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ROTATING CHEMICAL WAVES IN THE GRAY-SCOTf MODEL* 

W. W. FARRt AND M. GOLUBITSKYI 

Abstract. A set of reaction-diffusion equations is considered, known as the Gray-Scott model, defined 
on a circle, and the stability of rotating wave solutions formed via Hopf bifurcations that break the circular 
0(2) symmetry is investigated. Using a hybrid numerical/analytical technique, center manifold/normal 
form reductions are performed to analyze symmetry-breaking Hopf bifurcations, degenerate Hopf bifur- 
cations, and Hopf-Hopf mode interactions. It is found that stable rotating waves exist over broad ranges 
of parameter values and that the bifurcation behavior of this relatively simple model can be quite complex, 
e.g., two- and three-frequency motions exist. 

Key words. Hopf bifurcation, 0(2) symmetry, reaction-diffusion equations, normal form reduction, 
rotating (traveling) waves, mode interactions, Gray-Scott model 

AMS(MOS) subject classifications. 58F39, 58F36, 58F14, 35K57, 35B32 

1. Introduction. In this paper we study numerically degenerate Hopf bifurcations 
of a reaction-diffusion model posed on a circle, 

(1.1 ) ut = Dug +f(u, a), 

where u is a 2X-periodic function of ; with values in R', D is a positive-definite 
diagonal matrix of diffusion coefficients, f is a nonlinear smooth function, and a is a 
vector of parameters. We are particularly interested in whether rotating wave solutions 
that appear when the Hopf bifurcation breaks the 0(2) symmetry [Ruelle, 1973], 
[Golubitsky and Stewart, 1985] can be stable. Our interest stems from the fact that 
stable rotating waves exhibiting striking symmetry have recently been found for the 
Belousov-Zhabotinskii reaction in an annular reactor [Noszticzius et al., 1987], to 
which our circle is a first crude approximation. (Details of the experiments are given 
in ? 2 below.) Indeed, from our perspective, it is the existence of this 0(2) symmetry 
that makes the existence of rotating wave solutions likely. We note that in the experi- 
ments the rotating waves were not found arising from small amplitude, as if by Hopf 
bifurcation. Nevertheless, these waves could still be born via Hopf bifurcations as 
unstable rotating waves if we look at the solution structure of model equations 
describing this experiment. 

Our goal is to show that Hopf bifurcations to rotating wave solutions can be 
expected to occur in any sufficiently realistic model of the B-Z reaction. Of course, 
these waves need not be stable at bifurcation and might only be observable at finite 
amplitude after a secondary bifurcation where stability is restored. In this paper we 
show numerically that both stable and unstable Hopf bifurcations to rotating waves 
do occur in one of the simplest models for autocatalytic reactions on the annulus-the 
Gray-Scott model. In addition, we show that in this model the unstable branches of 
rotating waves can regain stability through secondary bifurcations. It is important to 
note that the numerical techniques we have used can, in principle, be applied to any 
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of the more realistic models. Moreover, as these models all contain at least as many 
parameters and equations as the Gray-Scott model, it seems likely that they will contain 
a solution structure at least as complicated as the one we describe for the Gray-Scott 
model. 

We present the results of these numerical calculations to suggest an alternative to 
the methods of excitable media [Tyson and Keener, 1988], [Maginu, 1985], [Feroe, 
1986], [Ellphick, Meron, and Spiegel, 1990] for finding periodic solutions to reaction- 
diffusion equations. We are interested, in particular, in the structure of solution sets 
that should be common to all such systems of equations. In particular, the annular 
geometry forces the existence of 0(2) symmetry; and hence, the expectation of the 
existence of symmetry-breaking Hopf bifurcations to periodic solutions known as 
rotating waves. Since we consider the symmetry of the equations to be of paramount 
importance, we abstract the annulus to a circle. In the context of reaction-diffusion 
equations on the line with periodic boundary conditions (the circle), it is impossible 
to obtain rotating wave solutions from stable Hopf bifurcations with fewer than three 
equations. For this reason we have attempted our numerical calculations on a system 
with that minimum number of components: the Gray-Scott model. 

The Gray-Scott model [Gray and Scott, 1983] is the simplest model consistent 
with chemical principles that is known to exhibit temporal oscillations in a continuous 
stirred reactor. The chemical mechanism for this autocatalytic model consists of the 
two reversible reactions 

(1.2) A+2B -3B, B ->C, 

which form the core of models like the much-studied Brusselator. Though this model 
is too simple to hope to describe B-Z chemistry quantitatively, it mimics some of the 
behavior in a continuous stirred reactor [Scott and Farr, 1988]. Another positive feature 
of this model is that no species are assumed to be artificially held constant, i.e., the 
"pool chemical" assumption is not used. 

The main mathematical technique in this paper is that of center manifold/normal 
form reduction. Because we consider degeneracies in the spirit of [Golubitsky and 
Roberts, 1987] and [Chossat, Golubitsky, and Keyfitz, 1986], we must deal with center 
manifolds of dimensions as large as six and normal forms computed out to as high as 
fifth order. The resulting calculations are formidable and beyond the reach of hand 
calculation, so we have adopted a hybrid approach: the bifurcation formulae are 
obtained analytically but evaluated numerically. Obtaining the correct formulae is 
usually a difficult and time-consuming task in itself, but with the aid of the results in 
[Cushman and Sanders, 1986] and [Elphick et al., 1987] we have devised a systematic 
procedure for doing so that is easily checked using elementary combinatorics. Details 
of this procedure, which should extend easily to other types of bifurcations, are found 
in the Appendix. 

We note that a very similar hybrid procedure was used before in [Labouriau, 
1985, 1989], [Farr, 1986], and [Farr and Aris, 1987] to analyze degenerate Hopf 
bifurcations in models described by ordinary differential equations without symmetry. 
One minor difference is that these earlier investigations used the Lyapunov-Schmidt 
reduction, as described in [Golubitsky and Langford, 1981]. 

As an aside, we note that an alternative route to performing center manifold/nor- 
mal form calculations involves the use of symbolic manipulators such as MACSYMA 
or Maple. Several monographs are available that detail this approach, for example, 
[Rand and Armbruster, 1987]. Although the Maple package was used to check some 
of the calculations in ? 4, we chose not to use it for the reduction calculations for the 
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ROTATING CHEMICAL WAVES 183 

following reasons. First, a bifurcation analysis must start with a basic solution whose 
properties and stability are known. In the case of a reaction-diffusion system on a 
circle, this basic solution is constant. However, for the (relatively simple) Gray-Scott 
model, this basic solution cannot be found analytically. Because of this, all of the 
subsequent calculations must of necessity be done numerically. Given this fact, a 
completely numerical code is likely to be much faster. Second, we are interested in 
developing methods that will be useful for analyzing more complicated models and 
domains. If anything, these extensions will involve considerably more in the way of 
numerical computation and tip the balance even further away from the type of problem 
suitable for symbolic manipulation packages. Finally, symmetry-breaking bifurcations, 
and especially interactions between symmetry-breaking modes, lead to center manifolds 
of relatively high dimension. This leads to bookkeeping difficulties, especially when 
higher-order terms are needed. The algorithmic approach detailed in the Appendix 
describes our attempts to minimize the amount of work that must be done to calculate 
the normal form up to some given order. 

