21 networks have adjacency matrices with real simple
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1406 IAN STEWART AND MARTIN GOLUBITSKY

eigenvalues, and all of the associated synchrony-breaking bifurcations are either transcritical
or pitchfork. Pitchforks occur in seven cases, and can be explained by Z2 symmetry, either
on the full network, a quotient network, or a subnetwork that is “decoupled” from the other
cells. In particular, regular 3-cell networks can be classified into a small number of types, each
with “the same” generic bifurcation behavior. These results raise some general questions:

(1) Are all generic simple-eigenvalue synchrony-breaking local steady-state bifurcations in
networks transcritical or pitchfork?

(2) Is Z2 symmetry on some associated network, such as a quotient, necessary for a pitch-
fork bifurcation to occur generically?

(3) Is the range of possible generic bifurcations more limited than that of the possible
topological types of networks?

(4) Are there systematic structural features that explain how the bifurcations relate to
the topology?

In equivariant dynamics, the answer to the analogue of question (1) is “yes,” because the
equivariant mapping ||x||2x has degree 3 and is generically nonzero. For a network, however,
this map need not be admissible, and we show that the answer to (1) is “no”: generic simple-
eigenvalue steady-state bifurcations can be more degenerate than transcritical or pitchfork;
see Examples 7.1, 8.2, and 8.4 and sections 9 and 10. The answer to (2) is also negative: in
networks, symmetry is not necessary for generic pitchfork bifurcation; see Example 5.7. These
degenerate cases seem to be rare, so (3) has a positive but currently not systematic answer.
As regards (4), we find a number of connections between network topology and bifurcation
type. However, the main features that determine the type of bifurcation are combinatorial
and number-theoretic properties of the critical eigenvectors of the adjacency matrix of the
network and its transpose, rather than overt geometric features of network topology.

1.1. Outline of the paper. In order to summarize the main results of the paper, we set
up some terminology and notation.

Let G be a regular network with n cells, and consider a 1-parameter family of admissible
ODEs for G:

(1.1) Ẋ = Φ(X,λ), X ∈ R
n, λ ∈ R.

Steady states of (1.1) are solutions x of the bifurcation problem

(1.2) Φ(X,λ) = 0.

Steady-state bifurcation theory describes how the solutions x of (1.2) vary with λ. A bifurca-
tion occurs when the topology of the solution set (and in particular the number of solutions)
changes near some point λ0, known as a bifurcation point.

Let Δ = {(y, y, . . . , y) ∈ R
n} be the diagonal subspace of fully synchronous states. The

subspace Δ is flow-invariant for regular networks, so the system (1.1) can have a fully synchro-
nous equilibrium (u, u, . . . , u) for suitable u ∈ R. Without loss of generality we may translate
u to 0 in each cell, because this is a strongly admissible diffeomorphism [9].

Suppose that (1.1) undergoes a steady-state bifurcation at λ = 0 from this synchronous
equilibrium. Then the Jacobian L = DΦ|(0,0) must be singular by the implicit function
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NETWORK BIFURCATION AT A SIMPLE EIGENVALUE 1407

theorem, so it has a zero eigenvalue. Further, suppose that the eigenvalue is simple, which
implies that

dimkerL = 1.

The eigenvector v of L is either in Δ or transverse to Δ. The first case leads to a
synchrony-preserving bifurcation; generically such bifurcations are saddle-node bifurcations
because Φ|Δ is arbitrary. We call the second case a synchrony-breaking bifurcation. The
simple eigenvalue assumption implies that L|Δ is nonsingular; so there is a unique curve of
equilibria (u(λ), u(λ), . . . , u(λ)) in Δ. Again, without loss of generality, we may assume that
this curve of equilibria is at the origin, so

Φ(0, λ) ≡ 0.

We assume this property of Φ throughout and say that Φ has a trivial branch.
To compute the low-degree terms in the reduced mapping, it is convenient to intro-

duce some nonstandard notation. Let 〈, 〉 denote the usual inner product on R
n. If v =

(v1, . . . , vn), w = (w1, . . . , wn) ∈ R
n, define the componentwise product

v�w = (v1w1, . . . , vnwn)

and write
v[p] = (vp1 , . . . , v

p
n) = v� · · · �v︸ ︷︷ ︸

p

.

The operation � is bilinear, and gives Rn the structure of a commutative associative algebra,
with an identity element e = (1, 1, . . . , 1). This algebra provides a natural description of
admissible polynomial maps in Theorem 4.3.

We now summarize the main results of this paper, assuming the following standard hy-
potheses throughout.

Standard hypotheses. Let G be a regular network with 1-dimensional cell phase spaces,
having adjacency matrix A. Suppose that μ is a simple real eigenvalue of A associated with a
steady-state synchrony-breaking bifurcation from the fully synchronous state. The theorems
refer to this bifurcation.

Let v, u be eigenvectors for eigenvalue μ of A and AT, respectively. Let u⊥ be the orthog-
onal complement of u, so that Rn = R{v} ⊕ u⊥; see (2.2), (2.3) below. Then

(A− μI)|u⊥

is nonsingular on u⊥ because μ is simple. We also denote this restriction by L, so L−1 is a
well-defined map on u⊥. We will apply L−1 only to vectors known to lie in u⊥.

The outline of the paper is as follows. We begin by setting up necessary background from
linear algebra (especially the Perron–Frobenius theorem) and networks in section 2. Liapunov–
Schmidt reduction and singularity theory are briefly recalled in section 3. We characterize
smooth and polynomial admissible maps in section 4.

This characterization is specialized to quadratic and cubic maps in section 5, and we
compute the corresponding terms in the reduced map g. In particular, we prove (Theorem 5.2)
that generically (in the admissible map Φ) the bifurcation is transcritical if and only if

〈u, v[2]〉 �= 0.
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If this term vanishes, it is generically a pitchfork (Corollary 5.5) if and only if at least one of
the conditions

〈u, v[3]〉 �= 0, 〈u, v�Av[2]〉 �= 0, 〈u, v�L−1v[2]〉 �= 0

is valid. (In general these conditions are independent.) We describe connections between
pitchforks and symmetry (which is not a necessary condition for a pitchfork). In Theorem 5.8
we prove that in bidirectional networks, generic bifurcations are either transcritical or pitch-
fork.

Section 6 proves three determinacy theorems, which state that the normal form of the
bifurcation is generically determined by its Taylor series truncated at finite degree. If the
degree required is k, we say that the bifurcation is k-determined. Theorem 6.1 states that
in an n-cell network the bifurcation is generically (n + 1)-determined. Theorem 6.13 uses
this result to improve the conclusion to “generically n-determined.” Theorem 6.14 builds on
the previous theorems to show that in a path-connected n-cell network with n ≥ 4 cells, the
bifurcation is generically (n − 1)-determined. (These theorems place constraints on possible
examples of degeneracy and were used to find the examples that follow.)

Section 7 constructs a regular 4-cell network of valency 736 in which generic bifurcation at
a simple real eigenvalue is 3-degenerate but 4-determined. This construction uses a method we
call “bordering” and leads to a feed-forward network, that is, one that is not path-connected.
Section 8 considers higher degeneracies, leading to a regular 5-cell network of valency 390 in
which generic bifurcation at a simple real eigenvalue is 4-degenerate but 5-determined. We
exhibit a simpler example with valency 84, which has a Z2 symmetry. Section 9 constructs a
regular 6-cell network of valency 885920 in which generic bifurcation at a simple real eigenvalue
is 5-degenerate but 6-determined. Finally, section 10 constructs a regular path-connected
5-cell network of valency 6273504 in which generic bifurcation at a simple real eigenvalue is
3-degenerate but 4-determined.

Appendix A derives conditions for 4-degeneracy, and Appendix B contains a computation
of terms of degree 4 in the reduced map.

2. Background from linear algebra and networks. Throughout the paper we make re-
peated use of some simple results from linear algebra, which we recall here along with the
notation we use. We also introduce some basic network notation.

If μ is an eigenvalue of an n×nmatrix A, then the corresponding real generalized eigenspace
is

Eμ = {x ∈ R
n : (A− μI)nx = 0}

if μ ∈ R, and

Eμ = {x ∈ R
n : [(A− μI)(A− μI)]nx = 0}

if μ �∈ R. The space R
n is the direct sum of all generalized eigenspaces of A.

We write column vectors in the form [v1, . . . , vn]
T, where T denotes transpose. The vector

e = [1, . . . , 1]T plays a crucial role; in the context of networks we call it the synchronous
eigenvector.

Suppose that a matrix A has a real simple eigenvalue μ with eigenvector v. Let u be the
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corresponding eigenvector of AT. Then it is well known that the following hold:

For all x, y ∈ R
n, 〈x,Ay〉 = 〈ATx, y〉.(2.1)

The vector u is orthogonal to all generalized eigenspaces Eν of A(2.2)

with ν �= μ.

The vectors v and u are not orthogonal. That is, 〈u, v〉 �= 0.(2.3)

If A has constant row-sums k and μ �= k, then u1 + · · ·+ un = 0.(2.4)

Another useful result is the following:

Suppose that v = [v1, . . . , vn]
T, where all vj are distinct. Then the(2.5)

vectors e, v, v[2], . . . , v[n−1] are linearly independent.

The entries of any adjacency matrix are nonnegative integers, and this restriction on their
sign has crucial implications for the theory. A fundamental result here is the Perron–Frobenius
theorem. Recall that a square matrix is irreducible if it cannot be put into nontrivial block-
triangular form by a permutation of the coordinates; see [14, section 10.7]. The adjacency
matrix of a network is irreducible if and only if the network is path-connected. The Perron–
Frobenius theorem states that if A is an irreducible real matrix, all of whose entries are
nonnegative, then there exists a real eigenvalue σ > 0 of A such that the following hold:

Every other eigenvalue λ satisfies |λ| < σ. In particular, Re(λ) < σ.(2.6)

The eigenvalue σ is simple.(2.7)

There is an eigenvector X with eigenvalue σ with all components(2.8)

positive (Xj > 0).

If an eigenvector of A has all components positive, then it is a(2.9)

scalar multiple of the eigenvector X in (2.8).

A proof of (2.6), (2.7), (2.8) is given in Lancaster and Tismenetsky [14, section 15.4].
Statement (2.9) is Exercise 15.3.11 of that reference. It implies that in our case, the maximal
eigenvalue σ is the valency k of the network, because the corresponding eigenvector is e =
[1, 1, . . . , 1]T with all entries positive.

We also recall a few basic concepts about coupled cell networks [7, 9, 21], that will be
required below, specialized to the regular case.

A coupled cell network G is a directed graph. The nodes (“cells”) represent dynamical
systems and the edges (“arrows”) represent couplings. That is, an arrow e from cell i to cell
c indicates that the dynamics of i influences the dynamics of c. We denote the set of cells by
C and the set of arrows by E . In a regular network all cells have the same type (that is, the
same phase space and the same internal dynamics), and all arrows have the same type (all
couplings have the same form apart from the choice of variables).

If a ∈ E connects cell i to cell c, then we write

c = H(a), i = T (a)
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and call these cells the head and tail of a, respectively. The input set I(c) of c ∈ C is the set
of all arrows whose head is c, so that

I(c) = {a ∈ E : H(a) = c}.

