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Abstract. We study a periodically forced system of ODEs near a point of Hopf bifurcation, where the forcing is
pure harmonic, has small amplitude ¢, and has forcing frequency wr that is near the Hopf frequency
wp . In this system we vary the forcing frequency and determine all small amplitude periodic solutions
to the forced system that have frequency wr. In other words, we determine how the number of 5—“—
periodic solutions to the forced system changes with wr. This problem is complicated because of the
existence of three small parameters: the amplitude of the forcing ¢, the deviation of the bifurcation
parameter from the point of Hopf bifurcation A, and the relative deviation of the forcing frequency
from the Hopf frequency w = “’Fw;“’f’ Our results are presented in terms of bifurcation diagrams
of amplitude of periodic solution versus w for fixed ¢ and A\. We assume that the unforced system
has a supercritical Hopf bifurcation at A\ = 0 and that the coefficient of the cubic term of the Hopf
bifurcation normal form is yg + iy7. We find that the qualitative form of the bifurcation diagrams
depends on v = «y7/vr. For example, if A\ < 0 (so that the equilibrium is stable and there are no
small amplitude periodic solutions in the unforced system), then multiplicity of periodic solutions
of the forced system occurs in the bifurcation diagrams precisely when || > /3.
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1. Introduction. We study a periodically forced system of ODEs near a point of Hopf
bifurcation, where the forcing is pure harmonic with small amplitude € and frequency wr. We
assume that wp is close to the Hopf frequency wy. We determine the number of all small
amplitude periodic solutions of the forced system that have frequency wr as wg is varied. In
other words, we examine the influence of the forcing frequency wg on the number of periodic
solutions to the forced system with frequency wg. This problem is complicated because of
the existence of three small parameters: the amplitude of the forcing e, the deviation of the
bifurcation parameter from the point of Hopf bifurcation A, and the relative deviation of the
forcing frequency from the Hopf frequency w = %

The Introduction is divided into five parts: background on forced systems near Hopf
bifurcation, our main result, the methods we use, some remarks about stability of solutions,

and an overview of the structure of the paper.
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Background. The problem of periodically forced Hopf bifurcation has been studied by
many authors [1, 2, 5, 7, 12, 14, 16, 17]. Before describing our results in detail, we describe
some of this previous work. Bogoliubov and Mitropolsky [2] give numerous examples of
periodically forced systems whose approximate solutions are obtained via multiple methods
such as perturbation and spectral methods. However, all systems studied in [2] were assumed
to have specific forms in the equations (such as the van der Pol equation) and specific forms
in the forcing. Namachchivaya and Ariaratnam [16] considered stability and bifurcation of
solutions in the case of subharmonic resonance, that is, wp = 2wpy. Specifically, they applied
the method of averaging to study a two-dimensional autonomous system coupled with simple
harmonic forcing. The papers [1, 12, 14, 17] studied harmonic resonance where wp ~ wpy.
Periodic solutions were obtained by a perturbation method by Rosenblat and Cohen [17] and
Kath [14], the method of alternative problems by Bajaj [1], and the idea of second-order
integral averaging by Gross [12]. Bifurcation diagrams were also considered by these authors.
However, [1, 12, 14, 17] worked only on systems with specific forms. As a consequence, their
results cannot be applied to general systems directly.

Gambaudo [7] and Elphick, Tooss, and Tirapegui [5] studied dynamics of the forced system
without assuming specific forms of the ODEs or the forcing. Gambaudo [7] considered a
periodically forced two-dimensional system that is near a Hopf bifurcation point. He took
advantage of the weakly nonlinear coordinate changes of Iooss [13] and the Poincaré map
to transform the forced system to a normal form, and then determined the dynamics and
bifurcations by analyzing the normal form. It is worth remarking that the dynamics and
bifurcation diagrams shown in [7] were given in the parameter space whose coordinates are
functions of the forcing amplitude e, the Hopf bifurcation parameter A in the unforced system,
and the frequency deviation w. In other words, Gambaudo mixed up parameters ¢, A, and w.
Moreover, he did not consider w as the distinguishing parameter in his study. Elphick, looss,
and Tirapegui [5] used center manifold theory and Fourier transformations to derive a general
amplitude equation for periodic solutions of the system periodically forced near a point of Hopf
bifurcation. They [5] claimed but did not prove that the higher-order terms of the amplitude
equation do not affect the dynamics of the forced system. In [8], Glendinning and Proctor
used a normal form to derive bifurcations. But, as for Gambaudo [7], they did not examine
the effect of small changes of w on the number of periodic solutions.

In the studies mentioned above, these researchers did not investigate the problem of finding
all possible bifurcation diagrams of amplitude of periodic solutions of the system versus w.
However, this problem has interested researchers in recent years. For example, Eguiluz et al. [4]
studied the effect of w on periodic responses in the hearing system. But the normal form they
used is not generic: they assumed that the cubic term of the normal form has a real coefficient.
Montgomery, Silber, and Solla [15] used a generic normal form to study the influence of w
on hearing. They found multiplicity of periodic responses numerically, but they did not
determine all possible bifurcation diagrams. In this paper, we both prove the validity of a
truncated normal form and classify all bifurcation diagrams of amplitude of periodic solutions
versus w for fixed A and e.

Results. In this paper we obtain generic results about periodically forced autonomous
systems near a point of Hopf bifurcation. Specifically, we consider the system

(1.1) &= F(x,G(t),\),
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(a) 0 <y < V3. (b) v > /3.

Figure 1. Bifurcation diagrams of R = amplitude of periodic solution squared versus w ~ 0 for fized € > 0
and A ~ 0.

where z € R", F : R® x R x R — R", A € R, and G(t) = Re(ye™r?) for y € C and
ly] = e < 1. We assume that there is an equilibrium of the unforced equation, (1.1) with
G(t) =0, at 0 for all \; that is,

(1.2) F(0,0,)) = 0.

We also assume that the unforced equation has a supercritical Hopf bifurcation at A = 0. In
particular, the Jacobian (d;F')po has simple pure imaginary eigenvalues twgi. We assume
that the forcing frequency wg is near the Hopf frequency wyy.

Remark 1.1. Note that there is no restriction on the form of F'. So F' may contain terms
such as G2 that have frequency 2wr. Hence G(t) may contribute terms in F whose frequency
is an arbitrary multiple of wp.

We find periodic solutions to the forced system (1.1) that have the same frequency wp
as the forcing, and we classify the bifurcation diagrams that plot these solutions as wp is
varied. An important feature of our result is that the bifurcation diagrams that appear depend
qualitatively on a constant ~ that can be computed directly from the unforced system. More
precisely, denote the cubic coefficient in the normal form of the Hopf bifurcation associated
with the unforced system by vg + iy7. Then

1
(1.3) v -t
The qualitative forms of the bifurcation diagrams are given in Figure 1. In these diagrams
the amplitude of the forcing ¢ and the Hopf bifurcation parameter A are held fixed, as is
the constant 7. We see that there are several transitions in the bifurcation diagrams as e
and A themselves are varied. Moreover, the qualitative features of the transitions depend
on whether or not |y| > /3. This observation (though not the complete classification of
bifurcation diagrams) was noted previously in [9] for periodic forcing of the Hopf normal
form system by additive pure harmonic forcing. In particular, when A < 0 (that is, when
the equilibrium in the unforced system is stable), multiplicity of responses occurs only when
v > /3. The five different bifurcation diagrams are shown in Figure 2.
We make three comments about the results summarized in Figure 1. First, when A < 0,
there is a unique equilibrium and no periodic solutions in the unforced system. Thus, it follows
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v A%

Figure 2. The types of bifurcation diagrams of amplitude versus w.

S NS

Figure 3. Picture of the surfaces where hysteresis H and bifurcation B occur in (X, €,v) parameter space
with v ~ /3.

from standard theory that for negative A and e sufficiently small (depending on \) there is a
unique periodic solution to the forced system with frequency wr. However, Figure 1 shows
more. If 0 < v < /3, then for any small negative A and small positive ¢ there is a unique
solution to the normal form (1.8) of the forced system when w ~ 0. On the other hand, when
v >+/3 and A < 0, (1.8) may have multiple solutions near w = 0 for a range of small .

Second, note that for fixed A > 0 and all € small enough we can find three solutions for
some values of w ~ 0. The extra solutions derive from the periodic solutions associated with
the supercritical Hopf bifurcation in the unforced system.

Finally we comment about the transition varieties themselves. Bifurcation points exist
only when ) is positive. In addition, when v moves across v/3, one of the hysteresis curves
switches from one side of the (A, £) parameter plane to the other. From Figures 1(a) and 1(b), it
seems as though when ~ increases past v/3, the slope of the tangent line of one of the hysteresis
curves jumps from positive to negative. However, in Figure 3, we see that the tangency of
the hysteresis curve changes smoothly for v ~ /3 if we look at the two-dimensional hysteresis
and bifurcation sets in three-dimensional (\,e,~) space.

