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GENERICITY, BIFURCATION AND SYMMETRY

MARTIN GOLUBITSKY*

In these lectures I would like to discuss how the existence of symmetries alters
the type of bifurcation behavior that one expects to observe. In the first lecture
I will concentrate on the structure and dynamics of steady-state bifurcation from
equilibria. It is here that the influence of symmetries on linearized equations will be
discussed and some facts from elementary representation theory introduced. The
second lecture will be devoted to effects of symmetry on period-doubling in maps
with a short description of an application to large arrays of Josephson junctions. In
the final lecture I will describe how certain standard choices of boundary conditions
(particularly Neumann) can be thought of as symmetry constraints and how this
fact alters notions of genericity. It accord with the style that has developed in the
lectures at this workshop, the lectures are of different length.

Much of the background material for these lectures may be found in [GSS). The
descriptions of the more advanced topics will be brief as the results concerning these

topics have or will appear elsewhere.

Lecture 1: Bifurcation From Equilibria

Consider the system of ODE
dx n
(1.1) Ti?:f(x"\) z€R™, AeR

with an equilibrium at (zg, Ap), that is,
f(:l:o, /\0) = 0

Let A = (df )z,,2, Pe the n X n Jacobian matrix obtained by differentiation with
respect to z. Then (1.1) becomes:

d
—£=A(m—zo)+---

Recall that if A is hyperbolic (that is, all eigenvalues have nonzero real part), then
all the dynamics of (1.1) are determined by A near zo.

*Department of Mathematics, University of Houston, IHouston, TX 77204-3476
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DEFINITION 1.1. (1.1) has a bifurcation point at (zo, Ag) if some eigenvalue of
A lics on the imaginary axis.

Without loss of generality we may assume )y = 0.
Basic Question: What are the typical transitions in the dynamics of (1.1)7

It is well known that generically the typical transitions are controlled by the
transitions from hyperbolicity in the matrix A as ) is varied. Indeed, there are two
possibilities; A has a

(a) simple zero eigenvalue Steady-State Bifurcation
(b) a pair of simple, complex-conjugate, purely imaginary eigenvalues.  Hopf

bifurcation

Nonlinear theory then implies that in case (a) the dynamics can be reduced (using
center manifolds) to one dimension and the expected transition is a limit-point or
saddle-node bifurcation with a transition from 0 to 2 equilibria. In case (b) the
dynamics can be reduced to two dimensions and one expects a single branch of
periodic solutions to emanate from this bifurcation. See [GH1].

We now consider how both the linear and the nonlinear transitions change when

(1.1) has a nontrivial group of symmetries.
SYMMETRY
Let ' C O(n) be a Lie group of orthogonal matrices.

DEFINITION 1.2. (1.1) has symmetry T if
(1.2) flyz, A) =vf(z,A) forall yeTl.

There are two immediate consequences of the commutativity relation (1.2):

(a) The equilibrium ¢ has symmetry. Define the isotropy subgroup of T at

zo to be
Zzo = {7 ET: 720 = 20}

In our discussion we will assume that the equilibrium zq is a fully symmetric, i.e.
¥z, = I'. Then, without loss of generality, we may assume x4 = 0.

(b) The chain rule implies (df)yz,27 = ¥(df)z,» and hence

Ay = vA.

that is, the matrix A commutes with I'. Thus to understand the dynamics of (1.1)
we must first understand the form of matrices that commute with . This topic
in representation theory has been well studied and we briefly review the relevant

theory.
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ELEMENTARY REPRESENTATION THEORY
DEFINITIONS 1.3. Let W be a subspace of V = R",

(a) W C V is -invariant if y(W) =W forally €T

(b) W C V if T-irreducible if the only T-invariant subspaces of 11 are {0} and
w.

It is well known that any representation may be decomposed into a direct sum
of irreducible representations; the simplicity of the proof of this decomposition is,
however, not always appreciated.

THEOREM 1.4 (The Decomposition Theorem). There exist T'-irreducible sub-

spaces V1,...,V, such that
V=Vl@"'@Va .

Proof. Since I' C O(n), the standard inner product is I'-invariant; that is,
(yv,yw) = (v,w) for all y € T.

Now suppose V has proper I-invariant subspace 1. Then define
Wt={veV:(v,W)=0}
and observe that W+ is [-invariant. Since
V=weWw"

the theorem is proved by induction on the dimension of V. 0

We begin our discussion of commuting matrices by first considering commuting

matrices for an irreducible representation U.