For a regular network, all input sets have the same cardinality, so I(c) = k for all c ∈ C. We
call k the valency of the network.

Associated with each regular coupled cell network is a class of admissible vector fields,
determining admissible ODEs. This concept is a generalization of group equivariance [6, 8]
to the network case. For regular networks, the admissible vector fields are constructed as
follows. Choose a cell phase space, which for the present purposes (local bifurcation theory)
we assume to be a real vector space R

r of dimension r ≥ 1. Write

R
kr = R

r ⊕ · · · ⊕ R
r

with k summands. Then the phase space of the coupled system is P = R
nr. The symmetric

group Sk acts on R
kr by permuting the k entries:

σ(x1, . . . , xk) = (xσ.1, . . . , xσ.k),

where each xj ∈ R
r and the action σ.j = σ−1(j). We call Sk the vertex group of the network.

Definition 2.1. Let f be any smooth function

f : Rr ⊕ R
kr → R

r

that is invariant under the permutation action of Sk on R
kr. The function f determines a

vector field F = (f1, . . . , fn) on P as follows:

(2.10) fc(x) = f(xc, xT (c)),

where xT (c) denotes the k-tuple of tail cells of the input arrows a ∈ I(c) of cell c:

xT (c) = xT (I(c)).

Any such vector field is said to be admissible. The same term is applied to the corresponding
ODE

d

dt
xc = fc(x).

Invariance under the action of Sk is a consequence of the general coupled cell formalism.
It permits the classification of admissible smooth and polynomial maps; see section 4.

3. Normal forms for local bifurcation. Let A = (aij) be the adjacency matrix of the
network, so that aij is the number of arrows leading from cell j to cell i. Since G is regular
and cells are 1-dimensional, the linear admissible vector fields have the form LX, where

(3.1) L = αI + βA

for α, β ∈ R; see Leite and Golubitsky [15, section 3.1]. The entries of A are nonnegative
integers, and regularity implies that all rows of A have the same sum, equal to the valency.
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Note that L has a simple zero eigenvalue with eigenvector v if and only if A has a simple real
eigenvalue μ = −α

β with eigenvector v, and β is nonzero.
Let D denote the derivative with respect to the state variables x. Then

L(λ) = DΦ|(0,λ) = α(λ)I + β(λ)A

is the linearization of Φ along the trivial solution. We can normalize Φ(x, λ) by dividing
by β(λ) (which up to sign is the same as rescaling time) and thus assume that β(λ) = 1.
Moreover, generically we can assume that the eigenvalue crossing condition is valid; that is,
the critical eigenvalue crosses 0 with nonzero speed, so α′(0) �= 0. Changing coordinates in λ
we may set α(λ) = λ− μ. Now

(3.2) L(λ) = (λ− μ)I +A,

where μ is a simple real eigenvalue of A. Throughout the paper we assume that L has been
normalized in this way.

The technique of Liapunov–Schmidt reduction (see, for example, [5]) transforms the bi-
furcation problem (1.1) into a reduced equation

g(x, λ) = 0, x ∈ R, λ ∈ R,

where g : R × R → R is smooth. Here R is identified with kerL. Singularity-theoretic
methods [5] classify the resulting types of bifurcation according to certain features of the
Taylor series of g. We introduce some useful terminology. A bifurcation problem is finitely
determined if it is equivalent to its Taylor series truncated at some finite order. It is r-
determined if it is equivalent to its Taylor series truncated at order r, and strictly r-determined
if it is r-determined but not (r − 1)-determined. If for some r the terms in the Taylor series
vanish for all degrees l with 2 ≤ l ≤ r, we say that the bifurcation is r-degenerate.

Theorem 3.1. Assuming (3.2), suppose that r ≥ 2 and

g = gx = · · · = gxr−1 = 0 and gxr �= 0

at x = λ = 0. Then the bifurcation problem g is strictly r-determined and equivalent to the
normal form

g±r (x, λ) ≡ λx± xr.

In applications, one important feature of the normal form is the growth rate of the
branch(es). For the normal form g±r , the synchrony-breaking branch (branches when r is
odd) grows at a rate |x| ∼ |λ|1/(r−1) near 0. Because the equivalence relation employed
in singularity theory is a diffeomorphism, the same asymptotic growth rate occurs for the
corresponding branch of the original bifurcation problem (1.1); see Corollary 6.12.

Using singularity theory we can put almost all bifurcation problems (1.2) into normal form
by applying suitable changes of coordinates. The main step is to apply Liapunov–Schmidt
reduction [5, 8]. This leads to a reduced bifurcation equation g(x, λ) = 0, and x ∈ R when
the critical eigenvalue is simple. We use the notation of Golubitsky and Schaeffer [5, pages
25–35], specialized to one bifurcation parameter λ.
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Translating coordinates if necessary, we may assume that the bifurcation occurs at the
origin, so X,λ are small and the linearization L = DΦ|0,0 is singular. Assume that 0 is a
simple eigenvalue of L, so that kerL is 1-dimensional.

The reduction method requires a choice of a complement N to kerL in R
n. Since (kerL) =

Eμ, we know that

(3.3) M = range L =
⊕
ν �=μ

Eν

is a complement, so we take N = M = u⊥. This space is A-invariant. By (2.2),

M = u⊥ = {x : 〈u, x〉 = 0}.

Let E be projection onto u⊥ with kernel R{v}. This is the projection employed in the
Liapunov–Schmidt process, and there exist formulas for the Taylor coefficients of the reduced
map g in terms of E.

Throughout the paper we consider the mth derivative of Φ, relative to the state variables
x and evaluated at the origin, as a symmetric m-linear form. We denote this form by DmΦ.

We now state explicit formulas for the first few Taylor coefficients of the reduced map g
at (0, 0) in terms of Φ. Equations (3.4), (3.5), (3.6) are proved in [5], and (3.7) can be derived
using similar methods:

gx = 0,(3.4)

gxx = 〈u,D2Φ(v, v)〉,(3.5)

gxxx = 〈u,D3Φ(v, v, v)〉 − 3〈u,D2Φ(v, L−1ED2Φ(v, v))〉,(3.6)

gxxxx = 〈u,
[
D4Φ(v, v, v, v) − 6D3Φ(v, v, L−1ED2Φ(v, v))(3.7)

+ 3D2Φ(L−1ED2Φ(v, v), L−1ED2Φ(v, v))

− 4D2Φ(v, L−1ED3Φ(v, v, v))

+ 12D2Φ(v, L−1ED2Φ(v, L−1ED2Φ(v, v)))
]
〉.

4. Characterization of admissible maps. In order to consider higher degeneracies, we
characterize smooth admissible maps. The terms of given degree in the Taylor series of an
admissible map constitute an admissible map, so this also leads to a classification of polynomial
admissible maps of any given degree.

We begin by characterizing the smooth admissible maps. By invariant theory (see Mac-
donald [16]), the polynomial Sk-invariant R-valued functions on R

k are generated by a finite
set of invariants. Since Sk acts trivially on R, the same holds for the action on R × R

k, with
R acting as a parameter. We can then prove, for any given network G, the following theorem.

Theorem 4.1. Suppose that γ0, . . . , γp is any finite set of generators for the Sk-invariant
polynomial functions R×R

k → R. Then a map Φ : R×R
k → R

k is admissible if and only if
there exists a smooth map ζ : Rp → R such that

Φc(x) = ζ(γ0(xc, xT (c)), . . . , γp(xc, xT (c)))

for all cells c.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NETWORK BIFURCATION AT A SIMPLE EIGENVALUE 1413

Proof. “If” is clear. We prove “only if.” Let Φ be admissible, and write

Φ(x) = [Φ1(x), . . . ,Φn(x)]
T.

Then for all cells c there exists Φ̂c : R× R
k → R such that

Φc(x) = Φ̂c(xc, xT (c)),

where T (c) = T (I(c)) ∈ R
k. The vertex group Sk acts on R

k, and by regularity of G there
is a smooth map φ : R × R

k → R such that Φ̂c = φ for all c, and φ is Sk-invariant. In a
regular network this condition, together with smoothness of φ, is also sufficient for Φ to be
admissible [21].

There exists a finite set of polynomial generators γ0, . . . , γp for the Sk-invariant polynomial
functions R× R

k → R. By Schwarz [17], there exists a smooth map ζ : Rp+1 → R such that

φ(y0, y1, . . . , yk) = ζ(γ1(y), . . . , γp(y))

as claimed.
We can now make a specific choice of the generators γj that is particularly convenient for

networks. If y = (y1, . . . , yk), then it is well known (see, for example, Macdonald [16]) that
the Sk-invariant polynomial functions are generated as an R-algebra by the power-sums

πp(y) = yp1 + · · ·+ ypk.

To account for the trivial component R we take y0 ∈ R, which acts as a free parameter. So
we can take

γ0(y) = y0,

γj(y) = yj1 + · · ·+ yjk, 1 ≤ j ≤ k.

Now we immediately have the following theorem.
Theorem 4.2. With the above choice of the γj,

φ(xc, xT (c)) = ζ(γ0(x), γ1(x), . . . , γk(x)),

where

γ0(x) = xc,

γj(x) = (Ax[j])c,

where (Ax[j])c is the cth row of Ax[j].
Proof. Observe that γj(x) =

∑
t∈T (c) x

j
t =

∑n
i=1 acix

j
i = (Ax[j])c.

We now specialize to polynomial admissible maps, which arise as truncated Taylor series
of smooth admissible maps.

Theorem 4.3. Suppose that the network is regular, with 1-dimensional cell phase spaces.
Then the admissible polynomial maps of degree m are linear combinations over R of maps of
the form

(4.1) x[p0]�Ax[p1]� · · · �Ax[ps],
where s ≥ 0, p0 ≥ 0, pj > 0 for 1 ≤ j ≤ s, and p0 + · · · + ps = m. (When s = 0, no factors
Ax[pj] occur.)

Proof. This is a direct consequence of Theorem 4.2.
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5. Quadratic and cubic terms of the reduced map. We now specialize the classification
of Theorem 4.3 to the quadratic and cubic terms in the reduced map, assuming the standard
hypotheses on the bifurcation and the standard choice of spaces for the Liapunov–Schmidt
procedure.

The linearization L in the Liapunov–Schmidt procedure is

L = A− μI,

so the kernel of L is spanned by v. The vector u lies in (range L)⊥, so we may use these
choices of v, u in the formulas (3.4), (3.5), (3.6), (3.7) for Taylor series coefficients.

Statements (2.2), (2.3) imply that Rn = R{v} ⊕ u⊥. Now the restriction

L = (A− μI)|u⊥

(we continue to call it L) is nonsingular on u⊥ because μ is simple. So L−1 is a well-defined
map on u⊥. We will apply L−1 only to vectors known to lie in u⊥.

By Theorem 4.3 any quadratic admissible map is a linear combination of

x[2], x�Ax, Ax[2], (Ax)[2].

