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Abstract
We prove two results about hyperbolic periodic solutions in networks of systems
of ODEs. First, we show that generically hyperbolic periodic solutions of
network admissible systems of differential equations oscillate in each node if
and only if the network is transitive. We can associate a polydiagonal �(Z(t))

with each hyperbolic periodic solution Z(t) as follows. The cell coordinates of
a point in �(Z(t)) are equal if the corresponding cell coordinates of Z(t) are
equal for all t ; that is, the outputs from the two cells are synchronous. Second,
we prove that �(Z(t)) is rigid (unchanged by small admissible perturbations)
if and only if it is flow-invariant for all admissible vector fields.

Mathematics Subject Classification: 34C15

1. Introduction

In this paper we prove two main results about hyperbolic periodic solutions in networks of
systems of ODEs. First, we prove that such hyperbolic periodic solutions are generically fully
oscillatory (oscillating in each node) if and only if the network is transitive (see theorem 2.2).
We associate a colouring of nodes to a hyperbolic periodic solution by assigning the same
colour to any pair of synchronous nodes. Second, we prove rigid synchrony: this colouring
is rigid if and only if it is balanced (see theorem 6.1). These results have been conjectured
previously by Josić and Török [3] and Stewart and Parker [5], and are discussed by Aldis [1].
In this introduction we define terms and give an overview of our approach, an approach that
is common to the two results. The first result begins to address the question of when one can
reconstruct the dynamics of a network of differential equations just by looking at the output
from one node. The second result provides one step towards the proof of a general conjecture
by Stewart and Parker that rigid phase shifts between the outputs of two nodes for a periodic
solutions are forced by symmetry—but symmetry in a quotient network [5, 6].
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A review of network issues. A coupled cell network (see [2, 4] for details) is a graph that
consists of a finite set of cells (or nodes) divided into cell types and a finite set of directed
arrows or edges divided into edge types. Arrows indicate which cells are connected to which.
The input set of a cell c is the set of arrows that terminate at cell c. Two cells are input equivalent
if there exists a bijection between the input sets of the cells that preserves coupling type.

Let G be a network with n nodes. We associate a phase space Rki with each cell i and
assume that cells of the same type have the same phase space. Then

PG = Rk1 × · · · × Rkn

is the phase space of the coupled cell network G. Suppose that cell j receives signals from the
mj cells σj (1), . . . , σj (mj ). Then an admissible system of ODEs associated with this network
has the form

żj = fj (zj , zσj (1), . . . , zσj (mj )) (1.1)

for j = 1, . . . , n. Moreover, if the arrows from cells σj (p) and σj (q) to cell j are equivalent,
then fj is assumed to be invariant under the transposition of coordinates zσj (p) and zσj (q). If
cells i and j are input equivalent, then fi = fj .

Definition 1.1. Let Z(t) = (z1(t), . . . , zn(t)) be a closed path in PG . The oscillating set OZ

of Z is the set of cells i such that zi(t) is not constant. Z(t) is fully oscillatory if OZ contains
all cells.

Fully oscillatory periodic solutions. Suppose that Z0(t) = (z0
1(t), . . . , z

0
n(t)) is a hyperbolic

periodic solution to (1.1). It follows from hyperbolicity that if we perturb the fj slightly, the
perturbed admissible system will have a unique periodic solution that is near Z0(t).

Definition 1.2. The property ‘fully oscillatory’ is generic for a fixed network if every
hyperbolic periodic solution to an admissible vector field (1.1) for that network is the limit of
fully oscillatory periodic solutions to small admissible perturbations of (1.1).

Equation (1.1) shows that there are arrows from cells σj (1), . . . , σj (mj ) to cell j . A
network is transitive or path connected if there is a sequence of arrows in the graph that
connect cell i to cell j for each pair i, j . If a network is not transitive, then we call it feed-
forward. A standard example of a transitive network is the all-to-all coupled network where
mj = n−1 and the indices σj (1), . . . , σj (n−1) enumerate all cells not equal to j . Theorem 2.2
proves that fully oscillatory is a generic property for a fixed network if and only if that network
is transitive.

It is straightforward to show that fully oscillatory is not generic in feed-forward networks.
In these networks we can divide the cells into X cells and Y cells, where Y cells may couple only
to Y cells and X cells may couple to either X cells or Y cells. It follows that in a feed-forward
network, every admissible vector field (1.1) can be written in the skew-product form

Ẋ = F(X),

Ẏ = G(X, Y ).
(1.2)

Let (DF)0 = −I so that the X = 0 is a stable equilibrium for the Ẋ equation. Suppose we
can choose G so that equation Ẏ = G(0, Y ) has a hyperbolic periodic solution. It follows that
any small perturbation of (1.2) yields a hyperbolic equilibrium in the Ẋ equation that is near
the origin and that fully oscillatory is not generic for this feed-forward network. If any of the
Y cells have a phase space that is at least two-dimensional (which we are free to assume when
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constructing a counterexample), then G can be constructed with a periodic solution (away
from the origin using Hopf bifurcation)3.

It is also straightforward to prove that fully oscillatory is generic for the all-to-all network
in which all arrows are different. In this all-to-all network every system of ODEs Ż = F(Z)

on phase space is admissible. It follows that changes of coordinates of admissible systems are
admissible. Let Z0(t) be a hyperbolic periodic solution to (1.1) and let � be a diffeomorphism
on phase space. Then �(Z0(t)) is a hyperbolic periodic solution for the admissible system
(1.1) in changed coordinates, namely

Ż = (d�−1)ZF (�(Z)). (1.3)

We can find a near identity linear map � = I + εA such that �(Z0(t)) is fully oscillatory. It
follows that (1.3) has the desired fully oscillatory perturbation.

The proof that fully oscillatory is a generic property for transitive networks turns out to
be surprisingly difficult. Specifically, the difficulty in proving theorem 2.2 is in identifying a
large enough class of admissible perturbations of the given admissible system for which one
can control how the periodic solution perturbs. As noted in the all-to-all example, without the
network structure restriction, it is straightforward to perturb the original periodic solution to be
fully oscillatory by use of a near identity change of coordinates. However, most such changes
of coordinates do not retain the network structure because the j th equation does not in general
depend on all of the other phase space variables. We next discuss the admissible perturbations
that we use. The proof of theorem 2.2 proceeds as follows: if cell j is coupled to cell i and if
cell j is oscillating, then generically cell i is also oscillating. See theorem 2.1.