THEOREM 1.5. The space of matrices commuting with an irreducible represen-
tation is isomorphic to R,C or H (where H denotes the quaternions).

Proof. Observe that the vector space
D = {matrices on U commuting with T'}

is an algebra over R; that is, we can add, multiply and scalar multiply commuting
matrices. In addition, D is a division algebra, that is, every nonzero matrix B in D
is invertible. To verify this point note that for B € D

ker B is '-invariant
and irreducibility implies
ker B = U or ker B = {0}

Hence, either B = 0 or B is invertible and B~! € D. The classical Wedderburn
Theorem implies that D is isomorphic either to R,C or H.
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DEFINITION 1.6. U is absolutcly irreducible if the only matrices commuting
with T are multiples of the identity (D = R) and nonabsolutely irreducible other-

wise.

Examples. (a) SO(2) acts nonabsolutely irreducibly on R2.
(b) O(2) acts absolutely irreducibly on R2,

THEOREM 1.7. Generically, in one-parameter bifurcation, steady-state bifurca-

tion satisfies:

(a) the algebraic multiplicity of the zero eigenvalue equals the geometric mul-
tiplicity, and
(b) T' acts absolutely irreducibly on ker A.

Sketch of Proof.

(I) At a bifurcation point, do a center manifold reduction (which can be done
preserving symmetries - Ruelle [R]). Thus, we can assume all cigenvalues of A are

on the imaginary axis.
(II)  Suppose A has a zero eigenvalue.
Choose a I'-irreducible subspace U C ker A4, and define

0 on U

M: VoV b
- f {I on Ut

Perturb (1.1) to:

‘ji_“t” = f(z,)) + €Mz = f.(z,\).

For nonzero e, A, = (df.)o,0 = A + €M satisfies:

(a) Geometric multiplicity of eigenvalue zero

= algebraic multiplicity of eigenvalue zero.

(b) T acts irreducibly on ker A, = U.
Now reduce the bifurcation problem to U (by center manifold).

(IIT) If dimU = 1, then I' acts absolutely irreducibly. So assume dimU > 2. We
claim that f(0,A) = 0, that is, z = 0 is a ‘trivial’ equilibrium.

DEFINITION 1.8. Let ¥ C I be a subgroup. Define the fixed-point subspace of

Y to be:
Fix(Z)={veV:ov=vforal ¢ € T}

LEMMA 1.9. f:Fix(Z) x R — Fix(Z).

Proof. f(v,A) = f(ov,A)=0f(v,A) forall o€ 3.
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To prove the claim observe that Fix(I') = {0} since I' acts irreducibly and nontriv-
ially. Thus, f(0,2) =0.

Define A) = (df)o,x» and observe that Ay commutes with I'. Hence, Ay isin D
and corresponds to a curve d(A) € R,C or H with d(0) = 0.

(IV) Suppose that T acts nonabsolutely irreducibly on U. Then the curve d(A)
is in either C or H. The hyperplane {z € D : Re(z) = 0} corresponds to matrices
with purely imaginary eigenvalues. Hence the curve d(A) can be perturbed to ¢(})
where e()) crosses Re(z) = 0 at A = 0 with nonzero speed, but NOT THROUGH 0.
Since the curve e(A) corresponds to a family of matrices Dy, we can perturb (1.1)

to:
dz
E = f(:l:,/\) + (B,\ - AA).'I:.

0

The absolute irreducibility noted in Theorem 1.9 can be used to transfer the
analytic problem of existence of branches of equilibria to an algebraic one, as the

next theorem shows.

THEOREM 1.10 (Equivariant Dranching Lemma). (Vanderbauwhede [V], Ci-
cogna [C])

(a) Let T' C O(n) be a Lie group acting absolutely irreducibly on V = R".
(b) Assume that (1.1) has a bifurcation at A = 0 and symmetry I'.
(c) Let £ CT be asubgroup such that

(1.3) dim Fix(Z) = 1.
then there is a unique branch of equilibria having symmetry T if
&(0) #0

where (df )o,» = ¢(A)I by (a) and ¢(0) = 0 by (b).

Proof. We know that f : Fix(Z) x R — Fix(Z). Let vy be a nonzero vector in
Fix(Z), and define g : R x R = R by

g(S, ’\)UO B f(Svo, ’\)

We that ¢(0,)) = 0 since irreducibility implies that 0 is a ‘trivial’ solution. Hence
g(s,A) = h(s,A)s by Taylor’s Theorem where

h(0,0) = ¢(0) =0 and h,(0,0) =c'(0) # 0.
Using the Implicity Function Theorem solve

h(s, ) =0 for X =A(s). 0
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Examples. (a) O(2)actsonR? = C, Let £ = {1,x} = Z; where kz = Z. Then
Fix(£) = R C C has dimension one. Hence, in circularly symmetric bifurcation
problems we expect equilibria with a reflectional symmetry.

