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Abstract We apply singularity theory to classify monomorphic singular points as they
occur in adaptive dynamics. Our approach is based on a new equivalence relation called
dimorphism equivalence, which is the largest equivalence relation on strategy functions
that preserves ESS singularities, CvSS singularities, and dimorphisms. Specifically,
we classify singularities up to topological codimension two and compute their normal
forms and universal unfoldings. These calculations lead to the classification of local
mutual invasibility plots that can be seen generically in systems with two parameters.

Keywords Fitness functions · ESS · Singularity theory · Adaptive game theory ·
Dimorphism

Mathematics Subject Classification 34C23 · 91A22 · 58K40

1 Introduction

The application of game theory to biology has a long history. Evolutionary game
theory studies the evolution of phenotypic traits and was originated by Maynard-Smith
and Price (1973). Since then, there has been an explosion of interest in evolutionary
game theory by mathematicians and other scientists. Adaptive dynamics is a set of
techniques and methods that studies the long-term consequences for phenotypes of
small mutations in the genotypes. In the past twenty years, adaptive dynamics has been
studied by many people, including Dieckmann and Law (1996), Geritz et al. (1997),
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Diekmann (2003), Dieckmann et al. (2004), Dercole and Rinaldi (2008), Hofbauer
and Sigmund (2003), Metz et al. (1996), Polechova and Barton (2005), Waxman and
Gavrilets (2005). Vutha and Golubitsky (2014) applied singularity theory and adaptive
dynamics theory to study ESS and CvSS singularities of strategy functions. This paper
expands their research to include the study of dimorphisms.

1.1 Background of adaptive dynamics theory

In this subsection, we recall aspects of evolutionary game theory and adaptive dynam-
ics.

Evolutionary game theory

In evolutionary theory, changes in the environment are often reflected by changes in
the residents’ ability to reproduce. Organisms that can adapt better normally have
higher reproductive rates. In biology, the individual’s ability to adapt (or reproduce)
is called fitness. Mathematical models define fitness in terms of reasonable biological
assumptions that are encoded in fitness functions. The simplest game in evolution is
a two-player single trait game. In this case, a fitness function is a real-valued function
f (x, y) where x and y are the strategies (or phenotypes) of the players (or organisms).
A fitness function f (x, y) represents the fitness advantage of a mutant with phenotype
y when competing against a resident with phenotype x . In game theory, f (x, y) > 0
means that the mutant has a fitness advantage over the resident. In this paper we assume
that all functions and mappings are infinitely differentiable. Since any strategy has 0
advantage against itself, we define

Definition 1.1 The C∞ real-valued smooth function f (x, y) is a fitness function if
f (x, x) = 0 for all x .

Remark 1.2 Since a fitness function f vanishes along the diagonal (x, x), certain
derivatives of f also vanish along the diagonal. For example,

fx + fy = 0 fxx + 2 fxy + fyy = 0 · · ·

at (x, x) for all x .

Adaptive dynamics theory

Adaptive dynamics applies a game theoretic approach to study the evolution of herita-
ble phenotypes (or strategies), such as beak lengths of birds. There are two fundamental
ideas when applying adaptive dynamics:

(i) The resident population is assumed to be in dynamic equilibrium when mutants
appear.

(ii) The eventual fate of mutants can be inferred from the mutant’s initial growth rate.
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The evolution of strategies is modeled using fitness functions. The idea is that an
environment contains organisms playing all possible strategy (phenotypes), and that
a given strategy (phenotype) evolves based on the interactions with nearby strate-
gies (mutations). In adaptive dynamics theory, strategies evolve through a series of
advantageous interactions against mutant strategies.

In fact, adaptive dynamics assumes that the resident strategy x increases when a
mutant strategy y > x has an advantage over x , and decreases when a mutant strategy
y < x has an advantage over x . Note that we can apply Taylor’s Theorem at (x, x) to
obtain:

f (x, y) = f (x, x) + (y − x) fy(x, x) + O(y − x)2 = (y − x) fy(x, x) + O(y − x)2

Thus, when fy(x, x) > 0, we have for any y near x

f (x, y) > 0 if and only if y > x

Therefore, we see that in evolution the rate of change of strategies and the selection
gradient fy(x, x) of the fitness function f have the same sign. Dieckmann and Law
(1996) have applied this approach and obtained the canonical equation of adaptive
dynamics:

dx

dt
= α(x) fy(x, x) (1.1)

where α(x) > 0 depends on the resident strategy x . We see that (1.1) has an equilibrium
at x̄ if and only if fy(x̄, x̄) = 0. Therefore, we define

Definition 1.3 A strategy x̄ is a singular strategy if fy(x̄, x̄) = 0 and hence fx (x̄, x̄) =
0.

1.2 Important concepts in adaptive dynamics

There are four properties of singular strategies in adaptive dynamics, which we now
describe.

Evolutionarily stable strategy An evolutionarily stable strategy is a resident phe-
notype (i.e. strategy x̄) such that no mutant with phenotype y near x̄ can invade
the resident.
Convergence stable strategy A convergence stable strategy is a phenotype (i.e.
strategy x̄) that is a linearly stable equilibrium for the canonical equation of adap-
tive dynamics (1.1). If a phenotype x̄ is a convergence stable strategy, it is a local
attractor in adaptive dynamics; that is, all nearby resident strategies will evolve
toward x̄ .
Neighborhood invader strategy A neighborhood invader strategy is a mutant phe-
notype (i.e. strategy x̄) such that it can always invade a nearby resident with
phenotype x .
Mutual invasibility strategy In evolution, either mutations do or do not die out. If
the mutant with phenotype y has no advantage over the resident with phenotype
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x (i.e. f (x, y) < 0), the mutant will die out. On the other hand, if the mutant with
phenotype y has an advantage over the resident with phenotype x (i.e. f (x, y) >

0), then the mutant’s population will grow and they will not die out. However, in
some situations, the mutant cannot outcompete the resident once the resident is rare
and coexistence of two subpopulations with different phenotypes follows. That is,
the system becomes a dimorphic population and this happens when f (x, y) > 0
and f (y, x) > 0. Such a pair of phenotypes is called a dimorphism. A strategy
x̄ has mutual invasibility if there exists dimorphism pairs (x, y) arbitrarily near
(x̄, x̄).

Next we interpret these properties as singularities.

Remark 1.4 In singularity theory local singularities of a function F at some base point
X0 are defined by conditions on the derivatives of F at X0. These conditions divide
into two types: defining conditions and nondegeneracy conditions. Defining conditions
assume that certain combinations of derivatives equal 0 and nondenegenacy conditions
assume that certain combinations of derivatives do not equal 0. For example, in one
parameter bifurcation theory Golubitsky and Schaeffer (1985) a pitchfork bifurcation
at (0, 0) is the singularity of a map F : R×R → R, denoted F(X, λ), whose defining
conditions are F = FX = FXX = Fλ = 0 and whose nondegeneracy conditions
are FXXX �= 0 �= FXλ. Singularity theory provides general methods to prove that
if F has a pitchfork bifurcation at (0, 0), then F is equivalent by (an appropriately
defined) change of coordinates to the normal form H(X, λ) = εX3 + δXλ where
ε = sgn(FXXX (0, 0)) and δ = sgn(FXλ(0, 0)). In steady-state bifurcation theory, the
appropriate changes of coordinates are parametrized families of contact equivalences
Golubitsky and Schaeffer (1985).

Remark 1.5 The application of singularity theory to adaptive dynamics requires that
the properties of singularities defined above be recast in terms of defining and nonde-
generacy conditions. To do this we use the long form “Evolutionarily stable strategy”
to refer to the definition given above and the abbreviated form “ESS” given in Defin-
ition 1.6 below to refer to the the defining and nondegeneracy conditions of the given
singularity. Lemma 1.7 fills in the details that the abbreviated forms (such as “ESS”)
satisfy the long forms (such as “Evolutionarily stable strategy”). In this introduction
we give sample results, like the pitchfork results of steady-state bifurcation theory, in
the context of the singularities of adaptive dynamics.

Definition 1.6 Let f be a fitness function satisfying the defining conditions fx =
fy = 0 at (x̄, x̄). Then

(a) x̄ is an ESS if fyy < 0 at (x̄, x̄).
(b) x̄ is a CvSS if fyy − fxx < 0 at (x̄, x̄).
(c) x̄ is an NIS if fxx > 0 at (x̄, x̄).
(d) x̄ is an MIS if fyy + fxx > 0 at (x̄, x̄).

Lemma 1.7 Let f be a fitness function with singular strategy x̄ .

(a) If x̄ is an ESS, then x̄ is an evolutionarily stable strategy.
(b) If x̄ is a CvSS, then x̄ is a convergence stable strategy.
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(c) If x̄ is an NIS, then x̄ is a neighborhood invader strategy.
(d) If x̄ is an MIS, then x̄ is a mutual invasibility strategy.

Proof We prove each statement in turn.

(a) f has an evolutionarily stable strategy if f (x̄, ·) has a maximum at x̄ . Since
f (x̄, x̄) = 0, it is sufficient to have that fy(x̄, x̄) = 0 and fyy(x̄, x̄) < 0.
Remark 1.2 implies that fx (x̄, x̄) = 0 if and only if fy(x̄, x̄) = 0.

(b) Recall that x̄ is a linearly stable equilibrium of (1.1) if fy(x̄, x̄) = 0 and

d

dx
(α(x) fy(x, x))

∣
∣
∣
∣
x=x̄

< 0

By Remark 1.2, we have

d

dx
(α(x) fy(x, x))

∣
∣
∣
∣
x=x̄

= α′(x̄) fy(x̄, x̄) + α(x̄)( fxy(x̄, x̄) + fyy(x̄, x̄))

= 1

2
α(x̄)( fyy(x̄, x̄) − fxx (x̄, x̄))

Since α(x) > 0, we see that if x̄ is a CvSS, then x̄ is a convergence stable strategy.
(c) x̄ is a neighborhood invader strategy if f (·, x̄) has a minimum at x̄ . It is sufficient

to have fx (x̄, x̄) = 0 and fxx (x̄, x̄) ≥ 0; that is, to have x̄ be an NIS.
(d) Let g(x) = f (x, 2x̄ − x) and h(x) = f (2x̄ − x, x). We claim that if x̄ is an MIS,

then both g(x) > 0 and h(x) > 0 when x is close to x̄ . Therefore, (x, 2x̄ − x) is
a dimorphism pair and x̄ is a mutual invasibility strategy when x̄ is an MIS. We
prove the claim for g; the result is similar for h. Using Remark 1.2 calculate

g′(x̄) = fx (x̄, x̄) − fy(x̄, x̄) = 0
g′′(x̄) = 2( fxx (x̄, x̄) + fyy(x̄, x̄)) > 0

where ′ is derivative with respect to x . Then, we have

g(x) = 1

2
g′′(x̄)(x − x̄)2 + h.o.t.

and conclude that g(x) > 0 when x is close to x̄ . ��
In fact, the singular properties of adaptive dynamics come in pairs. For example,

there is a sister singularity to ESS, denoted ESS∗ whose nondegeneracy condition
is fyy > 0. As we have discussed each singular strategy has four pairs of sister
characteristics defined by an inequality in certain combinations of derivatives of f .
Specifically:

ESS ( fyy < 0) A resident phenotype that is not invaded by a nearby mutant
phenotype.

ESS∗ ( fyy > 0) A resident phenotype that can be invaded by any nearby mutant
phenotype.
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Fig. 1 Classification of singular strategies. Based on the defining conditions of ESS, CvSS, NIS, and MIS,
we divide the fxx fyy plane into eight regions. In each region we list the standard properties that the singular
strategy has. If the acronym for a pair is missing, then the singularity present is the sister one

CvSS ( fyy − fxx < 0) A phenotype that is a linearly stable equilibrium for (1.1).
CvSS∗ ( fyy − fxx > 0) A phenotype that is a linearly unstable equilibrium for

(1.1).
NIS ( fxx > 0) A mutant phenotype that can invade any nearby resident pheno-

type.
NIS∗ ( fxx < 0) A mutant phenotype that can never invade any nearby resident

phenotype.
MIS ( fyy + fxx > 0) A singular strategy (phenotype) with dimorphism pairs

nearby.
MIS∗ ( fyy + fxx < 0) A singular strategy (phenotype) with no dimorphism pairs

nearby.

Indeed, Geritz et al. (1997) had proposed four different evolutionary scenarios in a
fitness function and Dieckmann et al. (2004) had discussed the evolutionary influence
of these four properties of singularities. These four types are summarized in Fig. 1,
which is a modification of a picture in Geritz et al. (1997). In fact, our figure classifies
more, namely, the properties ESS, CvSS, NIS, and MIS, and their sister properties.