The basic idea behind the proof of theorem 2.1 is to show the existence of an admissible
perturbation that forces cell i to oscillate if cell j is already oscillating. Here we use a
standard singularity theory/Floquet theory style argument by perturbing the admissible system
of differential equations and then understanding how the periodic solution moves—at least to
linear order. The trick to making this argument work is to exhibit a sufficiently rich class of
admissible perturbations for which one can control the perturbation of the periodic solution—at
least to linear order.

The admissible perturbations. As noted in [2], a useful class of coordinate changes that
preserves network structure for all networks is the class of strongly admissible changes of
coordinates. A map � : PG → PG is strongly admissible if for each i its ith coordinate
ϕi is a function only of zi (that is, (�(Z))i = ϕi(zi)) and ϕi = ϕj for every pair of input
equivalent cells. The following is a useful remark noted in [2, lemma 7.3]. Let F : PG → PG
be admissible and let � : PG → PG be strongly admissible. Then � ◦ F and F ◦ � are
admissible. The proof is a straightforward calculation, but that calculation does require a
detailed discussion of the definition of admissibility. This result is important because the
composition of two admissible maps is generally not admissible.

However, strongly admissible changes of coordinates alone cannot transform a general
periodic solution to a fully oscillatory one, since constant cells remain constant under such
transformations. In our proofs we make explicit use of linear combinations of maps � and
�1A�2, where �1, �2 and � are strongly admissible and A is linear and admissible. We
note that linear admissible matrices can be derived from network adjacency matrices (there is
one such adjacency matrix for each coupling type). We suspect that these perturbations are
sufficient to prove our results, but we do not assert that.

3 Indeed, if the network has a nontrivial transitive component, then even if the Y cells are all one-dimensional, a G

can be constructed with a periodic solution. The only difficulty with this construction occurs if the Y cell network is
tree-like and the Y cell dimensions are one. Then the Ẏ = G(0, Y ) equation cannot have periodic solutions.
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Balanced colouring and rigidity. A polydiagonal is a subspace of PG defined by equality of
some subsets of cell coordinates. Note that every closed path Z(t) = (z1(t), . . . , zn(t)) in PG
leads to a polydiagonal

�(Z(t)) = {X = (x1, . . . , xn) ∈ PG : xi = xj if zi(t) = zj (t) for all t}.
In addition, every polydiagonal leads to a colouring of the network nodes in which two nodes i

and j have the same colour if and only if the node coordinates for every point in the polydiagonal
are equal. We can also colour network arrows so that two arrows have the same arrow-colour
if and only if their coupling types are the same and the nodes from which the arrows emanate
(their tail cells) have the same node-colour. The node-colouring is called balanced if there
exists an arrow-colour preserving bijection between the input sets for each pair of nodes with
the same node-colour.

It is proved in [2] (see also [4]) that polydiagonals are flow-invariant with respect to
all admissible vector fields if and only if the colouring associated with the polydiagonal is
balanced. Assume Z0(t) is a hyperbolic periodic solution to the admissible system Ż = F(Z);
the associated polydiagonal �(Z0(t)) has a balanced colouring; and Ż = G(Z, ε), where
G(Z, 0) = F(Z), is a perturbed admissible system. For small ε it follows from uniqueness that
the perturbed periodic solution Zε(t) to the admissible perturbed system must lie in �(Z0(t)).
Moreover, �(Zε(t)) = �(Z0(t)) and the colouring associated with Zε is identical to the
colouring associated with Z0(t). In this situation, we say that the colouring associated with
the hyperbolic periodic solution Z0(t) is rigid.

As a special case, colourings associated with hyperbolic equilibria can be rigid. It was
proved in [2] that a colouring associated with a hyperbolic equilibrium is rigid if and only
if it is balanced. In theorem 6.1 we prove that a colouring associated with a hyperbolic
periodic solution is rigid if and only if it is balanced. This theorem can also be thought of as
a perturbation result—at least when one argues by contradiction. Suppose that the colouring
is not balanced, then there must exist a pair of nodes i and j with the same colour (that is,
z0
i (t) − z0

j (t) = 0 for all t) whose input sets are not colour isomorphic. In this case we must
construct an admissible perturbation with enough control of the perturbed periodic solutions
Zε = (zε

1, . . . , z
ε
n) such that zε

i (t) − zε
j (t) �= 0 for all small ε. It turns out that the class of

perturbations that worked for the fully oscillatory results also works for the rigidity results.
Stewart and Parker [5] discuss the fact that the phase shifts in periodic solutions can

be rigid (unperturbed by small admissible vector field perturbations) only if symmetry (in a
certain sense) exists. More precisely, every balanced colouring (such as the balanced colouring
associated with the synchronous nodes of a hyperbolic periodic solution, as follows from
theorem 6.1) leads to a quotient network (see [2]). Stewart and Parker prove that if this
quotient network is all-to-all coupled (with perhaps many different arrow types), then there is
a cyclic symmetry of the quotient network that is responsible for the rigid phase shift synchrony
in the original solution. It is likely that this result is valid if the quotient network is transitive.
It is also likely that morally this result is valid for feed-forward networks as well—but the
exact statement will be more complicated.

Structure of the paper. This paper is constructed as follows. The main results on fully
oscillatory solutions are discussed in section 2. The use of admissible perturbations of the
form �1A�2 is discussed in section 4 and the use of admissible perturbations of the form � is
shown in section 5. The basic mode of proof is that the number of admissible perturbations that
permit constant cells to stay constant is in a sense finite-dimensional, whereas the number of
admissible perturbations is infinite-dimensional. This point is discussed in section 3. Finally,
the main results on rigidity are discussed in section 6. The structure of the proof is similar to
the structure of the proofs of the fully oscillatory results.
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2. Results on fully oscillatory periodic solutions

In this section, we present the main results concerning fully oscillatory periodic solutions. Let
G be a coupled cell network and let F : PG → PG be an admissible vector field.