More explicitly,

(5.1)

q1 = x2c ,
q2 = xc(xi1 + · · ·+ xik),
q3 = x2i1 + · · ·+ x2ik ,

q4 = (xi1 + · · ·+ xik)
2,

where the sums are taken over the tail cells of all input arrows to cell c.
The cubic admissible maps are linear combinations of

x[3], x[2]�Ax, x�Ax[2], x�(Ax)[2], Ax[3], (Ax)�(Ax[2]), (Ax)[3]

or, more explicitly,

Q1 = x3c ,

Q2 = x2c(xi1 + · · ·+ xik),

Q3 = xc(x
2
i1 + · · ·+ x2ik),

Q4 = xc(xi1 + · · ·+ xik)
2,

Q5 = x3i1 + · · ·+ x3ik ,

Q6 = (xi1 + · · ·+ xik)(x
2
i1 + · · ·+ x2ik),

Q7 = (xi1 + · · ·+ xik)
3.

Now we compute the quadratic terms in the reduced equation.
Theorem 5.1. Let the quadratic terms in Φ be

(5.2) Φ2(x) = ax[2] + bx�Ax+ cAx[2] + d(Ax)[2], a, b, c, d ∈ R.
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Then the reduced map, to quadratic order, is

g(x) = (λ− μ)x+ σ〈u, v[2]〉x2,

where

(5.3) σ = a+ μb+ μc+ μ2d.

Proof. The linear term is (λ− μ)x.
By Taylor’s theorem, Φ2(x) = 1

2
D2Φ(x, x), and the quadratic term in the Liapunov–

Schmidt reduced map is 1
2
gxxx

2. By (3.5),

(5.4)
1

2
gxx =

1

2
〈u,D2Φ(v, v)〉 = 〈u,Φ2(v)〉.

Since Av = μv,

Φ2(v) = av[2] + bv�Av + cAv[2] + d(Av)[2]

= av[2] + bv�μv + cAv[2] + d(μv)[2]

= av[2] + bμv[2] + cAv[2] + dμ2v[2]

= (a+ μb+ μ2d)v[2] + cAv[2].(5.5)

The coefficient of x2 is therefore

〈u,Φ2(v)〉 = 〈u, (a + μb+ μ2d)v[2] + cAv[2]〉
= (a+ μb+ μ2d)〈u, v[2]〉+ c〈u,Av[2]〉
= (a+ μb+ μ2d)〈u, v[2]〉+ c〈ATu, v[2]〉
= (a+ μb+ μ2d)〈u, v[2]〉+ c〈μu, v[2]〉
= (a+ μb+ μc+ μ2d)〈u, v[2]〉

as stated.
The characterization of transcritical bifurcations follows immediately.
Theorem 5.2. The bifurcation is generically transcritical if and only if 〈u, v[2]〉 �= 0. In

this case the genericity condition is σ �= 0, where σ is defined in (5.3).
The same type of calculation applies to cubic terms. We assume that the quadratic term

in the reduced map vanishes and compute Φ3(x) = 1
6
D3Φ(x, x, x). If this term is nonzero,

then the bifurcation is a pitchfork by Theorem 3.1.
By (3.7), the cubic term in the reduced map is 1

6
gxxxx

3, where

(5.6) gxxx = 〈u,D3Φ(v, v, v)〉 − 3〈u,D2Φ(v, L−1ED2Φ(v, v))〉.

The first term 〈u,D3Φ(v, v, v)〉 arises from the cubic terms in the admissible vector field Φ.
The second term −3〈u,D2Φ(v, L−1ED2Φ(v, v))〉 arises from the quadratic terms in Φ by way
of the implicit function theorem.

Theorem 5.3. Suppose that 〈u, v[2]〉 = 0, the quadratic terms in Φ are

Φ2(x) = ax[2] + bx�Ax+ cAx[2] + d(Ax)2
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for a, b, c, d ∈ R, and the cubic terms are

Φ3(x) = Px[3] +Qx[2]�Ax+Rx�Ax[2] + Sx�(Ax)[2]

+ TAx[3] + U(Ax)�Ax[2] + V (Ax)[3],

where P,Q,R, S, T, U, V ∈ R. Then the cubic coefficient of the reduced map is

(5.7)
1

6
gxxx = σ1〈u, v[3]〉+ σ2〈u, v�Av[2]〉+ σ3〈u, v�L−1v[2]〉,

where the σj are polynomial functions of a, b, c, d, P,Q,R, S, T, U, V, μ.
Proof. The proof is similar to that of Theorem 5.1 and is given in Appendix A.
Example 5.4. The condition 〈u, v�L−1v[2]〉 = 0 is not a consequence of 〈u, v[2]〉 = 〈u, v[3]〉 =

〈v�Av[2]〉 = 0. Consider the 5-cell network for which

A =

⎡
⎢⎢⎢⎢⎣

0 2 2 1 22
6 8 11 2 0
6 1 2 2 16
1 1 1 0 24
0 0 0 0 27

⎤
⎥⎥⎥⎥⎦ ,

which is regular of valency 27. The eigenvectors for eigenvalue −1 are

v = [−1,−2, 2, 1, 0]T , u = [−8, 1,−1, 8, 0]T .

The other eigenvalues are 27 and the three roots of an irreducible cubic, so −1 is a simple
eigenvalue. Direct calculation shows that 〈u, v[2]〉 = 〈u, v[3]〉 = 〈v�Av[2]〉 = 0. However,
(L+ I)−1v[2] = [ 1

2
, 0, 0, 1

2
, 0]T so that 〈u, v�L−1v[2]〉 = 8 �= 0.

We immediately deduce a characterization of pitchfork bifurcations.
Corollary 5.5. With the usual hypotheses, suppose that 〈u, v[2]〉 = 0. Then generically the

bifurcation is a pitchfork if and only if at least one of 〈u, v[3]〉, 〈u, v�Av[2]〉, or 〈u, v�L−1v[2]〉
is nonzero.

The most obvious context in which the quadratic term in the reduced map must vanish
for all admissible vector fields is symmetry. The spaces involved in the Liapunov–Schmidt
reduction can be chosen to be invariant under the symmetry group, so the reduced map is
also symmetric [5]. If the network G has a global symmetry group Γ, and A has a simple
eigenvalue μ, then Γ leaves the eigenspace Eμ = R{v} invariant. Either Γ acts trivially on Eμ,
in which case the bifurcation preserves the symmetry, or Γ acts nontrivially on Eμ, in which
case the action factors through Z2 and the least degenerate bifurcation is a pitchfork. More
generally, the same applies on a quotient network (we omit the proof, which is straightforward).

Proposition 5.6. Suppose that G has a quotient network with a symmetry group that changes
the sign of the eigenvector associated with the bifurcation. Then the Liapunov–Schmidt re-
duced bifurcation equation has only odd degree terms in x, and thus is pitchfork or more
degenerate.

However, symmetry—even on a quotient network—is not necessary for pitchforks to be
generic. The next example shows that they can occur for combinatorial reasons.
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4 2

31

Figure 1. 4-cell path-connected regular network with trivial symmetry.

Example 5.7. Consider network G49 of Figure 1, which is #49 on the list of all 416 con-
nected 4-cell valency-2 networks in Kamei [12, Chapter 3, Figure 3.3] and Kamei [13]. The
adjacency matrix is

A =

⎡
⎢⎢⎣

0 0 0 2
0 0 0 2
1 1 0 0
0 1 1 0

⎤
⎥⎥⎦ .

The eigenvalues of A are 2, 0,−1± i, so they are all simple. The eigenvectors of A and AT for
eigenvalue 0 are

v = [1,−1, 1, 0]T , u = [−1, 1, 0, 0]T .

Now 〈u, v[2]〉 = 0, so there is a degeneracy at the quadratic level. The cubic term 〈u, v[3]〉 =
−2 �= 0, so generically the bifurcation is a pitchfork.

By inspection of Figure 1, the symmetry group of G49 is trivial. The only nontrivial
polydiagonal (see [9, 21]) containing v is {(x, y, x, z)}, corresponding to the coloring �� with
classes {1, 3}, {2}, {4}. However, this coloring is not balanced, so there is no nontrivial quotient
network.

Corollary 5.5 has a strong implication for bidirectional networks. Recall that a network is
bidirectional if every arrow from cell c to cell d corresponds bijectively to an arrow of the same
type from d to c. Clearly a regular network is bidirectional if and only if A is a symmetric
matrix. All regular bidirectional networks are 3-determined.

Theorem 5.8. With the usual hypotheses, suppose that the network is bidirectional. Then
generically the bifurcation problem is 3-determined. Thus real simple-eigenvalue bifurcation
in a bidirectional network is generically transcritical or pitchfork. If v31 + · · · + v3n �= 0, then
the bifurcation is transcritical. Otherwise, it is a pitchfork.

Proof. Since
A = AT,

we may take u = v. Therefore

〈u, v[3]〉 = v41 + · · ·+ v4n �= 0,

so at least one cubic term in the Liapunov–Schmidt reduction is generically nonzero. If
〈u, v[2]〉 = v31 + · · · + v3n �= 0, then generically the bifurcation is transcritical. Otherwise, it is
generically a pitchfork.
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The symmetric matrix

A =

⎡
⎣ 1 2 0

2 0 1
0 1 2

⎤
⎦

has eigenvalues 3,
√
3,−

√
3. The eigenvector for

√
3 is [1 −

√
3,−2 +

√
3, 1]T. Taking this

for v we get v31 + v32 + v33 = −15 + 9
√
3 �= 0, so the transcritical case can occur. The next

example shows that symmetry is not necessary for generic bifurcation to be pitchfork in the
bidirectional case.

Example 5.9. Let

A =

⎡
⎢⎢⎢⎢⎣

0 47 54 43 36
47 129 0 0 4
54 0 126 0 0
43 0 0 129 8
36 4 0 8 132

⎤
⎥⎥⎥⎥⎦ .

This has valency 180, and

v = [1, 5, 9,−7,−8]T

is a simple eigenvector with eigenvalue 132. Now u = v, and the choice of v makes the
associated bifurcation 2-degenerate. Clearly no symmetry can invert v; in fact, the symmetry
group is trivial. The corresponding network is path-connected. All entries of A can be made
nonzero with slightly different choices, at the expense of making the integers larger when
scaling away fractions.

6. Finite determinacy. Theorem 5.8 is a simple example of a determinacy theorem, stating
that under suitable hypotheses the Liapunov–Schmidt reduced bifurcation problem is finitely
determined; that is, its normal form can be obtained from a finite truncation of its Taylor
series. In this section we discuss determinacy theorems for general networks. These provide
limits on the degree of degeneracy of network bifurcations at a simple real eigenvalue. We
prove three determinacy results of increasing strength: the proof of each relies on the previous
one.

The first such result is Theorem 6.1. This implies Corollary 6.2: generically (in the
admissible vector field) all n-cell networks have (n + 1)-determined bifurcations at simple
eigenvalues for n ≥ 3. Next, Theorem 6.13 improves this to n-determined bifurcations. Finally,
Theorem 6.14 shows that in the path-connected case n-determinacy can be improved to (n−1)-
determinacy when n ≥ 4.

To state the first theorem in its strongest form, say that a bifurcation problem is strongly
l-determined if 〈u,Φl〉 �= 0 for some admissible vector field Φl of degree l. In the Liapunov–
Schmidt procedure, the most straightforward way to get a nonzero contribution to the normal
form gx[l] is to ensure that

〈u, v[l]〉 �= 0.

We can now state and prove the following theorem.