The organization of this paper is as follows. In ? 2 we summarize the experimental 
results of [Noszticzius et al., 1987] that motivate our work, briefly state our results for 
the Gray-Scott model, and relate our work to that of earlier investigators. In ? 3 
background material on Hopf bifurcation and Hopf-Hopf mode interactions with 
0(2) symmetry for systems of reaction-diffusion equations posed on a circle is pre- 
sented, which covers the main issues and summarizes the needed results. The Gray-Scott 
model is described in ? 4, where we consider steady-state solutions that are constant 
on the circle. A linear stability analysis of these solutions allows us to determine which 
types of bifurcations occur and to locate them precisely. Finally, in ? 5 we present the 
results of our nonlinear analysis for this model. By calculating coefficients in the normal 
form corresponding to a bifurcation point and using the material in ? 3, we are able 
to describe locally the stability of emerging solutions, for example, rotating waves. In 
particular, we describe regions of parameter space for which stable rotating waves 
appear via a primary Hopf bifurcation that breaks the 0(2) symmetry. By computing 
the normal form up to cubic order for a mode interaction between two Hopf bifurcations 
(one 0(2)-invariant and one that breaks the 0(2) symmetry) as in [Chossat, 
Golubitsky, and Keyfitz, 1986] we find a second region where the primary bifurcation 
is to stable 0(2)-invariant periodic solutions, but rotating waves issuing from a second 
Hopf bifurcation become stable via a secondary bifurcation. Thus we find two periodic 
solutions that are simultaneously stable. To our knowledge, this is the first time that 
the six-dimensional 0(2) Hopf-Hopf interaction has been implemented numerically. 
We also briefly describe additional degeneracies that appear in this model: some have 
been analyzed (degenerate Hopf bifurcation with 0(2) symmetry [Golubitsky and 
Roberts, 1987] and Takens-Bogdanov bifurcation with 0(2) symmetry [Dangelmayr 
and Knobloch, 1987]), while others (0(2) Hopf-invariant limit point, Takens- 
Bogdanov-0(2) Hopf), have not. The overall picture is considerably complicated when 
compared to the CSTR dynamics. 

2. Motivation and summary. The Belousov-Zhabotinskii (hereafter B-Z) reaction 
first came to the attention of researchers as an example of a chemical system exhibiting 
spontaneous temporal oscillations in well-stirred closed (i.e., no mass transport across 
the boundaries) [Field and Burger, 1985] and continuous flow reactors [Field and 
Burger, 1985], [Maselko and Swinney, 1986]. The occurrence of spatial patterns and 
waves in unstirred reactors was also noted earlier [Winfree, 1972], and has been of 
considerable interest, e.g., [Field and Burger, 1985]. In this paper we are primarily 
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concerned with spatio-temporal pattern formation in unstirred vessels. The early 
experiments in this area were almost exclusively carried out in closed vessels, in which 
a chemical system inexorably relaxes to a spatially uniform, constant equilibrium state, 
so the patterns observed were really transients. More recent experiments have attempted 
to overcome this problem. For example, the reactor of [Tam et al., 1988], which allowed 
sustained spiral waves to be observed, is in the form of a thin disk of gel (to suppress 
bubble formation and convection), which is fed continuously from beneath by a network 
of capillary tubes that communicate with a stirred, continuously fed reservoir. The 
experiments we are most interested in, however, are those of [Noszticzius et al., 1987]. 
A schematic of their apparatus is shown in Fig. 1. It consisted of a thin annular ring 
of inert gel sandwiched between impermeable boundaries top and bottom. The inner 
and outer edges of the annulus are exposed to stirred reservoirs continuously fed with 
the two components of the B-Z reaction. One advantage of this reactor, over the disk 
reactor of [Tam et al., 1988] as far as analysis is concerned, is that no reaction occurs 
in the reservoirs. 

FIG. 1. Schematic of annular gel reactor used by [Ncszticzius et al., 1987]. 

We now describe the experimental results of [Noszticzius et al., 1987]. The outer 
reservoir contains the sulfuric acid and potassium b romate component, while the 
malonic acid and the ferroin catalyst are fed to the inner reservoir. When the reactor 
is started up, a circular front of ferroin advances froni the inside. As it approaches 
the outer edge, the front becomes more irregular. Eventually, a state develops with 
several wave sources (pacemakers) distributed randomlly around the outer edge, as 
illustrated in Fig. 2. The number of wave sources is irregular, as are their frequencies. 
The source for these pacemakers is not well understood, but they are thought to be 
related to local inhomogeneities, e.g., foreign objects, and it is thought that they can 
be removed by refining experimental techniques [Noszticzius et al., 1987]. It must be 
emphasized that these states are not accessible via the local bifurcation theory we will 
present in the next section. The experimenters, however, are able to perturb these states 
systematically and obtain stable rotating wave solutions similar to the one with eight 
wavefronts shown schematically in Fig. 2. They further state that the rotating waves 
are stable if the number of wavefronts lies between 6 and 25; below this range 
pacemakers appear spontaneously, and above it the waves interact destructively. From 
our point of view, the most striking feature of these states is their regularity and 
resultant high degree of symmetry. In fact, they possess spatio-temporal symmetry. 
This concept is best illustrated by example. Consider a state with eight equally spaced 

This content downloaded by the authorized user from 192.168.52.78 on Wed, 14 Nov 2012 10:47:31 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ROTATING CHEMICAL WAVES 185 

Sink 

Pacemaker 
source 

FIG. 2. Top: single source and sink for pacemaker-induced chemical waves. Bottom: stable eight wavefront 
rotating wave. 

wavefronts. The state is periodic in time, but also in space: rotation of the solution 
through an angle of 2ir-/8 is the same as letting the solution evolve through one temporal 
period. 

Turning to the concept of symmetry, we consider the group 0(2) generated by 
the rotations and reflections in the plane. It turns out that, in a sense to be made 
precise in ? 2, the reaction-diffusion equations are invariant under 0(2). We now 
describe how the experimental results of [Noszticzius et al., 1987] are consistent with 
a Hopf bifurcation that breaks that 0(2) symmetry. It is well known [Ruelle, 1973], 
[Schecter, 1976], [van Gils and Mallet-Paret, 1984] that two families of periodic 
solutions originate from such a point: standing waves and rotating waves. The first 
family will not be very important in this work, but the rotating waves are candidates 
for explaining the experimental results since they have the exact spatio-temporal 
symmetry described above. 

To simplify the presentation and the calculations, we now consider reaction- 
diffusion equations defined on a circle as an approximation to a thin annulus. Such 
equations have the following form: 

(2.1) ut= Duc+f(u, a), 

where u is a 2irr-periodic function of ; and has values in Rn, D is a positive-definite 
diagonal matrix of diffusion coefficients, and a is a vector of parameters. The action 
of 0(2) on the circle is generated by 

(2.2) Rotation by qi: e+ qi mod 2ir, 

Reflection: ; -- mod 2irr 
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and the action of 0(2) on the system of reaction diffusion equations is generated by 

(2.3) Rotationbyq1: u(;)->u(;-), 
Reflection: u(?) - u(->). 

We want to use bifurcation theory to analyze (2.1); a first requirement is a solution 
from which to bifurcate. Note that we have not required the existence of a trivial 
solution to (2.1), and the model we consider does not have one. Their place in the 
theory, however, is taken by solutions that are invariant under the action of 0(2). 
Such solutions are easily seen to be constants, the solutions of the set of equations 
f(u, a) = 0. The next step is to linearize (2.1) about one of these invariant solutions 
and decompose the stability analysis into an infinite sequence of finite-dimensional 
problems by using Fourier modes. That is, we consider linear stability of the invariant 
solution to disturbances of the form v ei"' eAt, where v E Rn and m = 0, ?E1, +2,* 
The resulting finite-dimensional eigenvalue problem is 

(2.4) Av = (A - m2D)v, 

where A is the Jacobian of f(u, a) at the invariant state in question. It is clear from 
(2.4) that the eigenvalues for m are duplicated for -m. This is a direct result of the 
0(2) symmetry. We call an invariant steady-state of (2.1) a bifurcation point if it has 
an eigenvalue with zero real part for at least one value of m. If m $ 0 for one of the 
critical eigenvalues, we call the bifurcation point symmetry-breaking. We note that a 
decomposition into a direct sum of finite-dimensional subspaces is guaranteed by the 
theory of representations [Kirillov, 1976], but this decomposition is particularly con- 
venient for calculations, as we will see below. We also note that since D is positive- 
definite the eigenvalues eventually have negative real parts for all sufficiently large m. 