Definition 1.8 The region of coexistence for a fitness function f is the set of all
dimorphisms of f ; that is, the set {(x, y) : f (x, y) > 0 and f (y, x) > 0}.
Remark 1.9 Diekmann (2003), based on Metz et al. (1996), Geritz et al. (1998), dis-
cusses consequences of mutual invasibility. Specifically, suppose there is a dimorphism
(x, y) near a singular strategy x̄ that is a CvSS. Then

(a) If x̄ is an ESS, then both strategies x and y will evolve towards x̄ , and the dimor-
phism (x, y) is called a converging dimorphism.

(b) If x̄ is not an ESS, then an interesting phenomenon called evolutionary branching
can occur. When this happens, (x, y) is called a diverging dimorphism. Detailed
discussions about evolutionary branching can be found in Geritz et al. (1998), Ito
and Dieckmann (2012), Kisdi and Priklopil (2011), Priklopil (2012).
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(c) It follows from items (a,b) that the dimorphism pairs whose existence are guar-
anteed in Fig. 1 region c are converging and the dimorphism pairs in Fig. 1 region
b are diverging.

(d) Note that there are other dimorphism pairs that appear in Fig. 1 regions a and h
and they are diverging in the sense that the singularity is CvSS∗.

The methods of this paper will enable us to keep track of the existence of dimor-
phisms, but these methods will not distinguish between converging and diverging
dimorphisms.

1.3 Background of singularity theory

In this subsection, we discuss the general ideas of singularity theory and how it helps in
studying ESS, CvSS, and dimorphisms in the context of adaptive dynamics. In addition,
we introduce mutual invasibility plots that show how ESS, CvSS, and dimorphisms
can interact.

Singularity theory studies how certain properties of a class of functions change as
parameters are varied. When applying singularity theory, the first step is to determine
the most general transformations that preserve the properties that one is trying to study.
For example, contact equivalences are the most general transformations that preserve
zero sets. Specifically, suppose f, g : R2 → R are fitness functions. Then f and
g are contact equivalent if there exists S : R2 → R+ and a change of coordinates
� : R2 → R2 such that

g(x, y) = S(x, y) f (�(x, y)).

It is easy to see that � transforms the zero set of g to the zero set of f .
Vutha and Golubitsky (2014) consider a subset of contact equivalences that preserve

ESS and CvSS singularities of fitness functions. These equivalences are called strategy
equivalences (see Definition 4.1). In this paper we study special forms of strategy
equivalences that also preserve dimorphisms, that is, that preserve the property MIS.
It then follows that these coordinate changes also preserve the property NIS. We call
these equivalences dimorphism equivalences. Specifically:

Definition 1.10 Two fitness functions f and f̂ are dimorphism equivalent if

f̂ (x, y) = S(x, y) f (�(x, y)),

where

(a) S(x, y) > 0 for all (x, y).
(b) �(x, y) = (ϕ(x, y), ϕ(y, x)) where ϕ: R2 → R.
(c) ϕx (x, x) > 0 and ϕy(x, x) = 0 for all x .

Moreover, we call the dimorphism equivalence strong if ϕx (x, x) ≡ 1.
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Remark 1.11 Assumption (a) in Definition 1.10 preserves the sign of f and assump-
tion (b) preserves the diagonal x = y. In fact, assumption (b) does more—it guarantees
that if the fitness functions f (x, y) and f̂ (x, y) are dimorphism equivalent, then so are
the fitness functions f (y, x) and f̂ (y, x). See Lemma 4.3. The technical assumption
(c) is part of strategy equivalence and is needed to preserve the properties CvSS and
ESS. See Theorem 1.13, specifically identity (4.2), whose proof is given in Sect. 4.

Remark 1.12 We claim that dimorphism equivalence, as defined in Definition 1.10,
is the largest class of transformations of fitness functions that preserves the four pairs
of sister properties ESS, CvSS, MIS, and NIS. Note that it follows that such trans-
formations also preserve the zero sets f (x, y) = 0 and f (y, x) = 0. Specifically,
Definition 1.10(a) and (c) follow from strategy equivalence (see Definition 4.1), which
is the largest set of equivalences that preserve ESS and CvSS. In addition, in order
to preserve dimorphism pairs, the same � in the dimorphism equivalence that trans-
forms f (x, y) to f̂ (x, y) must also transform f (y, x) to f̂ (y, x). It follows that
Definition 1.10(b) must be satisfied.

Theorem 1.13 Dimorphism equivalence preserves ESS, CvSS, NIS, MIS and their
sister properties for all fitness functions. Moreover, if the fitness functions f and f̂ are
dimorphism equivalent, then the diffeomorphism � maps the regions of coexistence
of f̂ to those of f .

Singularity theory provides methods for answering two questions:

1. Recognition problem When is a fitness function f dimorphism equivalent to a
specific fitness function h on a neighborhood of a singularity?

2. Universal unfolding problem Find the smallest family of perturbations H : R2 ×
Rk → R of h that contains all perturbations of h up to dimorphism equivalence.

Remark 1.14 Note that almost all results about recognition and universal unfolding
problems are local results—they are valid only on some (unspecified) neighborhood
of the origin. More precisely, singularity theory results are about germs of functions
(Golubitsky and Schaeffer 1985, p.54) or (Golubitsky and Guillemin 1974, p.103)
and not specifically about functions themselves. The conversion of statements about
germs to statements about functions is routine in singularity theory. In this exposition
we follow the usual practice of not stating this conversion explicitly.

The function h in the recognition problem is called a normal form and is usually
the ‘simplest representative’ from the equivalence class of h. A major result is that the
recognition problem can be solved by examining a finite number of derivatives of f
at the singularity. This result relates to Remark 1.5. For example:

Theorem 1.15 The fitness function f is dimorphism equivalent to

h = (x − y)4 + (x + y)(x − y) (1.2)

on a neighborhood of (0, 0) if and only if the defining conditions fx = fxy = 0 and
the nondegeneracy conditions
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fxx > 0 fxx ( fx4 + 6 fx2 y2 + fy4) − 4( fx2 y + fxy2)(3 fxy2 + fy3) > 0

are valid at (0, 0).

Singularity theory studies small perturbations of a given fitness function h through
its universal unfolding. An unfolding of h is a parametrized family H(x, y, α) such
that H(x, y, 0) = h(x, y) where α ∈ Rk is a set of parameters. A versal unfolding
of h contains all small perturbations of h up to dimorphism equivalence. A universal
unfolding of h is a versal unfolding with the smallest number of parameters k. Once a
singularity is identified in a normal form h, we can find all possible small perturbations
of h in its universal unfolding H(x, y, α) up to dimorphism equivalence. For example,
the following theorem is included in Table 3(d).

Theorem 1.16 A universal unfolding of (1.2) is

H = ((x − y)2 + a)(x − y)2 + (x + y)(x − y) (1.3)

where a ∈ R is near 0.

Geometry and mutual invasibility plots

Universal unfoldings allow us to study the geometry of small perturbations around
a singularity. For a given fitness function we use mutual invasibility plots (MIPs)
to illustrate ESS singularities, CvSS singularities, and regions of coexistence. For
example, Fig. 2 shows the two possible perturbations of the fitness function (1.2) up
to dimorphism equivalence by plotting the data for the universal unfolding (1.3) when
a > 0 and a < 0. In these plots, the blue curve is H(x, y, a) = 0, the red curve is
H(y, x, a) = 0, and the black curve is the line y = x . In each region, we can see a
pair of signs and they stand for sgn(H(x, y, a)) and sgn(H(y, x, a)). The centered
red dot stands for a singularity that is both ESS and CvSS. Plots like these are called
mutual invasibility plots (MIPs). Please note that all MIPs drawn in this paper are
local in both phase space and parameter space near the degenerate singularity. This is
consistent with the theory, which is valid only locally on such a neighborhood.

In Fig. 2, regions of coexistence emerge from the perturbation of a singular fitness
functionh. The MIP ofh is the middle plot of Fig. 2 and we see no region of coexistence.
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−+
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Fig. 2 MIPs of H = ((x − y)2 + a)(x − y)2 + (x + y)(x − y)
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If we perturb the parameter to a > 0 (as in the right plot), the strategy function has two
regions of coexistence; whereas, when a < 0 (as in the left plot), the strategy function
has no region of coexistence. We can think of the perturbation of this singular strategy
as creating regions of coexistence.

Remark 1.17 In the adaptive dynamics literature, there is another useful plot called a
pairwise invasibility plot (PIP). For any strategy function f , a PIP contains the curve
f (x, y) = 0 and sgn( f ) in each region bounded by f (x, y) = 0.

Codimension

Let F(·, α), where α ∈ Rk , be a universal unfolding of the fitness function f . Then
F contains all perturbations of f up to dimorphism equivalence. The parameters α

are often called unfolding parameters. The C∞ codimension of f is the number of
unfolding parameters in the universal unfolding F , that is, k.

The perturbation of f associated with a parameter β ∈ Rk is fβ(·) = F(·, β).
It is a theorem in singularity theory that the C∞ codimension of fβ is always less
than or equal to the C∞ codimension of f . We call the parameter β ∈ Rk a modal
parameter if theC∞ codimension of fβ equals theC∞ codimension of f . Let B ⊂ Rk

be the set of modal parameters. The topological codimension of a function f is its C∞
codimension minus the dimension of B (see Golubitsky and Schaeffer 1985, p. 193).
As is standard in singularity theory, we can classify singularities of fitness functions
either up to a given C∞ codimension or up to a given topological codimension. We
choose ‘topological codimension’ because this is the number of parameters that are
needed in an application for a particular singularity type to occur generically. Indeed,
as can be seen in Table 1, μ is a modal parameter (when μ0 �= 0,±1). So the singularity
listed in that table has C∞ codimension 1 and topological codimension 0.

Finally, the motivation behind the term ’topological codimension’ is that fβ for
β ∈ B is dimorphism equivalent to f if in Definition 1.10 we allow � to be a
homeomorphism rather than a diffeomoprhism. However, proving such a statement is
beyond the scope of this paper.

Classification of singularities

In this paper, we solve the recognition problems, find the universal unfoldings, and
plot the MIPs (for all perturbations up to dimorphism equivalence) for singularities

Table 1 The normal form, defining (Def) and non-degeneracy (ND) conditions, and universal unfolding
of topological codimension (TC) zero singularities

Def ND TC Normal Form Universal Unfolding

(a) p 0 h = ε(w + μ0uv)

qu ε = sgn(p) H = ε(w + μuv)

p + qu μ0 = qu
p μ ≈ μ0

p − qu μ0 �= −1, 0, 1

All derivatives are evaluated at the origin
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of topological codimension ≤ 2. In specific, Tables 1, 3, 4 classify all singularities
of topological codimension 0, 1, 2 and give a normal form and a universal unfolding
for each of these singularities. The MIPs for topological codimensions zero and one
are simpler and presented in Sect. 2. The MIPs for topological codimension two are
provided in Sect. 3.

1.4 Structure of the paper

In Sect. 2, we summarize the major results of this paper and provide an application
of our theory. In Sect. 3, we study the geometry of the unfolding space for each
singularity of topological codimension two. For these singularities, we determine
the MIPs of all possible perturbations up to dimorphism equivalence. In Sect. 4 we
review Vutha and Golubitsky (2014) strategy equivalence and discuss dimorphism
equivalence which preserves ESS singularities, CvSS singularities, and regions of
coexistence. Theorem 1.13 is proved in this section. In Sect. 5, given a fitness function
f , we present a sufficient condition to determine all small perturbations η so that
f +η is dimorphism equivalent to f . The result is stated in the modified tangent space
constant theorem (Theorem 5.5). In Sect. 6, we discuss universal unfoldings of fitness
functions up to dimorphism equivalence. Section 7 contains the sketch of the proof
of Theorem 2.3 and also sketches a solution to the recognition problem for universal
unfoldings by discussing one singularity. See Lemma 7.7. The corresponding results
for all singularities of codimension one are given in Wang (2015).

2 Determinacy and unfolding results

In this section, we present our results and explain why these results are important. In
addition, we apply our theory to study the Hawk-Dove game Dieckmann and Metz
(2006).

2.1 Major results from singularity theory

As discussed in Sect. 1, we apply singularity theory to study certain singular strategies
in adaptive dynamics. In this section we present the classification of singularities of
topological codimension zero, one, and two. We also present the MIPs associated to
the singularities of codimension zero and one.