Methods. We adapt the standard proof of the Hopf bifurcation theorem using Liapunov—
Schmidt reduction on loop space and S' symmetry to the case of forced systems. We then
use S'-equivariant singularity theory to obtain a cubic equation in R (a parameter that is an
invertible function of the square of the amplitude of periodic solutions of the forced equation),
whose zeros correspond to the desired periodic solutions. The coefficients of this cubic equation
depend on €, A, . See (1.8) below. Figure 1 is obtained by qualitatively graphing the solutions
of this cubic equation. We begin by indicating how Liapunov—Schmidt reduction on loop space
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can be adapted to the forced equation in such a way that S! symmetry is preserved.

Introduce a new time s = wpt so that the forcing has frequency 1; then the system has

the form J .
€T ~

— = —F(x,G(s), A

= PG,
where G(s) = Re(ye’). To obtain the number of 2m-periodic solutions to this system with
wr varying near the Hopf frequency wyy, we set w = % and investigate the effect of w on
the number of 27-periodic solutions. Thus, we look at the system

de  1—w ~ - -
1.4 — =—DF(,G,\) = F(z,G,w, \).

( ) dS Wi (.Z', 9 ) (.Z', , W, )
For convenience, we drop the tildes over F' and G in (1.4). Then we have

d
(1.5) - F(z,G(s),w, \),

ds
where G(s) = Re(ye’) has small amplitude €, and A and w are small.

Let A(w,\) = (dzF)0,0w,x- The occurrence of a generic Hopf bifurcation at 0 gives rise to
simple eigenvalues o(w, A)+ir(w, A) for A(w, A), and all other eigenvalues are off the imaginary
axis as A ~ 0 (see Appendix A for conditions for occurrence of a Hopf bifurcation). Moreover,
by considering (1.4), we have

(a) K(w,0)=1-—w,
(16) (b) ax(0) £0.

By using Liapunov—Schmidt reduction (Golubitsky and Schaeffer [10]) and equivariant
singularity theory (see Damon [3], Golubitsky, Stewart, and Schaeffer [11], and Furter, Sitta,
and Stewart [6]), we show that generically for fixed small y and A the small 27-periodic
solutions to (1.5) are in one-to-one correspondence with the zeros of a complex-valued function
that can be transformed by invertible coordinate changes to

U(z,y,w,A) = (1 (w, \) + ing(w, \) — (14 7)|2*)z + v,

where z € C, v is a real constant, y € C represents the small periodic forcing, and
m(w,A) = A+ 0w, N)?), m(w,\) =w+ O((w,\)?).

We rewrite the equation ¥ = 0 as

(L.7) (m(w,N) + i (w, X) = (1 +7)|2*)z = —y.

Taking the norm of both sides of (1.7) yields

(1.8) H(R;w,\e) = (1+7°)R® = 2(m +ym) R? + (i +n3)R — & = 0,

where R = |z|?> and ¢ = |y|. Thus, to find the number of all small amplitude 27-periodic
solutions to (1.5), it suffices to look at the number of zeros of H.
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Our goal is to find the bifurcation diagrams of solutions R versus bifurcation parameter w
for different values of A and e. Since, by (1.8), H has the same values for (v,n1,72,¢) and
(=v,m1, —m2,€), we may assume that v is positive. The bifurcation diagrams for zeros of H
are shown in Figure 1. They are obtained by finding those curves in the (), ¢) parameter plane
where the bifurcation diagrams are degenerate, that is, where either hysteresis or bifurcation
occurs. It is shown in [10] that parameter values on these varieties are precisely the points
where the bifurcation diagrams of R versus w change qualitatively. We recall from [10] that
hysteresis points are defined by

H=Hr=Hrr=0

and bifurcation points by
H=Hr=H,=0.

Remarks on the stability of solutions. A complete discussion of the stability of the
periodic solutions that we have found is beyond the scope of this paper. To begin, the
methods of Liapunov-Schmidt reduction and S'-equivariant singularity theory that we use
do not necessarily preserve the asymptotic stability of solutions. More important, the normal
form that we prove suffices for the study of existence of solutions does not necessarily suffice
for the study of stability and secondary dynamic bifurcations. We will see why when we
discuss the stability of periodic solutions in the normal form equations.

More exactly, we assume that the vector field is planar, is in truncated normal form for
Hopf bifurcation, and has purely sinusoidal frequency 1 forcing. Specifically, we consider the
form of (1.1) given by

(L.9) &= (A+i(l+w) = (1+iy)[e)a + e,

where z € C, e < 1, and w ~ 0.

Using Hopf normal form and sinusoidal forcing guarantees that the periodic solutions are
rotating waves. In particular, 27-periodic solutions z(¢) of (1.9) have the form x(t) = z(t)e*,
where z(t) is a solution of

(1.10) = \Fiw—(14+7)]z[)z4+e=TV(z,e,w,\).

It follows that 27-periodic solutions to (1.9) correspond to equilibria of (1.10). Most impor-
tant, the stability of the periodic solutions of (1.9) is given by the stability of the associated
equilibria in (1.10), and the stability of these equilibria is given by the signs of the real parts
of the eigenvalues of the Jacobian DW.

We can now investigate the stability of equilibria of ¥ = 0. Note that the dynamic bi-
furcations subdivide the regions where the five qualitatively different steady-state bifurcation
diagrams shown in Figure 2 occur. The transitions between these five diagrams were deter-
mined by the hysteresis variety H and bifurcation variety B in the \e plane (see [10]), and
these transitions change the number and arrangement of saddle-node bifurcations in the wR
plane. For parameter values of these varieties, the steady-state bifurcation diagrams have only
saddle-node bifurcations, as shown in Figure 2. However, when considering stability, these
same equilibria can undergo Hopf bifurcations in addition to saddle-node bifurcations. Hopf
bifurcation in (1.10) leads to quasi-periodic tori in the normal form equation (1.9).
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To study Hopf bifurcations we need to compute the determinant and trace of the 2 x 2
matrix DW. A computation (see (F.1)) leads to

det(DV) = Hp,
tr(DV) = 2(\ — 2R).

Hopf bifurcation occurs at points where H = 0, A — 2R = 0, and Hg > 0. The eigenvalue
crossing condition must hold at a generic Hopf bifurcation, that is,

0 OR

(1.11) 8_wtr(D‘Il) = _48_w # 0.

This inequality is verified in Appendix F.2; it follows that there always exists a branch of
periodic solutions emanating from a Hopf bifurcation in this family. However, the second Hopf
genericity condition, which determines the direction of branching of the family of periodic
solutions, requires the computation of third-order terms in the Hopf normal form at the
bifurcation point. Hence, to complete this calculation, higher-order terms than those given in
the truncated equation (1.10) are needed.

Next we discuss the transitions between bifurcation diagrams that change the number and
type of Hopf bifurcations that are possible in (1.10). These transitions will be determined in
principle by three possible transition varieties:

1. Takens—Bogdanov (TB) variety corresponding to double zero eigenvalues of DV,

2. change in criticality of Hopf bifurcation variety corresponding to the change of the

Hopf bifurcation from supercritical to subcritical,

3. double Hopf variety corresponding to the coincidence of two Hopf bifurcations.
The double Hopf variety corresponds to Hopf points where the eigenvalue crossing condition
fails and, as we discussed, does not occur in (1.10). A complete analysis of the second variety
would require adding fifth-order terms in the truncated normal form (1.9) and is beyond the
scope of the current paper. In a planar system, a 7 singularity occurs when H = det(DV¥) =
tr(DW¥) = 0, that is, when

(1.12) H=Hp=\A—2R=0

(see (F.2)), and these singularities can occur. The complete analysis of the 7B singularities
could require considering higher-order terms and is again beyond the scope of this paper.
However, the fact that Hopf bifurcations can either be created or disappear at 7B points can
be seen from the truncated normal form. Thus, we can understand the complications involved
in the discussion of stability by analyzing the 7 B-variety in (1.10) in addition to the hysteresis
and bifurcation varieties (where pairs of saddle-node bifurcations are created or disappear).

We see that certain changes in stability of solutions in the bifurcation diagrams in Fig-
ure 2 can lead to Hopf bifurcations and quasi-periodic motions in the forced equations and
presumably to homoclinic orbits connecting a periodic solution to itself. Breaking of normal
form and the associated S! symmetry can lead to yet more complicated dynamics.

Theorem 1.2. For fixred v > 0, A, and €, all possible bifurcation diagrams of ¥ = 0 are
shown in Table 1, where

11
~058 < (3=—=~=095 < C(C4~5.66.

CL~ 006 < Cyp=
! 2 315

1
V3
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Table 1
Bifurcation diagrams for fized v in the Ae plane. Regions 1-V refer to labels in Figures 4-8.

o1 Region I | Region II | Region III | Region IV | Region V
0<y<Cy I(a,b) II(b) III(a,b,c) V(b)
C1 <y<Cs3 I(a,b) II(b,c) III(b,c) V(b)
Cs<y<V3 || I(ab) I(b,c) I11(b) V(a,b)
V3 <y <Cy I(a) II(a,b,c) IV (a) V(a,b)
Cy <vy I(a) II(a,b,c) IV(a,b) V(b)
I(a) I(b)

Figure 4. Bifurcation diagrams of type 1 where € is a function of w in W =0 (1.10). There are two types
of equilibria: sinks (solid blue curve) and sources (dotted purple curve). Red dots indicate changes in stability.