In most chemical systems of interest, the diffusion coefficients are nearly equal 
so the matrix D is close to a scalar multiple of the identity. If this is exactly true, then 
the eigenvalues of (2.4) for arbitrary m are related to those for m = 0 by translation, 
which can be seen easily by substituting D = dI into (2.4). An important observation 
for our work on Hopf bifurcation is that, for equal diffusion coefficients, a symmetry- 
breaking Hopf bifurcation can never be the primary bifurcation point. This follows 
from (2.4) since, if there is a pure imaginary pair of eigenvalues for some m > 0, then 
there are complex conjugate pairs of eigenvalues with positive real part (= n2d) for 
all n, 0- n - m. Thus to find stable rotating waves we must either have unequal diffusion 
or some mechanism by which the rotating waves can become stable when they are not 
the primary bifurcation. In our work with the Gray-Scott model, we encounter both 
of these cases. 

We now briefly describe the Gray-Scott model and the results we have obtained. 
Technical details are given in ?? 3-5 and the Appendix. The model equations are 

x, = DIx,-xy2 +aly3+A(1-x), 

(2.5) yt = D2yC + Pxy2 -a1Y3-y Y+a3Z+A(y2-y), 

z, = D3zC+y-a3z+A(y3-z) 

and are essentially those of [Balakotaiah, 1987] with diffusion terms added. The 
parameters appearing in (2.5) have physical meaning as follows: ,3 represents a forward 
reaction rate coefficient, a1 and a3 are reverse reaction rate coefficients, A represents 
a mass-transfer coefficient, and Y2 and y3 are ratios of the feed concentrations of 
species B and C to that of species A. As described in [Balakotaiah, 1987], finding the 
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invariant solutions can be reduced to solving a single nonlinear equation that is cubic 
in y. Analytic solution is not possible, but the methods of [Golubitsky and Schaeffer, 
1985] are used in [Balakotaiah, 1987] to classify all of the possible bifurcation diagrams 
for the invariant steady-states. For any particular parameter values the bifurcation 
diagram can be generated numerically using a standard path-following technique 
[Doedel, Jepson, and Keller, 1984]. 

Linear stability calculations must also be done numerically, and standard path- 
following techniques exist [Spence and Jepson, 1984]. Because the model is only 
three-dimensional, however, it is simpler to use the characteristic equation. Conditions 
for eigenvalues with zero real part can be formulated simply in terms of the characteristic 
equation coefficients and solving for particular configurations, for example, finding 
Hopf bifurcation points for a particular value of m, is relatively easy. However, to 
obtain local stability results from a center manifold/normal form reduction we really 
need information on all of the eigenvalues. This can be obtained as follows. We will 
show below that if A is small enough, all of the eigenvalues have negative real parts. 
Hence, we can determine changes in stability simply by monitoring the signs of the 
conditions for eigenvalues with zero real part. In principle, we would have to do this 
for all values of m, but in practice we only have to monitor a finite number of modes 
because the eigenvalues eventually have negative real parts for large m. 

Some typical results from the analysis are shown in Fig. 3. The parameter values 
were chosen so that there is a unique invariant steady-state and the only bifurcations 
occurring are Hopf bifurcations for m =0 and m = 1. The invariant steady-state is 
initially stable. First, a pair of m = 0 Hopf points appear and separate, then a pair of 
m = 1 Hopf points appears between the m = 0 Hopf points and, finally, the m = 1 Hopf 
point at the smaller value of A passes through the m = 0 Hopf point and becomes the 
primary bifurcation point. The places where a pair of Hopf points appear are our first 
examples of degenerate Hopf bifurcation [Golubitsky and Langford, 1981], [Golubitsky 

1 2 

y y 

* m-O Hopf point 

o m-1 Hopf point 

3 4 

Y y 

FIG. 3. Typical linear stability results for Gray-Scott model. (1) Stable invariant steady-state. (2) Two 
m = 0 Hopf points appear. (3) A pair of m = 1 Hopf points appears. (4) The leftmost m = 1 Hopf point becomes 
a primary bifurcation point by passing through the m = 0 Hopf point. Main branch is steady-state; bifurcating 
branches correspond to periodic solutions. 
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and Roberts, 1987], and the crossing of the m = 0 and m = 1 is a mode interaction 
[Chossat, Golubitsky, and Keyfitz, 1986]. By computing the normal form vector field 
for each Hopf point we can determine the local stability of the periodic branches, and 
this is also shown in Fig. 3. 

By computing the six-dimensional normal form for the interaction of the m = 1 
and m = 0 Hopf points up to cubic order and using the results in [Chossat, Golubitsky, 
and Keyfitz, 1986] we can obtain more information on how the stabilities change. 
Details are given below, but the local diagrams are as shown in Fig. 4. There we see 
that secondary bifurcations to quasi-periodic solutions (which are not stable) occur 
such that the rotating waves and the invariant periodic branch each become stable 
when they are not the primary bifurcation. One interesting result is that the rotating 
waves and the invariant periodic solutions are simultaneously stable. 

-~~~~ 

1 
2 

2 

FIG. 4. Sample local bifurcation diagrams for the six-dimensional m = 0, m = 1 Hopf-Hopf mode interac- 
tion. The branch of rotating waves is labeled 2. 

In ? 5 we present more results by varying an additional parameter as well. It turns 
out that the sequence we have presented above holds in a fairly large region of parameter 
space, but we also encounter additional complications. For example, limit points can 
appear on the invariant steady-state branch via a hysteresis bifurcation. This leads to 
further complications in the form of Takens-Bogdanov singularities involving the 
invariant limit points and invariant Hopf points as well as interactions of the m = 1 
Hopf points with the invariant limit points. A codimension three singularity occurs 
when we have an invariant Takens-Bogdanov simultaneously with an m = 1 Hopf 
point. By changing the values of the diffusion coefficients, Hopf modes for any m can 
appear, although only the m = 0, 1, or 2 modes are primary bifurcation points in our 
investigations. Since the diffusion coefficients in the Gray-Scott model cannot be related 
to the experiments, we cannot predict which m will actually appear in the experiments. 

Earlier investigators also interested in rotating waves in circularly symmetric 
geometries include [Auchmuty, 1979, 1984] and [Erneux and Herschkowitz-Kaufman, 
1977, 1979a, 1979b], who both considered the Brusselator model on a two-dimensional 
disk. This model is nice to work with because it has a trivial solution and only two 
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ROTATING CHEMICAL WAVES 189 

chemical species, so analytical calculations are feasible. Unfortunately, as we will see 
below, for Hopf bifurcation in a model with two species the primary bifurcation is 
always to invariant periodic solutions, and bringing together Hopf points corresponding 
to different modes is impossible for nonzero diffusion coefficients. Thus local analysis 
cannot be used to find stable periodic solutions that have broken the 0(2) symmetry. 
[Erneaux and Herschkowitz-Kaufman, 1979a, 1979b] use numerical simulation in 
addition to local bifurcation theory and find that both standing and rotating waves 
can be stable. In our analysis these states can be found by secondary bifurcation. 