Note that the classification is done using (u, v) coordinates where

u = x + y and v = x − y

We also denote w = v2. Using (u, v) coordinates simplifies the statements of our
theorems, as well as the calculations in their proofs. We show in Sect. 5 that a general
fitness function f can be written as

f = p(u, w)w + q(u, w)v. (2.1)
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Basically, we can split f into the sum of an even part in v and an odd part in v. Later in
the paper we will identify the fitness function f notationally with the pair of functions
[p, q].

Topological codimension zero singularities

Table 1 lists all topological codimension zero singularities. We see that ε and μ0 can
be obtained from f . The singularity has topological codimension zero only when
μ0 �= −1, 0, 1. (The singularity has higher topological codimension if μ0 = −1, or
0, or 1.) In the universal unfolding, the parameter μ near μ0 is a modal parameter.

Mutual invasibility plots (MIPs) consist of the zero sets ( f (x, y) = 0 and f (y, x) =
0), signs of f (x, y) and f (y, x) in connected components of the complement of the
zero sets, and the type of singularities on the diagonal that correspond to the symbols
in Table 2.

Figure 3 contains MIPs of the different universal unfoldings of topological codi-
mension zero singularities. We see that the differences originate with the existence
of the properties ESS, CvSS, NIS, MIS or their sister properties. The ESS and CvSS

Table 2 Symbols of singular
strategies in the MIPs
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Fig. 3 The MIPs of fitness function H = ε(w + μuv) of different μ �= −1, 0, 1. The figure labels
correspond to the regions in Fig. 1
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property of each singular strategy is indicated by a symbol with a certain color and
shape as shown in Table 2. The asterisks in Table 2 stands for sister properties and the
subscript 0 stands for a transition between a property and its sister property (that is, a
degenerate singularity). The MIS property is indicated by the existence of regions of
coexistence (++). We do not indicate the NIS property in MIPs because we do not
focus on the study of NIS in this paper. We show in Sect. 3 that NIS is preserved under
dimorphism equivalence and could be kept track of in MIPs.

Remark 2.1 It helps to note, especially in the higher codimension singularities, that the
MIPs of − f (x, y) can be determined directly from the MIPs of f (x, y). The zero sets
are identical, + signs are replaced by − signs and − signs by + signs and the properties
of the singularities are replaced by their sister properties. Similarly, reflecting MIPs
across the diagonal is equivalent to replacing (x, y) by (y, x) (or replacing v by −v).
This transformation yields the same zero sets, interchanges the signs in each connected
component, and changes the singularity type in a precise way. Specifically, ESS ↔
NIS∗; ESS∗ ↔ NIS; CvSS ↔ CvSS∗; and MIS and MIS∗ remain unchanged.

Remark 2.2 As an example of Remark 2.1, we look at Fig. 3a in which the unperturbed
fitness function is h = w + μ0uv where −1 < μ0 < 0. Note that −h = −w − μ0uv

falls in Fig. 3e. Swapping x and y yields h(u,−v) = w − μ0uv, that is, Fig. 3b.
Finally, Fig. 3f is obtained from case (a) by simultaineously swapping x and y and
mutiplying h by −1. In fact, the eight MIPs in Fig. 3 can be obtained by applying
these transformations to cases (g) and (a).

Topological codimension one singularities

Table 3 contains the detailed information of the four topological codimension one
singularities. These singularities are degenerate in ESS, NIS, CvSS, and MIS, respec-
tively. Figure 4 lists the MIPs of the perturbations up to dimorphism equivalence for
each singularity and describes a typical transition of their degeneracy. Note that in
this figure we have reduced the number of possible triples of pictures from 16 unfold-
ings to four unfoldings by applying the transformations mentioned in Remark 2.1. In
particular, we can take ε = +1 to be representative.

We observe the degenerate singularity in the centered MIPs. In particular, we point
out that the degenerate ESS (resp. NIS) singularities are simply special cases when
the parameter μ0 of codimension zero singularity becomes 1 (resp. −1). We also see
that the degenerate CvSS singularity contains a modal parameter γ in its universal
unfolding and we find that γ has no influence on the type of singular strategy. As for
the degenerate MIS, we discuss it in Sect. 1 and already know that this singularity
creates new regions of coexistence (cf. Fig. 2). For the complete list of MIPs for these
singularities, please refer to Wang (2015).

Topological codimension two singularities

Table 4 lists the three topological codimension two singularities. We will have a
detailed discussion of the associated MIPs in Sect. 3.

To summarize:
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Table 3 The normal forms, defining (Def) and non-degeneracy (ND) conditions, and universal unfoldings
of topological codimension (TC) one singularities

Def ND TC Normal
form

Universal
unfolding

(b) ESS0 qu − p p 1 h = ε(w + uv) H = ε(w + μuv)

ε = sgn(p)

(c) NIS0 qu + p p 1 h = ε(w − uv) H = ε(w − μuv)

ε = sgn(p)

qu h = ε(δw2 + uv)

(d) MIS0 p pwqu − puqw 1 ε = sgn(qu) H = ε((a + δw)w + uv)

δ = sgn(pwqu − puqw)

h = ε(w + (δu2 + γ0u
3)v)

(e) CvSS0 qu p 1 ε = sgn(p) H = ε(w + (a + δu2 + γ u3)v)

quu δ = sgn(
quu
p )

γ0 =
2pquuu−6quu pu

3q2
uu

Theorem 2.3 Suppose f = p(u, w)w + q(u, w)v is a fitness function with a singu-
larity at the origin of topological codimension (TC) at most two. Then f is dimorphism
equivalent to a normal form in Tables 1, 3, 4. The type of singularity is determined by
which defining (Def) and non-degeneracy conditions (ND) are satisfied.

Theorem 2.3 is proved in Sect. 7.2.

2.2 Application of the theory

This paper provides the general methodology to simultaneously study ESS singulari-
ties, CvSS singularities, and regions of coexistence for fitness functions. Our theorems
(specifically the solutions to recognition problems and the determination of universal
unfoldings) enable us to find properties of fitness functions that would otherwise be
difficult to find. The MIPs in this section and in Sect. 3 show the key properties for
universal unfoldings of each singularity up to topological codimension 2. In particular,
we can find dimorphisms in fitness functions that depend on parameters by using defin-
ing conditions to search for specific degenerate singularities that have dimorphisms in
their universal unfoldings.

The Hawk-Dove game

Dieckmann and Metz (2006) considered generalizations of the classical Hawk-Dove
game. Vutha and Golubitsky (2014) study this generalization in the context of strategy
equivalence and find different types of ESS and CvSS singularities as parameters are
varied.
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Fig. 4 MIPs of universal unfoldings of the four topological codimension one singularities

The classical Hawk-Dove game has two players A and B who can play either a
hawk strategy or a dove strategy with payoffs given in Table 5. Here V > 0 is a reward
and C ≥ 0 is a cost.

In fact, Dieckmann and Metz (2006) consider a game where A plays hawk with
probability x and B plays hawk with probability y and show that the advantage for B
in this game is given by the fitness function

123

Author's personal copy



X. Wang, M. Golubitsky

Table 4 The normal forms, defining (Def) and non-degeneracy (ND) conditions, and universal unfoldings
of topological codimension (TC) two singularities

Def ND TC Normal form Universal unfolding

(f) p qu h = ε(δw3 + uv) H = ε((a + bw + δw2)w + uv)

pwqu − puqw�1 2 ε = sgn(qu)

δ = sgn(�1)

h = ε(w + (δu3 + λ0u
5)v)

(g)qu p 2 ε = sgn(p) H = ε(w + (a + bu + δu3 + λu5)v)

quu qu3 δ = sgn(
quuu
p )

λ0 = �2

pu h = ε(uw + (α0w + β0u
2)v)

(h)p qw 2 ε = sgn(pu) H = ε((a + u)w + (b + αw + βu2)v)

qu quu α0 = qw
pu

p2
u − 2qwquu β0 = quu

2pu

Singularity (f) has double MIS degeneracy; Singularity (g) has double CvSS degeneracy; Singularity
(h) has a double degeneracy found by simultaneously having MIS and CvSS degeneracies. Note that
when this happens, all properties ESS, CvSS, NIS, and MIS are simultaneously degenerate; one can
also think of (h) as a double ESS or a double MIS degeneracy. (�1 = q2

u (qu pww − puqww) +
q2
w(qu puu − puquu)−2quqw(qu puw − puquw); �2 = −120puuq2

uuu +60puquuuquuuu −15pq2
uuuu +

12pquuuquuuuu)/(40q3
uuu))

Table 5 The Hawk-Dove game
Hawk Dove

Hawk 1
2 (V − C) V

Dove 0 1
2 V

f (x, y) = (y − x)(V − Cx) (2.2)

Dieckmann and Metz (2006) consider variations of (2.2) that lead to parametrized
families of fitness functions, which are based on various ecological assumptions (see
Dieckmann and Metz (2006) for details). Their most complicated game has the form

f (x, y) = ln

(
1 + Q(x, y)

1 + Q(x, x)

)

(2.3)

where

P(x) = r0 + r1(x − x0) + r2(x − x0)
2

A(x, y) = 1

2

√

P(x)P(y)

B(x, y) = V (1 − x + y) − Cxy

Q(x, y) = A(x, y)B(x, y)/R (2.4)

and R > 0, C > 0, and V > 0.
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By applying our singularity theory results we show that the fitness function (2.3) of
the generalized Hawk-Dove example has regions of coexistence. Specifically, assume

V = 3

16
C x0 = 1

4
r0 = 1 r1 = 1 r2 = 0 (2.5)

We claim that the fitness function f (x, y) has a singularity at (x, y) = ( 1
4 , 1

4 ) that is
dimorphism equivalent to

h(x, y) = (x − y)2 + 14

13
(x + y)(x − y) (2.6)

This h is one case of the normal form in Table 1 and its MIPs can be found in Fig. 3g
where we see the existence of regions of coexistence. Direct calculation verifies the
claim:

fx = − Qy

1 + Q
= 0

fxy = − 39C

4C + 64R
< 0

fxx − fyy = 21C

C + 16R
> 0

Thus, Table 1 indicates that f is dimorphism equivalent to w +μ0uv where μ0 = 14
13 .

Therefore, this specific Hawk-Dove game contains a singularity that is dimorphism
equivalent to the fitness function (2.6) and has regions of coexistence.

3 Geometry of unfoldings in codimension two

In this section, we list the mutual invasibility plots associated to universal unfoldings
of singularities of topological codimension two.

3.1 Transition varieties

Suppose F(x, y, α), where α ∈ Rk , is a universal unfolding of f (x, y). In F(x, y, α),
the classification of small perturbations proceeds by determining parameter values
where singularity types change. In the parameter space α ∈ Rk of F(x, y, α), there
are six varieties where such changes occur. These varieties are based on degeneracies of
ESS, CvSS, MIS, NIS, bifurcation, and tangency. Bifurcation points occur at parameter
values where the off-diagonal zero set F(x, y, α) = 0 is singular (that is, at points
where F = Fx = Fy = 0). Tangency points in parameter space occur at certain
parameter values when F(x, y, α) = 0 and F(y, x, α) = 0 become tangent at an off-
diagonal point. Note that we are studying dimorphism equivalence, so we consider a
pair of universal unfolding fitness functions (F(x, y, α), F(y, x, α)). Denote
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F(x, y, α) = (x − y)G(x, y, α)

Then we define

E = {α ∈ Rk : ∃ x such that Fy = Fyy = 0 at (x, x, α)} (ESS variety)

C = {α ∈ Rk : ∃ x such that Fy = Fyy − Fxx = 0 at (x, x, α)} (CvSS variety)

M = {α ∈ Rk : ∃ x such that Fy = Fyy + Fxx = 0 at (x, x, α)} (MIS variety)

N = {α ∈ Rk : ∃ x such that Fy = Fxx = 0 at (x, x, α)} (NIS variety)

B = {α ∈ Rk : ∃ x, y such that F = Fx = Fy = 0 at (x, y, α) where x �= y}
(Bi f urcation variety)

T = {α ∈ Rk : ∃ x, y such that Gx (x, y)Gy(y, x) − Gy(x, y)Gx (y, x) =
G(x, y) = G(y, x) = 0 at (x, y, α) where x �= y} (Tangency variety) (3.1)

Note that the first four varieties in (3.1) detect parameter values in the universal unfold-
ing where the properties ESS, CvSS, MIS, and NIS are degenerate. The bifurcation
variety detects parameter values where for fixed α �= 0 the set F(x, y, α) = 0 is
not a simple curve near the diagonal (for example, the curve crosses itself). The
tangency variety detects parameter values α where the curves F(x, y, α) = 0 and
F(y, x, α) = 0 are tangent away from the diagonal.