Theorem 6.1. Suppose that v has l distinct nonzero entries. Then generically 〈u, v[r]〉 �= 0
for some r with 2 ≤ r ≤ l + 1, so generically the bifurcation is strongly (l + 1)-determined.
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Proof. We claim that there is a polynomial p(x) of degree l + 1 with p(0) = 0 and the
coefficient of x in p nonzero, such that

p(vj) = 0

for all entries vj of v. To construct p, let w1, . . . , wl be the distinct nonzero entries vj, and
define

p(x) = x(x− w1) · · · (x− wl).

Then p(0) = 0 and p(wj) = 0. The coefficient of x in p is (−1)lw1 · · ·wl �= 0. Write

p(x) = a1x+ a2x
2 + · · ·+ al+1x

l+1

so that

(6.1) vj =
−1

a1
(a2v

2
j + · · · + al+1v

l+1
j ).

Now suppose for a contradiction that 〈u, v[r]〉 = 0 for 2 ≤ r ≤ l + 1. Then

〈u, a2v[2] + · · · + al+1v
[l+1]〉 = 0.

But now (6.1) implies that 〈u, v〉 = 0, contrary to (2.3).
Corollary 6.2. In an n-cell network, generically the bifurcation is (n+1)-determined.
Corollary 6.3. If v has at most two distinct nonzero entries, then generically the bifurcation

is 3-determined.
This corollary is interesting because balanced polydiagonals with only two distinct entries

(patterns of synchrony with two clusters) are analogous to the fixed-point subspaces of “axial”
isotropy subgroups in the group-equivariant case [8]. Call such a polydiagonal axial. Then we
deduce the following corollary.

Corollary 6.4. If v lies in an axial balanced polydiagonal, then generically the bifurcation is
3-determined.

6.1. Eigenstructure of v[2]. The vector v[2] plays a key role in the theory and has arisen
naturally in several previous examples as an eigenvector of A. To improve Corollary 6.2
we examine this vector in more detail. First, note a simple property of the componentwise
product:

(6.2) 〈x�y, z〉 = 〈x, y�z〉.
This identity is clear because both sides reduce to∑

i

xiyizi.

Using this identity we prove the following proposition.
Proposition 6.5. For a path-connected network at a 3-degenerate bifurcation, v[2] cannot be

an eigenvector of A.
Proof. All entries of v[2] are nonnegative. Since the network is path-connected, the adja-

cency matrix is irreducible. Now (2.9) implies that v[2] = φe for some φ ∈ R. Clearly φ �= 0.
By (6.2),

0 = 〈u, v[3]〉 = 〈u�v, v[2]〉 = 〈u�v, φe〉 = φ〈u, v〉 �= 0,

which is a contradiction.
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6.2. n-cell networks are generically n-determined. In this section we improve Theorem
6.1, replacing the determinacy bound n+1 by n. Example 7.1 shows that n cannot be replaced
by n − 1 in general. Section 10 shows that in the path-connected case it cannot be replaced
by n− 2.

We first dispose of 2- and 3-cell networks, which have special features that do not apply
in the general case.

It is easy to analyze the 2-cell case, and there are no surprises: all regular 2-cell networks
are 3-determined, and pitchforks occur only when the network has Z2 symmetry. We therefore
consider 3-cell networks. Again, all regular 3-cell networks have 3-determined bifurcations at
any simple real eigenvalue. The proof is not as straightforward as in the 2-cell case. It contains
some ideas that generalize to more cells, but it also relies on special features of 3-cell networks,
and it is needed below to deal with this case in Theorem 6.1.

We establish a slightly stronger result, not involving 〈u, v�L−1v[2]〉.
Lemma 6.6. Let n = 3. If

(6.3) 〈u, v[2]〉 = 〈u, v[3]〉 = 〈u, v�Av[2]〉 = 0,

then v[2] is an eigenvector of A and v[3] = αv[2] + βe, where α, β ∈ R and e = [1, 1, 1]T.

Proof. Recall that e is an eigenvector of A with eigenvalue k. Assume (6.3). If any entry
of v is zero, or two entries are equal, then Theorem 6.1 implies that the bifurcation is strongly
3-determined, contradicting (6.3). So

v = [v1, v2, v3]
T,

where all vj are distinct nonzero.

Statement (2.5) of section 2 implies that {e, v, v[2]} is a basis for R3, so

(6.4) Av[2] = αv[2] + βv + γe

for α, β, γ ∈ R. Therefore

v�Av[2] = αv[3] + βv[2] + γv.

By (6.3), the vectors v�Av[2], v[3], v[2] are orthogonal to u. But v is not orthogonal to u, so
γ = 0. Now (6.4) becomes

Av[2] = αv[2] + βv.

However, both v[2] and Av[2] are orthogonal to u (the latter using 〈u,Av[2]〉 = 〈ATu, v[2]〉),
but 〈u, v〉 �= 0 by (2.3), so β = 0. Therefore

(6.5) Av[2] = αv[2]

and v[2] is an eigenvector with eigenvalue α.

We now prove that (6.3) cannot hold when n = 3.

Theorem 6.7. No regular 3-cell network can satisfy (6.3). In particular, every generic
synchrony-breaking simple-eigenvalue steady-state bifurcation of a regular 3-cell network is
3-determined.
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Proof. First, assume that the network is path-connected. By Theorem 6.1, all entries of v
are nonzero. Therefore all entries of the eigenvector v[2] are positive. By the Perron–Frobenius
theorem (2.9), v[2] = αe for some α ∈ R, and clearly α > 0. Therefore v = [±

√
α, . . . ,±

√
α]T,

with at most two distinct entries, so Theorem 6.1 implies that (6.3) cannot be valid.

Next, suppose that G is not path-connected. By Lemma 6.6, equation (6.5) holds. By
Theorem 6.1, the entries of v are all distinct and nonzero. There are two cases: either G can
be decomposed into a 2-cell network that forces a 1-cell network, or G can be decomposed
into a 1-cell network that forces a 2-cell network. In the first case,

(6.6) A =

⎡
⎣ a k − a 0

b k − b 0
c d k − c− d

⎤
⎦

for nonnegative integers a, b, c, d. In the second case,

(6.7) A =

⎡
⎣ k 0 0

a b k − a− b
c d k − c− d

⎤
⎦

for nonnegative integers a, b, c, d.

Assume (6.6). Then [v1, v2]
T is an eigenvector for eigenvalue μ of the 2× 2 block

[
a k − a
b k − b

]

whose eigenvalues are k, a− b. Since μ �= k, we must have μ = a− b. Now the corresponding
eigenvector of AT is [1,−1, 0]T, and since u is orthogonal to both v[2] and v[3], we have v21 = v22
and v31 = v32 . Therefore v1 = v2 (the vj are nonzero), a contradiction since the vj are also
distinct.

It remains to consider the possibility (6.7). Now Av = μv implies that μ = k by considering
the coefficient of v1, a contradiction.

This result generalizes to the n-cell case (see Theorem 6.13), but the proof is different for
n ≥ 4, as we now explain. First we need a general fact about Liapunov–Schmidt reduction.

Lemma 6.8. Liapunov–Schmidt reduction preserves the branch of trivial solutions.

Proof. Suppose that Φ(0, λ) = 0. We need to prove that the reduced map satisfies g(0, λ) =
0. In the notation of [5] it suffices to show that the implicitly defined map W (0, λ) = 0.

For each fixed λ near 0 the set Φ(M,λ) contains the origin, since Φ(0, λ) = 0. It is a
codimension-1 submanifold of Rn that is transverse to (range L)⊥ at the origin. Therefore
the only w ∈ M for which Φ(w, λ) ∈ (range L)⊥ is w = 0.

Now W (v, λ) is the unique function that satisfies W (0, 0) = 0 and the equation

EΦ(v +W (v, λ), λ) = 0.

Therefore Φ(W (0, λ), λ) ⊂ (range L)⊥. Since W (0, λ) ∈ M , we have W (0, λ) = 0.

Next, we need a property of the growth rates of bifurcating branches.
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Theorem 6.9. Assuming (3.2), suppose that r ≥ 2 and

g = gx = · · · = gxr−1 = 0 and gxr �= 0

at x = λ = 0. Then the bifurcation problem g is strictly r-determined and equivalent to the
normal form

g±r (x, λ) ≡ λx± xr.

Proof. By Lemma 6.8, Liapunov–Schmidt reduction preserves a trivial branch of solutions,
so g(0, λ) = 0 and g = gλ = 0. Also, the eigenvalue crossing condition guarantees that
gxλ(0, 0) �= 0. Proposition II, 9.2 of [5] proves the theorem when r ≥ 3. When r = 2 we use
the fact that gλλ = 0 and Proposition II, 9.3 of [5].

We now discuss the growth rate of a branch in more detail. For this purpose a (steady-
state) branch of a bifurcation problem Φ is a connected component of the zero-set of Φ minus
the origin. Near the origin, each branch exists either for λ > 0 or λ < 0.

Definition 6.10. A branch has growth rate |λ|a near the origin, for a ∈ R, if along that
branch

||X||
K|λ|a → 1 as λ → 0

for a constant K > 0.

In the normal form g±r the nontrivial branches have growth rate |λ|1/(r−1) near the origin,
and this growth rate characterizes the normal form because 1/(r − 1) determines r uniquely.
The same growth rate occurs on the corresponding branch of Φ by Proposition 6.11.

In general, if a bifurcating branch is observed in terms of the dynamics of a single cell,
the growth rate may differ from that of the overall branch: examples can be found in Leite
and Golubitsky [15, Table 4]. This possibility arises because projections need not preserve
growth rates. However, there is one simple condition that avoids this issue: this applies when
the critical eigenvector has no zero entries. We derive the appropriate result as a corollary of
the next proposition, which is well known.

Proposition 6.11. Assume the standard hypotheses, so that in particular μ denotes a simple
real eigenvalue and v is the corresponding eigenvector. Suppose that the corresponding steady-
state bifurcation has normal form g±r . Then each nontrivial bifurcating branch is asymptotic
to a curve of the form

X = ±K|λ|1/(r−1)v, X ∈ R
n,

with an appropriate sign depending on the direction of the branch, as λ → 0. Here K > 0 is
a constant.

Proof. The result follows from the Liapunov–Schmidt reduction procedure and the use of
diffeomorphisms in contact equivalence for singularities.

Corollary 6.12. For any cell c such that vc �= 0, the growth rate of the projection of a
bifurcating branch onto cell c, that is, the component Xc of the branch X, is the same as that
of the branch.

Proof. With the notation of the previous proposition,

Xc = ±K|λ|1/(r−1)vc,
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which yields the same growth rate provided vc �= 0.
We can now state and prove the following theorem.
Theorem 6.13. In any n-cell network, n ≥ 3, simple eigenvalue bifurcations are generically

n-determined.
Proof. We may assume n ≥ 4 by Theorem 6.7. For a contradiction, assume the bifurcation

is n-degenerate. In particular, it is 4-degenerate.
Let v be the eigenvector of A with eigenvalue μ, and let u be the corresponding eigenvector

of AT. Unless all entries of v are distinct and nonzero, the result follows from Theorem 6.1.
So the vj are distinct and nonzero. Therefore the vectors e, v, v[2], . . . , v[n−1] form a basis for
phase space P = R

n by section 2. So there exist scalars c0, . . . , cn−1 such that

Av[2] = c0e+ c1v + c2v
[2] + · · ·+ cn−1v

[n−1].