(b) Theirreducible representations of S 0(3) are given by the spherical harmon-
ics of order £ denoted by V,. (Note that dim V, = 2(+1.) The Cartan decomposition
of V¢ is:

Ve=R@C*t

where the action of 50(2) C S0(3) on V is given by:

] 1@
z1,...,€"%2).

0-(z, z1,...,21) = (z,¢
It follows that Fix(SO(2)) = {(«,0,...,0)} has dimension one. Since solutions with
S0O(2) symmetry have an axis of symmetry, we have proved:

COROLLARY 1.11. In steady-state bifurcations involving spherical symmetry,
generically (in the sense that eigenvalues go through zero with nonzero speed) there

exist a branch of axisymmetric equilibria.

(c)  (Nontrivial dynamics in steady-state bifurcation) Let I' C O(3) be’the 24
element group generated by:

U(:C, y)z) = (yazax)
e(z,y,2) = (e1z,€2y,€32) where  ¢; = +1.

Bifurcation with this group action was studied by May and Leonard [ML] in the
context of three competing populations and Busse and Heikes [BH] in the context
of convection in a rotating layer. Later, Guckenheimer & Holmes [GH2] studied
this group of symmetries abstractly. They showed that it is possible to have a
structurally stable (in the world of T symmetry), asymptotically stable, primary
branch of heteroclinic connections. We outline this construction.

Up to conjugacy the isotropy subgroups of T are:

T2 = {e1,1,1)} Fix(Z,) = {(0,y, 2)}
23 ={(1,0,0%} Fix(Z3) = {(z,z,7)}
24 = {(61,62,1)} FIX(E4) = {(0,0,2)} :

Hence, generically, there exist two types of equilibria with isotropy T3 and .
respectively.

We determine the dynamics associated with this I-equivariant bifurcation by
describing explicitly the general T-equivariant mapping f. Write f in coordinates
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as f =(X,Y,Z). Then

(i) f(ov,A) = of(v,A) implies:
Y(z,y,2,A) = X(y, 2, T, A)
Z(z,y,2,2) = X(z,z,¥,A).

((i1) f(ev,\) =¢ef(v,A) implics
X(z,y,2,A) is odd in z and even in y and z.

Thus, we can write X(z,y,2,2) = a(z?,y?,2%,A)z. The genericity condition is

ax(0) # 0. We assume:
(H1) ax(0)>0
so that the trivial solution losses stability at A = 0. Rescale A so that:

a,\(O) = 1.

To third order f has the form:

(A + az? + fy* + 2%z
(A 4 vz? + ay? + B2y
(A + Bz? + yy* + az?)z

Hence, computing f|Fix(Z4) x R = 0 yields the equation az? = X, Thus, if we

assume
(H2) a <0,

then the $4 equilibrium A will exist for A > 0 and, by exhance of stability, be stable
inside the z-coordinate axis Fix(Z4).

Since (df)4 commutes with its isotropy subgroup 4. It follows that (df)a is
diagonal and that, to lowest order, the two eigenvalues outside Fix(Z,) are:

2 (in the z-direction)

(v - ):
(8 — a)2? (in the y-direction)

If we assume:

(H3) B<a<y
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then A will be a sink in the flow-invariant yz-plane Fix(Z;) and a saddle in the
zz-plane. By considering f|Fix(2;) X R one can show that there are no equilibria
in the yz-plane that lie off the coordinate axes when (H3) is valid.

Thus the unstable manifold leaving A in the zz-plane must cither e unbounded
or tend to the equilibrium on the z-axis. Indeed, the saddle-sink connection can be

shown to exist if:
a 0.

Hence the heteroclinic cycle exists.

Finally, we note that this connection is structurally stable, since the coordinate
planes are always flow invariant (being fixed point subspaces) and planar saddle-
sink connections are structurally stable. A calculation shows that this heteroclinic
connecction can be asymptotically stable.

Thus, intermittancy is an expected phenomena in symmetric systems. Further
examples of complicated dynamics emanating from a steady-state bifurcation may
be found in Field [F3]. See also [AGH]

We end this lecture by discussing the general form of linear commuting maps
when the representation is not irreducible. This result is useful when computing the
asymptotic stability of nontrivial equilibria, and when considering mode interactions
in multiparameter systems. This material is included mainly for completeness and

may be skipped on a first reading.