3. Hopf bifurcation with 0(2) symmetry and mode interactions. In this section we 
briefly summarize concepts concerning Hopf bifurcation with 0(2) symmetry and the 
0(2) Hopf-Hopf mode interactions. We give normal forms and describe the solutions 
that appear for each bifurcation, but we do not present details. This material is 
taken, for the most part, from [Golubitsky, Stewart, and Schaeffer, 1988] but we refer 
readers also to [Golubitsky and Roberts, 1987] and [Chossat, Golubitsky, and Keyfitz, 
1986] for further details. 

We first consider symmetry-breaking Hopf bifurcation with 0(2) symmetry. In 
our application this occurs when there are (nonzero) purely imaginary eigenvalues for 
some fixed positive value of m. Because the eigenvalues are reproduced for - m, the 
critical or center subspace is generically four-dimensional. As for Hopf bifurcation 
without symmetry, it is convenient to use complex coordinates, so we identify the 
four-dimensional space with (z1, Z2) E C2. We will show in the Appendix how these 
coordinates are chosen so that they inherit the 0(2) action given by 

(3.1) 1(z,, Z2)= (e'qzl_ e- iZ2), K(Z1, Z2) = (Z2, Z1), 

where qf is the rotation and K is the reflection. These coordinates were used by [van 
Gils and Mallet-Paret, 1984]. Because a Hopf bifurcation produces solutions periodic 
in time, there is an additional phase-shift symmetry [Golubitsky and Stewart, 1985], 
[Golubitsky, Stewart, and Schaeffer, 1988], that of the circle S', which acts by 

(3.2) O(Z1, Z2)= (eiOzl, eioz2). 

Details from the group theoretical standpoint of how this phase-shift symmetry arises 
are in the two previous references, but their result is that the normal form can be 
chosen to commute with the group 0(2) x S1. This same result appears in the formal 
characterizations of normal forms of [Cushman and Sanders, 1986] and [Elphick et 
al., 1987]. Given the actions of 0(2) and S above, it can be shown that a normal 
form for Hopf bifurcation with 0(2) symmetry can be represented up to any finite 
order by 

(3.3) (z) = (Pi + iql) ( ) + (r, + is,)86 

where 8 = z212- z 12 and the quantities Pi, q1, r1, and s, are real functions of N= 
|z 12+1Z212, A = 62, the bifurcation parameter A, and (in the case of degeneracies) other 
real parameters. Generically, there are two types of solutions to (3.3) near the origin: 
standing waves and rotating waves. In applications, it is important to note that the 
rotating waves appear in pairs that travel in opposite directions, but according to the 
theory they are identified as being essentially indistinguishable, since one is related to 
the other by the reflection K, and thus behave identically. An important feature is that 
(3.3) can be separated into phase and amplitude equations and the resulting amplitude 
equations can be analyzed using singularity theory to obtain relatively complete 
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information on degenerate Hopf bifurcation up to codimension two [Golubitsky and 
Roberts, 1987]. 

As we said above, symmetry-breaking Hopf bifurcation occurs in our application 
when there are purely imaginary eigenvalues for some positive value of m. In the 
normal form (3.3) no trace of m remains and this deserves some explanation. Details 
are in [Golubitsky, Stewart, and Schaeffer, 1988] but the idea is that we factor out a 
cyclic kernel to obtain the standard action. This factoring out adds to the elegance of 
the theory but conceals the fact that the value of m is crucial to visualizing the 
appearance of the bifurcating solutions in the application. In the case of rotating waves 
on a circle, the value of m determines the number of peaks or wavefronts that appear. 

The linear degeneracies that are of the most interest in this study are what we 
term Hopf-Hopf mode interactions, that is, bifurcation points where there are purely 
imaginary eigenvalues for more than one value of m simultaneously. We saw above 
that for equal diffusion coefficients this cannot happen and, furthermore, that the 
various modes (if they appear at all) appear in a very ordered fashion. Thus when we 
vary the diffusion coefficients away from equality, we would expect to see interactions 
between neighboring modes first. This turns out to be what we find for this model. 
Since the m = 0 mode is the primary bifurcation for equal diffusion coefficients, we 
will focus on the m = 0, m = 1 Hopf-Hopf mode interaction, but we will also encounter 
the m = 0, m = 2 and m = 1, m = 2 interactions. 

A general principle of local bifurcation theory is that it can be used to find stable 
bifurcating solutions only from the primary bifurcation. A step away from this limitation 
is the study of mode interactions, that is, situations where by varying one additional 
parameter we can get the bifurcation points for distinct modes to pass through each 
other. In such a situation each mode is the primary bifurcation for some parameter 
values and so can be expected to produce stable branches. A well-known result is that 
mode interactions can produce secondary or even tertiary bifurcations, which compli- 
cate the dynamics substantially. Studying these interactions via normal forms permits 
us to predict considerably more about the behavior of the system than can be determined 
from studying either mode alone. In our application, we are primarily interested in 
two types of Hopf-Hopf mode interactions. 

The first type is the interaction of an invariant Hopf (m =0) and a symmetry- 
breaking Hopf (m # 0). The center manifold for this singularity is six-dimensional, 
and again complex coordinates (zO, zl, z2) are the most convenient. We refer the reader 
to [Chossat, Golubitsky, and Keyfitz, 1986] for details. They show that if the two 
frequencies are incommensurate, the normal form commutes with the action of 0(2) x 
T2 generated by 

(zo, zl, z2) = (zo, ei'zl , e-iz2) 9 fE SO(2) ' 0(2), 

(3.4) K(Zo Zl, z2) = (ZO, Z2, Z1), 

(09 P) (ZO , Zl , Z2) = ( e "zo e "'zl . e Z2) 9(09 4S>) E: T . 

Note that again it is the standard action of 0(2) that appears in (3.4), but the same 
warning for interpreting the results applies. The normal form for this singularity can 
be written as 

(io\ /zo\ 0\ 
(3.5) {i,) =(po+iq0) 0) +(p1+iql) z) +(P2+iq2)j6 Zl 8 

where Po, qo p, Pq, , P2, q2 are functions of p = IZoI2, N = 1zl12+ 1z212, and A = 862 where 
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6 = jz212- I z12. Remarkably, (3.5) can be separated into phase and amplitude equations, 
which simplifies the analysis considerably. In fact, it should be possible to use singularity 
theory methods like those of [Golubitsky and Roberts, 1987] to classify the solutions 
to the amplitude in the case of degenerate six-dimensional Hopf-Hopf mode interac- 
tions, but this has not been done yet. What has been done [Chossat, Golubitsky, and 
Keyfitz, 1986] is to classify the solution types that appear at such a mode interaction 
and derive conditions that determine their stability. Luckily, it turns out that cubic 
terms in the normal form are sufficient in the nondegenerate case with which we will 
mainly be concerned. There are five basic types of solutions that generically appear 
at such a singularity. The first three are the primary branches that appear at the two 
individual Hopf points: an 0(2) invariant periodic solution originating at the invariant 
Hopf point, and standing waves and rotating waves associated with the 0(2) symmetry- 
breaking Hopf point. The two remaining types of solutions appear as secondary 
branches and are quasi-periodic, two-frequency motions that can be described as mixed 
modes that combine the invariant periodic solution with either the standing or rotating 
waves. These secondary branches appear simultaneously when they bifurcate from the 
invariant periodic solution, but individually when they bifurcate from the standing or 
rotating wave pure modes. Table 3.1 lists these five branches and identifies each with 
a number that will be used to identify the branch in ? 5. 

TABLE 3.1 
Identification of branches for six- 

dimensional Hopf- Hopf interaction. 