Theorem 2.1. Assume that the system

Ż = F(Z) (2.1)

has a hyperbolic periodic solution Z0(t). Suppose Z0(t) is constant in cell c and cell c receives
an input from a cell in which Z0(t) is time-varying. Then there is an arbitrarily small admissible
perturbation of (2.1) whose perturbed periodic solution is time-varying in cell c.

Theorem 2.2 is a corollary of theorem 2.1.

Theorem 2.2. Suppose the network G is transitive and the admissible system (2.1) has a
hyperbolic periodic solution Z0 that is not fully oscillatory. Then there is an arbitrarily small
admissible perturbation of (2.1) whose perturbed periodic solution is fully oscillatory.

Proof. Since Z0 is not fully oscillatory, the transitivity of the network implies that there
exists a constant cell c that receives input from a time-varying cell. By theorem 2.1, there
exists an arbitrarily small admissible perturbation of (2.1) whose perturbed periodic solution
is time-varying in cell c. Continuity implies that time-varying cells stay time-varying under
small perturbation. So for small enough perturbations, the perturbed periodic solution has
more oscillating cells than Z0 does. Since the sum of a finite number of small perturbations
is a small perturbation, induction implies there exists an admissible perturbation such that the
perturbed periodic solution is fully oscillatory. �

We prove theorem 2.1 locally; that is, we prove the theorem on a small interval J in time
t whose choice is made using lemmas 2.3 and 2.6.

Lemma 2.3. Let

Z0(t) = (z0
1(t), . . . , z

0
n(t))

be a nonconstant periodic solution to (2.1), let J0 ⊂ R be an open interval, and suppose that
cell c receives input from a cell that is time-varying on J0. Then there exists an open interval
J1 ⊂ J0 such that

(a) for each cell i, either z0
i is constant on J1 or ż0

i is nowhere zero on J1,
(b) for each pair of cells i, j , either z0

i (t) = z0
j (t) on J1 or z0

i (J1) and z0
j (J1) are disjoint and

(c) cell c receives input from a cell that is time-varying on J1.

Proof. By hypothesis, cell c receives an input from a cell d such that z0
d is time-varying on J0.

(c) Then there exists a point t0 ∈ J0 where żd (t0) �= 0. By continuity, there exists an open
interval J (containing t0) such that żd (t) �= 0 for t ∈ J .

(a) For each j we can shrink J such that either z0
j (t) is constant on J or ż0

j (t) is nowhere zero
on J .

(b) We can further shrink J to an open interval J1 ⊂ J ⊂ J0 such that for each pair i, j either
z0
i (t) = z0

j (t) on J1 or z0
i (J1) and z0

j (J1) are disjoint. �

Remark 2.4. Since Z0 must be nonconstant on every interval, there always exists an interval
J1 ⊂ J0 satisfying conditions (a) and (b); we require condition (c) as well to ensure the
conclusion of theorem 2.1 holds.
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Next we set notation. Let Z(t) be periodic and define the sets

C(Z, J1) = {i : żi (t) = 0 for all t ∈ J1}
O(Z, J1) = {i : żi (t) �= 0 for all t ∈ J1}

and the polydiagonal subspace

�(Z, J1) = {x ∈ PG : xi = xj whenever z0
i (t) = z0

j (t) for every t ∈ J1}.
Let J1 be an open interval whose existence is guaranteed by lemma 2.3. Then it follows from
the choice that

C(Z0, J1) ∪ O(Z0, J1) = {1, . . . , n}.
We claim that without loss of generality, we can find an open subinterval J ⊂ J1 ⊂ J0

such that the three sets C(Z0, J ), O(Z0, J ), �(Z0, J ) are rigid in a way we now define.

Definition 2.5. A property is rigid if and only if that property remains unchanged under all
sufficiently small admissible perturbations.

For example, we can consider the set C(Z0, J1) to be a property of the periodic solution
Z0. That property is rigid if the set does not change on perturbation of the periodic solution
by an admissible perturbation of the vector field.

Lemma 2.6. The periodic solution Z0 can be perturbed by an arbitrarily small admissible
perturbation so that the sets C, O and � are rigid on an open subinterval J ⊂ J1.

Proof. Let

Ż = F̂ (Z)

be a small admissible perturbation of (2.1). By hyperbolicity of Z0 there exists a unique
hyperbolic periodic solution Ẑ0 to the perturbed equation. By continuity, time-varying cells
in Z0 remain time-varying in Ẑ0 under a small enough perturbation, but constant cells may
become time-varying under perturbation. Therefore,

C(Ẑ0, J1) ⊂ C(Z0, J1),

O(Z0, J1) ⊂ O(Ẑ0, J1).

Let Ẑ0 = (ẑ0
1, . . . , ẑ

0
n). By lemma 2.3(a), there exists an open subinterval J2 ⊂ J1 such

that the periodic solution Ẑ0 satisfies ˙̂zi(t) = 0 for every t ∈ J2 or ˙̂zi(t) �= 0 for every t ∈ J2.
This implies C(Ẑ0, J2)∪O(Ẑ0, J2) = {1, . . . , n}. Since small perturbations can only decrease
the number of constant cells and there are only a finite number of cells, we only need to make
a finite number of small perturbations to reach a state where these two sets are rigid. Since the
sum of a finite number of small perturbations is again a small perturbation, it follows that, after
shrinking J2 if necessary, there exists an admissible perturbation with the perturbed periodic
solution Ẑ0, such that C(Ẑ0, J2) and O(Ẑ0, J2) are rigid.

Also note that under small perturbation ẑ0
i (t) �= ẑ0

j (t) for every t ∈ J2 if z0
i (t) �= z0

j (t)

for every t ∈ J1. That is, asynchronous cells stay asynchronous. However, synchronous cells
may be desynchronized under small perturbation. Therefore

�(Z0, J1) ⊂ �(Ẑ0, J2).