>3

DEFINITIONS 1.12. Let I' act on a space V.

(a) Let W; and W, be I'-irreducible subspaces of V. Then W; and W, are I'-
“isomorphic if there exists a linear map L : W, — W, that commutes with [, that
is, Ly = 4L for all vel.

(b) Let W be a I'-irreducible subspace of V. The isotypic component of V corre-
sponding to W is the sum of all I'-irreducible subspaces of V are I'-isomorphic to
w.

Examples. (a) For each integer € let O(2) act on V¢ = C by:

0.-2=¢"2 and k-z=73.

The actions for ¢; and {3 are O(2)-isomorphic iff £; = +¢;.

(b) Let the permutation group S3 act on C as symmetries of a equilateral triangle
and on R® by permuting axes. The second action has a two dimensional S; irre-
ducible subspace consisting of points in R® whose coordinates sum to zero. The

actions of S3 on C and V are isomorphic.

THEOREM 1.13. Let U,,...,U; be the distinct I'-irreducible representations
appearing in a decomposition of V guaranteed by the Decomposition Theorem.
Then V is the direct sum of isotypic components:

(1.4) V=V, & - 8V,.
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COROLLARY 1.14. Let A: V — V be linear and commute with T'. Then A can
be block diagonalized by (1.4), that is,

A(Vi,) CVa, for j=1,...,t.

Lecture 2: Period-Doubling, Symmetry and Josephson Functions

In this lecture I want to describe how symmetry affects period-doubling bifurca-
tions and apply these ideas to coupled systems of Josephson junctions. The theory
follows closely the discussion of steady-state bifurcations given in the first lecture -
but with an important difference. The period-doubling bifurcation itself introduces
a reflectional symmetry.

Let f: V x R — V be a smooth I'-equivariant mapping and let f(-, Ao) have a
fixed-point at zg.

DEFINITION 2.1. f has a period-doubling bifurcation at (xo,Xo) if —1 is an
eigenvalue of the Jacobian matrix (df)z,,x,-

We assume that zg is [-invariant and hence, without loss of generality, we may
assume that (2o, o) = (0,0). Our discussion of genericity for steady-state bifur-
cation applies equally well to period-doubling bifurcation. In particular, genericity
implies that the geometric multiplicity of the eigenvalue —1 equals the algebraic
multiplicity and that I' acts absolutely irreducibly on the eigenspace V_; corre-
sponding to the eigenvalue —1.

After a center manifold reduction we may assume that V' = V_,. Observe that
irreducibility implies that f has a trivial fixed point, i.e. that f(0, A) = 0. Similarly,
absolute irreducibility implies that

(dfYo,x = c(M)I

where ¢(0) = —1. Indeed, genericity implies that c'(0) # 0.

The question we address is: find all branches of period two points of f in the
neighborhood of the period-doubling bifurcation at (0,0). We prove the following
analogue of the Equivariant Branching Lemma.

Define the group

. [T if —Iel
T \reZ,(-1) if —I¢T.

Note that T' acts naturally on V.

THEOREM 2.2. Let TC T bea subgroup satisfying:

dim (Fix(Z)) = 1.
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Then there exists a unique branch of period two points for f emanating from the

origin.

A proof of this theorem, based on normal hyperbolicity is given in [ChG]. Here,
however, we present a very simple proof using Liapunov-Schmidt reduction. This
proof was derived indcpendently by Peckham & IKevrikidis, Roberts and Vander-
bauwhede (private communications). The idea of the proof is to convert the problem
of finding period two points of f to one of finding zeroes of a derived mapping F.
The Equivariant Branching Lemma is then used to prove the existence of branches
of zeroes of F'. The proof is a discrete analogue of the proof of existence of periodic
solutions given by Liapunov-Schmidt reduction in Hopf bifurcation.

Proof. Observe that finding a point z such that f(f(z)) = z is equivalent to
finding solutions to the system of equations

y=f(z) and z=/f(y)
Given this, define F: V xV — V x V by
F(z,y) = (f(=) — v, f(y) - =2).

Then F(z,y) = (0,0) if and only if x and y are period two points of f. .

Next use Liapunov-Schmidt reduction to solve F' = 0. To do this, compute

. (dF)o,0 = (:§ :i)

and observe that
V = ker (dF)o0 = {(z,—2z) €V xV :z € V)

is isomorphic to V. Now use Liapunov-Schmidt reduction to find implicitly a map-
ping g : V — V whose zeroes near the origin are in one to one correspondence with
the zeroes of F.