Branch Identification 

1 invariant periodic 
2 rotating wave 
3 standing wave 
4 two frequency 
6 two frequency 

For our purposes, we need only consider the cubic order truncation of the 
amplitude equations 

io= ro(po,Ak +po,p3 +poor2+pol(r2+ r2)), 

(3.6) ii = r1(pl,,kA +pl,p3, +p1or2 +pjjr2+p12r2), 

i2= r2(pl,AA +Pl,p13 +ploro+Pl2rl +pllr2) 

which is obtained by truncating (3.5) at cubic order, writing zj = rj e 'J, and separating 
real and imaginary parts. Note that symmetry requires certain terms to equal; this is 
reflected in (3.6). This is not quite the same as the equations that are used in [Chossat, 
Golubitsky, and Keyfitz, 1986], but if pos $ 0, Pl,, $ 0, and Po,APi, -Pl,APo,p #0 , (3.6) 
can be reduced to the case they consider by defining new bifurcation and unfolding 
parameters that are appropriate linear scalings and combinations of A and ,8. If this 
can be done and ten additional nondegeneracy conditions involving the coefficients 
in (3.6) are satisfied, then the results of [Chossat, Golubitsky, and Keyfitz, 1986] allow 
us to determine the stabilities of the primary branches from each of the Hopf points 
and also locate and determine stability of branches originating from the secondary 
bifurcations. For the present study, it was found convenient to repeat the stability 
calculations without making a preliminary change of A, , coordinates. The results are 
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summarized in Table 3.2 (based on Table 4.5 in [Chossat, Golubitsky, and Keyfitz, 
1986]), with the definitions needed to evaluate the quantities appearing in Table 3.2 
given in Table 3.3. The reader should note that Table 3.2 is considerably more useful 
for applications. The Eij matrix appearing in the tables is similar to one defined in 
[Melbourne, Chossat, and Golubitsky, 1989], which turns out to be very useful in 
determining the stabilities of the three primary branches. For example, if the entries 
in the jth column are all negative, then branch j will be stable when it originates from 
the primary bifurcation point and will become stable via secondary bifurcations when 
the other mode bifurcates first. 

TABLE 3.3 
Definitions of quantities in Table 3.2. 

I I Poo 21= (PO,API1OPI,APOO)/PO,A 

?12=PII -22 =PI2-PI1 

B13 =PII +PI2 E23 = PI I-P12 

?31 (PO,APIlOPI,APOO)/PO,A 

?32 = (Pl,APOI PO,APll)/Pl,A 

?33 [ [2pI,AkpOI PO,A((PII +PI2)]/PlI1A 

PI,A PO,AP 1,G PI,APO,,G 
K = Ek ,= 

PO,,A PO,,A 

PIoPo,13 PooPi, "G PoiPI,1 PiiPo,13 2poIpI,j6 (Pll +PI2)Po,p 

PO,A PI,A PI,A 

61 = -12-21 + KE, I E32 e2 = '13 -31 + K-1 I 1 33 

A4 = -(?1271 + KEII7?2)/6i A6 = -(?1371 + K1ii7?3)/e2 

It can also be shown that seven of the ten nondegeneracy conditions of [Chossat, 
Golubitsky, and Keyfitz, 1986] are equivalent to requiring no nonzero entries in the 
Eij matrix (the careful reader will have already noted that E21 = ?31 and ?22 = -E23, So 

there are only seven independent entries). Their remaining three conditions are provided 
by requiring nonzero values for P12, det 4, and det 6. Note that since (3.6) is more 
general than the normal form considered in [Chossat, Golubitsky, and Keyfitz, 1986] 
we additionally require nonzero values for Po,A, Pi,A and Po,AP1,p, -Pj,xPko,P (=Po,A8AxP), 

bringing the total number of nondegeneracy conditions to 13. If these conditions are 
satisfied, then the direction of branching and stability of each of the five primary and 
secondary branches is determined by the cubic order truncated normal form (3.6). In 
addition, any secondary bifurcation points that appear for a fixed value of X3 #0 will 
do so at distinct values of A. If any one of them is not satisfied, then further analysis 
must be done. 

The final singularity of interest is the interaction of two 0(2) symmetry-breaking 
Hopf bifurcations, which has an eight-dimensional center manifold. Complex coordi- 
nates (zI, z2, z3, z4) e C2G C2 are again the most convenient. When the frequencies 
are nonresonant, the relevant symmetry group is again 0(2) x T2 as it was for the 
six-dimensional interaction, but the action is more complicated since 0(2) does not 
act trivially on any of the coordinates, as it did on zo in the previous case. Using the 
same notation as above, the relevant action is generated by 

fr(z, Z2, Z3, Z4)= (eik zi, e-ik z2, ein'z3, e-inqI4), Z f E SO(2) c 0(2), 

(3.7) K(Z1, Z2, Z3, Z4) = (Z2, Z1, Z4, Z3), 

(0, P)(Z1, Z2, Z3, Z4) =(e"0z1, e0Z2, e'Z3, e 'PZ4), (0, p) E T2. 
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The integers k and n, k < n, that appear in (3.7) are the values of m to which the two 
Hopf points correspond. In our application we will be interested in the case where 
k = 1 and n =2. More generally, the values of k and n are obtained by removing 
common factors between the two values of m and factoring out by a cyclic kernel, but 
we do not need this generality. We do note, however, that in the general case it is not 
possible to assume that 0(2) acts via its standard representation on (z,, z2), even 
though this turns out to be possible for the case we consider here. 

The normal form for the eight-dimensional Hopf-Hopf interaction is developed 
in detail in [Chossat, Golubitsky, and Keyfitz, 1986]. We merely reproduce the final 
result: 

il = (P1 + iq1)z, + (r, + iS)n1Zn (Z3Z4) k, 

(38= (P2+ iq2)Z2+ (r2+ iS2)zl( 2 3z4), 

(3.8) Z3-= p3 + iq3)z3 + (r3 + iS3)(Zl 32) Z3 4 9 

Z = (Pp4+ iq4)z4+ (r4+ iS4)(51Z2) Z3 Z4 , 

where the real functions pj, q;, rj, sj, j = 1, 4 depend on pi = IZ2, i = 1, 4 and the real 
and imaginary parts of a = (z1I2)n(53z4)k. In addition, the reflection K imposes relations 
between the first and second and third and fourth components of the vector field, 
which are easiest to describe as follows. Suppose that we represent (3.8) by ij = 

Fj(zl, z2, Z3, Z4), j = 1, 4. Then the restrictions that are placed on the vector field by K 

are 

F2(zl, Z2, Z3, Z4) =F1(K(Z1, Z2, Z3, Z4)) =F1(Z2, z1, Z4, Z3), 
(3.9) 

F4(Zl , Z2,9 Z3,9 Z4) = F3(K (Zl1, Z2!, Z3,, Z4)) = F3(Z2. Zl,, Z4, Z3)- 

A major difference from the six-dimensional normal form is that the eight-dimensional 
normal form cannot be separated into phase and amplitude equations, so the analysis 
is correspondingly more difficult. Also, adding to the complication in the eight- 
dimensional case are the four primary branches and the eight types of two- and 
three-frequency secondary branches that appear in this interaction. In [Chossat, 
Golubitsky, and Keyfitz, 1986] the branches that can appear in this interaction are 
classified, and conditions that allow the direction of bifurcation and stability of each 
branch to be determined are derived. Fortunately, in this study we are concentrating 
on the rotating waves, and it turns out that their branching and stability are determined 
at third order, including the behavior of the secondary branches that generically appear 
on the two branches of rotating waves. Furthermore, the normal form truncated at 
cubic order does separate into phase and amplitude equations so we can proceed as 
for the six-dimensional interaction and write our truncated normal form amplitude 
equations as 

il = rl(plkAk + pi,pG3 +p, 4r2 +p12r2 +p13r2 +p14r2), 

(3.10) r2 = r2(pl AA +Pl,03,8 +p12r2 +pllr2 +p14r 2 +p13r2), 

i3 = r3(p3,Ak +p3,f3P +P31ri +p32r2+p33r3+p34r4), 

r4= r4(p3,kA +P3,,83/ +P32rl+P31r2+p34r3+p33r4). 