As above, we can shrink J2 to J by successive small perturbations until �(Ẑ0, J2) can no
longer grow under perturbation, and then � is rigid. �
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It follows from lemma 2.6 that we can assume

C(Z0, J ) = C(Ẑ0, J ),

O(Z0, J ) = O(Ẑ0, J ),

�(Z0, J ) = �(Ẑ0, J ),

(2.2)

where Ẑ0 is the perturbed hyperbolic periodic solution to any sufficiently small perturbation.
We will often denote these sets simply by C, O and � if there is no danger of confusion,
suppressing their dependence on Z0 and J . In addition, we will refer to the elements of C as
C-cells and the elements of O as O-cells.

Remark 2.7. We can associate a colouring of the cells with �(Z0, J ) by assigning the same
colour to cells i and j if and only if z0

i (t) = z0
j (t) for all t ∈ J ; we may thus identify a colour

with the set L of all cells of that colour. We will call a colour L an O-colour if the cells in L

oscillate for Z0, and call L a C-colour otherwise. We say that the colouring of cells associated
with the polydiagonal �(Z0, J ) is rigid if the colouring does not change on small admissible
perturbation of the admissible system.

Now we discuss a special case of theorem 5.1 in [5] (rigid input theorem).

Lemma 2.8. Suppose the colouring associated with �(Z0, J ) is rigid. If cells i and j have
the same colour, then they are input equivalent.

Proof. We argue by contradiction. Suppose cells i and j have the same colour, but are not
input equivalent. Let � = (ϕ1, . . . , ϕn) be a strongly admissible change of coordinates. Since
cells i and j are not input equivalent, ϕi and ϕj are independently defined maps. For example,
we can choose ϕj to be the identity and ϕi to be any diffeomorphism. Hence, we can choose
a strongly admissible, near identity, change of coordinates �, such that ϕi(z

0
i (t)) �= z0

j (t)

for some t ∈ J . Hence, the colouring is not rigid. This contradicts the assumption that the
colouring is rigid. �

Definition 2.9. Let Z0(t) be a periodic state and J ⊂ R an open interval. We say that Z0 is
nondegenerately rigid on J if

(a) C(Z0, J ), O(Z0, J ) and �(Z0, J ) are rigid.
(b) For each cell i, either z0

i is constant on J or ż0
i is never zero on J .

(c) For each pair of cells i and j , either z0
i (t) = z0

j (t) on J or z0
i (J ) and z0

j (J ) are disjoint.

Remark 2.10. Henceforth we make two standard assumptions. We assume that Z0 is a
hyperbolic periodic solution to (2.1) that is nondegenerately rigid on an open interval J ⊂ R.
We also assume that cell c receives input from a cell that is oscillating on J .

Given a hyperbolic periodic solution to (2.1) and an open interval J0 ⊂ R, lemmas 2.3
and 2.6 prove that there is an arbitrarily small admissible perturbation of (2.1) and an open
subinterval J ⊂ J0 on which the associated perturbed periodic solution satisfies the standard
assumptions. Proposition 2.11 shows that this is the perturbation whose existence is claimed
in theorem 2.1.

Proposition 2.11. Suppose that the periodic solution Z0(t) = (z0
1(t), . . . , z

0
n(t)) satisfies the

standard assumptions on an open interval J . Then cell c oscillates in Z0.
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3. Overview of proof of proposition 2.11

Let P be an admissible map and let p(Z) be the c-component of P(Z). We shall also call p

admissible. Consider the perturbed admissible system

Ż = F(Z) + εP (Z) (3.1)

for small ε. Let

Zε(t) = (zε
1(t), . . . , z

ε
n(t))

be the periodic solution of (3.1) that is a small perturbation of Z0. Of course, Zε depends on
P . So we define the function

α(P ) = ∂

∂ε
Zε

∣∣∣∣
ε=0

.

Let f (Z) be the c-component of F . Then the differential equation for zε
c is

żε
c(t) = f (Zε(t)) + εp(Zε(t)). (3.2)

On differentiating both sides of (3.2) with respect to ε and evaluating at ε = 0, we obtain

∂

∂ε
żε
c(t)

∣∣∣∣
ε=0

= fZ(Z0(t))
∂

∂ε
Zε(t)

∣∣∣∣
ε=0

+ p(Z0(t)) = fZ(Z0(t))α(P )(t) + p(Z0(t)). (3.3)

We prove proposition 2.11 by contradiction. Suppose that cell c is constant under the
standard assumptions. Since C is rigid, cell c remains constant for all sufficiently small
admissible perturbations P . It follows that the left-hand side of (3.3) is 0 for all admissible p.
So (3.3) becomes

0 = fZ(Z0)α(P ) + p(Z0), (3.4)

which must be valid for all admissible P . Let FJ denote the space of functions from J to
RN , where the value of N will depend on the context; here we take N = kc. We establish
the contradiction by showing that the right-hand side of (3.4) contains an infinite-dimensional
subspace of FJ and hence cannot be 0 for all admissible maps P .

We state this approach more abstractly. Let A be the space of all admissible maps. Let
π : A → FJ be the map given by

P �→ fZ(Z0(t))α(P )(t) + p(Z0(t)).

We will show that the image of π spans an infinite-dimensional subspace of FJ and to do this
we need to consider two cases.

An O-coloured sum associated with f is a function on J of the form∑
i∈L

fzi
(Z0(t)), (3.5)

where L is an O-colour. Then there are two cases, depending on the values of O-coloured
sums. The first case is when all O-coloured sums (3.5) are zero and the second is when some
O-coloured sum is nonzero. In each case, we will exhibit sufficient P to show that the image
of π is infinite-dimensional. In the first case, we choose P = �A�, where � and � are
strongly admissible maps on PG and A is an admissible map on PG derived from the adjacency
matrix of a certain coupling type. In this case we say that P is of type I. In the second case we
choose P = �, where � is again a strongly admissible map on PG , and in this case we say
that P is of type II. These two cases are discussed in sections 4 and 5.
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4. Case 1: O-coloured sums are zero

We begin by defining the admissible matrix A. By our choice of J , cell c receives input from
an O-cell. Let d be an O-cell that is coupled to c, let the coupling occur through an edge of
type e, and let L be the colour of d . Let A0 = (aij ), where aij are nonnegative integers, be
the adjacency matrix of the subnetwork that consists of all nodes and all edges of type e in
the network G. For each pair of phase spaces Rki and Rkj , we arbitrarily choose two positive
integers s � ki and r � kj . Let Eij be the ki × kj matrix whose entry at position (s, r) is 1
and whose other entries are zero. If the pairs of cells i, î and j , ĵ are each of the same cell
type, then we further require that Eij = Eîĵ . In block form we define a linear admissible map
on PG (many other choices would work later) by

A ≡ (aijEij ). (4.1)

Recall that a strongly admissible map of a general network has the form

�(Z) = (ϕ1(z1), . . . , ϕn(zn)), (4.2)

where ϕi : Rki → Rki . Moreover, if cells i and j are input equivalent, then ki = kj and
ϕi = ϕj . Recall [2] also that the composition of a strongly admissible map with an admissible
map is always admissible, so that �A� is admissible if � and � are strongly admissible. In
the following, we denote the c-component of a vector V by Vc.