The proof of Theorem 1.2 is given in Appendix F. Note also that there is a transition
between diagrams I(a) and I(b) (see Figure 4) that is a nonlocal transition. This happens when
the Hopf bifurcation that signifies a change from a source to a sink goes to oo as A decreases
to 0. This nonlocal transition also occurs in the change between diagrams I1(a) and II(b) (see
Figure 5). The regions where different bifurcation diagrams occur as a function of v are given
in Figure 9.

Structure of the paper. We now describe the structure of this paper. In section 2, we use
Liapunov—Schmidt reduction and S' phase-shift symmetry to simplify the infinite-dimensional
problem of solving for the 27-periodic solutions of (1.5) on loop space to the problem of solving
for the zeros of an equivariant map v : C x C x R? — C. See Proposition 2.1. In section 3,
we introduce S'-singularity theory with parameter symmetry, compute the restricted tangent
space of ¥(-,-,0,0), and find a normal form for ¢(-,-,0,0). In section 4, we use the universal
unfolding theorem (stated in Theorem 4.7) to derive a universal unfolding of the normal form
of ¥(+,-,0,0) (Proposition 4.5). In section 5 we show that by analyzing the normal form for this
universal unfolding, we can obtain the structure of the zero set of 1) and capture all possible
bifurcation diagrams of 1 with bifurcation parameter w. As desired, the universal unfolding
depends on the two parameters ¢ and A. To determine the bifurcation diagrams in w, we
need to compute the transition variety in the Ae plane; these calculations use the universal
unfolding theorem and are described in section 6. The descriptions of various calculations are
given in the six appendices.
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Figure 5. Bifurcation diagrams of type II where € is a function of w in ¥ = 0 (1.10). There are three types
of equilibria: sink (solid blue curve), saddle (thick dashed green curve), and source (dotted purple curve). Red
dots indicate changes in stability.

2. Liapunov—Schmidt reduction. In this section, we use Liapunov—Schmidt reduction to
simplify the bifurcation problem to a low-dimensional S'-equivariant problem.

Using loop space arguments as in the Liapunov—Schmidt proof for Hopf bifurcation, we
can find 27-periodic solutions to (1.5) by searching for zeros of the operator

(21) N(x,G,w,)\) = % - F(.’L’,G(S),w,)\),

where 27-periodic G(s) and w, A € R are all parameters. We denote the space of continu-
ous 27-periodic functions by Cor, and the subspace of continuously differentiable 27-periodic
functions by C3_. Tt follows that N : Ci_ x Cor x R? — Cor. Since in this study we fix G and
only allow phase shifts in G, we can identify the forcing space with C via the mapping

(2.2) y — G = Re(ye®).

Thus, N is restricted to be
N:Ci x CxR?= Cy.
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T

cooee

IT1(b)

Mﬂ

I11(c)

Figure 6. Bifurcation diagrams of type III where € is a function of w in ¥ = 0 (1.10). There are three
types of equilibria: sink (solid blue curve), saddle (thick dashed green curve), and source (dotted purple curve).
Red dots indicate changes in stability.

Figure 7. Bifurcation diagrams of type IV where € is a function of w in W = 0 (1.10). There are three
types of equilibria: sink (solid blue curve), saddle (thick dashed green curve), and source (dotted purple curve).
Red dots indicate changes in stability.
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V(a) V(b)

Figure 8. Bifurcation diagrams of type V where € is a function of w in ¥ = 0 (1.10). There are three types
of equilibria: sink (solid blue curve), saddle (thick dashed green curve), and source (dotted purple curve). Red
dots indicate changes in stability.

I(a) I(a)

I(a)

I(a)

(c) C3 <y < V3.

H-

I(a)

(e) Cs <y < o0.

Figure 9. Regions of bifurcation diagrams depending on 7. Bifurcation diagrams are found in Figures 4-8.
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We now discuss the symmetry properties of the mapping N. The circle group S* = [0, 27)
acts on Cor by a phase shift, that is,

(2.3) 07(s) = (s +0)
for any 6 € S' and f € Car. So we have
0x(s) =xz(s+6) and 60G(s) = G(s +0) = Re(ye ") = Re((e“y)e™).

It follows that

(2.4)

and that the action of 6 on y is
(2.5) Oy = "y;

that is, € acts on y by a counterclockwise rotation of angle 6. Note that (2.4) just states that
N is S'-equivariant.

Next, we apply Liapunov—Schmidt reduction [10] to the restricted problem N = 0 and
then verify that S'-equivariance is preserved through the reduction [18]. Thus we obtain the
following claim.

Proposition 2.1. There exists an S'-equivariant function 1: C x C x R?> — C such that
zeros of ¢ are in one-to-one correspondence with small 27-periodic solutions of system (1.5).

Proof. Tt suffices to show existence of an S'-equivariant function 1: C x C x R?> — C
whose zeros are in one-to-one correspondence with N : C%ﬂ x C x R? — Cy,. We use the
standard proof of S!-equivariance in Hopf bifurcation (see [10, 11]) to sketch the proof. Note
that L = (dzN)o,0,00 does not depend on the forcing function (that is, ¢ = 0 when taking
the derivative). It follows from the proof of Hopf bifurcation that ker L is two-dimensional,
the implicit function determined in Liapunov-Schmidt reduction is S'-equivariant, and the
reduced function is also S'-equivariant. Note, however, that in this lemma S'-equivariance
includes the action on the forcing parameter space. The smooth dependence of solutions on
parameters in the implicit function theorem completes the proof. [ |

The remainder of this section discusses the structure of the reduced mapping 1) that follows
directly from symmetry and Hopf bifurcation.

2.1. Invariants and equivariants. Recall that a function p : C x C — R is S'-invariant
if
1(0z,0y) = u(z,y)

for all z,y € C and § € S'. In [18] we prove the following lemmas.
Lemma 2.2. If u: C x C — R is S'-invariant, then there exists a mapping p such that

1(z,y) = p(v1,v2,v3,v4),
where z,y € C and

(26) V1 = Z’i) - V2 = :':/y)7 -
v3 = 2y + 2y, vy = i(2 — zy).
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Moreover, i can be expressed in the following unique way:

p = fi(vi,v2,v3) + vgfa(vr, v2,v3),

where f1, f» : R> = R.

So, we can write an S!-equivariant function in the form (2.7).

Lemma 2.3. Given any S*-equivariant function ¢ : CxC — C, there exist unique functions
p,q: R3> = C such that

(27) C(zvy) :p('Ul,'UQ,'Ug)Z+q(U1,U2,U3)y.
Hence, we can simply denote ¢ by [pR, pl g% qf ], where pf. pl,q%, ¢! are real and imagi-

nary parts of p, g, respectively.

2.2. Lower-order terms in v. Let ¥(z,y,w,\), where z,y € C, be the reduced function
obtained in Proposition 2.1. We will show in Proposition 4.5 that 1) is a general form if
d.(1,,)(0) and d.(1)))(0) are linearly independent over R. However, we prove in the following
proposition that the linear independence follows naturally.

Proposition 2.4. Assume that the system (1.5) satisfies the eigenvalue conditions (1.6).
Then

d
d=(¥2)(0) = —ox(0) +irx(0),
where ox(0) # 0. Hence, d,(1,,)(0) and d,(1))(0) are linearly independent over R.
Proof. We will show in Lemma 2.3 that, by S'-equivariance, 1 has the form
(2.9) Uz, y,w, ) = p(|2 [y, 25 + 52,0, M)z + a2, [y, 25 + 52,0, )y,
where z,y € C and p,q € C. Since d,(¢,)(0) and d(¢,,)(0) are independent of the forcing
term y, in this proof for Proposition 2.4 we can simply set y = 0. By (2.9), we have that
¥(z,0,w,\) = p(]2]?,0,0,w, \)z.
It follows that
d:(%0)(0) = pu(0) and  d.(12)(0) = pa(0).

By Lemma 2.5, (2.8) holds. [ |
Lemma 2.5. p satisfies

(210) pol0) = i
and
(211) pa(0) = —5 (@ 45(0)e) = ~0(0) + ima(0),

where ¢ and d are eigenvectors of A(0) and A(0)T associated with i and —i, respectively.

This lemma can be proved by using the same idea as that in [10] for the standard Hopf
bifurcation. In fact, from the form (1.4) for the forced system, we see that as G = 0 the
problem (1.5) is exactly the problem of the standard Hopf bifurcation for w = 0. Thus,
(2.11) follows simply from the results for the standard Hopf bifurcation. Equation (2.10) can
be verified by just noting that w plays exactly the same role in this bifurcation as the time
rescaling parameter 7 does in standard Hopf bifurcation (see [10]).
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3. Normal form for v (-,:,0,0). Proposition 2.1 shows that there exists a function ) :
C x C x R? — C such that near the origin the S'-orbits of zeros of v are in one-to-one
correspondence with small 27-periodic solutions to (1.5). To determine the zeros of v, we
first derive a normal form for the S!-equivariant mapping ¥o(z,y) = ¥(2,,0,0) and then
show in section 4 that w, A are universal unfolding parameters for ¢y in the S'-equivariant
context. Finally, we use this universal unfolding to find all zeros of .