Again, note the terms forced to be equal by symmetry. Following the classification of 
solutions in [Chossat, Golubitsky, and Keyfitz, 1986], we can construct Table 3.4, 
which provides identifying numbers for the four primary branches and the two secon- 
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TABLE 3.4 
Branch identification for eight- 

dimensional Hopf-Hopf interaction. 

Branch Identification 

1 k-rotating wave 
2 k-standing wave 
3 n-standing wave 
4 n-rotating wave 
7 two frequency 
8 two frequency 

dary branches, which generically bifurcate from the rotating waves. We also construct 
Table 3.5, which gives the branching equations and eigenvalues for these six branches. 
Table 3.6 provides the definitions of the quantities in Table 3.5. Using the results in 
the three tables, in ? 5 we will be able to determine local bifurcation diagrams for the 
eight-dimensional Hopf-Hopf interaction, but only in a limited sense since we will 
ignore' the branches of standing waves and their secondary bifurcations. It will turn 
out, however, that for the parameter values we have chosen, the rotating waves are 
the only stable solutions and the deficiency in our analysis will not be important. 

It turns out that even for our limited analysis of the truncated normal form (3.10) 
there are 23 nondegeneracy conditions, i.e., these conditions must be satisfied for the 
direction of branching and stability of the four primary branches and two secondary 
branches we are considering to be determined at third order. Twelve of these conditions 
come from requiring that all of the rij matrix entries be nonzero, Pl,A $ 0 and P3,A $ 0 
follow from requiring strict eigenvalue crossing, and the remaining nine conditions 
are derived by requiring distinct values of A (for 3 $ 0) for all of the primary and 
secondary bifurcation points. These conditions are summarized in Table 3.7. 

4. Invariant steady-states and linear stability. In this section we want to establish 
in detail the structure and linear stability of the 0(2)-invariant solutions. Our main 
interest continues to be symmetry-breaking Hopf bifurcations, but the preliminary 
material in this section lays the foundation for our later results. The techniques are 
singularity theory [Golubitsky and Schaeffer, 1985] and the global extensions due to 
[Balakotaiah and Luss, 1984] to determine the local structure of the invariant solutions 
and straightforward manipulation of the characteristic equation to determine stability. 

The invariant steady-states are obtained by removing the diffusion terms from 
(2.5) and studying the steady-states of the resulting set of ordinary differential equations 

x= =-2xy 2+ tly 3+A(1 -x), 

(4.1) j = 3xy2 _al y3-y+a3z+ A(y2-Y), 

= y-a3z + A(Y3-z). 

These equations will be referred to below as the CSTR equations, since they describe 
the behavior of the Gray-Scott model in a continuous stirred tank reactor. As described 
in [Balakotaiah, 1987] the steady-states of (4.1) can be found from a single equation, 
cubic in y, that is obtained by setting the right-hand side of (4.1) to zero and eliminating 
the variables x and z. Furthermore, as shown in [Balakotaiah, 1987], the structure of 
the solutions of this cubic equation can be completely characterized via the singularity 
theory methods of [Golubitsky and Schaeffer, 1985] and the extensions in [Balakotaiah 
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TABLE 3.6 
Definitions of the quantities in Table 3.5. 

?,l1 = 2p, I F?21 P12 PII 

?12 = 2(P 1I+P12) ?22 2(PII IPI2) 

?13 = 2(P33 +P34) ?23 = 2(P33 P34) 

?14 = 2P33 ?24 P34 P33 

831 = (Pl,,A P31 P3,A PI )/Pl,,A 

?32 = [PI,A (P31 +P32) P3,A (Pl I +PI2)]/PI ,A 

?33 = [P3,A (PI3 +PI4) -Pl,A (P33 +P34)]/P3,A 

?34 = (P3,A P14 Pl,AP33)/P3,A 

?41 = (PI,A P32 P3,A PI )/Pl,,A 

?42 = [Pl,A(P31 +P32) -P3,A(Pl 1 +PI2)]/PI,A 

?43 = [P3,Ak(P13 +P14) _PI,A(P33 +P34)]/P3,A 

?44 = (P3,AP13 Pl,AkP33)/P3,A 

PI,AP3,13 PI,AP3,6 K P3,A 

PI,A P1,A 

PI IP3,,1-P31PI,, k8 P32PI, -PI IP3,13 

Pl IP3,A P31PI,A P32PI,A PI IP3,A 

A _ P13P3,1 _P33P,J3 A =P14P3,-P33P1,,3 
47 -48 

PI3P3,A P33PI,A P14P3,A P33PI,A 

TABLE 3.7 
Nondegeneracy conditions for the eight- 

dimensional Hopf-Hopf interaction. 

1-12 ?ijA 0 i j = 1, 4 
13 P1,A : 0 
14 P3,A : ? 
15 EAP : ? 
16 PlIP33-P31PI3 0 ? 

17 PI IP33-P32P14A +0 

1 8 P 1P33-P3 IP14 0 0 

19 PI IP33 -P32P13 0 ? 
20 P13:0 

21 P14A +0 
22 P31:0 
23 P32A0 

and Luss, 1984]. For the present study we take A as our distinguished bifurcation 
parameter, 8 and Y2 as free parameters, and fix the values a1 = 0.1, a3= 0.002, and 
y3= 0.4. Giyen these values, the nonpersistence varieties and the corresponding steady- 
state bifurcation diagrams in the parameter regions of interest are shown in Fig. 5. 
Actually, the two steady-state limit points that occur in region 4 only enter tangentially 
into our analysis and can be ignored most of the time, so we can think of (4.1) as 
possessing a unique invariant steady-state. The numerical values on the axes correspond 
to sets B and C; an analogous plot for set A is qualitatively similar. 

The next step is to study the linear stability of the invariant steady-states. The 
Gray-Scott model is simple enough so that this can be done using the characteristic 
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FIG 5. Top: bifurcation diagramsfor invariant steady-states. Numbers refer to open regions below. Bottom: 
nonpersistence variety H for invariant steady-states. Bifurcation variety B is the boundary of the shaded region. 

equation of the linearization of (2.5) about an invariant steady-state. At any invariant 
steady-state, the characteristic equation can be solved for the eigenvalues for each 
value of m. Clearly, we need only consider nonnegative values of m when determining 
linear stability, and, in fact, we will only need to consider a finite range for the values 
of m. However, it is not necessary to solve for all the eigenvalues if we are only 
interested in changes in stability. The idea is that we start our stability determination 
at some point where we know the eigenvalue configuration and then look for changes 
in stability as we move continuously along the invariant steady-state bifurcation 
diagram. Generically changes in stability occur via Hopf bifurcation or by a single 
real eigenvalue crossing through zero, and it is a simple matter to derive necessary 
conditions from the characteristic equation for each type of bifurcation point. These 
conditions are actually derived from the Routh-Hurwitz criterion [Levinson and 
Redheffer, 1970], which gives necessary and sufficient conditions for all of the eigen- 
values to have negative real parts. This same criterion can be used to show that all 
eigenvalues have negative real part if A is small but nonzero, giving us a starting point 
for determining linear stability. From the physical standpoint, having A = 0 means that 
the system is closed and a continuum of uniform equilibrium states exists. Thus it 
comes as no surprise that close to equilibrium (i.e., small A) the invariant steady-state 
is asymptotically stable. 