Now we consider the equivariance properties of g. Since Liapunov-Schmidt
reduction can be performed in such a way as to preserve symmetries, we need
only consider the equivariance of F. Note that I' acts (via the diagonal action) on
V x V and that F' commutes with the action of I'. In addition F' commutes with
the reflection symmetry (z,y) — (y,z). Since this symmetry acts as —I on V, it
follows that the reduced mapping g commutes with the group r acting on V.

Finally, we note that the assumption on Fix(Z) is precisely what is needed to
apply the Equivariant Branching Lemma. 1]
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Arrays of Coupled Oscillators

We will apply this theorem to find period two points emanating from period-
doubling bifurcations in the presence of Sy symmetry, where Sy is the permutation
group on N letters. To motivate this discussion, we begin by considering arrays of
coupled oscillators.

An array of coupled oscillators is a system of ODE of the form:

P! =91(y1,---,yN)
(2.1) y; € R
yn =gN(Y1,.. ., UN).

These oscillators are identical if g = --+ = gy = ¢ and identically coupled if
9(y1, Y25+ YN) = 9(¥1,¥o2) -+ - Yo (N))

for every permutation on N — 1 letters ¢. Observe that systems of identical, iden-
tically coupled, coupled oscillators are precisely those systems (2.1) that have Sy
symmetry.

An in-phase solution to (2.1) is one lying in the plane
(2.3) Nn=--"=yn=y.

The fact that the plane defined by (2.3) is flow-invariant follows from the fact that
the plane (2.3) is just Fix(Sn). In-phase solutions satisfy the differential equation:

(2.4) g=9(,.-,¥)

An interesting example of a system of identical coupled oscillators is a large array
of Josephson junctions that has been studied by Hadley, Beasley and Wiesenfeld
[HBW1, HBW2]. The second order system of ODE for Josephson junctions is
(2.5) s+ ¢ +sin(¢;)+ L =Ip  (j=1,...N)

where
é; is the difference in phase of the “quasiclassical
superconducting” wave functions on the two sides
of the j-th junction
B is the capacitance of each junction

Ip is the bias current of the circuit

I is the load current.
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To complete the system, assumptions must be made on how the circuit is loaded.
for example, if the array is capacitative loaded, then

N .
IL=Y ¢;
j=1

~ while if the array is resistive loaded, then
N .
I, = Z é; .
i=1

We make several observations about this system of ODE.

(2) In-phase periodic solutions exist for a large range of the parameters 3, I.

(b) The Poincaré maps for the in-phase periodic solutions can loose stability by
either a fixed-point or a period-doubling bifurcation - but not by a Hopf bifurcation.
Both of these types of bifurcations have been found in numerical computation.

(c) When the in-phase periodic solutions exists, it is asymptotically stable in
the plane (2.3), and hence is unique.

Next we address the question of what types of solutions are expected to emanate
from the bifurcations noted in (b). More detail may be found in [AGK].

Fix §,Ip at a point where an in-phase periodic solution y(t) exists. Choose a

Poincaré section S as follows:

(2.6) S=LeW==R"

where L is the cross-section to y(¢) in the plane of in-phase solutions and
W= {(¢1,...1¢N): 1 + -+ én = 0}.

Let P : § — S be the Poincaré map: P(0) = 0 since the in-phase solution is
periodic.

Observe that S is Sy-invariant and that uniqueness of solutions to systems of
ODE forces P to be Sy-equivariant. Indeed, we may write

(2.7) S=LeoVeV
as a direct sum of Sy-irreducible subspaces, where
V={z;4+ - +zn = 0} >~ RN-1 - RV,

Suppose that the in-phase periodic solution is undergoing a bifurcation; that is,
either of the generalized eigenspaces E; or E_; corresponding to the eigenvalues +1
is nonzero. Invoking genericity, we expect the action of Sy on Ei: to be absolutely
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irreducible. It follows from (2.6, 2.7) that when these eigenspaces are nonzero they
will generally be isomorphic to either L or V. If they happened to be isomorphic
to L, then the bifurcation would produce a new in-phase periodic solution, thus
contradicting (c). Hence E4; =2 V.