Definition 3.1 The transition variety is the union of the varieties listed in (3.1). That
is

T V = E ∪ C ∪ M ∪ N ∪ B ∪ T

We can simplify the calculation of transition variety. Since the universal unfoldings
of fitness functions vanish on the diagonal, we can define

F(x, y, α) = P(u, w, α)w + Q(u, w, α)v.

Therefore, with direct calculation, we obtain

E = {α ∈ Rk : ∃ u such that Q = P − Qu = 0 at (u, 0, α)}
C = {α ∈ Rk : ∃ u such that Q = Qu = 0 at (u, 0, α)}
M = {α ∈ Rk : ∃ u such that Q = P = 0 at (u, 0, α)}
N = {α ∈ Rk : ∃ u such that Q = P + Qu = 0 at (u, 0, α)}
B = {α ∈ Rk : ∃ u, w such that

Pv + Q = Puv + Qu = 2Pww + P + 2Qwv = 0 at (u, v, α) where v �= 0}
T = {α ∈ Rk : ∃ u, w such that

P = Q = 2w(PuQw − PwQu) − PQu = 0 at (u, v, α) where v �= 0} (3.2)
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Remark 3.2 This paper began with the study of ESS singularities, CvSS singularities,
and dimorphisms. We showed, however, that in addition to these singular proper-
ties, dimorphism equivalence also preserves the NIS property. Thus, in the MIPs, we
identify NIS and NIS∗ as different singularities.

3.2 MIPs of topological codimension two singularities

In this subsection, we classify perturbations of topological codimension two singular-
ities. Each type of perturbation is described by a mutual invasibility plot.

(f) Table 4 shows that a universal unfolding of h = ε(δw3 + uv) is

H = ε((a + bw + δw2)w + uv)

where a, b are unfolding parameters near 0. Note that

P(u, w) = ε(a + bw + δw2) Q(u, w) = εu

Using (3.2) we see that the transition variety of H is:

M = {a = 0} T = {b2 − 4δa = 0, δb < 0} E = C = N = B = ∅

In principle, there are four sets of MIPs corresponding to the cases ε = ±1
and δ = ±1. However, using the transformations described in Remark 2.1 we can
assume ε = +1 = δ. (Note: to transform δ from −1 to 1 we also need to transform
(a, b) to (−a,−b).) Figure 5 contains the transition variety and the MIPs of H
up to dimorphism equivalence for a, b close to 0. We can see the emergence of
regions of coexistence as the unfolding parameters are varied.

(g) Table 4 shows that a universal unfolding of h = ε(w + (δu3 + λ0u5)v) is

H = ε(w + (a + bu + δu3 + λu5)v)

where a, b are unfolding parameters near 0 and λ is a modal parameter near λ0.
Note that

P = ε Q = ε(a + bu + δu3 + λu5)

b
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Fig. 5 Transition variety {a = 0} ∪ {a = b2

4 ; b < 0}. MIPs of H = (a + bw + w2)w + uv
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Fig. 6 Transition variety and MIPs of H = w + (a + bu + u3)v

The transition variety of H is given by:

C = {27a2 + 4δb3 + o(λb3) = 0} E = M = N = B = T = ∅

In a similar way to the normal form (f), we can derive the MIPs for ε = −1 or
δ = −1 from those of ε = +1 = δ. Figure 6 contains transition variety and MIPs
of H up to dimorphism equivalence when λ = 0, ε = 1, δ = 1. The role of λ is
discussed in Remark 3.3.

Remark 3.3 When λ �= 0, the transition variety is tilted to the left or the right and
becomes a modified cusp. But the MIPs will be similar in the sense that dimorphisms
and properties of singularities within each region of parameter space stay the same as
those of the case λ = 0.

(h) Table 4 shows that a universal unfolding of h = ε(uw + (α0w + β0u2)v) is

H = ε((a + u)w + (b + αw + βu2)v)

where a, b are unfolding parameters near 0 and α, β are modal parameter near
α0, β0. Note that

P = ε(a + u) Q = ε(b + αw + βu2)

The non-degeneracy conditions in Table 4 shows α �= 0, β �= 0, 4αβ − 1 �= 0.
Thus, the transition variety of H is the union of four parabolas and a line given
by

E = {εa2β + b(1 − 2β)2 = 0} C = {b = 0}
M = {εa2β + b = 0} N = {εa2β + b(1 + 2β)2 = 0}
B = {εa2β − b(4αβ − 1) = 0} T = ∅

Degeneracies in the transition variety occur when either two parabolas coincide or
when a parabola degenerates into a line as the modal parameters α, β are varied.
Specifically:
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Fig. 7 The modal parameter space (α, β) for H = (a+u)w+ (b+αw+βu2)v. Red curves correspond to
the non-degeneracy conditions in Table 4; blue curves correspond to degeneracies of the transition variety
(see (3.3)). (Note that only the regions in the half plane α > 0 are enumerated. The corresponding transition
varieties for the enumerated regions are displayed in Fig. 8) (color figure online)

(i) If β = ± 1
2 , the parabolaE or N degenerates to the line a = 0;

(ii) If β = ±1, the parabolaE or N coincides with the parabolaM ;
(iii) If α + β = ±1, the parabolaE or N coincides with the parabolaB.

(3.3)

Remark 3.4 When degeneracies in transition variety occur, the singularity’s topolog-
ical codimension is higher than two and we do not consider these more degenerate
cases in this paper.

In a similar way to the normal form (f), we can derive the MIPs for ε = −1
or α0 < 0 from those of ε = +1 and α0 > 0. (Note: to transform α0 from posi-
tive to negative we need to simultaneously transform all parameters (a, b, α0, β0) to
(−a,−b,−α0,−β0).)

We now consider the transition variety and MIPs of the universal unfolding H =
(a+u)w+(b+αw+βu2)v for different parameter values. First, we divide the modal
parameter space (α, β) into regions with the same type of transition variety. See Fig. 7.
Second, we graph the transition variety of H for different a, b close to 0. Figure 8 plots
the transition variety (in the unfolding parameters a, b) for each numbered region in
Fig. 7. Last, we draw the MIPs of all small perturbations for each scenario of Fig. 8.
The MIPs can be found in Figs. 9, 10, 11.
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Fig. 8 Transition varieties of H = (a + u)w + (b + αw + βu2)v for different regions in the modal
parameters space (α, β) when ε = 1, α > 0. Blue is variety B; red is variety M ; green is variety E ;
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Fig. 9 MIPs for all the non-degenerate perturbation of H = (a + εu)w + (b + αw + βu2)v when {α, β}
are in regions Ai and A′

i

3.3 An example of topological codimension two singularity

Geritz et al. (1999) use adaptive dynamics to study competition between seeds with dif-
ferent sizes when there is a trade-off between seed size and seed number. In particular,
they propose a fitness function

Wm(m′) = f (m′) R

m′

( ∞
∑

k=0

c(m′)
c(m′) + kc(m)

× (N (m))k

k
e−N (m)

)

as the fitness of a mutant plant with seed sizem′ in a monomorphic resident population
with seed size m. Here f (m) = max{0, 1−2e−βm} is the expected reproductive yield
per seed as a function of seed size, R is the total amount of resources, c(m) = eαm is a
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Fig. 10 MIPs for all the non-degenerate perturbation of H = (a + εu)w + (b+ αw + βu2)v when {α, β}
are in regions Bi and B′

i

measure of the competitive ability of a seeding with seed sizem, and N (m) is the single,
positive, and asymptotically stable equilibrium density in a monomorphic resident
population with only seeds of sizem. Geritz et al. (1999) shows that the fitness function
depends, after scaling, on only the two products αR and βR. Specifically, α represents
the evolutionary consequences of intermediate levels of competitive asymmetry and
β represents the precompetitive environments.
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Fig. 11 MIPs for all the non-degenerate perturbation of H = (a + εu)w + (b+ αw + βu2)v when {α, β}
are in regions Ci and C′

i

Figure 12 contains the results of numerical simulations conducted in Geritz et al.
(1999) to study the number and properties of singular strategies depending on the
values of αR and βR. We claim that the existence of two topological codimension
two singularities (namely, (g) and (h)) can be inferred from these plots.

For example, on row βR = 45 we see the creation of two singular points (at
αR ≈ 5.4) when the closed curve moves across the diagonal. A reasonable inference
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Fig. 12 This figure consists of pairwise invasibility plots of fitness function Wm (m′) for different values
of αR and βR and is taken from Geritz et al. (1999)

is that these plots are contained in the unfolding of singularity (h). Specifically, we
see the MIPS A1 in Fig. 9 when αR = 4.5, A2 when αR = 5.0 and A3 when
αR = 5.5. Moreover we also see A4 when αR = 7.0. This suggests that we are near
a codimension two singularity of type AI , AI I , or AI I I in Fig. 8. Figure 9 indicates
that as αR continues to change, one of these two newly generated singularities will be
ESS∗ and then change to ESS, which is not shown in Fig. 12 or the analysis in Geritz,
etc Geritz et al. (1999).

In addition, in row βR = 25, Geritz et al. (1999) observe the creation of two singular
strategies at αR ≈ 5.5 and the merger and disappearance of two singular strategies
at αR ≈ 6.6. This is what is seen when varying a with b < 0 in the unfolding of
singularity (g) in Fig. 6. We therefore infer that varying αR and βR can lead to the
existence of a singularity (g) in this fitness function.

4 Dimorphism equivalence

In this section, we review the notion of strategy equivalence (see Definition 4.1) devel-
oped in Vutha and Golubitsky (2014). Strategy equivalence preserves ESS and CvSS
singularities of fitness functions. However, we show in Example 4.2 that strategy
equivalence does not always preserve regions of coexistence. We then introduce a
special type of strategy equivalence that does preserve regions of coexistence (The-
orem 1.13), which we call dimorphism equivalence (Definition 1.10). To develop
dimorphism equivalence, we combine strategy equivalence with concepts motivated
by singularity theory with symmetry (see Wang (2015)); the symmetry is just the
transposition (x, y) �→ (y, x).

Definition 4.1 Two fitness functions f and f̂ are strategy equivalent if

f̂ (x, y) = S(x, y) f (�(x, y))
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Fig. 13 Fitness functions f and g are strategy equivalent, but have different dimorphism properties because
f has regions of coexistence and g does not

where

1. S(x, y) > 0 for all x, y.
2. � ≡ (�1,�2) where �i : R2 → R, det(d�)x,y > 0 for all x, y.
3. �(x, x) = (φ(x), φ(x)) for every x where φ : R → R.
4. ∂�1

∂y (x, x) = 0 for every x .

The following is an example of two fitness functions that are strategy equivalent, but
one has regions of coexistence, whereas the other does not. This example implies the
need for a strengthened equivalence relation that also preserves regions of coexistence.

Example 4.2 Consider the fitness functions

f (x, y) = −(y − x)(2x + y) and g(x, y) = −(y − x)(x + 2y). (4.1)

Vutha and Golubitsky (2014, Theorem 5.5) show that f (x, y) and g(x, y) are strategy
equivalent to the normal form h(x, y) = −(y − x)y. However, f has regions of
coexistence, whereas g does not. See the mutual invasibility plots in Fig. 13.

We note that any two fitness functions that are dimorphism equivalent are also
strategy equivalent.

Lemma 4.3 Let g(x, y) = f (y, x) and ĝ(x, y) = f̂ (y, x). Suppose that f (x, y) is
dimorphism equivalent to f̂ (x, y) under (S,�). Then g and ĝ are also dimorphism
equivalent (and hence strategy equivalent) using the same �.

Proof To establish this claim, compute

ĝ(x, y) = f̂ (y, x) = S(y, x) f (�(y, x)) = S(y, x) f (ϕ(y, x), ϕ(x, y))

= S(y, x)g(�(x, y))

So g and ĝ are dimorphism equivalent using the dimorphism equivalence (S(y, x),
�(x, y)). ��
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Vutha and Golubitsky (2014) note that the coordinate changes defined in strategy
equivalence preserve the zero sets of fitness functions. We strengthen that observation
as follows.

Lemma 4.4 If two fitness functions f (x, y) and f̂ (x, y) are dimorphism equivalent,
that is f̂ (x, y) = S(x, y) f (�(x, y)), where (S,�) satisfies Definition 1.10, then

1. �(x, y) maps the zero set of f̂ (x, y) to the zero set of f (x, y);
2. �(x, y) maps the zero set of f̂ (y, x) to the zero set of f (y, x).