To find a normal form for ¢y : C x C — C, we use standard arguments in singularity
theory (see [11, 3, 6]). We first find generators for the restricted tangent space RT(¢,S') of a
general S'-equivariant map ¢ : C x C — C as a module over the ring of invariant functions.
Then we compute RT(¢,S') and use the tangent space constant theorem (Theorem 3.3) to
obtain a normal form for (. Thus we derive a normal form for vy. Note that standard
equivariant singularity theory (see [11]) is usually applied to problems with symmetry on the
state variable. However, in our context, S'-symmetry acts on both the state variable and the
parameter. So, instead of using the standard scheme, we use the results in [6], which follow
from the theorems in [3]. More details are given in [18].

In subsection 3.1, we recall the notion of strong equivalence and the restricted tangent
space, and state the equivariant restricted tangent space constant theorem in our context. In
subsection 3.2 we calculate the restricted tangent space of an S'-equivariant function satisfying
certain conditions and obtain a normal form for vy in subsection 3.3.

3.1. Restricted tangent spaces. Now we define strong S'-equivalence and the S'-equi-
variant restricted tangent space and state the equivariant restricted tangent constant theorem.
Recall that

527y(sl) ={(:Cx C — C:(is Sl-equivariant},

where z,y € C.

Definition 3.1. The mappings (,x € g',;,y(Sl) are S'-equivalent if there exist an S'-equi-
variant invertible change of coordinates (z,y) — (V(z,9),Y (y)) and a smooth function S(z,y)
€ C such that

(3.1) C(z,y) = S(z,y)x(V(2,9), Y (y)),
where

S(0z,0y) = S(z,y) forall § €S,
(3.2)
S(0,0) # 0.
We say that ¢ and x are strongly S'-equivalent if Y (y) = y.
Remark 3.2. In Definition 3.1, S(z,y) # 0 in a neighborhood of (0,0) since S(0,0) # 0
and S is smooth. So, (3.1) implies that

((z,y) =0 ifand only if x(V(z,¥),Y(y)) =0.

That is, the number of zeros of {(-,y) equals the number of zeros of x(V(-,y),Y (y)), which
equals the number of zeros of x(-,Y (y)), since V(-,y) is invertible. Moreover, since Y (y) is
invertible, ((-,y) = 0 and x(-,y) = 0 are qualitatively the same.
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Let the S'-equivariant restricted tangent space of ¢ be
(3.3) RT(¢,8Y) = {SC + (d.¢)V : S satisfies (3.2) and V is S'-equivariant}.

To find functions that are strongly S'-equivalent to ¢, we use the equivariant restricted tangent
space constant theorem.

Theorem 3.3 (equivariant restricted tangent space constant theorem). Let (, r € @,y(Sl).
Suppose that

(3.4) RT(¢ +tr,S") = RT(¢,SY)

for all t € [0,1]. Then ¢ + tr is strongly S*-equivalent to ¢ for all t € [0,1].
The proof of the theorem is similar to the proof in [11, Chapter XIV, section 2].

3.2. Calculation of RT (19, S'). By Theorem 3.3, to find a normal form for 1y, we need
to compute the S-equivariant restricted tangent space of 1y. We first calculate the RT'(¢, S')
for ¢ € 527y(sl) satisfying (3.6) (see Proposition 3.4). Then we apply Proposition 3.4 to .
For any ¢ € Ez,y(sl), by Lemma 2.3, there exist functions p,q : R® — C such that

(35) C(zvy) :p('Ul,'UQ,'Ug)Z+q(U1,U2,U3)y,

where vy, v, v3 are defined in (2.6). Let £ be the space of all functions f : R® — R that are
smooth near the origin. And let

M ={fe&:f0,0,0) =0}

and

N =M, M,EE].
Proposition 3.4. Assume that ( has the form (3.5) and satisfies

(i) p(O’ 0’ 0) = 0’
(3.6) (i) Py (0,0,0) # 0,
(iii) ¢(0,0,0) £ 0.

Then
(3.7) RT(,SY) =N.

Proof. See Appendix B. |
Since 1 € &, ,(S1), Proposition 3.4 is also true for 1y; i.e.,

(3.8) RT (¢o,S") =N

if 1) satisfies (3.6). In fact, 1o satisfies the first two conditions in (3.6) by the standard Hopf
bifurcation and the last by the assumption about the forcing (more precisely, its minimal
period is 27, so the linear term in y does not vanish in the normal form).
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3.3. Normal form for 1py. Now we can prove that A in (3.9) is a normal form for any
¢ € &, ,(S1) which satisfies (3.6), so also for .
Proposition 3.5. If ¢ in (3.5) satisfies (3.6), then C is strongly S*-equivalent to

(3.9) hz,y) = —|21*2 +y.
Proof. Use Taylor’s theorem so that

¢ = [Pk (0)v1, pf, (0)v1, ¢"(0), 4" (0)]
+ t[pl (0)va + pL (0)vs + 1,5, (0)va + L, (0)vs + 12, 73, 74],

where 71,79 € M? and r3,r4 € M are remainder terms chosen so that ¢; = ¢. Proposition 3.4
gives rise to
RT(¢,SY) = RT(h,SY) =N

for all ¢ € [0,1], where h = [p (0)v1,pL, (0)v1,¢™(0),¢" (0)]. By Theorem 3.3, ¢; is strongly
Sl-equivalent to h for all ¢t € [0,1]. So is ¢;. However, h is strongly S'-equivalent to h since

h(z,y) = S(z, )V (2,9),9),

where )
S(z,y) = 5(0) #0,  Vi(z,y) = Bz,
and 23
_pwlPq
B = _p71,11|q\2/3 (0)#0

by (3.6). By the transitivity of strong S'-equivalence, (; is strongly S'-equivalent to h, where

G=¢ N
Note that, by Proposition 3.4 and the proof of Proposition 3.5, we have

(3.10) RT(h,S") = N.

4. Universal unfoldings of h. In the previous section, we obtain a normal form A for
with w = A = 0. To determine the number of zeros of ¢ for different values of w and A, we find
a universal unfolding of h that includes all possible perturbations of h up to S'-equivalence,
and show that qualitatively this universal unfolding has the same set of numbers of possible
7€eros as ).

Let ¢ € @7y(81) and ¥ € c‘,_')z7y,u(Sl)7 where i = (u1,. .., ) € RE. We call U a k-parameter
unfolding of C if

\Il(z7 Y, 0) = C(Zv y)

Definition 4.1. Let ¥(z,y,u), ®(z,y,n) be unfoldings of € E,_')z,y(Sl), where ;1 € R* and
n € R @ factors through W if there exist smooth mappings S,V, Y such that

(4.1) ®(z,y,m) = S(z,4,m)¥(V(2,9,1),y, L (n)),
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where

S(0z,0y,1m)0 =0S(z,y,m),  S(z,9,0) =1,
(4.2) V(0z,0y,m) =0V (z,y,n), V(z,y,0) = z,
Y(0) = 0.

Remark 4.2. Tt follows from Definition 3.1 that ®(-,y,n) and ¥(-,y, T (n)) are strongly
Sl-equivalent, where T : R! — RF. Tt also follows from Remark 3.2 that ®(-,y,7) and
U(-,y,Y(n)) have the same number of zeros.

Definition 4.3. An unfolding ¥ of ( € E,_"zyy(Sl) is versal if any unfolding of ¢ factors through
V. We call a versal unfolding of ¢ universal if the unfolding depends on the minimum number
of parameters.

In this section we will show the following.

Proposition 4.4. h has a universal unfolding

(43) @(27%7717772) = (771 + 2772 - ‘Z|2)Z + Y,

where n1,m2 € R.

We also find the next result.

Proposition 4.5. v is a universal unfolding of 1.

Moreover, the structure of zero sets of ¥ can be obtained via ®.

Proposition 4.6. There exists n(w, ) = (n1(w, A),n2(w, X)) such that ®(z,y,n) and Y(z,y,w, \)
have the same possible number of zeros. Moreover, 1,(0,0) and nx(0,0) are linearly indepen-
dent over R.