Taking the inner product with u shows that c1 = 0.
The quartic term v[2]�Av[2] is orthogonal to u since the bifurcation is 4-degenerate. Now

(6.8) v[2]�Av[2] = c0v
[2] + c2v

[4] + · · ·+ cn−2v
[n] + cn−1v

[n+1].

Consider the polynomial

p(x) = (x− v1) . . . (x− vn) = xn − σ1x
n−1 + · · ·+ σn−2x

2 − σn−1x+ σn,

where the σi are elementary symmetric polynomials in the vj . Clearly

v[n] − σ1v
[n−1] + · · ·+ σn−2v

[2] − σn−1v + σne = 0

since each vj is a zero of p. Therefore

v[n+1] = σ1v
[n] − · · · ± σn−2v

[3] ∓ σn−1v
[2] ± σnv.

By (6.8),

v[2]�Av[2] = c0v
[2] + c2v

[4] + · · ·+ cn−2v
[n] + cn−1(σ1v

[n] − · · · ± σn−2v
[3] ∓ σn−1v

[2] ± σnv).

Taking the inner product with u and using 4-degeneracy we get cn−1σn = 0. But σn =
v1v2 . . . vn �= 0, so cn−1 = 0.

Similar calculations for the terms
v[l]�Av[2],

where l = 3, . . . , n− 2, show inductively that cn−2 = · · · = c3 = 0. Now

Av[2] = c0e+ c2v
[2]

so that
v�Av[2] = c0v + c2v

[3].

Taking the inner product with u and using 3-degeneracy we get c0 = 0. Therefore

Av[2] = c2v
[2]
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and v[2] is an eigenvector of A.
Proposition 6.5 now implies that the network is not path-connected. Denote this network

by G, and decompose G into its path-connected components, which have a natural partial
ordering defined by the existence of directed paths; see Josić and Török [11, Proposition 15].
By finiteness, some path-connected component H is maximal with respect to this ordering.
This component is a path-connected subnetwork that receives no inputs from the remainder
of the network. Therefore, with a suitable ordering of the cells, there is a block decomposition

A =

[
P 0
Q R

]

in which P is an m×m matrix, Q is an (n−m)×m matrix, and R is an (n−m)× (n−m)
matrix, where 1 ≤ m ≤ n− 1.

Write the eigenvector v in the corresponding block form

v =

[
y
z

]
.

Then Av = μv implies that Py = μy. Since v has no zero entries, y is an eigenvector of P
with eigenvalue μ. Moreover, H is a regular subnetwork of valency k with adjacency matrix
P , and it is path-connected.

Because H receives no inputs from the remainder of the network G, any admissible ODE
has a corresponding block structure. So there is a natural projection of the dynamics on G onto
the dynamics of H. The vector field Ψ for H is given by the first m components of the vector
field Φ for G. Trajectories of Φ project to give trajectories of Ψ. Therefore the bifurcation
diagram for Ψ on H, near a nontrivial branch determined by the critical eigenvalue μ, is the
projection of the bifurcation diagram for Φ on G near the corresponding branch determined
by the same critical eigenvalue μ.

Because v has no zero entries, Corollary 6.12 implies that the original and projected
branches have the same growth rate, as a function of |λ|, when observed on any cell. By
Theorem 6.1, Ψ is generically (m + 1)-determined and hence generically n-determined since
m ≤ n− 1. Therefore (generically in Ψ) the branch for Ψ has growth rate |λ|1/(r−1) for some
r such that 2 ≤ r ≤ n. But we have just shown that this is also the growth rate (generically
in Φ) for the corresponding branch for Φ. Since the growth rate characterizes the normal
form, and the bifurcation problem Φ is generically finitely determined, it follows that Φ is
generically n-determined.

(Since the network is regular, any H-admissible perturbation of Ψ extends naturally to a
G-admissible perturbation of Φ. So the use of genericity is unambiguous here.)

6.3. n-cell path-connected networks are generically (n − 1)-determined. Below, we
construct degenerate bifurcations in several feed-forward networks, where a special method
(“bordering”) makes the construction simpler. The construction of path-connected examples
is constrained by a further improvement on the determinacy theorem. We now prove that
when n ≥ 4 all n-cell path-connected networks have (n− 1)-determined bifurcations.

Theorem 6.14. If n ≥ 4, then every simple-eigenvalue steady-state bifurcation of an n-cell
path-connected regular network is generically (n− 1)-determined.
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The proof, which we postpone to section 6.4 in order to set up the ideas involved, makes
repeated use of two simple properties of the componentwise product. The first is (6.2), and
the second is

(6.9) x�y[p] = 0 =⇒ x�y[q] = 0, 1 ≤ q < p.

This implication is trivial, but it plays a key role in the proof. Since y may have some
components equal to 0, we cannot cancel y completely to get x = 0. The proof of (6.9)
is straightforward: if xiy

p
i = 0, then xi = 0 or yi = 0, so xiy

q
i = 0. We call (6.9) the

semicancellation law.

Define a sum of generalized eigenspaces

X =
⊕
ν �=k,μ

Eν .

Then the phase space P decomposes as

P = Ek ⊕ Eμ ⊕ X

and all three summands are A-invariant. In the path-connected case, dimEk = 1 by the
Perron–Frobenius theorem (2.7). Since μ is simple, dimEμ = 1. Denote the eigenvector of AT

for eigenvalue k by w. Since the network is path-connected, the Perron–Frobenius theorem
(2.8) implies that we can choose w so that wi > 0 for 1 ≤ i ≤ n. By (2.2), we have

u⊥ = Ek ⊕ X ,(6.10)

w⊥ = Eμ ⊕ X .(6.11)

Lemma 6.15. Assume that A is m-degenerate. Then the vectors

(6.12) u u�v u�v[2] . . . u�v[m−2]

are linearly independent.

Proof. We may assume m ≥ 4 since the statement is obvious for m ≤ 3. The proof makes
repeated use of (2.2), which states that 〈u, v〉 �= 0.

Suppose that

α0u+ α1u�v + α2u�v
[2] + · · ·+ αm−2u�v

[m−2] = 0.

Take the inner product with v. Equation (6.2) implies that 〈v, u�v[p]〉 = 〈u, v[p+1]〉. The m-
degeneracy of A implies that 〈u, v[p+1]〉 = 0 for 1 ≤ p ≤ m − 2. But 〈u, v〉 �= 0, so α0 = 0.
Therefore

α1u�v + α2u�v
[2] + · · · + αm−2u�v

[m−2] = 0.

Take the inner product with e, and note that 〈e, u�v[p]〉 = 〈u, v[p]〉 by (6.2). Then

α1〈u, v〉+ α2〈u, v[2]〉+ · · ·+ αm−2〈u, v[m−2]〉 = 0.
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By m-degeneracy of A, this reduces to

α1〈u, v〉 = 0,

so α1 = 0. Now

α2u�v
[2] + α3u�v

[3] + · · ·+ αm−2u�v
[m−2] = 0.

The semicancellation law (6.9) implies that

α2u�v + α3u�v
[2] + · · ·+ αm−2u�v

[m−3] = 0

and the inner product with e implies that α2 = 0. Inductively, we repeatedly apply the
semicancellation law to remove one factor v and take the inner product with e to deduce
that α3 = α4 = · · · = αm−2 = 0. This proves that (6.12) is a linearly independent set, as
claimed.

Next, we prove the following lemma.
Lemma 6.16. Assume that A is (n − 1)-degenerate. Then v[2], Av[2], and L−1v[2] are

linearly dependent.
Proof. Observe that v[2], Av[2], and L−1v[2] are orthogonal to u�v[m] for 0 ≤ m ≤ n − 3.

When m = 0 this follows since

〈u, v[2]〉 = 0

by 2-degeneracy, whence also

〈u,Av[2]〉 = 〈ATu, v[2]〉 = μ〈u, v[2]〉 = 0

and finally
〈u,L−1v[2]〉 = 0

since by definition L : u⊥ → u⊥ and v[2] ∈ u⊥ by 2-degeneracy.

When m ≥ 1 we argue as follows:

〈u�v[m], v[2]〉 = 〈u, v[2]�v[m]〉 = 〈u, v[m+2]〉 = 0

by (n− 1)-degeneracy, noting that m ≤ n− 3. Similarly

〈u�v[m], Av[2]〉 = 〈u, v[2]�Av[m]〉 = 0

by (n− 1)-degeneracy, and

〈u�v[m], L−1v[2]〉 = 〈u, v[m]
�L−1v[2]〉 = 0

by (n − 1)-degeneracy. Here we use the fact that the reduced map includes terms of the
forms 〈u, v[2]�Av[m]〉 and 〈u, v[m]�L−1v[2]〉. This follows from the classification of polynomial
admissible maps in Theorem 4.3.

Since dimP = n, the subspace

R{u, u�v, u�v[2], . . . , u�v[n−3]}
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has codimension 2 in R. But its orthogonal complement contains the three vectors v[2], Av[2],
L−1v[2]. So these must be linearly dependent.

Lemma 6.17. If v[2], Av[2], L−1v[2] are linearly dependent, then the subspace R{v[2], Av[2]}
is A-invariant.

Proof. Suppose that there exist α, β, γ ∈ R such that

αv[2] + βAv[2] + γL−1v[2] = 0.

If β = 0, then αv[2] + γL−1v[2] = 0. Since v[2] �= 0 and L−1v[2] �= 0, we have α, β �= 0. But
L = A− μI, so we can premultiply by L and rewrite as

α(A− μI)v[2] + γv[2] = 0.

That is,

Av[2] =
(
μ− γ

α

)
v[2].

So v[2] is an eigenvector of A, and in particular R{v[2], Av[2]} = R{v[2]} is A-invariant.
Otherwise β �= 0, so

Av[2] = −α

β
v[2] − γ

β
L−1v[2],

which we can premultiply by A and rewrite as

A2v[2] =

(
μ− α

β

)
Av[2] +

(
αμ − γ

β

)
v[2],

so again R{v[2], Av[2]} is A-invariant.
We introduce a normalization of A. With k denoting the valency, as usual, define

Ã = A− kI

so that all row-sums of Ã are zero. All entries of Ã are nonnegative integers except on the
diagonal (where they are nonpositive). The eigenvalues ν of A shift to ν − k for Ã, with the
same eigenvectors. The same holds for ÃT = AT − kI.

The signs of the diagonal entries are of little importance when constructing examples of
networks with degenerate bifurcations, because we can always add a positive integer multiple
mI of the identity to make the diagonal entries nonnegative. The type of degeneracy is un-
changed (since, for example, 〈u, v�Ãv[2]〉 = 〈u, v�Av[2]〉−k〈u, v[3]〉, and so on), but eigenvalues
shift by m. So without loss of generality we may assume all row-sums are zero, with no re-
striction on the signs of diagonal entries. By the Perron–Frobenius theorem, all eigenvalues
of Ã are either 0 (which is simple in the irreducible case) or have negative real parts.

Next, define

(6.13) Y =
∑
ν �=k

Eν(A),

where Eν(A) is the generalized eigenspace of A for eigenvalue ν. The space Y can be charac-
terized as w⊥, where w is the eigenvector of AT for eigenvalue k, or the image of A−kI. When
A is normalized to make k = 0, these spaces are the kernel and the image of A, respectively.
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Lemma 6.18. With the usual notation and assumptions, suppose that the network is path-
connected. Then v[2] does not lie in Y.