Proof Vutha and Golubitsky (2014) observe that if f (x, y) and f̂ (x, y) are strategy
equivalent, then the diffeomorphism � preserves the zero set of f̂ (x, y). That is, �

maps the zero set of f̂ (x, y) to the zero set of f (x, y). Lemma 4.3 implies that f (y, x)
and f̂ (y, x) are also strategy equivalent using the same �, so the diffeomorphism �

preserves the zero set of f̂ (y, x). That is, � maps the zero set of f̂ (y, x) to the zero
set of f (y, x).

Proof of Theorem 1.13 In his thesis Vutha (2013, Proposition 6.6) proves that the
properties ESS, CvSS, NIS, and MIS are preserved under strong strategy equiva-
lence. In fact, every dimorphism equivalence is also a strong strategy equivalence,
and hence these properties are preserved under dimorphism equivalence. Rather than
define strong strategy equivalence, we just include here a direct proof of property
preservation under dimorphism equivalence.

Suppose f has a singularity at (x̄, x̄) and that f̂ = S f . At (x̄, x̄) we have

f̂x x = S fxx
f̂yy = S fyy

f̂ yy − f̂x x = S( fyy − fxx )

f̂ yy + f̂x x = S( fyy + fxx )

Hence, all four properties are preserved between f and f̂ . Next, suppose f̂ = f (�)

where �(x, y) = (ϕ(x, y), ϕ(y, x)). Recall from Definition 1.10 (c) that ϕy(x̄, x̄) ≡ 0
and that ϕx (x̄, x̄) > 0. Since fx (x̄, x̄) = fy(x̄, x̄) = 0, direct calculations show that

fxx (ϕ(x̄, x̄), ϕ(x̄, x̄)) = ϕx (x̄, x̄)
2 fxx (x̄, x̄)

fyy(ϕ(x̄, x̄), ϕ(x̄, x̄)) = ϕx (x̄, x̄)
2 fyy(x̄, x̄) (4.2)

Hence

f̂x x = ϕ2
x fxx

f̂ yy = ϕ2
x fyy

f̂ yy − f̂x x = ϕ2
x ( fyy − fxx )

f̂ yy + f̂x x = ϕ2
x ( fyy + fxx )
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Therefore, all four properties are also preserved between f and f̂ . By combining these
two cases, we see that ESS, CvSS, NIS, and MIS are all preserved under dimorphism
equivalence.

Since S(x, y) > 0 and S(y, x) > 0, it follows from Lemma 4.4 that � maps

{(x, y) : f̂ (x, y) > 0 and f̂ (y, x) > 0}

to

{(x, y) : f (ϕ(x, y), ϕ(y, x)) > 0 and f (ϕ(y, x), ϕ(x, y)) > 0}.

That is, dimorphism equivalence preserves regions of coexistence for fitness functions.
��

Remark 4.5 In fact, we have shown that dimorphism equivalences simultaneously
preserve sgn( f (x, y)) and sgn(g(x, y)), where g(x, y) ≡ f (y, x). Thus, there are four
types of region based on the signs of f (x, y) and g(x, y) and dimorphism equivalence
preserves these types.

5 Tangent spaces

In this section, we discuss the question: when is f +η strongly dimorphism equivalent
to f for a small perturbation η? (Recall that strong dimorphism equivalence is defined
in Definition 1.10). We assume that f and η are fitness functions and (0, 0) is a
singularity for both. To do so, we introduce the restricted tangent space: the subspace
of all fitness functions η that satisfy f + tη is strongly dimorphism equivalent to f
for all small t . We find the general form for the fitness function η in Proposition 5.4.
Using the form of η we state the tangent space constant theorem (Theorem 5.5) in the
context of strong dimorphism equivalence.

We find that the calculations are more easily done in the coordinate system

u = x + y v = x − y w = v2 (5.1)

5.1 The form of fitness functions

Lemma 5.1 Every smooth fitness function f (u, v) has the form

f = p(u, w)w + q(u, w)v,

where p, q : R2 → R are smooth functions.

Proof Every real-valued smooth function a(u, v) can be written in the form

a(u, v) = b(u, w) + c(u, w)v (5.2)
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where b and c are smooth functions. Equation (5.2) just states that every function in
u, v is a sum of an even function in v and an odd function in v. A proof for smooth
functions is given in (Golubitsky and Guillemin 1974, p.108). Let f be a fitness
function. Since f (x, x) = 0 or in (u, v) coordinates f (u, 0) = 0, it follows from (5.2)
that f can be written in the form

f = b(u, w) + q(u, w)v

where b(u, 0) = 0. By Taylor’s Theorem we can write b(u, w) = p(u, w)w. ��
As noted after (2.1) we identify fitness functions f = pw + qv with

[p, q] ∈ E2,

where E is the space of (germs of) smooth real-valued functions in (u, w) coordinates.
Later we use the notation M to indicate the maximal ideal in E consisting of functions
that vanish at the origin.

5.2 Tangent space and restricted tangent Space

Let f be a fitness function with a singularity at the origin. Let �t be a one-parameter
family of dimorphism equivalences such that �0 is the identity equivalence. The
tangent space T( f ) is the set of functions (more precisely, germs at the origin) of the
form

d

dt
�t ( f )

∣
∣
∣
∣
t=0

The restricted tangent space RT( f ) is obtained by assuming that �t is an origin pre-
serving strong dimorphism equivalence. Recall that if the diffeomorphism �t induces
a dimorphism equivalence then �t = (ϕ(x, y, t), ϕ(y, x, t)) where ϕy(x, x, t) = 0.
Also, if �0 = I , then ϕ(x, y, 0) = x . Moreover, if �t is a strong dimorphism equiv-
alence, then ϕx (x, x, t) = 1 and if � is origin preserving, then ϕ(0, 0, t) = 0.

Lemma 5.2 Let�t be a one-parameter family of origin preserving strong dimorphism
equivalence diffeomorphisms with �0 = I . In (u, v) coordinates

ϕ(u, v, t) = ϕe(u, w, t) + ϕo(u, w, t)v

where
ϕy(x, x, t) = 0 ϕx (x, x, t) = 1 ϕ(x, y, 0) = x ϕ(0, 0, t) = 0. (5.3)

Then ϕo and ϕe have the form

ϕe(u, w, t) = 1

2
u+twhe(u, w, t) and ϕo(u, w, t) = 1

2
+twho(u, w, t) (5.4)

where he and ho are arbitrary functions.
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Proof The first two restrictions in (5.3) imply that

ϕo(u, 0, t) = (ϕe)u(u, 0, t) = 1

2
.

Hence

ϕe(u, w, t) = a(t) + 1

2
u + ge(u, w, t)w ϕo(u, w, t) = 1

2
+ go(u, w, t)w.

Restricting to x = y = 0 (equivalently u = v = 0) yields

ϕ(0, 0, t) = a(t) = 0.

Thus

ϕe(u, w, t) = 1

2
u + ge(u, w, t)w ϕo(u, w, t) = 1

2
+ go(u, w, t)w

where ge and go are arbitrary. Finally, restricting to t = 0 yields

x = ϕ(u, v, 0) = 1

2
u + ge(u, w, 0)w + 1

2
v + go(u, w, 0)wv

Since u + v = 2x , it follows that

ge(u, w, 0) + go(u, w, 0)v = 0

But since the first term is even in v and the second term is odd in v, it follows that

ge(u, w, 0) = go(u, w, 0) = 0.

Hence, by Taylor’s Theorem we can factor out a t from ge and go, and (5.4) is verified
where he and ho are arbitrary. ��
Lemma 5.3 Consider the map Z(x, y) = (x j , y j ). Then, in (u, v) coordinates

z(u, v) =
(
u + v

2

) j

ze(u, v) =
(u

2

) j + a(u, w)w

zo(u, v) = j

2

(u

2

) j−1 + b(u, w)w

for some polynomials a and b.

Proof Write Z(x, y) = (z(u, v), z(u,−v)) and z(u, v) = ze(u, w)+z0(u, w)v. Since
x = (u+v)/2 we see that z(u, v) = ( u+v

2 ) j . We decompose z into even and odd parts
by

z(x, y) = 1

2
(x j + y j ) + 1

2
(x j − y j ).
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Converting to uv-coordinates yields

z(u, v) =
(

1

2

) j+1

((u + v) j + (u − v) j ) +
(

1

2

) j+1

((u + v) j − (u − v) j ).

Use the binomial expansion on the even part, note that terms with odd powers in v

cancel, and observe that all terms after the first have a v2 = w factor. Hence

ze(u, w) =
(

1

2

) j

u j + a(u, w)w.

Similarly, use the binomial expansion on the odd part, note that terms with even powers
in v cancel, and observe that all nonzero terms after the first have a v3 = wv factor.
Hence

zo(u, w)v =
(

1

2

) j

ju j−1v + b(u, w)wv.

Therefore, ze and zo have the forms as claimed. ��

Define the submodule I( f ) of E2 by

I( f ) = 〈[p, q], [q, wp], [wpu, wqu], [wp + 2w2 pw, 2w2qw]〉 (5.5)

and the vector subspace of E2 by

V ( f ) = R{u j−1[ j p + upu + 2 jwpw, uqu + 2 jwqw], [pu, qu]} (5.6)

for j = 1, 2, . . ..

Proposition 5.4 Let f = pw + qv, then RT( f ) = I( f ) and T( f ) = I( f ) + V ( f ).

Proof We calculate the two tangent spaces in order.
Computation of RT( f ) The restricted tangent space is obtained using two kinds of

strong dimorphism equivalences

S(x, y, t) f (x, y) and f (ϕ(x, y, t), ϕ(y, x, t)) (5.7)

where S(x, y, 0) = 1 and ϕ satisfies (5.3) and (5.4).
Consider the first type of equivalences in (u, v) coordinates, we can assume that

S = Se(u, w) + So(u, w)v
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where Se(0, 0) > 0. Then the tangent vectors given by this type of equivalences can
be computed by

d

dt
S(x, y, t) f (x, y)

∣
∣
∣
∣
t=0

= Ṡ(x, y, 0) f (x, y)

= (Ṡe + Ṡov)(pw + qv)

= Ṡe(pw + qv) + Ṡo(qw + wpv)

where · is the derivative with respect to t . Since Ṡe and Ṡo are arbitrary functions we
see that the submodule

〈[p, q], [q, wp]〉 ⊂ RT ( f )

Differentiating the second strong dimorphism equivalence in (5.7) with respect to
t and evaluating at t = 0 gives

ϕ̇(x, y, 0) fx (x, y) + ϕ̇(y, x, 0) fy(x, y) (5.8)

where · is the derivative with respect to t and ϕ satisfies the requirements in (5.3).
Since ϕ(y, x, t) = ϕe(u, w, t) − ϕo(u, w, t)v, we compute

u(�(x, y, t)) = 2ϕe v(�(x, y, t)) = 2ϕov w(�(x, y, t) = 4(ϕo)2w (5.9)

Then the tangent vectors given by this type of equivalences can be computed using
(5.9) as

d

dt
f (ϕ(x, y, t), ϕ(y, x, t))

= d

dt
(p(u(�), v(�)2)v(�)2 + q(u(�), v(�)2)v(�))

= d

dt
(4p(2ϕe, 4(ϕo)2w)(ϕo)2w + 2q(2ϕe, 4(ϕo)2w)ϕov)

= 8p1(ϕ
o)2wϕ̇e + 32p2w

2(ϕo)3ϕ̇o + 8pwϕoϕ̇o + 4q1ϕ
ovϕ̇e

+ 16q2wv(ϕo)2ϕ̇o + 2qvϕ̇o

= ϕ̇e(8p1(ϕ
o)2w + 4q1ϕ

ov) + ϕ̇o(32p2w
2(ϕo)3

+ 8pwϕo + 16q2wv(ϕo)2 + 2qv) (5.10)

where pi , qi are the derivative of p, q respect to the i th component (i = 1, 2) and · is
the derivative with respect to t . It follows from (5.4) that ϕo = 1

2 at t = 0. Therefore,

d

dt
f (ϕ(x, y, t), ϕ(y, x, t))

∣
∣
∣
∣
t=0

= 2ϕ̇e(puw+quv)+4ϕ̇o(pww2+pw+qwwv+1

2
qv)

(5.11)
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In addition, it also follows from (5.4) that

ϕ̇e = d

dt
ϕe(u, w, t)

∣
∣
∣
∣
t=0

= he(u, w, 0)w

ϕ̇o = d

dt
ϕo(u, w, t)

∣
∣
∣
∣
t=0

= ho(u, w, 0)w

where he and ho are arbitrary. Hence we can take [wpu, wqu] and [2w2 pw +
2wp, 2w2qw + wq] − [wp, wq] to be the remaining two generators of I( f ) and
RT( f ).