Proof. We have known from section 3 that vy is strongly S'-equivalent to h. It follows
that there exist smooth mapping S and invertible S'-equivariant mapping V such that

1/}0(2:7 y) = S(Z, y)h(V(Z', y)7 y)7

where S satisfies (3.2). Since ®(z,y,0) = h(z,y) by (4.3),

S(Z,y)q)(V(Z,y),y,O) = S(Z,y)h(V(Z,y),y) = Q;Z)O(Z’y)'

It follows that

O(z,y,m) = S(z,9)2(V, y,7)
is a universal unfolding of 19 by the fact that ® is a universal unfolding of h. But, ¢ is an
unfolding of vg. Hence, 1 factors through ®. So, there exist smooth mappings T, U, n such
that

(2, y,w,\) = T(z,y,0, ) (U(z,y,w,\), y,m(w, \)),

where T, U, n satisfy (4.2). Since T is invertible near (w, A) = (0, 0) by the fact that T'(z,y, 0, 0)
= I, we have .
P(zy,0,0) =0 < @U,yn) =0,

i.e.,

1/} =0 <« S(Uay)q)(v(va)vy7n(w7 )‘)) =0.
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Since the smooth mapping S(0,0) # 0 and U(0) = 0, then ¢ = 0 if and only if

CI)(V(Uv y)7 Y, 77(% )‘)) =0,

where y,w, \ are close to 0. But, ®(V(U,y),y,n) has the same number of zeros as ®(z,y,7)
since U,V are invertible. Therefore, the number of zeros of 1(z,y,w,\) is the same as for
®(z,y,n(w, \)). Moreover, since 1) and ® are both 2-parameter universal unfoldings by Propo-
sitions 4.4 and 4.5, 1,(0,0) and 7,(0,0) are linearly independent over R for the general-
ity. |

By Proposition 4.6 and (4.3) we need only find the zeros of

(4.4) ®(2,y,m) = (m(w,A) + inz2(w, A) = |2*)z +y

to obtain the number of zeros of 1.
It remains to prove Propositions 4.4 and 4.5. Let ® € &,,,(S') be an l-parameter
unfolding of h, where h is given in (3.9). Then

l
(45) <I>(z,y,77) = h(Z,y) + 2772‘7"2‘(7371/),
i=1

where r; € @,y(sl). Suppose that ¥ € 5—"27%#(81) is a k-parameter versal unfolding of h. By
Definitions 4.1 and 4.3, ® factors through W, and they satisfy (4.1).
Taking partial derivatives of (4.1) and (4.5) with respect to n; at n = 0 yields that

a8 oV kL ow oY
4.6 ri(z,y) = —(z,4,0)h(z,y) + h.(z,y) =—(z,9,0) + —(z,94,0 1.(0).
(4.6) (2,9) am( y,0)h(2,y) ( y)am( y,0) ;8#],( Y )8772-()

Hence,
ov ov
ri(z,y) € RT(h,S* +R{— 2,9,0), ..., —(z, ,0}
(z,9) (h,S") am( y,0) auk( y,0)

for any r;(z,y) € 5273,(81). So,
ov

(47) gz,y(sl) :RT(h7sl)+R{8—\P(’27y70)v7W
k

R (z,v, 0)} .
Conversely, if (4.7) holds, then W is a versal unfolding of h [11]. Thus, we have the following
claim.

Theorem 4.7 (unfolding theorem). Let ¥ € @,y#(sl) be a k-parameter unfolding of h €
gz7y(Sl). Then VU is a versal unfolding of h if and only if (4.7) holds.

Proposition 4.4 follows from Theorem 4.7 and (3.10), since ® satisfies (4.7).

Next, we prove Proposition 4.5 by applying the idea [10] used for the recognition problems
of universal unfoldings. Recall that a submodule J C é:,;,y(Sl) is intrinsic if for any (,x €
gz7y(Sl) the fact that ¢ € J is strongly S'-equivalent to y implies that x € J. We denote J
by Itr (£,,(SY)). For any ¢ € £, ,(S"), we define

1
(4.8) J¢ = Z ED“C(O)Z‘“ ZH2 M3 g
il

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/12 to 128.146.71.165. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1290 YANYAN ZHANG AND MARTIN GOLUBITSKY

where each z#1zt2ytsghe € [Itr RT(C,SY)]*.
Proof of Proposition 4.5. By (3.10), we have that

RT(h,S') = N = Itr RT(h,S").
So, by Lemma 4.2 [10], ¢ is a universal unfolding of 1)y if and only if
(4.9) [Itr RT(h,SY)]* = RJ[1,0,0,0] + R[0,1,0,0] = R{J¢y, Jihy},
where by definition (4.8)

Jp, = dz(ww)(o)z = [Re(dz (¢w)(0))’ Im(dz(ww)(o))v 0, 0]

and

JPx = d(12)(0)z = [Re(d-(11)(0)), Im(d-(¢1)(0)), 0, 0].

Hence, (4.9) holds only when d,(1,,)(0) and d.(1»)(0) are linearly independent over R. Note
that we have proved this linear independence in Proposition 2.4. Thus, we are done. |

5. The bifurcation problem. We want to find the zeros of ® as we vary w for fixed y
and A; that is, we want to find the bifurcation diagrams of z versus w. We asserted in the
Introduction that qualitatively ® has the bifurcation diagrams that are shown in Figure 1. To
verify this point, we will use changes of coordinates in z,y,w, A of the form

U(z,y,w,\) = S(z,y,w,\)P(Z(2,y,w, ), Y (y), 2y, w, \), A(N))

to obtain a simpler function ¥ that is S'-equivalent to ®. Remark 4.2 implies that the zeros of
U(-,y,w, \) equal the zeros of ®(-,Y (y), Q(y,w, ), A(A)). Thus, up to a change of coordinates
in y and A, the zeros of ¥(-,y,w, \) equal the zeros of ®(-,y, Q(y,w, \), A). For fixed y and A,
the function w — Q(y,w, \) is a change of coordinates in w. Hence, the set of all bifurcation
diagrams of z versus w for fixed y and A is the same qualitatively for the family ®(z,y,w, A)
and the family ¥(z,y,w, A). Then we compute the transition variety using singularity theory
to find the bifurcation diagrams of W.
We write 1, and 72 so that (4.4) has the form

(5.1) ®(z,y,m) = (m +inz — |2[*)2 + v,
where
(5.2) m=cal+diw+O(w,N)?)  and 1y = o\ + dow + O((w, N)?)

and c1,dy,co,do € R. We assume that ® is a universal unfolding (which should be true
generically) and hence that ¢;dy — cad; # 0 by the linear independence of 7,, and 7, over R
(see Proposition 4.6).

In the next proposition we simplify the form of ® at linear order by changes of coordinates.
We do this in such a way that the role of w as a distinguished bifurcation parameter is
preserved. More precisely, we assume that the coordinate changes in A and y are independent
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of w. In this way we preserve the changes in multiplicity of solutions in the bifurcation
diagrams formed by variation of w.

Proposition 5.1. ® is equivalent, by a change of coordinates that preserves the bifurcation
parameter w, to

(5.3) U(2,3,@,A) = (71(@,A) + if2(@, \) — (L+ )|z + 4,
where
(5.4) hm=A+0(@,N?)  and 7o =a+O(@,N)?).

Proof. To simplify the form of (5.1), we take the linear transformations

P — P, zZ— asZ, Y — a3y,

(5.5) w— A1 + Ao, A — Ash,

where a1, ag,a3 € C, A1, Az, A3 € R, and aq, as, oy, A1, A3 are nonzero. Then we have that

\I/(g, Y, W, 5\) = al@(agi, sy, A0+ AQS\, AgS\)
(56) = ozlozg(((cl + iCQ)A§ + (d1 + ’Ldg)Ag))\ + (d1 + ’L'dg)Alcb — |042|2|2|2)2
+ arasf + O((@, \)?)z.

Choose ajasg, Ag, Az satisfying

_A2+iA1_Cl+iCQ o — 1
As N dq +id2’ 192 = (d2 —idl)Al

such that
(5.7) 041042((01 + iCQ)Ag + (dl + ZdQ)AQ) =1 and Oéloég((dl + ’Ldg)Al) =1.

Note that this can be done since c1dy — cady # 0, i.e. citicy ¢ R, by Proposition 4.6.

’ di+ide
. . Al(d2+d2)
Pick up A; and a3 such that Ay has the same sign as dy and as has the norm #.

Then, the real part of the coefficient of |z|?z is —1, i.e.,

d2|a2|2
5.8 2 Telmal —
(5.8) (a1a2)g|as| Al(d% " d%)

by the second equation of (5.7).
By (5.7), (5.8) and choosing «ag such that

arag =1,
we obtain that

(5.9) U(Z,5,0,N) = (A+io — (1+i7)|2)z+ 7+ O(@,N)?)z,
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where

di]as]? dy
5-].0 = 2 = " —= —
We can also write (5.9) in the form (5.3) for convenience. [ |

Remark 5.2. We trace through the calculation performed in section 3 for the normal form,
and find that v is exactly the ratio of the imaginary and real parts of the coefficient for the
cubic term |z|?z in 1. In fact, the form of ¥ in (5.3) is consistent with ¢. See Appendix C
for the details.

For simplicity, we drop the tildes in the form of ¥ from now on; i.e.,

(511) ‘I,(Zvvaa )‘) = (771(% )‘) + Z‘772((")7 )‘) - (1 + Z"Y)’ZF)Z +Y,
where
(5.12) m=A+0(w,N)?) and 17 =w+ O((w,\)?).