To perform the linear stability analysis we must first choose values for the three 
diffusion coefficients. Since the Gray-Scott model is not intended to describe any 
particular physical system, there are no experimentally measured quantities to use as 
guides as there are for models more closely related to the B-Z system. We are guided, 
however, by our desire to see if the Gray-Scott model can exhibit behavior consistent 
with our interpretation of the experiments of [Noszticzius et al., 1987], that is, to 
choose the parameters so that the symmetry-breaking bifurcations are Hopf bifurcations 
that lead to stable rotating wave solutions. We would also like to see evidence that 
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different rotating modes can be simultaneously stable. With these goals in mind, we 
have chosen the three different sets of diffusion coefficient values shown in Table 4.1 
below. For the sake of convenience we also include the values of the other fixed 
parameters for each set. Note that in set A the value of a3 iS changed to 0.01. 

In general terms, we have found that if D -c D2< D3 then Hopf-Hopf mode 
interactions do occur and symmetry-breaking Hopf points can be primary bifurcation 
points. In addition, for this ordering of the diffusion coefficients, symmetry-breaking 
steady-state bifurcations are suppressed and do not interfere with our results. To be 
more precise, when there is a unique branch of invariant solutions (i.e., Fig. 5(a)), 
symmetry-breaking steady-state bifurcations do not occur. In parameter regions where 
there are multiple invariant steady-states, for any fixed value of A there are either one 
or three such solutions. When there are three solutions we can speak of the middle 
branch and it is easy to see that this branch is unstable to perturbations with wave 
number m = 0. Symmetry-breaking steady-state bifurcation points do appear on these 
middle branches, but if the diffusion coefficients are ordered as above they stay on the 
middle branches and do not interact with our results. Furthermore, since the middle 
branch is unstable to perturbations with m = 0, any branch emerging from a symmetry- 
breaking steady-state bifurcation point on the middle branch of invariant solutions 
will itself be unstable near the bifurcation point. 

The linear analysis for the three sets of parameters shown in Table 4.1 can be 
conveniently described by grouping sets B and C together, as the results are similar 
for this pair. Exactly what we mean by similar will be made clear below, but we note 
that we do not mean identical. Moreover, as we see in ? 5, this similarity does not 
hold for the nonlinear analysis, and important differences between each of the three 
sets will emerge. In set A only the m =0 and m = 1 Hopf points and their interaction 
are important. In sets B and C the m =2 Hopf mode can also be a primary bifurcation 
point, and six-dimensional interactions between modes m = 0 and each of m = 1 and 
m = 2 are important, as well as the eight-dimensional m = 1, m = 2 interaction. 

The linear analysis for set A is the simplest of the three sets and is a less complicated 
introduction to how we have chosen to present these results. Essentially, we will build 
on the results presented in Fig. 5 by adding curves to the parameter space plot, which 
represent important changes in the linear stability analysis. By important changes we 
generally mean changes in the number or relative positions of bifurcation points, e.g., 
degenerate Hopf bifurcations and mode interactions, when these changes produce a 
change in the primary bifurcation point. These additional curves, together with the 
steady-state nonpersistence curves we have already presented, divide the parameter 
plane into open regions. In each of these regions no important qualitative changes in 
the linear stability analysis occur, so we can represent each region with a single 
bifurcation diagram showing the relative locations of the Hopf bifurcation points. We 
will only give explicit results for the modes that actually become primary bifurcation 
points although we will usually give the largest value of m for which Hopf modes appear. 

TABLE 4.1 
Three parameter sets. 

Set DI D2 D3 a1 a3 Y3 

A 0.001 0.001 0.0013 0.1 0.01 0.4 
B 0.001 0.0015 0.002 0.1 0.02 0.4 
C 0.001 0.001 0.002 0.1 0.02 0.4 
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In Fig. 6 we have added two curves to those shown in Fig. 5 to describe the 
important features of the linear stability analysis for set A. These additional curves 
subdivide regions 1 and 4 into regions la-lc and 4a-4d. The new curves appearing in 
Fig. 6 can be divided into two classes. The first class describes stability changes for 
the CSTR version of the equations, that is, we restrict the analysis to the m = 0 subspace. 
These are shown in Fig. 6, along with the steady-state nonpersistence curves, as the 
thinner lines. These curves do not depend on the values of the diffusion coefficients 
and so are exactly the same for sets B and C of diffusion coefficients. We note that 
the CSTR linear stability results for set A are qualitatively similar to those of the other 
two sets. The important curves in this first class are labeled DHO, representing a 
degenerate Hopf bifurcation in which a pair of m = 0 Hopf points appears and T-B 
represents the Takens-Bogdanov nilpotent double zero eigenvalue singularities. We 
make no serious attempt to analyze these latter singularities since we consider only 
Hopf bifurcations in this study, but we do note that they appear and that the DHo 
and six-dimensional Hopf-Hopf mode interaction curves terminate on the T-B curve. 
We note that the linear analysis follows the same pattern as shown in Fig. 3, with the 
invariant steady-state being stable (Fig. 3(a)) in regions la and 4a. 

The second class of curves, shown as heavier lines in Fig. 6, represents changes 
in the linear stability analysis involving symmetry-breaking modes. Only two curves 
from this class appear in Fig. 6. The curve DH1 represents a-degenerate Hopf bifurcation 
in which a pair of m = 1 Hopf points appear between the two m =0 Hopf points 
already present. On the curve labeled H-H a six-dimensional m = 0, m = 1 Hopf-Hopf 
mode interaction occurs and in the region labeled 4d in Fig. 6, the leftmost m = 1 Hopf 
point becomes a primary bifurcation point. For our analysis, this is the most important 
curve in the figure. 

Because the parameter space plots (e.g., Fig. 6) are actually projections, curves 
may appear to cross when, in fact, they do not intersect. To avoid confusion, points 
of actual intersection are marked with dots in the parameter space plots. If two curves 
appear to cross but their intersection is not marked in this way, then the two degeneracies 
represented by the curves do not interact locally. For example, the curve DHo crosses 
the H curve twice in Fig. 6 but the degenerate Hopf bifurcation and the hysteresis 

la DHO 

H X IC 

4 d 4 

r2 4c 

1/J 

FIG. 6. Additional curves DHO (m = 0 degenerate Hopf), DH1 (m = 1 degenerate 0(2) Hopf), and H-H 
(six-dimensional m = 0, m = 1 Hopf-Hopf interaction) in parameter space, arisingfrom linear stability analysis 
of set A. 
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singularity occur at different values of A. On the other hand, the H curve and the T-B 
curve have the two points of intersection marked in the figure. These are degenerate 
Takens-Bogdanov singularities for which one of the quadratic terms in the normal 
form vanishes. It is known that the dynamics near such a degeneracy can be quite 
complicated, but we will not address that here. 

Figure 6 summarizes the most important aspects of the linear analysis for set A. 
Other Hopf modes (at least m = 0 to m = 12) appear and the size of region 4d is actually 
quite small. However only Hopf modes m = 0 and m = 1 can be primary bifurcation 
points for set A, so we neglect the other modes since our methods could not be used 
to obtain stable solutions involving them. 