Computation of T( f ) We claim that there are two types of dimorphism equiva-
lence diffeomorphisms that were not used in the computation of RT( f ) above. The
diffeomorphisms are defined by:

�(x, y) = (x + a, y + a)

�(x, y) = (C(x),C(y)). (5.12)

To see this, first let � be a diffeomorphisn inducing a dimorphism equivalence and let
�(0, 0) = (b, b). Let �(x, y) = (x − b, y − b) . Then �� is an origin preserving
diffeomorphism that induces a dimorphism equivalence.

Second, let �(x, y) = (ϕ(x, y), ϕ(y, x)) be an origin preserving diffeomorphism
and let C(x) solve the ODE

C ′(x) = 1

ϕx (C(x),C(x))
.

Let
�(x, y) = (C(x),C(y)) (5.13)

Then �� is a diffeomorphism that induces a strong dimorphism equivalence.
To determine the tangent vector that derives from translations, we compute

d

dt
f (u + a(t), v, t)

∣
∣
∣
∣
t=0

= d

dt
(p(u + a(t), w)w + q(u + a(t), w)v)

∣
∣
∣
∣
t=0

= a′(0)(puw + quv).

It follows that R{[pu, qu]} ⊂ V ( f ).
To determine the tangent vectors that derive from this class of � we write

ψ(u, v, t) = C( 1
2 (u + v), t) as ψ = ψe(u, v, t) + ψo(u, v, t)v, where �(·, ·, 0)

is the identity map. It follows from (5.13) that C(x, 0) = x . Note that we can decom-
pose ψ into even and odd parts by

ψ(x, y, t) = 1

2
(C(x, t) + C(y, t)) + 1

2
(C(x, t) − C(y, t)).
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Hence the odd part at t = 0 is 1
2v and ψo(u, v, 0) = 1

2 . Using (5.11) we see that

d

dt
f (ψ(x, y, t), ψ(y, x, t))

∣
∣
∣
∣
t=0

= 2ψ̇e(puw + quv)

+ 4ψ̇o
(

pww2 + pw + qwwv + 1

2
qv

)

. (5.14)

We now need to determine the forms of ψ̇e and ψ̇o. In fact

ψe = 1

2

(

C

(
u + v

2
, t

)

+ C

(
u − v

2
, t

))

and

ψov = 1

2

(

C

(
u + v

2
, t

)

− C

(
u − v

2
, t

))

Hence

ψ̇e(u, v, 0) = 1

2

(

Ċ

(
u + v

2
, 0

)

+ Ċ

(
u − v

2
, 0

))

and

ψ̇o(u, v, 0)v = 1

2

(

Ċ

(
u + v

2
, 0

)

− Ċ

(
u − v

2
, 0

))

There is one generator of V ( f ) for each j and that generator is given by Ċ(x) = 2 j x j

for j = 1, 2, . . .. It follows from Lemma 5.3 (where Z = Ċ) that there is one generator
of V ( f ) given by

ψ̇e = u j + a(u, w)w and ψ̇o = ju j−1 + b(u, w)w

for some polymialsa andb. We are allowed to alter these generators by adding elements
from I( f ).

From (5.14) the new generators of T( f ) can be taken to be

ψ̇e[pu, qu] + ψ̇o[2pww + 2p, 2qww + q]

Since w[pu, qu] is in the submodule I( f ) we can eliminate a from ψ̇e. Since

w[2wpw + 2p, 2wqw + q] = [wp + 2w2 pw, 2w2qw] + [wp, wq]

is in I( f ), we can eliminate the b from ψ̇o. Therefore, the generators of T( f ) have
the form

u j [pu, qu] + ju j−1[2wpw + 2p, 2wqw + q].

Finally, since [p, q] ∈ I( f ), we can write the generators of T( f ) modulo I( f ) as

u j−1([upu, uqu] + j[2wpw + p, 2wqw]) j = 1, 2, . . .

as claimed in (5.6). ��
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5.3 Modified tangent space constant theorem

The definition of RT ( f ) implies that if f + tη is dimorphism equivalent to f for all
small t, then η ∈ RT ( f ). In the converse direction, we have Theorem 5.5.

Theorem 5.5 (Modified tangent space constant theorem) Let f be a fitness function.
If

RT( f + tη) = RT( f ) f or all t ∈ [0, 1] (5.15)

Then f + tη is strongly dimorphism equivalent to f for all t ∈ [0, 1].
The proof is in Wang (2015). The proof is standard in singularity theory and, for

example, is a small modification of an analogous theorem in bifurcation theory (see
Golubitsky and Schaeffer 1985, Chapter 2, Theorem 2.2).

6 Universal unfoldings under dimorphism equivalence

In this section we sketch the universal unfolding theory of dimorphism equivalence.

Definition 6.1 Let f be a C∞ fitness function R2 → R defined on a neighborhood
of the origin. Then F : R2 × Rk → R is a k-parameter unfolding of f if

F(x, y, 0) = f (x, y) F(x, x, α) = 0

where the parameter α ∈ Rk .

Definition 6.2 Let F(x, y, α) be a k-parameter unfolding of f and let H(x, y, β) be
an l-parameter unfolding of f . We say that H factors through F if there exists maps
S : R2 × Rl → R, � : R2 × Rl → R2, and A : Rl → Rk such that

H(x, y, β) = S(x, y, β)F(�(x, y, β), A(β))

where

1. S(x, y, 0) = 1
2. �(x, y, 0) = (x, y)
3. �(x, y, β) = (ϕ(x, y, β), ϕ(y, x, β)) where ϕ : R2 × Rl → R
4. (d�)x,x,β = c(x, β)I2 where c(x, β) > 0
5. A(0) = 0

Remark 6.3 We do not require that �(0, 0, β) = (0, 0); that is, when β is nonzero,
the equivalence need not preserve the origin.

Definition 6.4 An unfolding F of f is versal if every unfolding of f factors through
F . A versal unfolding depending on the minimum number of parameters is called
universal. That minimum number is called the C∞ codimension of f .

The topological codimension of f is the C∞ codimension of f minus the number
of modal parameters in the universal unfolding F .
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One of the most important results in singularity theory gives necessary and sufficient
conditions for F to be a versal unfolding.

Theorem 6.5 Let F be a k-parameter unfolding of f . Then

• F is a versal unfolding of f if and only if

E2 = T ( f ) + R
{

∂F

∂α1
(x, y, 0), . . . ,

∂F

∂αk
(x, y, 0)

}

(6.1)

• An unfolding F of f is universal if and only if (6.1) is a direct sum.
• The number of parameters in F equals the codimension of T ( f ).
• If f has C∞ codimension k and z1, . . . , zk ∈ E2 are chosen so that

E2 = T ( f ) ⊕ R{z1, . . . , zk}

then

F(x, y, α) = f (x, y) + α1z1(x, y) + · · · + αk zk(x, y)

is a universal unfolding of f .

This theorem is a special case of results in (Damon 1984, Sect. 9). By applying
Theorem 6.5, we obtain a universal unfolding for each normal form in Theorem 2.3
with direct calculations. The details are given in Table 6.

7 Singularity theory proofs

This section addresses two issues: the solution to the recognition problems of singular-
ities in Theorem 2.3 (Sect. 7.2) and the recognition problem for universal unfoldings
(Sect. 7.3). The resolution of both issues uses Nakayama’s Lemma (Lemma 7.1) and
the notion of intrinsic submodules (Definition 7.2). These techniques are introduced
in Sect. 7.1.

7.1 Intrinsic submodules

We apply the modified tangent space constant theorem (Theorem 5.5) to solve the
recognition problems for low codimension singularities. The proof requires the calcu-
lation of the finitely generated submodule I( f ) ⊂ E2, where E is the ring of (germs
of) functions z(u, w) (defined on a neighborhood of the origin). We use Nakayama’s
Lemma (cf. Golubitsky and Schaeffer 1985, Chapter 2), which we now state, to per-
form these calculations. Recall thatM ⊂ E is the maximal ideal consisting of function
germs that vanish at the origin.

Lemma 7.1 (Nakayama’s Lemma) Let I, J ⊂ E2 be finitely generated E-modules.
Then

I ⊂ J if and only if I ⊂ J + MI
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Table 6 Universal unfoldings and tangent space for all singularities up to topological codimension two

Normal form h TC T (h) Universal unfolding H

(a) ε(w + μ0uv) 0 [M,M2 + 〈w〉] +
R{[1, μ0u], [0, 1]}

ε(w + μuv)

(b) ε(w + uv) 1 [M,M2 + 〈w〉] +
R{[1, u], [0, 1]}

ε(w + μuv)

(c) ε(w − uv) 1 [M,M2 + 〈w〉] +
R{[1, −u], [0, 1]}

ε(w + μuv)

(d) ε(δw2 + uv) 1 [M,M] + R{[0, 1]} ε((a + δw)w + uv)

(e) ε(w + (δu2 + γ0u
3)v) 1 [M2 + 〈w〉,M4 +

〈w〉] + R{[1, δu2 +
γ0u

3],

ε(w + (a + δu2 + γ u3)v)

[1, 2δu2 +
3γ0u

3], [u, δu3],
[0, 2δu + 3γ0u

2]}
(f) ε(δw3 + uv) 2 [M2, M] +

R{[0, 1], [u, 0]}
ε((a + bw + δw2)w + uv)

(g) ε(w + (δu3 + λ0u
5)v) 2 [M3 + 〈w〉, M6 +

〈w〉] + R{[1, δu3 +
λ0u

5],

ε(w + (a + bu + δu3 + λu5)v)

[1, 3δu3 +
5λ0u

5], [u2, δu5],
[u, 0], [0, u4], [0, u2]}

(h) ε(uw + (α0w + β0u
2)v) 2 [M2 + 〈w〉,M3 +

M〈w〉] +
R{[u, α0w +
β0u

2], [1, 2β0u]}

ε((a + u)w + (b + αw + βu2)v)

Definition 7.2 An ideal P ⊂ E is intrinsic if p(�) ∈ P whenever � is a dimorphism
equivalence and p ∈ P . A submodule K ⊂ E2 is intrinsic if γ ([p, q]) ∈ K whenever
γ is a dimorphism equivalence and [p, q] ∈ K.

Note that sums and products of intrinsic ideals are intrinsic and that M and 〈w〉 are
intrinsic ideals. Note also that sums and products of intrinsic submodules are intrinsic.
Specifically:

Proposition 7.3 Let P, Q ⊂ E be intrinsic ideals. Then the submodule [P, Q] ⊂ E2

is intrinsic if Q ⊂ P and 〈w〉P ⊂ Q.

Proof Let S = Se + Sov and � = (ϕe + ϕov, ϕe − ϕov), where Se, So, ϕe, ϕo ∈ E .
Assume

f = pw + qv = [p, q] ∈ [P, Q].

Then

S f = [Se p + Soq, Seq + So pw] and

f ◦ � = [p(2ϕe, 4(ϕo)2w)4(ϕo)2, q(2ϕe, 4(ϕo)2w)2ϕo]

are in [P, Q]. ��
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Corollary 7.4 The modules ws[Mk,Mk] and ws[Mk,Mk+1] are intrinsic, where
k and s are non-negative integers. In addition, all K listed in Table 7 are intrinsic
submodules.

Lemma 7.5 Suppose K ⊂ I( f ) is intrinsic and η ∈ K. Then RT( f + sη) = RT( f )
for all s and f + η is strongly dimporphism equivalent to f .