We consider first the possibility of a fixed-point bifurcation for the Poincaré¢
map; that is, E; & V. Field and Richardson [FR] show that generically all fixed
points of P have isotropy with one-dimensional fixed point subspaces. Hence the
Equivariant Branching Lemma (applied to Q(s) = P(s)—s) implies the existence of
all the expected fixed points of P. Up to permutation, the fixed points are classified
as follows. Divide the oscillators into two blocks: one block having k oscillators and
the other having N — k oscillators. The bifurcating fixed points have the first k and
the last N — k coordinates equal. Their symmetry group is:

(2.8) Ek = Sk X SN—k-

Unfortunately, [IG] show that if there is a nonzero equivariant quadratic, then
generally all solutions found using the Equivariant Branching Lemma are asymp-
totically unstable. The action of Sy on V has such a nonzero equivariant quadratic
mapping.

At a period-doubling bifurcation the local bifurcation results are more interest-
ing. Since —I ¢ Sn as it acts on V, we use Sn and Theorem 2.2 to find period two
solutions. There is another class of periodic solutions obtained in this way. Divide
the oscillators into three blocks, the first two having k elements and the third having
N — 2k elements. The isotropy of such solutions is the group:

T: generated by Sk X Sk X Sny—2¢ and (z,y,2) = —(y, T, 2).

Theorem 2.2 implies the existence of period two points having symmetries L
and symmetries Ty. The interpretation of these properties of these solutions for the
Josephson function model is most interesting. As noted above, the periodic solutions
with isotropy T divide the oscillators into two blocks, each block consisting of
in-phase oscillators with period approximately twice that of the original in-phase
solution. The periodic solutions with isotropy Tk divide the junctions into three
blocks, the first two blocks consisting of in-phase oscillation but with a half period
phase shift between the two blocks. The third block consists of junctions with
in-phase oscillation but with a period comparable to the period of the in-phase
periodic solution.

Certain of these solutions can be asymptotically stable (for more details, see
[AGK]) and have been observed in numerical experiments on the resistive load
Josephson junction model (but not with the capacitive loaded model). [AGK] also
prove that there exists period two solutions to this Sy symmetric period-doubling
bifurcation with submaximal isotropy. For these solutions the oscillators divide into

three blocks of unequal size.
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Lecture 3: Genericily and Boundary Conditions

The Faraday experiment provides an example where a general qualitative analy-
sis based on period-doubling bifurcations may connect theory with experiment. This
connection highlights the effects that boundary conditions may have on genericity
(see [CGGKS] where the issues raised here are discussed more fully).

In the Faraday experiment a fluid layer is subjected to a vertical oscillation at
frequency w and forcing amplitude A. When A is small the fluid remains essentially
flat and when A is increased the flat surface bifurcates to a standing wave at fre-
quency w/2. What is measured in the experiments of Gollub and coworkers [CG,
GS] is a stroboscopic map S which pictures the surface of the fluid at each period
of the forcing. Since, after the bifurcation, the fluid surface returns to its original
form each second iterate of S, we have a period-doubling bifurcation.

The experiments of Ciliberto and Gollub [CG] focus on fluid layers with circu-
lar cross-section, while the experiments of Gollub and Simonelli {GS] focus on the
square cross-section case. A qualitative analysis of the circular cross-section exper-
iment, along the lines that we describe here for the square cross-section, is given by
Crawford, Knobloch and Riecke [CKR].

The following points are observed in the experiments [GS].

(a) For most values of the forcing frequency w the initial bifurcation from
stability of the flat surface as the amplitude A is increased is by a period:doubling
bifurcation. Spatial modes are detected and described by their wave numbers in
both horizontal directions, such as (3,1), (3,2), (4,0).

(b) For isolated values of w the flat surface loses stability to two modes si-

multaneously.

Given this information we may make several reasonable assumptions concern-
ing the mathematical analysis of any model purporting to describe the Faraday

experiment.

(a) Since The experiment is square symmetric, the loss of stability of the flat
surface to say a (3,1) mode would imply loss of stability to the (1,3) mode as well;
that is, the eigenspace E_; corresponding to the period-doubling —1 eigenvalue is
at least double. Generically, it is precisely double, and hence E_; = C.

(b) At the mode interaction point E_; is isomorphic to C2.

(c) Assuming that a center manifold reduction is possible, the dynamics of the
(stroboscopic map of the) Faraday experiment near the mode interaction point is
controlled by the dynamics of a D4-equivariant mapping f : C? — C2,

These assumptions, however, lead to a difficulty. The representation of the
symmetry group of the square, Dy, on the eigenspace E_; at a generic (non-mode-
interaction point) is either an irreducible two-dimensional representation of D4 or
the sum of two one-dimensional irreducibles.