Proof. Let w be the eigenvector for AT for eigenvalue k (the valency). Since the network
is path-connected, the Perron–Frobenius theorem (2.8) implies that we can choose w so that
all wj > 0. If v[2] ∈ Y, then (2.2) implies that 〈w, v[2]〉 = 0. But

〈w, v[2]〉 =
∑

wjv
2
j

and wj > 0, v2j ≥ 0. Therefore vj = 0 for all j, so v = 0, a contradiction.

6.4. Proof of Theorem 6.14. We are now ready to prove Theorem 6.14.
Suppose for a contradiction that the conclusion is false. Then A is (n − 1)-degenerate.

By Lemma 6.16, the vectors v[2], Av[2], L−1v[2] are linearly dependent. By Lemma 6.17, the
subspace R{v[2], Av[2]} is A-invariant. Moreover, it lies inside u⊥ = Ek ⊕ X .

By standard linear algebra, any A-invariant subspace of P is of the form
⊕

ν Xν , where ν
runs through the distinct eigenvalues of A and Xν ⊆ Eν . Since dimEk = 1, any A-invariant
subspace of Ek ⊕ X either contains Ek or is contained in X .

If Ek ⊆ R{v[2], Av[2]}, then e ∈ R{v[2], Av[2]}, so there exist ρ, σ ∈ R such that

e = ρv[2] + σAv[2].

Take the componentwise product with v to get

v = ρv[3] + σv�Av[2].

Then
〈u, v〉 = ρ〈u, v[3]〉+ σ〈u, v�Av[2]〉 = 0

by 3-degeneracy (this is where we use n ≥ 4). This is a contradiction.
Therefore R{v[2], Av[2]} ⊆ X , so v[2] ∈ X , and hence v[2] ∈ Y, contrary to Lemma

6.18.

7. Degeneracy in regular 4-cell networks. We preview the main result of this section.
Example 7.1. There exists a regular 4-cell network of valency 736 with a simple eigenvalue,

for which the associated bifurcation is 3-degenerate. That is,

〈u, v[2]〉 = 0,(7.1)

〈u, v[3]〉 = 0,(7.2)

〈u, v�Av[2]〉 = 0,(7.3)

〈u, v�L−1v[2]〉 = 0.(7.4)

The adjacency matrix is

(7.5) A =

⎡
⎢⎢⎣

0 25 171 540
64 96 576 0
64 0 32 640
0 0 0 736

⎤
⎥⎥⎦ .
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The eigenvalues are 736, 176, 16, −64. The eigenvectors of A,AT for eigenvalue −64 are

v = [3, 6,−2, 0]T, u = [−32, 5, 27, 0]T .

Obviously conditions (7.1), (7.2) hold. Further, v[2] is an eigenvector of A (with eigenvalue
176), so (7.3), (7.4) follow from (7.2). Moreover, 〈u, v[4]〉 = 4320 �= 0, so the bifurcation is
4-determined.

We describe the construction of Example 7.1 in more detail, to illustrate the method,
which involves “bordering” a matrix to make its row-sums equal. We first construct a 3 × 3
nonnegative integer matrix satisfying (7.1), (7.2), (7.3), (7.4) but ignoring the condition that
row-sums should be equal. Then we extend this matrix to a 4×4 nonnegative integer matrix in
which all row-sums are equal, preserving (7.1), (7.2), (7.3), (7.4). No network constructed by
bordering can be path-connected. We return to the path-connected case, which also permits
degenerate bifurcations, in section 6.3.

The construction of Example 7.1 hinges on a simple result.
Proposition 7.2. Suppose that A is an n×n matrix of nonnegative integers having a simple

real eigenvalue μ. Let v be an eigenvector of A for eigenvalue μ, and let u be an eigenvector
of AT for eigenvalue μ. Write L = (A− μIn)|u⊥ . Suppose that u1 + · · ·+ un = 0 and

〈u, v[2]〉 = 〈u, v[3]〉 = 〈u, v�Av[2]〉 = 〈u, v�L−1v[2]〉 = 0.

Then there exists an (n + 1) × (n + 1) matrix Â of nonnegative integers, with constant row-
sums, having a simple eigenvalue μ, such that if v̂ is an eigenvector of Â for eigenvalue μ,
and û is an eigenvector of ÂT for eigenvalue 0, then

〈û, v̂[2]〉 = 〈û, v̂[3]〉 = 〈û, v̂�Âv̂[2]〉 = 〈û, v̂�L̂−1v̂[2]〉 = 0,

where L̂ = (Â− μIn+1)|u⊥ .
Proof. The result follows by a series of routine calculations in block matrix form and is

omitted.
We now sketch how Proposition 7.2 leads to Example 7.1. First, we select two vectors

v = [3, 6,−2]T, u = [−32, 5, 27]T.

These vectors are chosen so that v, u ∈ Z
3 have small integer entries, and the conditions

0 = 〈u, e〉 = 〈u, v[2]〉 = 〈u, v[3]〉,

which are necessary for 3-degeneracy, are valid.
Next, we consider a general 3×3 matrix A = (aij). We assume that the required eigenvalue

is μ = 0, and impose the conditions Av = 0, ATu = 0, so that v and u are the appropriate
eigenvectors. We also require 〈u, v�Av[2]〉 = 0. Solving this linear system for the aij we obtain
six equations. (Section 8 gives more details for a similar calculation.) We find a nonnegative
rational solution by inspection. Then we multiply A by a positive integer to make the entries
nonnegative integers. We also check that the 0 eigenvalue is simple. Experiment leads to the
matrix

(7.6) A =

⎡
⎣ 64 25 171

64 160 576
64 0 96

⎤
⎦ .
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A direct check verifies (7.1), (7.2), (7.3), (7.4). The eigenvalues of A are 240, 80, 0. If v is the
eigenvector for eigenvalue 0, then v[2] is the eigenvector for eigenvalue 240. Finally, bordering
(7.6) and subtracting 64I (the smallest diagonal entry) to lower the valency yields (7.5).

8. Higher degeneracies. We apply (3.7) to the construction of networks with 4-degenerate
bifurcations. The methods used in the quadratic and cubic cases yield the following theorem.

Theorem 8.1. A necessary and sufficient condition for the Liapunov–Schmidt reduced map
to vanish at degrees 2, 3, and 4 is that u is orthogonal to the following expressions:

v[2],(8.1)

v[3], v�Av[2], v�L−1v[2],(8.2)

v[4], v[2]�Av[2], v�Av[3], Av[4], (Av[2])[2],(8.3)

v[2]�L−1v[2], (Av[2])�(L−1v[2]), v�(A(v�L−1v[2])), (L−1v[2])[2],(8.4)

v�L−1v[3], v�L−1(v�Av[2]), v�L−1(v�L−1v[2]).(8.5)

As usual, L−1 makes sense provided the terms to which it is applied are already on the list
and we have arranged for them to be orthogonal to u. This is how the constructions proceed.
To reduce the use of brackets, multiplication by A and L−1 takes precedence over � when
interpreting the above expressions.

Proof. We prove this theorem in Appendix B.
We now exhibit a surprisingly low-valency example of 4-degeneracy for a 5-cell network.
Example 8.2. Let G be the regular 5-cell network of valency 390 with adjacency matrix

A =

⎡
⎢⎢⎢⎢⎣

54 0 0 54 282
184 9 5 192 0
168 9 21 144 48
52 0 2 48 288
0 0 0 0 390

⎤
⎥⎥⎥⎥⎦ .

This has eigenvalues 390, 108, 18, 6, 0, so all are real and simple. The 0-eigenvectors are

v = [−1,−2, 2, 1, 0]T , u = [−8, 1,−1, 8, 0]T .

Direct calculation shows that the terms of degrees 2 and 3 in the Liapunov–Schmidt reduction
all vanish. (Since v[2] is an eigenvector, with eigenvalue 108, it is enough to check that v[3] is
orthogonal to u.) The quartic terms that arise fromD4f(v, v, v, v) also vanish. However, there
may be other terms in the Liapunov–Schmidt reduction arising from the use of the implicit
function theorem. We compute these terms below. Then we return to this example and show
that all terms of degree 4 in the Liapunov–Schmidt reduction vanish. We also describe a
pleasant algebraic feature of this example which explains why this happens.

The corresponding bifurcation is 4-degenerate. Since 〈u, v[5]〉 = −48 �= 0, it is 5-deter-
mined.

Having chosen u, v as above, the example is constructed along the usual lines: write
down the conditions for u, v to be 0-eigenvectors of AT, A, respectively; then require the five
Liapunov–Schmidt reduced quartic terms (8.3) to vanish, along with all quadratic and cubic
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terms. The remaining terms are taken care of by Corollary 8.3. The resulting equations for
the entries of A are then examined, and a solution (not the most general) in positive rationals
is derived by making judicious choices of some matrix entries. A suitable integer multiple of
A then has integer entries. The valency 390 can be reduced to 381 by subtracting 9I. The
critical eigenvalue then becomes μ = −9.

Now we give the promised proof that the above example is 4-degenerate. We begin with
an easy corollary of Theorem 8.1.

Corollary 8.3. (a) If v[2] is an eigenvector of A, then all terms in (8.3), (8.4) are orthogonal
to u provided the term v[4] in (8.3) is orthogonal to u. Also, all terms in (8.5) similarly reduce
to the first term v�L−1v[3].

(b) If v[2] and v[3] are eigenvectors of A, then (8.3), (8.4), (8.5) are orthogonal to u if v[4]

is.
We can now return to Example 8.2 and show that it is 4-degenerate. Because v[2] =

[1, 4, 4, 1, 0]T is an eigenvector of A, Corollary 8.3 applies, and the only potentially nonzero
quartic terms in the Liapunov–Schmidt reduction are those in the final row of the table. In
fact, more is true: all three terms in (8.5) are scalar multiples of the first term v�L−1v[3].
(This is always true when v[2] is an eigenvector.)

We compute

Z = L−1v[3] =

[
− 19

108
,−37

27
,
35

27
,
17

108
, 0

]T
.

A quick computation shows that 〈u, v�Z〉 = 0.
Note that v[3] is not an eigenvector of A (if it were, then this orthogonality would be

obvious). However, it is a linear combination of eigenvectors with nonzero eigenvalues. In
fact,

Z = − 1

108
v[2] +

1

6
v[3]

so that

v�Z = − 1

108
v[3] +

1

6
v[4],

which is a combination of vectors in u⊥. Thus A has a “triangular eigenstructure” with respect
to the powers of v.

Triangular eigenstructure provides an effective way to construct feed-forward networks
whose generic simple-eigenvalue bifurcations are highly degenerate. We use the following
eigenvectors for A,AT:

v = [−1,−2, 2, 1, 0]T ,(8.6)

u = [−8, 1,−1, 8, 0]T ,(8.7)

which we choose because 〈u, v[2]〉 = 〈u, v[3]〉 = 〈u, v[4]〉 = 0. Now impose the conditions

(8.8)

Av = 0,

Av[2] = πv[2],

Av[3] = θv[3] + σv[2],
ATu = 0.
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Choose π = 1, θ = 1
6 , and leave σ undetermined. Conditions (8.8) hold provided

a11 = − 1

18
+

1

8
a24 −

1

8
a34 + a44 +

1

3
σ,

a12 =
7

48
− 1

32
a24 +

1

32
a34 −

1

4
a44 −

1

8
σ,

a13 =
17

144
− 1

32
a24 +

1

32
a34 −

1

4
a44 +

1

24
σ,

a14 =
1

8
a24 −

1

8
a34 + a44,

a21 = −4

9
+ a24 +

4

3
σ,

a22 =
4

9
− 1

4
a24 +

1

6
σ,

a23 = −4

9
+ a34 +

4

3
σ,

a32 =
1

3
− 1

4
a34 −

1

2
σ,

a33 =
5

9
− 1

4
a34 +

1

6
σ,

a41 =
1

18
+ a44 +

1

3
σ,

a42 =
5

48
− 1

4
a44 −

1

8
σ,

a43 =
19

144
− 1

4
a44 +

1

24
σ.