Type I admissibles (�A�Z0)c are infinite-dimensional

Lemma 4.1. Let A be the matrix defined in (4.1). Assume that Z0(t) satisfies the standard
assumptions on the open interval J . Then the set

S = {(�A�Z0(t))c : �, �are strongly admissible maps of G and t ∈ J }
contains an infinite-dimensional subspace of FJ .

Proof. Let � = (ϕ1(z1), . . . , ϕn(zn)) be a strongly admissible map of G. Then

(A�(Z0(t)))c =
n∑

j=1

acjEcjϕj (z
0
j ). (4.3)

Since the colouring associated with �(Z0, J ) is rigid by hypothesis, it follows from lemma 2.8
that cells of the same colour L must be input equivalent. Thus ϕi = ϕj for all i and j in L,
and we may denote their common value by ϕL. We may similarly denote by zL the common
value of z0

i for i in L. Then (4.3) can be rewritten as

(A�(Z0(t)))c =
∑

colours L

( ∑
j∈L

acjEcj

)
ϕL(zL(t)) (4.4)

for all t ∈ J .
Recall that d is an O-cell of colour L. Since ż0

d(t) �= 0 for t ∈ J , we can choose ϕd so that

ϕd(z
0
d(t)) = ϕL(zL(t)) is time-varying on J.

Moreover, since Ecd is a nonzero linear map from Rkd to Rkc and ϕd can be any map on Rkd ,
we can always choose ϕd so that

Ecdϕd(z
0
d(t)) is time-varying on J.



3236 M Golubitsky et al

In addition, since z0
i (J ) and z0

d(J ) are disjoint for every i /∈ L, we can choose a map ϕi

such that

ϕi(z
0
i (t)) = 0 for all i /∈ L.

Thus ϕL(zL(t)) = 0 for all L �= L. T These choices define an admissible map �, such that
(4.3) becomes

(A�Z0(t))c =
( ∑

j∈L

acj

)
Ecdϕd(z

0
d(t)). (4.5)

Since cell d is coupled to cell c through an edge of type e,∑
j∈L

acj > 0.

It follows that there exists a strongly admissible � such that

(A�Z0(t))c is time-varying.

Since � is arbitrary, we see that S is an infinite-dimensional subspace of FJ . �
Image of π using type I admissibles is infinite-dimensional
Recall (3.4) that

0 = fZ(Z0)
∂Zε

∂ε

∣∣∣∣
ε=0

+ p(Z0)

for all admissible P . For convenience let

αi(t) = ∂zε
i

∂ε
(t)

∣∣∣∣
ε=0

. (4.6)

Then we can rewrite (3.4) as

0 =
∑

colours L

∑
i∈L

fzi
(Z0(t))αi(t) + p(Z0(t)). (4.7)

The rigidity of � implies that zε
i (t) = zε

j (t) for all t ∈ J whenever i, j ∈ L. Hence,
αi(t) = αj (t) for all t ∈ J . Let αL(t) be the common value of αi(t) for i ∈ L. Then (4.7) can
be rewritten as

0 =
∑

colours L

( ∑
i∈L

fzi
(Z0(t))

)
αL(t) + p(Z0(t)). (4.8)

By hypothesis, all O-coloured sums are zero, so that (4.8) reduces to

0 =
∑

C-colours L

( ∑
i∈L

fzi
(Z0(t))

)
αL(t) + p(Z0(t)). (4.9)

Since for i ∈ C, we have αi(t) = αi ∈ Rki is constant on J , and since fzi
(Z0(t)) is independent

of the perturbation P , the first term on the right-hand side of (4.9) lies in the finite-dimensional
subspace of FJ spanned by fzi

(Z0(t)). However, as we have shown in lemma 4.1, the function
p(Z0(t)) = (�A�Z0(t))c can be chosen from an infinite-dimensional subspace of FJ , which
contradicts (3.4).

5. Case 2: some O-coloured sum is nonzero

We now consider perturbations of the form P = �, where � = (ϕ1, . . . , ϕn) is a strongly
admissible map. Let L be a colour and let

QL = {� : � is strongly admissible and ϕi(z
0
i (J )) = 0 for i /∈ L}. (5.1)

Remark 5.1. Note that lemma 2.8 is not required for the space QL to be well defined.



Network periodic solutions: full oscillation and rigid synchrony 3237

Type II admissibles (�Z0(t))c are infinite-dimensional

Lemma 5.2. Assume that the periodic solution Z0(t) satisfies the standard assumptions on
an open interval J , and suppose that Z0 oscillates in a cell i of colour L. Let M : J →
ki × ki-matrices be a fixed nonzero matrix-valued function. Then the set{

M(t)

∫ t

t0

ϕi(z
0
i (s)) ds : � ∈ QL

}

spans an infinite-dimensional subspace of FJ .

Proof. Let Rki be the phase space of cell i. We assert that there is a vector V ∈ Rki and an
interval J0 ⊂ J on which

M(t)V �= 0 for t ∈ J0.