In the latter case we must then question why a nongeneric situation occurs
in this experiment (since generically eigenspaces are irreducible). In the former
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case the representation is irreducible, but a different problem occurs at a point of
mode interaction. Up to isomorphism the two-dimensional irreducible representa-
tion of Dy is unique. Hence, at a codimension two point of mode interaction of two
two-dimensional, isomorphic, irreducible representations, generically we expect the
linearization (of f) to be nilpotent. This nilpotency would imply that there is only
one independent sect of eigenfunctions (not two), and hence that the two distinct
modes would, in fact, have to merge together at the codimension two point (and be
physically indistinguishable).

We are faced with a dilemma: either something nongeneric (the reducibility of
the eigenspace) occurs in models of the Faraday experiment, or something is wrong
with the experimental observation of distinct modes in the square cross-section case.

We present here an alternative explanation based on some subtleties of genericity
and boundary conditions. See [CGGIKS].

Fujii, Mimura and Nishiura [FMN] and Armbruster and Dangelmayr [AD] ob-
served that the bifurcation of steady solutions in reaction-diffusion equations on
the line changed from what might have been expected when Neumann boundary
conditions (NBC) were assumed. We abstract part of their reasoning here.

Any solution u to a reaction-diffusion equation on [0, 7} with NBC can be ex-
tended in a solution v to that same equation with periodic boundary conditions
(PBC) on [—m, 7] by extending the solution to be even across zero. More precisely,
define:

(3.1) v(z,t) = u(—z,t) forall z <0

Conversely solutions v to the PBC problem that are also even (which, using (3.1)
is a fixed point subspace condition for the symmetry z — —z) is a solution to the
NBC model. .

What is gained by the extension to PBC is the introduction of O(2) symmetry
into the problem (translational symmetry of the reaction-diffusion equation modulo
the 27 periodicity of the boundary conditions). The idea for determining genericity
is to look at the generic PBC case (that is, O(2) symmetric bifurcation) and then
restrict (by fixed-point subspace arguments) to the NBC case.

Similar statements about genericity are valid for Dirichlet boundary conditions
(DBC), although DBC does require an extra reflectional symmetry on the differen-
tial operator to be valid in order to make the extension to PBC. This symmetry is
valid, for example, in the Navier-Stokes equations. Indeed, similar statements hold
for systems and for higher dimensional domains with various mixtures of boundary
conditions.

We now return to the Faraday experiment. In any analytic model of the exper-
iment one must solve for both the surface deformation {(z,y) and the fluid velocity
field u(z,y, z). Typically, in models, no-slip or Dirichlet boundary conditions are
valid for u along the lateral boundaries and Neumann boundary conditions are as-
sumed on ¢ (that is, the fluid surface is assumed to be perpendicular to the side

walls).
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As our discussion above indicates these boundary conditions have the effect
of introducing T? symmetry into the bifurcation problem. The two-torus T? is
obtained by planar translations modulo the double periodicity of the square. Thus,
the full symmetry group I' of the Faraday experiment with square geometry is
generated by Dy and T?.

The consequence of having this enlarged symmetry group is that all of the two-
dimensional eigenspaces noted above are irreducible representations of I', and that,
at mode interaction points, distinct modes have distinct irreducible representations.
Hence, the linearization is diagonal rather than nilpotent and distinct modes need
not merge (thus agreeing with experimental observation).

Period-doubling bifurcations at points of mode interaction in the Faraday ex-
periment is being studied in [CGK] using the group T

Acknowledgement

The research described in these lectures was supported in part by the Institute
for Mathematics and its Applications, University of Minnesota, and by the following
research grants: NSF/Darpa (DMS-8700897), Texas Advanced Research Program
(ARP-1100) and NASA-Ames (NAG2-432).

Many of the results discussed in these lectures were the product of unpub-
lished collaborative research. I wish to thank my collaborators on these projects
for permitting me free use of this material: Don Aronson, John David Crawford,
Gabriella Gomes, Edgar Knobloch, Maciej Krupa, and Ian Stewart.

REFERENCES

[AD] D. ARMBRUSTER & G. DANGELMAYR, Coupled stationary bifurcations in non-flux boundary
value problems, Math. Proc. Comb. Phil. Soc. 101 (1987), 167-192.