These employ parameters σ, a24, a34, a44. The other aij will be nonnegative provided these
parameters are small enough, except possibly for a11, a14, a21. These terms suggest choosing
a34 = a24, σ = 1

2
, a44 =

1
6 , a24 =

1
36 . Scaling to remove denominators, we obtain

144A =

⎡
⎢⎢⎣

40 6 14 24
36 59 75 4
164 11 91 4
56 0 16 24

⎤
⎥⎥⎦ ,

which can be bordered to produce an example with valency 270, having degeneracy at degrees
2, 3, 4 but no symmetry. Subtracting 24I reduces the valency to 246: explicitly, the matrix is

(8.9)

⎡
⎢⎢⎢⎢⎣

16 6 14 24 186
36 35 75 4 96
164 11 67 4 0
56 0 16 0 174
0 0 0 0 246

⎤
⎥⎥⎥⎥⎦ .
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Example 8.4. An especially simple example has Z2 symmetry, which forces all terms of
even degree to vanish. The adjacency matrix is

(8.10)

⎡
⎢⎢⎢⎢⎣

3 1 0 17 63
32 0 4 48 0
48 4 0 32 0
17 0 1 3 63
0 0 0 0 84

⎤
⎥⎥⎥⎥⎦

with valency 84.
The corresponding network has a permutation symmetry (14)(23)(5). This changes the

sign of the eigenvectors for eigenvalues −12, 0, while acting trivially on those for −6, 24, 84.
It therefore induces the symmetry x �→ −x on the reduced map, so all terms of even degree
vanish.

The eigenvalues and corresponding eigenvectors are

μ = −12 : [−1,−2, 2, 1]T,

θ = −6 : [−1,−8, 8, 1]T,

ρ = 0 : [1,−20,−20, 1]T ,

π = 24 : [1, 4, 4, 1]T .

The bifurcation at μ = −12 is degenerate at degree 4, but there is a nonzero degree 5 term
〈u, v[5]〉 = −48, so it is 5-determined.

This is the lowest valency found yet for a strictly 5-determined bifurcation.

9. Quintic degeneracy. A similar method leads to a 6-cell network that is strictly 6-
determined. We record the results and sketch the method.

First we seek a 5-cell adjacency matrix A having a simple 0 eigenvalue with eigenvector
v, and corresponding u for AT, such that u is orthogonal to all of the vectors

(9.1) e, v[2], v[3], v[4], v[5].

To do this choose v and solve the linear system for u. Usually such a system is overdetermined,
but there are cases when it is not. The simplest solution we have found is

v = [−3, 4, 2,−2, 12]T ,

u = [512,−225, 1512,−1800, 1]T .

Next, solve the following system (a special case of triangular eigenstructure) for the entries
of A:

Av = 0,

ATu = 0,

Av[2] = pv[2],

Av[3] = qv[3] + sv[2],

Av[4] = tv[4] +mv[2],
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where p, q, s, t,m ∈ R. Experiment leads to the choices

a25 =
1

30
, a35 = 0, a45 = 0, a55 =

1

30

followed by

s = 0, m = 32, p = 17, q = 1, t =
1

2
.

Multiply A by 3360 to remove denominators (still calling the result A):

A =

⎡
⎢⎢⎢⎢⎣

15760 1320 53361 32655 49
12288 4400 94080 85120 112
6912 2720 17808 12880 0
8960 2240 18480 9520 0
372736 233520 185472 94080 112

⎤
⎥⎥⎥⎥⎦

with eigenvalues 57120,−14560, 3360, 1680, 0. In particular, 0 is simple and this is the eigen-
value corresponding to v, u. Now border A to get

(9.2) Â =

⎡
⎢⎢⎢⎢⎢⎢⎣

15760 1320 53361 32655 49 782775
12288 4400 94080 85120 112 689920
6912 2720 17808 12880 0 845600
8960 2240 18480 9520 0 846720
372736 233520 185472 94080 112 0

0 0 0 0 0 885920

⎤
⎥⎥⎥⎥⎥⎥⎦

with the extra eigenvalue (and valency) 885920.

The conditions on A and its triangular eigenstructure imply that the associated bifurcation
is 5-degenerate, and 〈u, v[6]〉 = 4200, so the bifurcation is strictly 6-determined.

The valency can be decreased to 885808 by subtracting 112I. It is not clear whether
significantly smaller-valency examples of quintic degeneracy exist: the Diophantine conditions
imposed by (9.1) being orthogonal to u seem to lead to fairly large integers, which create
large denominators in rational solutions A. However, we doubt that the above example is
best possible.

On the basis of these examples, we conjecture that for feed-forward networks it is possible
to obtain arbitrarily high degeneracies by taking sufficiently many cells.

10. Degeneracy in path-connected 5-cell networks. In equivariant dynamics, simple-
eigenvalue bifurcations are always 3-determined. We have seen that the analogue is false for
feed-forward networks, but nothing yet seen in this paper rules out the possibility that a
similar statement might apply to path-connected networks. We now prove that it does not.

The example we construct is probably the main result in this paper: there exists a family of
path-connected 5-cell networks with 3-degenerate bifurcations. This shows that Theorem 6.14
cannot be improved to 3-determinacy (or to (n− 2)-determinacy in general). However, we do
not know whether the theorem is best possible for more than 5 cells. For example, it is not
known whether a 6-cell path-connected regular network can be 4-degenerate.
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Begin with a 5 × 5 adjacency matrix A = (aij), where 1 ≤ i, j ≤ 5, and for convenience
normalize A so that rows sum to zero as in section 6.3. Now the aij with i �= j are arbitrary
and determine the diagonal terms aii. We wish to make all aij with i �= j rational and
nonnegative. After constructing A, we can add a suitable multiple of I to make all entries
nonnegative, without changing the degree of degeneracy.

By construction, A has an eigenvalue 0. By the Perron–Frobenius theorem (2.6) all other
eigenvalues are nonpositive, and for a path-connected network they are negative.

We choose vectors u, v so that u is orthogonal to e, v[2], v[3] and arrange for these to be
eigenvalues of A,AT for eigenvalue μ. Experiment leads to the choices

v = [1,−2, 0, 2,−1]T , u = [−16, 1, 12, 3, 0]T .

To make these into eigenvectors we solve the equations Av = μv, ATu = μu for A. Next, we
solve the equation 〈u, v�Av[2]〉 = 0 and seek to make the off-diagonal entries nonnegative. Then
we compute L−1v[2] by solving the equations 〈u, z〉 = 0, Az − μz = v[2], so that z = L−1v[2]

(recall that L−1 acts on u⊥). Now choose z1 to make the final cubic coefficient 〈u, v�L−1v[2]〉
vanish. The adjacency matrix is now

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−175
192

13
192

51
64

1
32

1
64

1
6 −11

12
3
4 0 0

1
12

1
24 −1

8 0 0
1
12

1
6

1
2 −5

6
1
12

θ φ a53 a54 −(θ + φ+ a53 + a54)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where

θ =
1

624
(389 − 384a53 − 888a54),

φ =
1

312
(77− 72a53 + 48a54).

This provides a 2-parameter family of solutions provided we make both θ and φ nonnegative
(diagonal terms do not matter since we can add a multiple of I later). In particular, if a53, a54
are small and nonnegative, we get a solution. The choice

a53 =
1

32
, a54 = 0

leads to

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−175
192

13
192

51
64

1
32

1
64

1
6 −11

12
3
4 0 0

1
12

1
24 −1

8 0 0
1
12

1
6

1
2 −5

6
1
12

29
48

23
96

1
32 0 −7

8

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Multiply by 192 to remove denominators, and add 176I to make the diagonal nonnegative.
This leads to (we still call it A)

(10.1) A =

⎡
⎢⎢⎢⎢⎣

1 13 153 6 3
32 0 144 0 0
16 8 152 0 0
16 32 96 16 16
116 46 6 0 8

⎤
⎥⎥⎥⎥⎦ .

Since all entries of A2 are nonzero, A is path-connected. The eigenvalues of A are 176, −16,
and the roots of an irreducible cubic, which numerically are 32·35 and −7·67 ± 5·10i. Direct
calculations confirm that

〈u, v[2]〉 = 〈u, v[3]〉 = 〈u, v�Av[2]〉 = 〈u, v�L−1v[2]〉 = 0,

so the bifurcation is 3-degenerate. It must be 4-determined by Theorem 6.14, and in fact
〈u, v[4]〉 = 48 �= 0.

The method (in particular the role of z) makes it clear that the zero entries in the matrix
A can be replaced by small positive numbers to create an all-to-all connected example of
3-degeneracy. (A network is all-to-all connected if any two distinct cells can be connected, in
either direction, by a chain of arrows. Equivalently, all off-diagonal entries of A are nonzero.)
Specifically, let

a24 = a25 = a34 = a35 = a53 = a54 =
1

96
,

and solve for z. Multiply by 6594048 and add 6273504I to get

(10.2) A =

⎡
⎢⎢⎢⎢⎣

178875 432162 5241753 261873 158841
572400 0 5563728 68688 68688
480816 274752 5380560 68688 68688
549504 1099008 3297024 778464 549504
4021904 1724512 68688 68688 389712

⎤
⎥⎥⎥⎥⎦

with valency 6273504. The critical eigenvalue concerned becomes −320544.
The only 0 entry is on the diagonal, so it does not conflict with the usual definition of

“all-to-all connected.” In any case, adding I increases all diagonal elements by 1, making all
aij > 0. The valency becomes 6273505, and the degree of degeneracy is unchanged.

Remark 10.1. By Proposition 6.11, the bifurcating branch has growth rate |x| ∼ λ1/(r−1)

when the normal form is g±r , and this growth rate will be observed in any cell c for which
vc �= 0, where v is the critical eigenvector.

In the example, v has one zero component. However, by continuity, we can modify this
example to remove the zero entry from v. If vi �= 0 for all i, then all 5 cells exhibit the
anomalous 1

3 power growth rate associated with the normal form g3.
A relatively simple example with all entries of v nonzero is

A =

⎡
⎢⎢⎢⎢⎣

7938 4284 37611 0 11907
13720 12740 35280 0 0

0 0 46305 0 15435
41160 20580 0 0 0

0 3054 43965 2058 12663

⎤
⎥⎥⎥⎥⎦
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with valency 61740. Its eigenvalues are 61740, 0, and three roots of an irreducible cubic, so
0 is simple. The corresponding eigenvectors are

v = [−3, 6,−1,−6, 3]T, u = [−280, 15, 216, 49, 0]T .