This follows from the fact that M(t) is nonzero on J . We can then choose � so that ϕi is a scalar
multiple of V ; that is, ϕi(zi) = b(zi)V where b ∈ R. Note that since z0

i is time-varying on
J0, z0

i (J0) is an embedded curve in Rki . Also note that b can be any scalar function defined on
z0
i (J0). Hence the collection of functions of the form∫ t

t0

ϕi(z
0
i (s))ds =

( ∫ t

t0

b(z0
i (s)) ds

)
V (5.2)

spans an infinite-dimensional subspace. �
Image of π using type II admissibles is infinite-dimensional
We denote Z(t) = (X(t), Y (t)) where X(t) represents the variables of the cells constant in
Z0(t) on J , Y (t) represents the variables of the cells oscillating in Z0(t) on J . Similarly, we
denote the perturbed periodic solution Zε(t) = (Xε(t), Yε(t)). Define

γ (P ) = ∂Xε

∂ε

∣∣∣∣
ε=0

and β(P ) = ∂Yε

∂ε

∣∣∣∣
ε=0

, (5.3)

where the dependence of β and γ on the perturbation P in (3.1) is indicated explicitly. Note
that γ (P ) must be constant since the standard assumptions assert that O is rigid.

With this notation, we can rewrite (3.4) as

0 = fX(Z0(t))γ (P ) + fY (Z0(t))β(P ) + p(Z0(t)). (5.4)

Now let M be an O-colour whose corresponding O-coloured sum is nonzero. Since c is by
assumption a C-colour, and thus not in M, we have that

p(Z0(t)) = ϕc(zc(t)) = 0

for P = � ∈ QM. Thus, we will have arrived at a contradiction if we can show that the set

T = {fY (Z0(t))β(�)(t) ∈ FJ : � ∈ QM} (5.5)

spans an infinite-dimensional subspace of FJ . Note that in our proof of this fact, we will not
rely on any properties of f other than the fact that one of the O-coloured sums associated with
f is nonzero; this observation will be needed later for the statement of lemma 5.3.

Let G be the part of the differential equation of F corresponding to the oscillating cells,
that is,

Ẏ (t) = G(X(t), Y (t))

and let �Y be the coordinates of � corresponding to the oscillating cells. Then the oscillating
cells Y in the perturbed periodic solution satisfy

Ẏε = G(Zε) + ε�Y (Yε). (5.6)
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On differentiating both sides of (5.6) with respect to ε and evaluating at ε = 0, we obtain

β̇ = GX(Z0(t))γ + GY (Z0(t))β + �Y (Y0) (5.7)

where γ and β are defined in (5.3). To simplify notation, we dropped the explicit dependence
of γ and β on �.

To arrive at our contradiction, we need to determine how β depends on �. Choose t0 ∈ J

and let W(t) be the fundamental solution to the homogeneous linear ODE system

β̇(t) = GY

(
Z0(t)

)
β(t) (5.8)

with W(t0) = I , the identity matrix. Then the general solution to the inhomogeneous
equation (5.7) is

β(t) = W(t)

( ∫ t

t0

W−1(s)(GX(Z0(s))γ + �Y (Y0(s))) ds + K

)

= W(t)

( ∫ t

t0

(W−1(s)GX(Z0(s))) ds

)
γ

+ W(t)K + W(t)

∫ t

t0

(W−1(s)�Y (Y0(s))) ds (5.9)

where K is the initial condition. Since W(t) is independent of � we see that the first two terms
in the computation of β(t) on the right-hand side of (5.9) stay in a finite-dimensional subspace
of FJ . Therefore, if there is an infinite-dimensional subspace of possible β(t), it must come
from the last term in (5.9); namely

W(t)

∫ t

t0

W−1(s)�Y (Y0(s)) ds. (5.10)

In particular, we will have our contradiction if we can show that

fY (Z0(t))W(t)

∫ t

t0

W−1(s)�Y (Y0(s)) ds (5.11)

spans an infinite-dimensional subspace of FJ when � ∈ QM.
Since W(t) is unknown, calculations are difficult. However, we can gain approximate

control of (5.10), and hence of (5.11), on a small interval of time by recalling that W(t0) = I .
Indeed, choose a small interval J1 ⊂ J containing t0. Then, in this interval, let

W(t) = I + τŴ τ (t). (5.12)

with τ 	 1. Then

fY (Z0(t))W(t)

∫ t

t0

W−1(s)�Y (Y0(s)) ds = fY (Z0(t))

∫ t

t0

�Y (Y0(s)) ds + O(τ). (5.13)

Recall that zL(t) and ϕL denote the common values of z0
i (t) and ϕi , respectively, for all cells

i of colour L. Thus (5.13) becomes

fY (Z0(t))W(t)

∫ t

t0

W−1(s)�Y (Y0(s)) ds

=
∑

O-colours L

∑
i∈L

fzi
(Z0(t))

∫ t

t0

ϕL(zL(s)) ds + O(τ). (5.14)

It follows that if ∑
O-colours L

∑
i∈L

fzi
(Z0(t))

∫ t

t0

ϕL(zL(s)) ds (5.15)

spans an infinite-dimensional subspace of FJ , then we have our contradiction.
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We can choose J containing t0 small enough to guarantee that the approximation of W(t)

by (5.12) is valid. Since � ∈ QM, we have ϕL(zL(J )) = 0 for L �= M. Thus
∑

O-colours L

( ∑
i∈L

fzi
(Z0(t))

) ∫ t

t0

ϕL(zL(s)) ds =
∑
i∈M

fzi
(Z0(t))

∫ t

t0

ϕM(zM(s)) ds. (5.16)

Let M(t) be the nonzero O-coloured sum
∑

i∈M fzi
(Z0(t)). It suffices to show that

∑
i∈M

fzi
(Z0(t))

∫ t

t0

ϕM(zM(s)) ds = M(t)

∫ t

t0

ϕM(zM(s)) ds (5.17)

spans an infinite-dimensional subspace of FJ while � varies in QM. But this follows from
lemma 5.2, so that we have our contradiction. �

This completes the proof of proposition 2.11. Recall from the observation following
the definition of T in (5.5) that, aside from the condition that one of the O-coloured sums
associated with f be nonzero, no particular properties of f were used in the proof that T spans
an infinite-dimensional subspace of FJ . Thus, we may replace the coordinate function f in
this proof by any of a more general class of functions that are independent of the vector field
F . We incorporate this observation in the following lemma, which summarizes the results of
the proof, and then state a corollary that will be useful in the next section.