Proof Let f = p f w + q f v, η = pηw + qηv, and

z( f ) =

⎛

⎜
⎜
⎝

[p f , q f ]
[q f , wp f ]

[wp f
u , wq f

u ]
[wp f + 2w2 p f

w, 2w2q f
w]

⎞

⎟
⎟
⎠

We claim that RT(η) ⊂ RT( f ). Note that any term r ∈ RT(η) falls in the form

r = d

dt
�t (η)

∣
∣
∣
∣
t=0

Since η ∈ K and K is intrinsic, we know that �t (η) ∈ K. Therefore, r ∈ K. Hence
we have proved the claim that RT(η) ⊂ RT( f ). This means that z(η) can be written
as a combination of z( f ). Assume that

z(η) = Az( f )

where A is a 4 × 4 matrix. Then we know,

z( f + sη) = z( f ) + sz(η) = z( f ) + s Az( f ) = (I + s A)z( f )

where I is identity matrix. Note that when s = 0, I +s A = I is invertible. Thus, when
s is small enough, say s ≤ s0, we know that I + s A is also invertible. Therefore, when
s is sufficiently small, z( f + sη) and z( f ) are two different basis of same submodule.
That is,

RT( f + sη) = RT( f )

We claim that we can always increase s0 and hence the lemma is valid for all s.
Let g = f + s0η. Then K ⊂ I(g) since g is dimorphism equivalent to f and K
is intrinsic. Apply the same argument to g. Finally apply the modified tangent space
constant theorem (Theorem 5.5) to conclude that f + η is equivalent to f . ��

7.2 Proof of Theorem 2.3

The necessity is straightforward, see Wang (2015) for details. We present here the
proof of sufficiency. We begin with an overview of the method of proof. Generally, for
each fitness function f we follow a two step procedure to determine a normal form h
for f .
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Table 7 The restricted tangent space for the singularities up to topological codimension two

Normal form h TC K RT (h) = I(h)

(a) ε(w + μ0uv) 0 [M, M2 + 〈w〉] K ⊕ R{[1, μ0u]}
(b) ε(w + uv) 1 [M, M2 + 〈w〉] K ⊕ R{[1, u]}
(c) ε(w − uv) 1 [M, M2 + 〈w〉] K ⊕ R{[1, −u]}
(d) ε(δw2 + uv) 1 [M2, M2] K⊕R{[δw, u], [u, 0], [0, w]}
(e) ε(w + (δu2 + γ0u

3)v) 1 [M3 + 〈w〉,M5 + M〈w〉] K ⊕ R{[δu2, w], [u2, δu4],
[1, δu2 + γ0u

3], [u, δu3 +
γ0u

4]}
(f) ε(δw3 + uv) 2 [M3,M3] [M3 + 〈u〉,M2 + 〈w〉] ⊕

R{[δw2, u]}
(g) ε(w + (δu3 + λ0u

5)v) 2 [M5 + 〈w〉, K ⊕ R{[1, δu3 +
λ0u

5], [u, δu4 +
λ0u

6], [δu4, uw]
M8 + M2〈w〉 + 〈w2〉] [u2, δu5 +

λ0u
7], [u3, δu6], [u4,

δu7], [δu3, w]}
K ⊕ R{[u, α0w +

β0u
2], [u2, α0uw + β0u

3],
(h) ε(uw + (α0w + β0u

2)v) 2 [M4 + M2〈w〉 + 〈w2〉, [u3, α0u
2w + β0u

4], [α0w +
β0u

2, uw], [uw, 2α0w2],
M5 + M3〈w〉 + M〈w2〉] [α0uw +

β0u
3, u2w], [w, 2β0uw],

[uw, 2β0u
2w]}

TC topological codimension, RT(h) restricted tangent space of h

• Step 1: we find an intrinsic submodule K ⊂ RT( f ) such that f + η is strongly
dimorphism equivalent to f for any η ∈ K. Then we reduce f to a polynomial g
that is dimorphism equivalent to f . Table 7 provides the details of the submodule
K and the restricted tangent space RT( f ) for each singularity up to topological
codimension two.

• Step 2: we find specific dimorphism equivalences that transform g into a normal
form h. These calculations can be performed modulo K because no η ∈ K will
change the dimorphism equivalence class.

When proving this theorem we use Mathematica for many of these calculations. We
set notation before giving the details of the proof of Theorem 2.3. Let f = pw + qv

be a fitness function and let

p =
∞
∑

i, j=0

pi j u
iw j q =

∞
∑

i, j=0

qi j u
iw j

where pi j = 1
i ! j ! puiw j (0, 0) and qi j = 1

i ! j !quiw j (0, 0). Recall that

RT( f ) = I( f ) = 〈[p, q], [q, wp], [wpu, wqu], [wp + 2w2 pw, 2w2qw]〉
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A general dimorphism transformation (S,�) is denoted as

S = Se(u, w) + So(u, w)v � = (ϕe(u, w) + ϕo(u, w)v, ϕe(u, w) − ϕo(u, w)v)

Now we prove the sufficiency of Theorem 2.3 for singularities of topological codi-
mension ≤ 2.

(a) Assume q00 = 0, q10 �= 0, p00 �= 0, and let K = [M,M2 + 〈w〉]. We show
K ⊂ I( f ) + MK and apply Nakayama’s Lemma to conclude K ⊂ I( f ).
Calculation modulo MK yields

w[p, q] ≡ [p00w, 0] = γ1 ∈ I( f ) + MK
[wpu, wqu] ≡ [p10w, q10w] = γ2 ∈ I( f ) + MK

[q, wp] ≡ [q10u + q01w, p00w] = γ3 ∈ I( f ) + MK
u[p, q] ≡ [p00u, q10u2] = γ4 ∈ I( f ) + MK

We claim that γ1, . . . , γ4 is a basis of the linear space L generated by

〈[u, 0], [w, 0], [0, w], [0, u2]〉

because the transition matrix has determinant q3
10 p00 �= 0. Since the γ j generate

K, we can conclude that K ⊂ I( f ) + MK, as desired. Proposition 7.5 implies
that K is an intrinsic submodule and Lemma 7.5 implies that f + η is strongly
dimorphism equivalent to f for any η ∈ K. So we know that f is dimorphism
equivalent to g = p00w + q10uv. Let ε = sgn(p00). Using the transformation
(S,�) = ( ε

p00
, I ) where I is 2 × 2 identity matrix, we see that g is dimorphism

equivalent to h = ε(w + μ0uv) where μ0 = qu
p and ε = sgn(p).

(b) and (c) Note that singularity (b) and (c) are special cases of singularity (a) and
share the normal form of (a) when μ0 = ±1. The proof is the same if we
replace μ0 = ±1.

(d) Assume q00 = p00 = 0, p10 �= 0, p01q10 − p10q01 �= 0, and let K = [M2,M2].
We showK ⊂ I( f )+MK and apply Nakayama’s Lemma to concludeK ⊂ I ( f ).
Calculation modulo MK yields

u[p, q] ≡ [p10u2 + p01uw, q10u2 + q01uw] = γ1 ∈ I( f ) + MK
w[p, q] ≡ [p10uw + p01w

2, q10uw + q01w
2] = γ2 ∈ I( f ) + MK

u[q, wp] ≡ [q10u2 + q01uw, 0] = γ3 ∈ I( f ) + MK
w[q, wp] ≡ [q10uw + q01w

2, 0] = γ4 ∈ I( f ) + MK
u[wpu, wqu] ≡ [p10uw, q10uw] = γ5 ∈ I( f ) + MK
w[wpu, wqu] ≡ [p10w

2, q10w
2] = γ6 ∈ I( f ) + MK

We claim that γ1, . . . , γ6 is a basis of the linear space L generated by

〈[u2, 0], [uw, 0], [w2, 0], [0, u2], [0, uw], [0, w2]〉
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because the transition matrix has determinantq4
10(p10q01−p01q10) �= 0. Since the

γ j generateK, we can conclude thatK ⊂ I( f )+MK, as desired. Proposition 7.5
implies that K is an intrinsic submodule and Lemma 7.5 implies that f + η is
strongly dimorphism equivalent to f for any η ∈ K. So we know that f is
dimorphism equivalent to g = (p10u + p01w)w + (q10u + q01w)v. Let ε =
sgn(q10), δ = sgn(p01q10 − p10q01). Using the transformation (S,�) where

Se =δ (p01q10 − p10q01)

εq3
10

So = − p10(
√

δ (p01q10 − p10q01))

εq3
10

ϕe =εq10(
√

δ(p01q10 − p10q01)u − q01w)

2δ(p01q10 − p10q01)
ϕo = εq10

2
√

δ(p01q10 − p10q01)

we see that g is dimorphism equivalent to h = ε(δw2 + uv), where ε = sgn(qu),
δ = sgn(pwqu − puqw).

(e) Assume q00 = q10 = 0, p00 �= 0, q20 �= 0, and let K = [M3 + 〈w〉,M5 +
M〈w〉]. We show K ⊂ I( f ) +MK and apply Nakayama’s Lemma to conclude
K ⊂ I ( f ). Calculation modulo MK yields

w[q, wp] ≡ [0, p00w
2] = γ1 ∈ I( f ) + MK

w[wp + 2w2 pw, 2w2qw] ≡ [p00w, 2q01w
2] = γ2 ∈ I( f ) + MK

[wpu, wqu] ≡ [p10w, 2q20uw + q11w
2] = γ3 ∈ I( f ) + MK

u[q, wp] ≡ [q20u3, p00uw] = γ4 ∈ I( f ) + MK
u3[p, q] ≡ [p00u3, q20u5] = γ5 ∈ I( f ) + MK

We claim that γ1, . . . , γ5 is a basis of the linear space L generated by

〈[u3, 0], [w, 0], [0, u5], [0, uw], [0, w2]〉

because the transition matrix has determinant p2
00q

3
20 �= 0. Since the γ j generate

K, we can conclude that K ⊂ I( f ) + MK, as desired. Proposition 7.5 implies
that K is an intrinsic submodule and Lemma 7.5 implies that f + η is strongly
dimorphism equivalent to f for any η ∈ K. So we know that f is dimorphism
equivalent to g = (p00 + p10u + p20u2)w + (q20u2 + q01w + q30u3 + q40u4)v.
Let ε = sgn(p00), δ = sgn(

q20
p00

). Using the transformation (S,�) where

Se = q2
20

εp3
00

− εq01q20

δp3
00

u + −6p2
00q40 + 5p20 p00q20 + 6p10 p00q30 − 5p2

10q20 − 5q01q2
20ε

εp3
00q20

u2

So = − q01q20

εδp3
00

ϕe = δp00

2q20
u + δp00

(

p2
00q40 − p20 p00q20 − p10 p00q30 + p2

10q20 + q01q2
20

)

2q4
20

u3

ϕo = δp00

2q20
+ 3δp00

(

p2
00q40 − p20 p00q20 − p10 p00q30 + p2

10q20 + q01q2
20

)

2q4
20

u2

123

Author's personal copy



Singularity theory of fitness functions under...

we see that g is dimorphism equivalent to h = ε(w + (δu2 + γ0u3)v), where
γ0 = 2pquuu−6quu pu

3q2
uu

, ε = sgn(p), δ = sgn(
puu
p ).

(f) Assume p00 = q00 = p10q01 − p01q10 = 0, q10 �= 0, �1 �= 0 (�1 =
2q2

10(q10 p02 − p10q01) + 2q2
01(q10 p20 − p10q20) − 2q10q01(q10 p11 − p10q11)),

and let K = [M3,M3]. We show K ⊂ I( f ) + MK and apply Nakayama’s
Lemma to conclude K ⊂ I ( f ). Calculation modulo MK yields

u2[p, q] ≡ [p10u3 + p01u2w, q10u3 + q01u2w] = γ1 ∈ I( f ) + MK
u2[q, wp] ≡ [q10u3 + q01u2w, 0] = γ2 ∈ I( f ) + MK
uw[q, wp] ≡ [q10u2w + q01uw2, 0] = γ3 ∈ I( f ) + MK
w2[q, wp] ≡ [q10uw2 + q01w

3, 0] = γ4 ∈ I( f ) + MK
u2[wpu, wqu] ≡ [p10u2w, q10u2w] = γ5 ∈ I( f ) + MK
uw[wpu, wqu] ≡ [p10uw2, q10uw2] = γ6 ∈ I( f ) + MK
w2[wpu, wqu] ≡ [p10w

3, q10w
3] = γ7 ∈ I( f ) + MK

Further we have

w[p, q] ≡ [p10uw + p01w
2 + p20u2w + p11u2w + p02w

2,

q10uw + q01w
2 + q20u2w + q11u2w + q02w

2] = ξ1 ∈ I( f ) + MK
u[wpu, wqu] ≡ [p10uw + 2p20u2w + p11uw2,

q10uw + 2q20u2w + q11uw2] = ξ2 ∈ I( f ) + MK
w[wpu, wqu] ≡ [p10w

2 + 2p20uw2 + p11uw3,

q10w
2 + 2q20uw2 + q11uw3] = ξ3 ∈ I( f ) + MK

Let

γ8 = q10ξ1 − q10ξ2 − q01ξ3

= [−q10 p20u2w − 2q10 p20uw2 + (q10 p02 − q01 p11)w
3,

−q10q20u2w − 2q10q20uw2 + (q10q02 − q01q11)w
3] ∈ I( f ) + MK

We claim that γ1, . . . , γ8 is a basis of the linear space L generated by

〈[u3, 0], [u2w, 0], [uw2, 0], [w3, 0], [0, u3], [0, u2w], [0, uw2], [0, w3]〉

because the transition matrix has determinant − 1
2q

5
10�1 �= 0. Since the γ j gen-

erate K, we can conclude that K ⊂ I( f ) + MK, as desired. Proposition 7.5
implies that K is an intrinsic submodule and Lemma 7.5 implies that f + η is
strongly dimorphism equivalent to f for any η ∈ K. So we know that f is dimor-
phism equivalent to (p10u + p01w + p20u2 + p11uw + p02w

2)w + (q10u +
q01w + q20u2 + q11uw + q02w

2)v. Let ε = sgn(q10), δ = sgn(�1). Using the
transformation (S,�) where

Se = ε

�̃2q10
− q20ε

�̃q2
10

u

So = − p10ε

�̃q2
10

− ε (p20q10 − 2p10q20)

q3
10

u
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+ �̃ε
(

2p20q01q10 − p11q2
10 + p10q11q10 − 2p10q01q20

)

q4
10

w

ϕe =1

2

(

�̃u − �̃2q01

q10
w + �̃3

(

p2
10 − q10q11 + 2q01q20

)

q2
10

uw

−�̃4
(

q20q2
01 − q10q11q01 + q02q2

10

)

q3
10

w2

)

ϕo =1

2
�̃

we see that g is dimorphism equivalent to h = ε(δw3 + uv), where ε = sgn(p),
δ = sgn(�1).