We use singularity theory to analyze the bifurcation problem of the complex-valued func-
tion W. To do this, we need to transform the problem to a problem of a real-valued function.
Lemma 5.3. For fizred y and A\, ¥ has the same bifurcation diagrams as

(5.13) H(Rjw,\,e) = (1 +~*)R* — 2(q1 +ym2) R? + (n + n3)R — &2,

where R = |z|?, € = |y|, and m1 and nz are functions in w and A, as shown in (5.12).

Note that we have now derived the function H that was discussed in the Introduction.
See (1.8).

Proof. Set U =0 and let y = ee’?. Then we have that

(5.14) (m 4 ing — (14 iy)|v*)v = —ee®.

Take the square of the norm of each side of (5.14) and let R = |z|?; then we obtain H = 0,
where H is defined in (5.13). Thus, we are done. [ |

6. Transition set. In this section, we specify the transition variety associated with the
bifurcation problem using singularity theory [10], by which we obtain Figure 1 eventually.
By [10], we define the transition set ¥ of hysteresis H, bifurcation B, and double limit
points D as
Y=HUBUD,

where

H={NeeR:3(R,w) € R xRsuchthat H = Hr = Hrr =0,
Hprr # 0 at (R,w)},
B={\eeR:3(R,w) e RxRsuchthat H=Hr=H, =0at (R,w)},
D={\eeR:3(Ry,Ry,w) € R xR xR, Ry # Ry such that
H=Hr=0at (Rj,w),i =1,2}.
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The set D is empty, since the degree of H is 3 and the minimum degree for occurrence of
double limit points is 4. For H, we have the following claim.

Proposition 6.1. Given nonzero vy, there exist curves of hysteresis points of H on the Ae
plane, whose equations are

(6.1) Hi: B4+V3y)3e? =
) H_: (3—37)32 =
where m = X + (9((6%,)\)2).
Proof. See Appendix D. [ |
Additionally, for B, we have the following.
Proposition 6.2. For any given v # 0, H has a bifurcation point when (A, ) is on the curve
4
(6.2) B:e®=_—_XN+00%.
27
Proof. See Appendix D. |
Therefore, we have the transition set ¥ = H4 U H_ U B, where the equations for H,
H_, and B are given in (6.1) and (6.2). As shown in Figure 1, the curves of ¥ separate the
parameter plane into four regions. More precisely, when 0 < v < v/3, by (6.1) the hysteresis
curves are

o\ 1
2 2(1+~°)3

A+ O((A, e5)?).

3+V3y
So, solving for £5 gives
2(1 2\1
o5 — M)\—i— O\,
3+V3y
ie.,
1 2
2 = M)ﬁ + O\Y).

(34 V3y)?

By Proposition 6.2, the bifurcation curve has the form

4
2 3 4
= N+ O,

Since
4 _ s+ 7?) 8(1+~?)
21 (3+V3)P  (B-VBy)P
the two hysteresis curves are both on the right half of the Ae plane, and the bifurcation curve
is even below the lower hysteresis curve.
When ~ > /3, we have the following inequalities:

0<

8(1++?) 8(1++?) 4

BV~ vy o

So, one of the hysteresis curves is on the left half plane, the other on the right. Further, the
bifurcation curve is a little higher than the hysteresis curve which is on the right half plane.
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€ I
Y r

v

(a) az > 0. (b) a3 < 0.

Figure 10. (a) and (b) are the graphs of the transition set ¥ for az > 0 and as < 0, respectively, assuming
that m1 has the form (6.3).

Recall that the bifurcation diagrams change only on the transition set 3 (see Theorem 6.1
of [10]). This means that in each of the four regions (excluding the boundaries) there is a
unique type of bifurcation diagram. So, to figure out all possible bifurcation diagrams, we
need only to pick up one point in each region and draw the bifurcation diagram occurring at
this point. In this way, we obtain Figure 1.

Note that Figure 1 includes the bifurcation diagrams for two cases: 0 < v < /3 and
v > /3. But what happens near v = v/3? To understand the transition of bifurcation
diagrams between Figures 1(a) and 1(b) as v goes across /3, we sketch the graph of the
transition set ¥ in (A, ¢€,7) space.

Assume that 7; in (6.1) has the form

W

%),

where a1, a2, a3 € R. As shown in Figure 10, depending on the sign of as, the H_ surface has
two possible different shapes. However, the shapes do not actually affect the classification of
bifurcation diagrams. More precisely, according to Figure 10, we find the following.

Proposition 6.3. Suppose v ~ /3. As w varies, the bifurcation diagram of H is of

(i) type I when (A e,7) is on the left of the surface H_;

(ii) type 11 when (X e,7) is on the right of the surface of H_ and above H, and B;

)
(iii) type 1T when (A e,7v) is below Hy but above B;
(iv)

)

(6.3) m =X+ a )2+ ashes +azes + O((\, e

iv) type IV when (A, e,7) is below B but above H ;
(v) type V when (X e,7) is below Hy and B,
where equations for H_, H, and B are in (6.1) and (6.2), and ny is in (6.3).

Proof. See Appendix E. |

Appendix A. Conditions for occurrence of a Hopf bifurcation. Suppose that the ODE
system (1.1) undergoes a generic Hopf bifurcation at A = 0 when G(t) = 0. More precisely,
together with (1.2), the following conditions are satisfied:

(a) as A crosses 0, the imaginary eigenvalues of A(w,\) cross the imaginary axis at a
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positive speed, i.e.,
Re(d” Ay (0)c) # 0,

where A, is the derivative of A with respect to A\, and ¢ and d are nonzero vectors
such that
A(0)c = ic, A(0)'d = —id;

(b) the higher-order terms of F' satisfy

ReJtAA(O)c 75 O,
Re{d'[d*F(c,by) + d*F(e,by) + 1d°F(c, ¢, )]} # 0,

where the differentiation of F' is with respect to x at the origin and by, by satisfy

A(0)bo = %sz(c, &), (A(0) — 2}y = id2F(c, o).

Appendix B. Proof of Proposition 3.4. The proof of this proposition requires two lemmas.
In the first we compute the generators for a general tangent space, and in the second the
tangent space of bifurcations satisfying (3.6).

Lemma B.1. For any ( =pz+qy € 5_"27y(81), RT(¢,SY) has the 12 generators

Sl(zay)< = [pR’pI)qR’qI]a

Sa(z,9)¢ = [-p', 0", —¢", 4",

S3(z,y)¢ = [pfv1 + ¢fvs, —pTor — q'vg, —q%vr, ¢l o],
(B.1) Sy(2,9)¢ = [p vy + qI’U37Pva + QRU?,, —qlvy, —q"u),

S5(Z,y)< = [ UQ’_q ’U2)p V1, =P Ul]a

Se(z,9)¢ = [q'v2, ¢"va, p! ’01,p ’01]

S7(z,y)¢ = [-pTva, p’ 027(1 v2 +pft v3,—q ve — plug),

Ss(z,y)¢ = [—p'va, —pTva, ¢! vy + pus, ¢%va + pTug),

(d-Q)z = [p™ + 2pftv1 + p§fus, p’ + 2pfvr + pius, 2qfv1 + g5tvs, 2¢] v1 + qdus),

B.2) (d:Q)(iz) = [—p" — 2¢5vs — phus, pt + 28wy + pivs, 2plvr + qhug, —2pfvy — glivg),
(d-Q)y = [2pFvy + pfus, 2pkvs + plug, p® + 2¢8tvs + qftvs, p” + 2¢5vs + glvs],
(d:Q)(iy) = [2¢1 v + plvs, —2qftvs — pltvg, —p! — 2plvr — qlvs, pft + 2pfto; + ¢ftvg),

<
I

where p; = g (v1,v2,v3), pZ ap fori1=1,2,3, and similarly for q.

Proof. Because of the form for the restricted tangent space in (3.3), RT((,S') can be
computed by the following two steps:
(a) Calculate S¢. Take any linear mapping S(v,y). Suppose that

(B.3) S(z9)¢ =Y apm? ZYTCHD bjpmz 2y
Since S satisfies (3.2), i.e., S(e?z,e?y)e?¢ = €S (z,y)¢ for any § € S!, we have that

ajklm:() ifj—k‘—l—l—m;éo,
bjklm:() ifj—k—i-l—m?éz
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By the calculation in the proof of Lemma 2.2, we know that the generators of S¢ over E,_'izyy(Sl)

are
S1I¢=¢,  S¢=i¢,  Sx(=2¢  Si( =i,
Ss¢C=zyC,  SeC=izyC, S:C=y*C¢,  SsC=iy*C,
which yields (B.1).
(b) Calculate (d,¢)V. Using
(dzC)u = Cu+ Gzu

and
C: =p1v1 +p32y +p+ @2y +qzva, Gy = p22y + p3v1 + qov2 + q32y + ¢,
G = p12% + pszy + 12y + q3y°, (g = p2zy + p3z? + q2y® + g32y,
22y = v3z — vy, zy? = v3y — voz,

we obtain the generators (B.2). [ ]
Lemma B.2. Suppose that ( = pz + qy € &, ,(S?) satisfies (3.6). Then

(B.4) N C RT((,SY) + MN.