Let g : J → Rk be a smooth function. Analogous to the case for f , we define an
O-coloured sum associated with g to be a function of the form∑

i∈L

gzi
(Z0(t)),

where L is an O-colour. As before, we let gY represent the partial derivative of g about the
oscillating cells.

Lemma 5.3. Assume that the hyperbolic periodic solution Z0 to (2.1) is nondegenerately rigid
on J , and let g : PG → Rk be a smooth function into the phase space of one of the cells of G.
Suppose there exists an O-colour L such that the corresponding O-coloured sum associated
with g is nonzero. Then the set

{gY (Z0(t))β(�)(t) ∈ FJ : � ∈ QL}
spans an infinite-dimensional subspace of FJ , where β(�) and QL are as defined in (5.3) and
(5.1), respectively.

Corollary 5.4. Assume that the hyperbolic periodic solution Z0 to (2.1) is nondegenerately
rigid on J , and let g : PG → Rk be a smooth function into the phase space of one of the cells
of G. Suppose that one of the O-coloured sums associated with g is nonzero on J . Then there
exists a strongly admissible map � such that the perturbed periodic solution Zε to (3.1), where
P = �, satisfies

g(Zε) �= 0 on J (5.18)

for any small positive ε.

Proof. Let � be strongly admissible, and let Zε be the corresponding perturbed periodic
solution to (3.1). On differentiating g(Zε) with respect to ε and evaluating at ε = 0, we obtain

∂

∂ε
g(Zε)

∣∣∣∣
ε=0

= gX(Z0(t))γ (�) + gY (Z0(t))β(�). (5.19)

where γ (�) and β(�) are as defined in (5.3). It now follows from lemma 5.3 that the set

{gY (Z0(t))β(�)(t) ∈ FJ : � is strongly admissible} (5.20)
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spans an infinite-dimensional subspace of FJ . Thus there must exist a strongly admissible �

such that
∂

∂ε
g(Zε)

∣∣∣∣
ε=0

�= 0 on J, (5.21)

so that g(Zε) �= 0 on J for all small positive ε. �

6. Rigidity of periodic solutions

In this section, we study the relation between rigidity and balanced colorings. Let Q0 =
(q0

1 , . . . , q0
n) be a point in the phase space PG . Define the polydiagonal

�(Q0) = {q ∈ PG : qi = qj if q0
i = q0

j }.
Suppose that Q0 is a hyperbolic equilibrium of (2.1). It is shown in [2] that �(Q0) is rigid
if and only if the associated colouring is balanced (or that �(Q0) is flow-invariant). Here we
discuss the analogue for hyperbolic periodic solutions Z0. Let �(Z0) ≡ �(Z0, R). Our main
theorem is as follows.

Theorem 6.1. Suppose Z0(t) is a hyperbolic periodic solution of (2.1). Then the colouring
associated with �(Z0) is rigid if and only if it is balanced.

Our proof of theorem 6.1 will use lemmas 6.2–6.4, which we now state and prove.

Lemma 6.2. Assume the hyperbolic periodic solution Z0 to (2.1) is nondegenerately rigid on
J . Suppose cells c and d are in the same colour class, let g and h be the corresponding
components of F , and let f = g − h. Then every O-coloured sum associated with f is zero
on J .

Proof. Consider a perturbation of (2.1) of type II,

Ż = F(Z) + ε�(Z),

where � = (ϕ1, . . . , ϕn) is an arbitrary strongly admissible map, and let Zε = (zε
1, . . . , z

ε
n) be

the corresponding perturbed periodic solution. Then zε
c and zε

d satisfy

żε
c = g(Zε) + εϕc(z

ε
c),

żε
d = h(Zε) + εϕd(z

ε
d).

(6.1)

By lemma 2.8, cells c and d are input equivalent, so that ϕc = ϕd . Now, since Z0 is
nondegenerately rigid on J by hypothesis, the colouring associated with Z0 is rigid, so that
zε
c(t) = zε

d(t) for t ∈ J . Thus, subtracting the second equation in (6.1) from the first, we
find that

0 = f (Zε) (6.2)

for all small ε. Since � is arbitrary, it now follows from corollary 5.4 that every O-coloured
sum associated with f is zero on J . �

Lemma 6.3. Assume the hyperbolic solution Z0 is nondegenerately rigid on J , and let X and
Y be the corresponding C- and O-cells of G, respectively. Then (2.1) is a skew product

Ẋ = H(X),

Ẏ = G(X, Y ).
(6.3)

Moreover, if we write Z0 = (X0, Y0), then the polydiagonal on the X cells �(X0) is balanced
with respect to the network of X cells.
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Proof. Theorem 2.1 implies that C-cells only receive signals from C-cells. Therefore, (2.1)
can be put in skew-product form (6.3). Since X0(t) is constant on the open interval J , X0 is
an equilibrium of Ẋ = H(X). Also, because Z0(t) is nondegenerately rigid on J , �(X0) is
rigid. By theorem 7.6 in [2], �(X0) is flow-invariant and therefore balanced. �

We motivate the next lemma, lemma 6.4, by recalling the outline of the proof of
theorem 6.1. This theorem is proved locally. Assume Z0 is nondegenerately rigid on J .
We prove that �(Z0, J ) is flow-invariant by contradiction. Suppose there exists a point
Q0 ∈ �(Z0, J ) and an admissible map B such that B(Q0) /∈ �(Z0, J ). Then we show
that under one of the perturbations ε�B� or ε(�B� + �), where � and � are strongly
admissible maps, �(Z0, J ) is not rigid, which contradicts the fact that Z0 is nondegenerately
rigid on J . The choice of the perturbation that forces �(Z0, J ) out of rigidity is based on the
derivatives of B� and B� + � at s ∈ J , where �(Z0(s)) = Q0. Lemma 6.4 discusses these
derivatives.