This is 3-degenerate. Since A3 has no zero entries, A is path-connected.

Anomalous growth rates have also been found in Hopf bifurcation for feed-forward chains,
but here different cells have different growth rates; see Elmhirst and Golubitsky [2].

Appendix A. Proof of Theorem 5.3. We compute

〈u,D3Φ(v, v, v)〉 and 〈u,D2Φ(v, L−1ED2Φ(v, v))〉

separately and then substitute in (5.6).

Since Φ3(x) is cubic, Taylor’s theorem implies that D3Φ(v, v, v) = 6Φ3(v). Again Av = μv.
Compute

Φ3(v) = Pv[3] +Qv[2]�Av +Rv�Av[2] + Sv�(Av)[2] + TAv[3] + U(Av)�(Av[2]) + V (Av)[3]

= Pv[3] +Qv[2]�μv +Rv�Av[2] + Sv�(μv)[2] + TAv[3] + U(μv)�(Av[2]) + V (μv)[3]

= Pv[3] + μQv[3] +Rv�Av[2] + μ2Sv[3] + TAv[3] + U(μv)�(Av[2]) + μ3V v[3]

= (P + μQ+ μ2S + μ3V )v[3] + TAv[3] + (R+ μU)v�Av[2].

Therefore

〈u,Φ3(v)〉 = (P + μQ+ μ2S + μ3V )〈u, v[3]〉+ T 〈u,Av[3]〉+ (R + μU)〈u, v�Av[2]〉
= (P + μQ+ μ2S + μ3V )〈u, v[3]〉+ T 〈ATu, v[3]〉+ (R + μU)〈u, v�Av[2]〉
= (P + μQ+ μ2S + μ3V )〈u, v[3]〉+ T 〈μu, v[3]〉+ (R+ μU)〈u, v�Av[2]〉
= (P + μQ+ μT + μ2S + μ3V )〈u, v[3]〉+ (R+ μU)〈u, v�Av[2]〉.

By (5.5),

D2Φ(v, v) = 2Φ2(v, v) = 2[(a + μb+ μ2d)v[2] + cAv[2]].

Therefore

L−1ED2Φ(v, v) = 2(a + μb+ μ2d)L−1Ev[2] + 2cL−1EAv[2]

= 2(a + μb+ μ2d)L−1v[2] + 2cL−1Av[2]

because we are assuming that 〈u, v[2]〉 = 0, so both v[2] and Av[2] are in u⊥, on which E is the
identity.

Moreover, if z ∈ u⊥, then L−1Az = L−1(L+ μI)z = z + μL−1z, so

L−1Av[2] = v[2] + μL−1v[2].

Therefore

L−1ED2Φ(v, v) = 2(a+ μb+ μc+ μ2d)L−1v[2] + 2cv[2].
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To simplify the computation, temporarily let

α = 2(a+ μb+ μc+ μ2d), β = 2c.

Then

L−1ED2Φ(v, v) = αL−1v[2] + βv[2].

To compute D2Φ(v, L−1ED2Φ(v, v)), observe that every quadratic form q(x) over R deter-
mines a unique symmetric bilinear form b(x, y) for which q(x) = b(x, x). The proof follows
directly from the polarization identity 2b(x, y) = q(x + y, x + y) − q(x, x) − q(y, y) (see, for
example, Halmos [10, section 23, Exercise 6, page 38]). Since D2Φ is a symmetric bilinear
form, we can write it down without further computation if we can specify a symmetric bilinear
form b(x, y) that reduces to q(x) by setting x = y. But D2Φ = 2Φ2 (see (5.2)), so there is an
obvious choice:

D2Φ(x, y) = 2ax�y + b(x�Ay + y�Ax) + 2cA(x�y) + 2d(Ax)�(Ay).

Now substitute

x = v, y = αL−1v[2] + βv[2]

leading to

D2Φ(x, y) = 2av�(αL−1v[2] + βv[2]) + bv�A(αL−1v[2] + βv[2])

+ (αL−1v[2] + βv[2])�Av + 2cA(v�(αL−1v[2] + βv[2]))

+ 2d(Av)�A(αL−1v[2] + βv[2]).

Using AL−1z = L−1Az = z + μL−1z and Av = μv, this expands to yield

D2Φ(v, L−1ED2Φ(v, v)) = γv[3] + δv�Av[2] + εv�L−1v[2] + ζAv[3] + ηA(v�L−1v[2]),

where

γ = 2aβ + bα+ μβ + 2dμβ + 2dμα,

δ = bα+ bβ,

ε = 2aα+ bαμ + αμ+ 2dαμ2,

ζ = 2cα + 2cβ,

η = 2cμα.

Therefore

〈u,D2Φ(v, L−1ED2Φ(v, v))〉 = 〈u, γv[3] + δv�Av[2] + ε�L−1v[2] + ζAv[3] + ηA(v�L−1v[2])〉
= (γ + ζμ)〈u, v[3]〉+ δ〈u, v�Av[2]〉+ (ε+ ημ)〈u, v�L−1v[2]〉,

where we have used the identity 〈u,Az〉 = 〈ATu, z〉 = μ〈u, z〉.
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Combining these results, we obtain

gxxx = 〈u,D3Φ(v, v, v)〉 − 3〈u,D2Φ(v, L−1ED2Φ(v, v))〉
= (P + μQ+ μ2S + μT + μ3V − 3(γ + ζμ))〈u, v[3]〉

+ (R+ μU − 3δ)〈u, v�Av[2]〉 − 3(ε+ ημ)〈u, v�L−1v[2]〉

as required. The σj can be computed explicitly, but the formulas are complicated and not
required here.

Appendix B. Proof of Theorem 8.1. Again we use polarization [22, 23]. If B is a
symmetric p-linear form, then the corresponding p-ic form (symmetric p-tensor) is

B̂(y) = B(y, . . . , y).

Conversely, given a p-ic form Q, the corresponding symmetric p-linear form is

Q̌(y1, . . . , yp) =
1

2dd!

∑
εi=±1

ε1 . . . εpQ (ε1y1 + · · · + εpyp) .

Let L(Y p, Z) denote the space of symmetric p-linear forms Y × · · · × Y → Z, and let P(Y,Z)
denote the space of homogeneous p-ic forms Y → Z. Then ˆ and ˇ define an isomorphism
between L(Y p, Z) and P(Y,Z). We use this result to write down the form of higher derivatives
of admissible maps. It implies that any symmetric multilinear form of the correct degree, which
reduces to the admissible map when all variables are made equal, must be a scalar multiple
of the pth derivative. It is easy to guess the form of such a map.

Assume that Φ is admissible. By Corollary 5.5, the terms in the first three rows (8.1),
(8.2), (8.3) must be orthogonal to u, and from now on we assume this is the case. We have
to deal with the terms (8.4), (8.5) involving L−1. By admissibility,

D2Φ(x, y) = ax�y + b[x�Ay +Ax�y] + cA(x�y) + dAx�Ay,

D3Φ(x, y, z) = P [x�y�z] +Q[x�y�Az + x�Ay�z +Ax�y�z]

+R[x�(A(y�z)) + y�(A(x�z)) + z�(A(x�y))]

+ S[x�Ay�Az +Ax�y�Az +Ax�Ay�z] + TA(x�y�z)

+ U [Ax�A(y�z) +Ay�A(x�z) +Az�A(x�y)] + V [Ax�Ay�Az],

where a, b, c, d, P,Q,R, S, T, U, V ∈ R.
Formulas (3.5), (3.6), (3.7) determine the coefficients of degree 2, 3, and 4 terms in the

reduced map g, and all of these must vanish. A long but routine calculation shows that
everything is a linear combination of the terms listed in the table. We describe the main
points. We do not compute the exact linear combination that occurs, because we want all
terms to be orthogonal to u, and this property does not depend on the coefficients. When
performing this calculation we assume, inductively, that earlier expressions in the table are
orthogonal to u. The following facts simplify the calculation:

(1) Av = μv, so any term involving Av can be replaced by the corresponding one without
the A.
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(2) The identity AL−1 = I + μL−1 replaces any term involving AL−1 by a linear com-
bination of two terms; in one we replace AL−1 by L−1, and in the other we omit it
altogether.

(3) The maps D2Φ and D3Φ are symmetric.
(4) When considering terms of the form L−1EX, we may assume inductively that X lies

in u⊥, so the E can be removed.
(5) 〈u,AX〉 = 〈ATu,X〉 = μ〈u,X〉, so the A can be removed at this stage of any calcula-

tion.

The full calculation deals with each of the five terms in (3.7) in turn. Here we discuss only
the first two.

(a) D4Φ(v, v, v, v).
This is a linear combination of terms in (8.3), so it is orthogonal to u if those terms are,

which we are assuming.
(b) D3Φ(v, v, L−1ED2Φ(v, v)).

The proof of Theorem 5.1 shows that

D2Φ(v, v)) = (a+ 2μb+ μ2d)v[2] + cAv[2].

So L−1ED2Φ(v, v)) is a linear combination of the expressions

L−1Ev[2], L−1EAv[2].

Inductively, L−1Ev[2] = L−1v[2] since (8.1) makes v[2] orthogonal to u. Now u⊥ is A-invariant,
so (2) above implies that

L−1EAv[2] = L−1Av[2] = v[2] + μL−1v[2].

Therefore D3Φ(v, v, L−1ED2Φ(v, v)) is a linear combination of the expressions

D3Φ(v, v, v[2]),(B.1)

D3Φ(v, v, L−1v[2]).(B.2)

Case (B.1) leads to terms in (8.3).

In case (B.2), D3Φ(x, y, z) is a linear combination of eight terms, and we consider each in
turn, substituting x = v, y = v, x = v[2]. Initially we give details:

x�y�z = v�v�L−1v[2] = v[2]�L−1v[2],

which is new:

x�y�Az + x�Ay�z +Ax�y�z = v�v�AL−1v[2] + v�Av�L−1v[2] +Av�v�L−1v[2].

But AL−1v[2] is a combination of L−1v[2] and v[2], and Av = μv, so no new terms arise:

x�(A(y�z)) + y�(A(x�z)) + z�(A(x�y))

= v�(A(v�L−1v[2])) + v�(A(v�L−1v[2])) + L−1v[2]�(A(v�v)).
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There are two new terms v�(A(v�L−1v[2])) and Av[2]�(L−1v[2]):

x�Ay�Az +Ax�y�Az +Ax�Ay�z

= v�Av�AL−1v[2] +Av�v�AL−1v[2] +Av�Av�L−1v[2]

leading to no new terms:

A(x�y�z) = A(v�v�L−1v[2]) = A(v[2]�L−1v[2]),

which produces nothing new when we take the inner product with u by (5) above:

Ax�A(y�z) +Ay�A(x�z) +Az�A(x�y)

= Av�A(v�L−1v[2]) +Av�A(v�L−1v[2]) +AL−1v[2]�A(v�v)

and the only possible new term is AL−1v[2]�Av[2]. But by (2) this is a combination of v[2]�Av[2]

and L−1v[2]�Av[2], which are not new:

Ax�Ay�Az = Av�Av�AL−1v[2]

leads to nothing new.

This case is complete, and we have found three new terms

v[2]�L−1v[2], v�(A(v�L−1v[2])), Av[2]�L−1v[2]

which occur in (8.4).

The other cases are similar and are omitted to save space.
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