Proof. Modulo the submodule MA/, the 12 generators for RT(¢,S!) listed in (B.1) and
(B.2) are shown in Table 2.

Table 2
The generators of RT(¢,S*) modulo MN .

U1 V2 U3 U1 V2 V3 1 1
Si(z,y)¢ | T Py ¥ | pl p5 s | ¢ | ¢
Sa(z,y)¢ | —pi —ph —p5 | ptf Py s | —d" | 4"
S3(z, )¢ q" —q'
Sa(z,y)¢ q' q"
S5(z,y)¢ q~ —q'
Se (Zv y)C qI qR
57(27 y)C
Ss(z,9)¢
(d-¢)= 3pt Py 2pF | 3pi 2 2
(d=Q)(iz) | —pi —p5—2q5 —2p5 | pi’ p5 +2¢5 2p¥
(d:Q)y 2p¥ Py 2p} pi
(d=¢) (iy) 2q1 pi —2q1" p

This matrix in the table has four blocks of columns: the elements in the first block
are associated with [x,0,0,0] and so on. Observe that {S;(z,y)(, i = 3,4,5,6} generate
{[vi,v;,0,0] : 4,5 = 2,3} if ¢(0) # 0. Thus the 10 x 8 matrix is reduced to 6 x 4. This 6 x 4
matrix has rank 4 as long as p,, (0) # 0 and ¢(0) # 0. Hence, this whole matrix has rank 8,
which implies that the generators of N/,

[v’i’()? 0’ 0]’ [0’ Ui’()? 0]7 [07 0’ 17 0]7 [0’ 0’ 0’ 1]7 Z = 1’ 2’ 3’

are contained in RT(¢,S') + MA and that (B.4) holds. M
Proof of Proposition 3.4. The inclusion N' C RT(¢,S!) follows from Nakayama’s lemma
[10] and (B.4). The reverse inclusion is verified by noting that

[Clvia C2Vj, C3, 04] € N
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for ¢1,...,c4 € Rand 1 < 4,5 < 3; i.e., each generator of RT(¢,S') is in A/. Thus, (3.8) is
verified. |

Appendix C. Proof for Remark 5.2. Recall that ) is the Liapunov—Schmidt reduction of
the original system (1.5). By Proposition 2.8, we can assume that ¢ has the form

U(z,y,w, A) = ((—oa(0) + ikx(0))N —iw + (a1 + iby)vy + (ag + ibe)va + (a3 + ibg)vs)z

(C.1) + (¢ +id)y + h.o.t.,

where ai,a9,as,b1,b2,b3,¢c,d € R and h.o.t. means the higher-order terms. We showed that
®(z,y,n1,1m2) = (m + in2 — |2|?)z + y, where n1,72 € R is a universal unfolding of a normal
form for ¢(z,y,0,0), and ® is equivalent to ¥ of (5.3). Recall that —(1 + iv) and (aj + iby)
are the coefficients of |z|2z of ¥ and 1, respectively. We will prove

b1
aq '

We defined in (5.2) that 71 = c1 A + dijw and 12 = e\ + dew. And we verified in (5.10)
that v = g—;. So, to show (C.2), it is sufficient to show

(C.2)

b d

(C.3) o=

Suppose that S and V' are functions such that
(C.4) 1/}(27 y? w? A) - 5(27 y7 w? A)@(.‘/.(27 y7 w? A)? y7 w? A)?
where V is S'-equivariant, S(6z,0y,w,\)8 = S(z,y,w, ) for any § € S', and S(0) # 0. At
y = W = )\ = 07
(C.5) ¥(2,0,0,0) = S(Z,0,0,0)(—)]‘/(2,0,0,0)]2‘/(2,0,0,0).
However,

5(2,0,0,0) = 5(0,0,0,0) + O(|2[*),  V(2,0,0,0) = az + O(|z]*)z,
where o € C and

¥(2,0,0,0) = (a1 +iby)|22 + O(l2[*)z

by (C.1). Thus, comparing the coefficients of |z|>z on the left- and right-hand sides of (C.5)
yields
(C.6) a1 + by = —S5(0,0,0,0)|a*a.

Similarly, we set y = A = 0 and compare the coefficients of wz of both sides of (C.5). It
follows that
—i=5(0,0,0,0)a(dy + ids).

Using (C.6) gives rise to

—1 = ay + iby)(dy + idg).

_W(
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Thus,
ard; — byde = Re((dy + id2) (a1 + iby)) = 0.

This verifies (C.3).

Appendix D. Proof of Propositions 6.1 and 6.2. We use the following lemma to prove
Proposition 6.1.

Lemma D.1. For anye > 0 and A near 0, H has the hysteresis points (R.,w.) when vy = 7.,
where

4
3

1 2 2
(D.1) Re=———, m3=33(1+7%3 —nf, ym=ce3(1++%)3—m

N W

and
m=A+0((we,N)?), 12 =we+ O((we, \)?).

Proof. At the hysteresis point (R,w) = (R ,we), by [10], the following conditions are
satisfied:

(D.2) H=(1+~+)R*—2(m +vm)R*+ (ni +n3)R — > =0,
(D.3) Hg =3(1 +7*)R* — d(m + )R+ (nF +13) =0,
(D.4) Hprr =6(1+7*)R—4(m +yn2) =0,

Hrrr = 6(14+~%) > 0.
By (D.4), it is clear that

2(m + yn2)

(D.5) R= =)

Plugging (D.5) into (D.3), we have

4(n1 +ym2)?
3(1+12)

Substituting (D.5) and (D.6) into (D.2) gives us

(D.6) n+ns =

3 2 2
(D.7) m+ e = 5ei (1+9%)5.
Plugging (D.7) into (D.5) yields
£
(D.8) R=—+—.
(1472)3

Meanwhile, applying (D.7) to (D.6) gives rise to

43 =325 (14475,
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Therefore, (D.1) is verified. [ ]
Let us now use Lemma D.1 to prove Proposition 6.1.
Proof of Proposition 6.1. By the last two equations of (D.1),

3 2
PE 4 ) = (et om)

2
i.e.,
3
(D.9) (1 +72)§77%—3(1+72)%6§771+Z(3—72)e% —0.
Let )
. (1+4%)3
n= ( 2 ) m;
€3
then (D.9) can be rewritten as
_ _ 9392
i -3+ 22 —.
4
The solutions to this equation are
. 3+3y
n= 9

i.e.,

n=
Therefore, we have the hysteresis curves
(D.10) (3+V37)%e® = 8(1 + ),

where 71 = A + O((we, A)?).

Since we want to draw the hysteresis curves on the Ae plane, we need (D.10) to depend
only on A and . For this purpose, we solve for w. as a function of A and . By (D.5), we have
that

(D.11) Z(w,\,R) =m(w,\) +ym2(w, \) — g(l +~7)R=0

at (R,w) = (R¢,w,). Since
Zy = (M) +7(M2)w =7 #0,

there exists a unique function €2 such that
we = QN R,)

by the implicit function theorem.
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We can further find a more explicit expression of w. in terms of A and . Substitute {2
into (D.11); then

MO, R),A) + (20, R),A) — S(1+ 72 R =0

at R = R.. Taking the derivative of this equation with respect to A and R respectively, we
have

(M)w + (m)x +7((02)w2 + (12)2) =0,
(M) +7(12)wQr — 2(1++7) = 0.

Thus, at (w,A) = (0,0),

2
o, =L qp=30+7r)
Y 2y
Therefore,
1 142
=00 R) = —=A+ 3(2#77)1% +O((\R?)

at w = w.. Note that €(0,0) = 0 by (D.11) since 71(0,0) = 72(0,0) = 0. By using (D.8), we

can write

- 1. 314423
We = Q()\,E) = —)\+ ME% + O(()\,E%)2).
gl 2y
Thus, the hysteresis curves (D.10) can now be drawn in the Ae plane. |

Proof of Proposition 6.2. Assume that there is a point in 5. Then by the definition of B,
at this bifurcation point,

(D.12) H=(1+~*)R*—2(m +yn)R*+ (i + )R —£*> =0,
(D.13) Hpr = 3(1 +7*)R* — d(m + )R+ (n? +13) =0,
(D.14) Hey = =2((m)w + 7(m2)w) R + 201 (m)w + 12(n2)w) R = 0.

It follows from (D.14) that if v # 0, then

~ w+ O((we, A)?)
Y+ O(we, N)

(D.15) _ %(w + O((we, N1 + Owe, )

= Z 4 O((we V).
5
Applying (D.15) to (D.13), then
3R? —4AR + N? + O((we, \)?) = 0.