Lemma 6.4. Assume the hyperbolic solution Z0 is nondegenerately rigid on J . Let c be an
O-cell, let B be an admissible map, let s ∈ J , and let Q0 ∈ �(Z0, J ). There exists a strongly
admissible map � with Q0 = �(Z0(s)) such that either

d

dt
(B�Z0(t))c

∣∣∣∣
t=s

�= 0 (6.4)

or

d

dt
(B�Z0(t) + �Z0(t))c

∣∣∣∣
t=s

�= 0. (6.5)

Proof. SinceZ0 is nondegenerately rigid onJ , �(Z0(s)) = �(Z0, J ). Z0(s) is called a generic
point of �(Z0, J ) in [2] and by lemma 7.5 in [2], there exists a strongly admissible map �

such that Q0 = �(Z(s)). Suppose for all strongly admissible maps � with Q0 = �(Z0(s)),
(6.4) fails; that is,

d

dt
(B�Z0(t))c

∣∣∣∣
t=s

= 0. (6.6)

Since � = (ϕ1, . . . , ϕn) and ϕc can be any map on Rkc , we can choose ϕc such that
Dϕc(z

0
c(s)) �= 0. Also since cell c is an O-cell, ż0

c �= 0 on J . Hence,

d

dt
(B�Z0(t) + �Z0(t))c

∣∣∣∣
t=s

= d

dt
(�Z0(t))c

∣∣∣∣
t=s

= Dϕc(z
0
c(s))ż

0
c(s) �= 0. �

Proof of theorem 6.1. When Z0(t) is hyperbolic standard results show that balanced implies
rigid. We prove that rigid implies flow-invariance and hence balanced. We prove the theorem
locally. By lemma 2.6 we may assume there is an open interval J ⊂ R such that Z0 is
nondegenerately rigid on J .

Suppose �(Z0, J ) is flow-invariant. We claim that �(Z0) = �(Z0, J ) and hence that
�(Z0) is flow-invariant. By definition �(Z0, J ) ⊂ �(Z0, R) = �(Z0). The flow-invariance
of �(Z0, J ) implies that Z0(t) ∈ �(Z0, J ) for all t ∈ R, since Z0(t0) ∈ �(Z0, J ) for
any t0 ∈ J . Thus �(Z0, J ) is a polydiagonal that contains the entire trajectory Z0(R).
However, by definition, �(Z0) is the smallest polydiagonal that contains this trajectory. Thus,
�(Z0) ⊂ �(Z0, J ), which verifies the claim.

We next show that �(Z0, J ) is flow-invariant. That is, for every point Q ∈ �(Z0, J )

and every admissible map B = (b1, . . . , bn), B(Q) ∈ �(Z0, J ). That is, zi(t) = zj (t)

on J implies bi(Q) = bj (Q). The proof proceeds by contradiction. Suppose there exists
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Q0 ∈ �(Z0, J ) and one admissible map B such that B(Q0) /∈ �(Z0, J ). That is, there exist
two cells c and d of the same colour, whose corresponding components bc(Q0) and bd(Q0) are
not equal. If cells c and d were C-cells, then by lemma 6.3 we would have bc(Q0) = bd(Q0).
Therefore, cells c and d must be O-cells. Since cell c is an O-cell and Z0 is nondegenerately
rigid on J , lemma 6.4 implies that we can choose s ∈ J and a strongly admissible map �

where Q0 = �(Z0(s)) such that either (6.4) or (6.5) is valid for c.
Suppose � satisfies (6.4), and consider the system

Ż = F(Z) + ε�B�(Z) (6.7)

obtained by perturbing (2.1), where � is an arbitrary strongly admissible map. Let Zε =
(zε

1, . . . , z
ε
n) be the perturbed periodic solution, and let g and h be the components of F

corresponding to cells c and d , respectively. Then zε
c and zε

d satisfy

żε
c = g(Zε) + ε((�B�)c(Zε)),

żε
d = h(Zε) + ε((�B�)d(Zε)).

(6.8)

Letting f = g − h and u = (�B�)c − (�B�)d , it follows that

0 = żε
c − żε

d = f (Zε) + εu(Zε). (6.9)

Now, if we define

αi(t) = ∂zε
i (t)

∂ε

∣∣∣∣
ε=0

as in (4.6), then on differentiating (6.9) with respect to ε and evaluating at ε = 0, we obtain

0 =
∑

colours L

∑
i∈L

fzi
(Z0(t))αi(t) + u(Z0(t)) (6.10)

=
∑

colours L

( ∑
i∈L

fzi
(Z0(t))

)
αL(t) + u(Z0(t)), (6.11)

where αL denotes the common value of αi for i ∈ L. By lemma 6.2, all the O-coloured sums
associated with f must be zero, so that (6.11) becomes

0 =
∑

C-colours L

( ∑
i∈L

fzi
(Z0(t))

)
αL(t) + u(Z0(t)). (6.12)

Note that for any C-colour L, the function αL(t) is constant, so that as � varies, the function

∑
C-colours L

( ∑
i∈L

fzi
(Z0(t))

)
αL(t)

is constrained to lie in a finite-dimensional function space. However, recalling that u =
(�B�)c − (�B�)d , we claim that having fixed B and �,

B = {(�B�)c(Z0(t)) − (�B�)d(Z0(t)) : � is strongly admissible, t ∈ J }
contains an infinite-dimensional function space on J . Recall B(�(Z0(s))) = B(Q0). Since
we have assumed that bc(x0) �= bd(x0), we have

B�(Z0(s))c �= B�(Z0(s))d .

By continuity, there exists an open neighbourhood Js ⊂ J of s, such that

B�(Z0(Js))c ∩ B�(Z0(Js))d = ∅.
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Note that (6.4) implies B�(Z0(t))c is time-varying on Js and � can be any strongly admissible
map. It follows that

Bc = {(�B�)c(Z0(t)) : ψc((B�(Z0(Js)))d) = 0, t ∈ J.}
contains an infinite-dimensional function space on J . Since Bc ⊂ B, we always can find
strongly admissible maps � such that (6.12) is invalid.

Suppose � satisfies (6.5). Then we consider the perturbed system

Ż = F(Z) + ε�(B�(Z) + �(Z)). (6.13)

The rest of the argument follows exactly as the previous case. �

Remark 6.5. Note that if an admissible map B satisfies B(Q0) �∈ �(Z0, J ), then in the proof
we could have chosen B to be linear. This follows since we did show that �(Z0, J ) is flow-
invariant, and it was proved in [2] that a polydiagonal is flow-invariant if and only if it is
flow-invariant under all linear admissible maps.
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