[AGH] D. ARMBRUSTER, J. GUCKENHEIMER & P. HoLMEs, Heteroclinic cycles and modulated trav-
elling waves in systems with 0(2) symmetry, Physica 29 D (1988) 257-282.
[AGK] D.G. AronsonN, M. GoLuBITsKkY & M. KruPA, Coupled arrays of Josephson junctions and
bifurcation of maps with Spy symmetry, Nonlinearity. Submitted.
[BH] F.H. Busse & K.E. HElkes, Convection in a rotating layer: a simple case of turbulence,
Science 208 (1980) 173-175.
[ChG] P. CHossAT & M. GOLUBITSKY, Symmetry-increasing bifurcation of chaotic attractors, Phys-
ica 32 D (1988) 423-436.
[C] G. CicoGNA, Symmetry breakdown from bifurcations, Lettere al Nuovo Cimento 31 (1981)
600-602.
[CG) S. CiLiberto & J. GoLLuB, Chaotic mode competition in parametrically forced surface
waves, J. Fluid Mech. 158 (1985), 381-398.

[CGGKS] J.D. CrawroRrD, M. GorLunITsKY, M.G.M. GoMEs, E. KNoBLOCH & I.N. STEWART, Bound-

ary conditions as symmelry constraints, Preprint, University of Warwick (1989).

[CKR] J.D. Crawrorp, E. KNoBLocH & H. RIECKE, Competing parametric instabilities with cir-
cular symmetry, Phys. Lett. A 135 (1989) 20-24.

[F1] M. FieLp, Equivariant dynamical systems, Trans. A.M.S. 259, No. 1 (1980) 185-205.
[F2] M. FieLp, Equivariant bifurcation theory and symmetry breaking, Dyn. Diff. Eqn. 1, No. 4
(1989), 369-421.

[FR1] M. Fierp &R.W. RICHARDSON, Symmetry breaking and the maximal isotropy subgroup
conjecture for reflection groups, Arch. Rational Mech. Anal. 105 (1989) 61-94.



[FR2]
[FMN]
[GH1)
[GH2)
[GSS]
[HBW1]
[I1BW2]

(iG]
(ML]

M]

[MCG)

(R]
[SG]

(V]

87

M. FieLp & R.W. RiciARDSON, New examples of symmetry breaking and the distribution
of symmetry breaking isolropy types, In preparation.

H. Fuin, M. MiMura & Y. NISHIURA, A picture of the global bifurcation diagram in eco-
logically interacting and diffusing systems, Physica 5D (1982) 1-42.

J. GUCKENNEIMER & P. HoLMEs, Nonlinear Oscillations, Dynamical Systems, and bifurca-
tion of Vector Fields,, Appl. Math. Sci. 42, Springer-Verlag, New York, 1983.

J. GUCKENHEIMER & P. HouLMES, Structurally stable heteroclinic cycles, Math. Proc. Comb.
Phil. Soc. 103, part 1 (1988), 189-192.

M. GoLupITskY, I.LN. STEWART & D.G. SCHAEFFER, Singularities and Groups in Bilurcation
Theory: Vol. II, Applied Math. Sci. 69, Springer-Verlag, New York, 1988,

P. HapLey, M.R. BEAsSLEY & K. WIESENFELD, Phase locking of Josephson-junction series
arrays, Phys. Rev. B 38, No. 13 (1988) 8712-8719.

P. HapLey, M.R. BEASLEY & K. WIESENFELD, Phase locking of Josephson-junction arrays,
Applied Phys. Lett. 52, No. 19 (1988), 1619-1621.

E. Inric & M. GOLUBITSKY, Pattern section with 0(3) symmetry, Physica 12D (1984), 1-33.
R.M. MaY & W.J. LEONARD, Nonlinear aspects of competition between Lhree species, SIAM
J. Appl. Math. 29 (1975), 243-253.

I. MELBOURNE, Intermittancy as a codimension three phenomenon, Dyn. Diff. Eqn. 1, No.
4 (1989), 347-368.

I. MELBOURNE, P. CHOsSAT & M. GoruBITsKY, Heteroclinic cycles involving periodic so-
lutions in mode interactions with O(2) symmetry, Proc. R. Soc. Edinburgh 113A (1989),
315-345.

D. RUELLE, Bifurcations in the presence of a symmelry group, Arch. Rational Mech. Anal.
51 (1973), 136-152.

F. SiMoNELLI & J. GoLLup, Surface wave mode interactions: eflects of symmetry and de-
generacy, J. Fluid Mech. 199 (1989), 471-494.

A. VANDERBAUWHEDE, Local Bifurcation and Symmetry, Habilitation Thesis, Rijksuniver-
siteit Ghent, 1980; Res. Notes in Math. 75, Pitman, Boston, 1982.