(g) Assume q = q10 = q20 = 0, p �= 0, q30 �= 0, and let K = [M5 + 〈w〉,M8 +
M2〈w〉 + 〈w2〉]. We show K ⊂ I( f ) + MK and apply Nakayama’s Lemma to
conclude K ⊂ I ( f ). Calculation modulo MK yields

w[q, wp] ≡ [0, p00w
2] = γ1 ∈ I( f ) + MK

[wp + 2w2 pw, 2w2qw] ≡ [p00w, 2q01w
2] = γ2 ∈ I( f ) + MK

[wpu, wqu] ≡ [p10w, q11w
2 + 3q30u2w] = γ3 ∈ I( f ) + MK

u2[q, wp] ≡ [q30u5, p00u2w] = γ4 ∈ I( f ) + MK
u5[p, q] ≡ [p00u5, q30u8] = γ5 ∈ I( f ) + MK

We claim that γ1, . . . , γ5 is a basis of the linear space L generated by

〈[u5, 0], [w, 0], [0, u8], [0, u2w], [0, w2]〉

because the transition matrix has determinant 3p2
00q

3
30 �= 0. Since the γ j generate

K, we can conclude that K ⊂ I( f ) + MK, as desired. Proposition 7.5 implies
that K is an intrinsic submodule and Lemma 7.5 implies that f + η is strongly
dimorphism equivalent to f for any η ∈ K. So we know that f is dimorphism
equivalent to g = (p00 + p10u + p20u2 + p30u3 + p40u4)w + (q01w + q11uw +
q30u3 + q40u4 + q50u5 + q60u6 + q70u7)v. Let ε = sgn(p00), δ = sgn(

q30
p00

).
Using the transformation (S,�) where

Se =q30εδ

p2
00

+ ε
4p00q40 − 5p10q30

√

p5
00q30δ

u

+ ε

(

16p2
10q

2
30 − p00 p20q2

30 − 27p00 p10q40q30 + 12p2
00q

2
40

)

p3
00q

2
30

u2

So = − εq01

√

q30δ

p5
00

+ ε
4p10q01q30 − p00q11q30 − 2p00q01q40

p3
00q30

u

123

Author's personal copy



Singularity theory of fitness functions under...

ϕe =1

2
(

√
p00

q30δ
u + δ

p10q30 − p00q40

q2
30

u2)

ϕo =1

2
(

√
p00

q30δ
+ 2δ

p10q30 − p00q40

q2
30

u)

we see that g is dimorphism equivalent to g̃ = (ε + p̃30u3 + p̃40u4)w + (εδu3 +
q̃50u5 + q̃60u6 + q̃70u7)v, where q̃50 = ε

−p20q2
30+p10q30q40−p00q2

40+p00q30q50

q3
30

. Next

we apply a second transformation (S,�) where

Se = 1 + (7ε p̃30 − 8εδq̃60)u
3 + (4ε p̃40 − 5εδq̃70)u

4

So = 0

ϕe = 1

2
(u + (ε p̃30 − εδq̃60)u

4 + (ε p̃40 + εδq̃70)u
5)

ϕo = 1

2
(1 + 4(ε p̃30 − εδq̃60)u

3 + 5(ε p̃40 + εδq̃70)u
4)

we show that g̃ is dimorphism equivalent to h = ε(w+(δu3 +λ0u5)v) where ε =
sgn(p), δ = sgn(

quuu
p ) and λ0 = −120puuq2

uuu+60puquuuquuuu−15pq2
uuuu+12pquuuquuuuu

40q3
uuu

.

(h) Assume p00 = q00 = q10 = 0, q01 �= 0, p10 �= 0, q20 �= 0, p2
10 − 4q20q01 �= 0,

and let K = [M4 + M2〈w〉 + 〈w2〉,M5 + M3〈w〉 + M〈w2〉]. We show K ⊂
I( f ) +MK and apply Nakayama’s Lemma to conclude K ⊂ I ( f ). Calculation
modulo MK yields

u3[p, q] ≡ [p10u4, q01u3w + q20u5] = γ1 ∈ I( f ) + MK
w2[p, q] ≡ [0, q01w

3] = γ2 ∈ I( f ) + MK
u2[q, wp] ≡ [q01u2w + q20u4, p10u3w] = γ3 ∈ I( f ) + MK
w[q, wp] ≡ [q01w

2 + q20u2w, p10uw2 + p01w
3] = γ4 ∈ I( f ) + MK

u2[wpu, wqu] ≡ [p10u2w, 2q20u3w] = γ5 ∈ I( f ) + MK
w[wpu, wqu] ≡ [p10w

2, 2q20uw2 + q11w
3] = γ6 ∈ I( f ) + MK

u[wp + 2w2 pw, 2w2qw] ≡ [p10u2w, 2q01uw2] = γ7 ∈ I( f ) + MK

We claim that γ1, . . . , γ7 is a basis of the linear space L generated by

〈[u4, 0], [w2, 0], [u2w, 0], [0, uw2], [0, u3w], [0, w3], [0, u5]〉

because the transition matrix has determinant 2p10q01q3
20(p

2
10 − 4q01q20) �= 0.

Since the γ j generate K, we can conclude that K ⊂ I( f ) + MK, as desired.
Proposition 7.5 implies that K is an intrinsic submodule and Lemma 7.5 implies
that f +η is strongly dimorphism equivalent to f for any η ∈ K. So we know that
f is dimorphism equivalent to g = (p10u+ p01w+ p20u2 + p11uw+ p30u3)w+
(q01w+q20u2 +q11uw+q02w

2 +q30u3 +q21u2w+q40u4)v. Let ε = sgn(p10).
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Using the transformation (S,�) where

Se =ε

(

1

p10
− 4p20 p2

10q20 − 5p3
10q30−4p10q11q2

20+16p10q01q20q30+8p01q3
20 − 8p20q01q2

20

p2
10q20

(

4q01q20 − p2
10

) u

)

So =2p01q2
20 + 2p20q01q20 − p10q11q20 − p10q01q30

εp10q20
(

4q01q20 − p2
10

)

ϕe = 1

2

(

u − p01 p2
10q20 − p10q01q11q20 − p10q2

01q30 − 2p01q01q2
20 + 2p20q2

01q20

p10q20
(

p2
10 − 4q01q20

) w

−−q30 p3
10 + p20 p2

10q20 − p10q11q2
20 + 3p10q01q20q30 + 2p01q3

20 − 2p20q01q2
20

p10q20
(

p2
10 − 4q01q20

) u2

)

ϕo = 1

2

(

1 − 2
−q30 p3

10 + p20 p2
10q20 − p10q11q2

20 + 3p10q01q20q30 + 2p01q3
20 − 2p20q01q2

20

p10q20
(

p2
10 − 4q01q20

) u

)

we see that g is dimorphism equivalent to g̃ = ( p̃10u + p̃11uw + p̃30u3)w +
(q̃01w + q̃20u2 + q̃02w

2 + q̃21u2w + q̃40u4)v, where p̃10 = ε, q̃01 = ε
q01
p10

,

q̃20 = ε
q20
p10

. Next we apply another transformation (S, �) where

Se = 1 − q̃02

q̃01
w So = −5 p̃30q̃20 − 7 p̃10q̃40

5q̃2
20

u

ϕe = 1

2

(

u − q̃40

5q̃20
u3

)

ϕo = 1

2

(

1 − 3q̃40

5q̃20
u2

)

It is seen that g̃ is dimorphism equivalent to ḡ = ( p̄10u + p̄11uw)w + (q̄01w +
q̄20u2 + q̄21u2w)v where p̄10 = p̃10, q̄01 = q̃01, q̄20 = q̃20. At last, we use a
third transformation (S, �) where

Se = 1 − p̄10q̄21 − 2 p̄11q̄20

p̄10q̄01
u2 So = 0

ϕe = 1

2

(

u − p̄11

p̄10
uw

)

ϕo = 1

2

we see that ḡ is dimorphism equivalent to h = ε(uw + (α0w + β0u2)v), where
ε = sgn(pu), α0 = qw

pu
, β0 = quu

2pu
.

7.3 Recognition problem for universal unfoldings

Consider the following: Let F(x, y, α) be an unfolding of a fitness function f (x, y),
where f is dimorphism equivalent to a normal form h. When is F a universal unfolding
of f ? The answer to this question is important in applications. We follow Golubitsky
and Schaeffer (1985).
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Let γ = (S,�) be a dimorphism equivalence. That is, S and � satisfy conditions
in Definition 1.10. Denote

γ (h)(x, y) = S(x, y)h(�(x, y))

Lemma 7.6 Suppose f = γ (h). Then T ( f ) = γ (T (h)).

Proof Define a smooth curve of dimorphism equivalences δt at h as

δt (h) = S(x, y, t)h(�(x, y, t))

where S,� vary smoothly in t . Assume that δ0 is the identity map; that is, S(x, y, 0) =
1 and �(x, y, 0) = (x, y). In other words g = d

dt δt (h)|t=0 is a typical member of
T (h). By direct calculation,

γ (g)=γ
d

dt
δt (h)|t=0 = d

dt
γ (δt (h))|t=0 = d

dt
γ δtγ

−1γ (h)|t=0 = d

dt
γ δtγ

−1( f ))|t=0

Let δ̂t = γ δtγ
−1. Then δ̂0 is the identity and

γ (g) = d

dt
δ̂t ( f )|t=0.

In other words, γ (g) ∈ T ( f ) and γ (T (h)) ⊂ T ( f ). Interchanging the roles of f and
h shows that T ( f ) ⊂ γ (T (h)) and equality holds, as claimed. ��

Let h be a normal form of f = [p, q]. We calculate necessary conditions for F to
be a universal unfolding of f when f = γ (h), as follows:

(a) Write T (h) = J ⊕ Vh where J is intrinsic.
(b) Using Lemma 7.6 and the fact that J is intrinsic, write T ( f ) = J ⊕ V f .
(c) By Theorem 6.5, F is a k-parameter universal unfolding of f if and only if

E2 = J ⊕ V f ⊕ R{Fα1 , . . . , Fαk }

(d) A complementary space to J always consists of dim(V f ) + k dimensions. We
can choose a basis for V f in terms of [p, q] and its derivatives. Then we solve the
problem by writing the Taylor coefficients of this basis and Fα j in the monomials
that are not in J . It follows that F is a universal unfolding of f if and only if this
matrix has a nonzero determinant.

Lemma 7.7 Suppose f is dimorphism equivalent to h = w2 + uv, and F =
P(u, w, α)w+Q(u, w, α)v is a 1-parameter unfolding of f = p(u, w)w+q(u, w)v.
Then F is a universal unfolding of f if and only if

puQα − qu Pα �= 0

at u = v = α = 0.
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Proof Table 6 shows T (h) = [M,M] + R{[0, 1]}. Note that [M,M] is intrinsic.
We want to write

T ( f ) = [M,M] ⊕ V f

Since f is dimorphism equivalent to h, we know at (0, 0)

q = 0, p = 0 qu �= 0 pwqu − puqw �= 0

Therefore,

T ( f ) = [M,M] + R{[pu, qu]}

The universal unfolding Theorem 6.5 implies that F is a one-parameter universal
unfolding of f if and only if

R{[pu, qu], [Pα, Qα]}

spans R{[1, 0], [0, 1]}. That is

det

(

pu qu
Pα Qα

)

= puQα − qu Pα �= 0

The solution of the recognition problems for the other singularities of low codi-
mension are discussed in Wang (2015).
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