So,
R=A+0(wa)?) or R= % + O((we N)?).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/12 to 128.146.71.165. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PERIODICALLY FORCED HOPF BIFURCATION

1301

If R =X+ O((we, A)?), then by (D.15),
We = YA + O((we, M)?).
So,

by using (D.12). Furthermore, since
Hpr = 2(1+7)A + O((we; A)?) > 0

and 5
H,, = g)\ + O((we, A)?) > 0,

there is an isola appearing in the system.
If R =3 + O((we, A)?), then by (D.15)

Y
w = 3A+O((we, A?)

at w = w.. Solving this equation in (6.2) for w,, then
we = 2A+ 000,
So, (D.12) gives rise to

(D.16) &2 — ;7)\3 OO,

Thus, we verify (6.2). [ ]

Appendix E. Proof of Proposition 6.3. When v = /3, the hysteresis curves are

4
(E.1) Hit = 2N HO0),  Ho:m=A+ O((\,e3)%) =0
by Proposition 6.1, and the bifurcation curve
4
(E.2) B:e%= ﬁx” + 0\

by Proposition 6.2. From (E.1) and (E.2), we can see that when v ~ /3, H is close to B

and H_ to the e-axis.

As shown in Figure 10, for fixed v near v/3, the curve of H, may be below or above that
of B. But, in either case, by the calculation in Appendix D, Proposition 6.3(iii)—(v) are valid.
We find that no new bifurcation diagram is generated by considering the higher-order terms

of the equations for H, and B, compared to Figure 1.

Note that H_ is tangent to the A-axis when v # /3, but to the e-axis when v = /3. To
understand this abrupt change of tangency as v goes across the critical number /3, we use

Figure 11 as an illustration. Suppose that

W

(E.3) m=A+a )+ ap\ed + aged + O((\ e
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(a) v < V3. (b) v = V3. (c) v> V3.

Figure 11. The graphs of H_ as~y varies near \/3, assuming that n, = )\+a1)\2—|—a2)\6% +a35% +O((N, 6%)3),
where a; € R, 1 =1,2,3, and az > 0.

where a; € R, i = 1,2,3, and ag > 0. Figure 11 shows that in a small neighborhood of the
origin, the tangency of H_ changes as v goes across v/3 smoothly.

In fact, in a neighborhood of the origin, there are only two types of pictures of H_. By
(6.1) and (E.3), we obtain

4 (3—\/37

(E.4) aset — s ao) | eF A+ At = O((A,3)3).
2(1++2)3

In a small enough neighborhood, to sketch the picture of (E.4), it suffices to consider
4 3 — \/37 - 2 -

(E.5) ases — I +A=0.
2(14+1+2)s
Let
.F(&‘%,)\) = azed — m&% + A

1
2(14++2)s
Assume that ag > 0. For fixed A, F has at most two zeros. And, for negative A\, F has a
unique zero since F(0,\) < 0 and zeros of F are positive. Moreover,

3—-v3
.7-"(5%,0) — 3 a36% — 7\/_71
2(1+~2)3
has two zeros if and only if v < v/3. So, we verify Figure 11. The case for a3 < 0 can be
analyzed similarly. [ |

Appendix F. Proof of Theorem 1.2. To prove Theorem 1.2, we look at the Jacobian
matrix of W, where W is defined in (1.10). We let

U =Up+ 1Yy, z = zp + 12y,
where W, ¥y, zg, 21 € R, and rewrite (1.10) as

Ur=(A—|21*)2r — (W —12[)2r + yr = 0,

F.1
(F.1) Uy = (w—2)zr+ (A — o)z +y1 = 0.
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The Jacobian matrix of (F.1) is
A —|2]? — 223 + 2yzRzs —w + v|2|? + 2727 — 2221

DU =
w— 7|22 — 2v2% — 2zpzr A — |22 — 222 — 2y2R2

Let A be an eigenvalue of DW. Then direct calculation leads to
(F.2) A2 =2\ —2R)A + Hp =0,

where R = |z|?, the function H is defined in (5.13), and Hp is the derivative of H with respect
to R. An equilibrium of W is a

sink if Hp >0 and A — 2R < 0,
(F.3) source if Hg >0 and A — 2R > 0,
saddle if Hr < 0.

Thus, to prove Theorem 1.2, it suffices to know the signs of Hr and A — 2R. Note that
changes in stability can occur only at saddle-node (Hr = 0) and Hopf (A = 2R and Hr > 0)
bifurcations. Hopf bifurcations can be created locally in the bifurcation diagrams only at 71
points in parameter space. (They can also be created globally by a point of Hopf bifurcation
coming in from “co.” These global changes happen in the transitions between regions I(a)
and I(b) and between II(a) and II(b) in Figure 9.) We discuss saddle-nodes, the eigenvalue
crossing condition at Hopf bifurcations, and then the T B-variety, before completing the proof
of Theorem 1.2.

F.1. Saddle-node bifurcations. The sign of Hi changes at fold points (H = Hg = 0) of
the bifurcation curve of R versus w. Furthermore, Hr < 0 holds at (Rp,wp) if and only if
there exist three different zeros of H at wg and Ry is the intermediate value of the three zeros.

F.2. Eigenvalue crossing condition. At a Hopf bifurcation point, H = 0, R = %, and

Hp > 0. Generic Hopf bifurcations satisfy two additional assumptions: the eigenvalue crossing
condition (which guarantees the existence of a unique branch of periodic trajectories) and a
third-order condition (which determines whether the branch is supercritical or subcritical and
whether the periodic solutions on that branch are stable or not). The computation of the
third-order condition (in the normal form at the point of Hopf bifurcation) will require terms
of order higher than 3 in the truncated system (1.10), and its computation is beyond the scope
of this paper. In this appendix we show that the eigenvalue crossing condition is always valid.

In the Introduction we noted that the eigenvalue crossing condition is equivalent to showing
that R, # 0 (see (1.11)). We now calculate R, at Hopf bifurcation point (w, R) for fixed A
and €. Recall that

H=00+v)R> -2\ +yw)R*+ (N +w?’)R-*=0.
Taking the derivative with respect to w, we then have
H, =3(1++*)R*R, — 4\ +yw)RR,, — 2yR* + (\> + w))R,, + 2wR = 0,

that is,
(3(1 +9*)R? — 4\ + )R + A\* + w?) R, = 27R* — 2wR.
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A

At R — 5,
)\2

(F.4) —+ §72)\2 2wt w? ) Ry = A2~ w.
4 4 2

It follows that R, = 0 if either A = 0 or w = %

We substitute R = % into H = 0 to obtain
(F.5) AAw? — 4y 2w+ (142N = 82 = 0.

Note that if A = 0, then £ = 0. But we can assume that (A, &) # (0,0). Hence we can assume
w= % and substitute into (F.5), obtaining the cusp

A3 =82
Observe that along this cusp
Hr =3(1+7)R? — 4\ +yw)R+ (A2 +w?) = —%V(?w? +1) <0.
So zeros of R, do not occur at points of Hopf bifurcation. It follows that the Hopf bifurcation

points lead to unique branches of periodic solutions in (1.10).

F.3. 7T B-variety. The parameter values on the 7 B-variety discussed in the Introduction
are found by solving H = Hp = A — 2R = 0; see (1.12). We begin by substituting R = % into

H =1+)R -2\ +yw)R?+ (N +w?)R—e? =0,
Hr= 3(1+7)R?—4A+w)R+ (AN +w?) =0,
obtaining
(a) (1 +92)A3 — dywA? + 4w? )\ = 82,
(¥.6) 2 2 2
(b)  (37* — 1)A* — 8ywA + 4w* = 0.
We can solve for w by subtracting A times (F.6)(b) from (F.6)(a), obtaining
(1 — )N + 29wA? = 4€2,
which is linear in w. Thus

4 + (v = DA
w =
292

To determine the 7 B-variety we can substitute (F.7) into (F.6)(b) to obtain a curve in the
Ae parameter plane where T points occur. Specifically, we obtain

(V2 + DA — 82 (42 + 1)A® + 16e* = 0.

(F.7)

It follows that

g
(F.8) No=de? (1 —— |
Vi +1

that is, the 7 B-variety consists of two cusps, and both cusps occur in the A > 0 half plane.
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F.4. Proof of Theorem 1.2. We have shown that the transitions between bifurcation

diagrams as parameters A and e are varied are given by five cusp-like transition varieties:
Bifurcation (B), hysteresis (H4+ and H_), and Takens-Bogdanov (78B4 and 7B_). To lowest
order these varieties are defined by

7,

B: 23 = T (E.2)
3
Ho: M= %52, (D.10)
3—/39)?
Ho: A= %52, (D.10)

TB+ . )\3

v 2

TB_: A3 =4 (1 - ﬁ) 2. (F.8)

For certain critical values of v the cusp curves overlie each other and signify differences in the
possible bifurcation diagrams in the wR plane. For example, when v = /3, B and H_. are
identical to lowest order. All of the overlays are indicated in (F.9):

H TB, TB_
_ ~ _ 11 o
(F9) B Cy=+3~173 C5= s~ 0.95
Hy Cy ~ 5.66 Cy ~ 0.06
« 1

There are two overlays of H, with 7By at Cy and Cy. The overlay at C5 is not relevant since
the varieties never cross (at lowest order), and we indicate this point by an asterisk. So there
are four transition points in v (0 < C7 < C3 < Cy < Cy < 00) and five different regions of
possible bifurcation diagrams. These regions are shown in Figure 9.
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