In the shaded region in Fig. 6, additional complications beyond the scope of this 
paper occur. These complications are caused by multiple invariant steady-states inter- 
acting with the Hopf bifurcations, producing the Takens-Bogdanov singularities men- 
tioned above from the m = 0 Hopf points and invariant limit point, symmetry-breaking 
Hopf point interactions from the other Hopf modes. Further into this region, after the 
symmetry-breaking Hopf points pass through the invariant limit points, Takens- 
Bogdanov singularities with 0(2) symmetry [Dangelmayr and Knobloch, 1987] appear. 
We mention these singularities only in passing to illustrate the complications to be 
expected even in this rather simple model. In fact, the termination of the H-H curve 
on the T-B curve in Fig. 6 produces a singularity that has not yet been analyzed. Since 
it would contain both homoclinic behavior from the m = 0 Takens-Bogdanov singularity 
and periodic behavior from the symmetry-breaking Hopf bifurcation, homoclinic 
tangles and weakly chaotic behavior would almost surely be present. 

In Fig. 7 we summarize the linear stability analysis for sets B and C of parameters. 
Two new curves appear that did not appear in Fig. 6. Along these curves, labeled 
H-H 0-2 and H-H 1-2, Hopf-Hopf interactions occur between the leftmost m = 0 and 
m = 2 Hopf points (H-H 0-2) and the leftmost m = 1 and m = 2 Hopf points (H-H 1-2). 
We call the reader's attention to the facts that the leftmost m = 1 Hopf point is still 
the primary bifurcation point on the H-H 0-2 curve and that the leftmost m = 2 Hopf 
point is a primary bifurcation point only in the small region labeled 4h. The three 
Hopf-Hopf interaction curves in Fig. 7 are drawn schematically. In fact, these curves 
lie very close to the invariant steady-state hysteresis curve H and could not be 
distinguished from it if the drawing was done to scale. Exact parameter values for 
some points on the Hopf-Hopf interaction curves will be presented in the next section. 
Tabulated results for all of the Hopf-Hopf interaction curves are available on request 
from the authors. 

5. Nonlinear analysis and stable rotating waves. In this section we describe the 
results of our nonlinear analysis of invariant and symmetry-breaking Hopf bifurcations 
and Hopf-Hopf mode interactions. As the title of this section suggests, our focus is 
on using the local analysis to predict stable rotating wave solutions in the Gray-Scott 
model. Specifically, we use local analysis in this section to predict stable rotating wave 
solutions corresponding to modes m = 1 and m = 2. There are essentially two ways 
that we can do this. In the case where a symmetry-breaking Hopf point is a primary 
bifurcation point, a center manifold/normal form reduction to (3.3) truncated at some 
order, coupled with the results in [Golubitsky and Roberts, 1987] permits us, in 
principle, to predict local branching and stability, including the unfolding of 
degeneracies up to codimension two. In this paper we concentrate on the codimension- 
one degeneracies and present examples of each of the four types. 
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the physically realistic case of nearly equal diffusion coefficients. Thigsmrin1 analysis 
of the Hopf-Hopf mode interactions to the forefront because it allows us to predict 
stable symmetry-breaking periodic solutions originating from Hopf points that are not 
primary. Results in this section on the ma=i0, mt=n1 six-dimensional Hopf-Hopf 
interaction considerably extend the parameter space region of stable rotating waves 
for this model. A more complicated analysis involving the m = 1, m = 2 eight- 
dimensional and m = 0, m = 2 six-dimensional Hopf-Hopf interactions suggests that 
the m = 2 rotating waves can be stable evheeraen the m = 2 Hopf point occurs to the 
right of both the m = 0 and m = 1 Hopf points and that the m = 1 and m = 2 rotating 
wave can be simultaneously stable. Both of these results are consistent with the 
experimental results of [Noszticzius et al., 1987]. The results for the m = 2 rotating 
waves are weaker, as suggested by the wording of the previous sentence, than those 
for m = 1; they do not prove stability in this situation but are merely consistent with it. 

The discussion in this section is organized as follows. First, we describe results 
for the three parameter sets A- C on stable rotating waves for modes m = 1 and m = 2 

produced via primary bifurcations. In doing so, we encounter examples of each of the 
four codimension -one degenerate 0(2) Hopf bifurcations of [Golubitsky and Roberts, 
1987]. Tracking these degeneracies produces additional curves, which further subdivide 
the parameter space regions in Figs. 8 and 10. Computation of higher-order normal 
form coefficients on these curves of degenerate 0(2) Hopf bifurcation permits us to 
use the results of [Golubitsky and Roberts, 1987] to predict the existence and the 
position of limit points on the rotating wave (type III degeneracy) and standing wave 
(type II degeneracy) branches and the existence of secondary bifurcations to two- 
frequency solutions (type IV degeneracy). 
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Next, we consider the m = 0, m = 1. six-dimensional Hopf-Hopf interactions for 
each set of parameters and describe the parameter space regions where this analysis 
predicts stable m = 1 rotating waves when the m = 0 Hopf point is the primary bifurca- 
tion point. In general, we find that we can do so for sets B and C but not for set A, 
for which the m = 1 standing waves are the stable solution. Degeneracies on the 
six-dimensional Hopf-Hopf interaction curves are considered in a limited way: we 
distinguish degeneracies due to the interaction of the codimension-one degenerate 
0(2) Hopf curves described above with the Hopf-Hopf curve from those that arise 
purely in the interaction. Partial results can be obtained for the first class of degeneracies, 
and reasonable conjectures can be stated for the second class. 

Finally, we describe the results for the m = 1, m = 2 eight-dimensional Hopf-Hopf 
interactions that occur in sets B and C. We do not discuss degeneracies in any detail, 
but we do identify a region in parameter space for set C where the m = 1 and m = 2 
rotating waves are simultaneously stable. 

5.1. Stable rotating waves via primary bifurcations. We recall (cf. [Golubitsky and 
Roberts, 1987]) that in a generic 0(2) Hopf bifurcation two families of periodic 
solutions emerge from a nondegenerate 0(2) symmetry-breaking Hopf point: a rotating 
family and a standing wave family. Moreover, neither branch can be stable unless both 
families bifurcate supercritically, in which case exactly one family is stable. The results 
in this section are obtained by computing the cubic order truncated normal form for 
the leftmost m = 1 and m = 2 Hopf points in the regions (if any) where they are primary 
bifurcation points and by using the results in [Golubitsky and Roberts, 1987] to 
determine the local diagrams. When codimension-one degeneracies are encountered, 
the curves of degenerate 0(2) Hopf bifurcation are also computed, since they divide 
the primary regions into subregions. In each subregion the local diagrams predicted 
by the cubic order truncation are qualitatively the same. By computing higher-order 
terms on the curves of codimension-one degenerate 0(2) Hopf bifurcation, we obtain 
more information on the diagrams for parameter values in a neighborhood of the 
curve, as well as detecting codimension-two degeneracies. We now describe our results 
for each of the three sets in turn. 

5.1.1. Set A. The behavior of set A is quite different from that of sets B and C. 
One mafn difference is that the m = 1 standing waves can be stable. As described in 
the previous section, the leftmost m = 1 Hopf point is a primary bifurcation point in 
the small region labeled 4d. In Fig. 8 we show a schematic blow-up of this region and 
include the three codimension-one degenerate 0(2) Hopf bifurcation curves that pass 
through this region. We show the local diagrams for each of the four open subregions, 
as determined from the cubic order truncated normal form, as the upper row of 
bifurcation diagrams in Fig. 8. In the bottom row of bifurcation diagrams in the figure, 
we show results valid in a neighborhood of the degeneracy curves, obtained by 
computing the normal form up to fifth order. 

The type IV degenerate 0(2) Hopf bifurcation is interesting because it produces 
a quasi-periodic secondary branch, which connects the rotating wave and standing wave 
families. A complete analysis of this degeneracy [Golubitsky and Roberts, 1987] 
requires seventh-order terms in the normal form, and these have not yet been computed. 
However, the stabilities of the rotating wave and standing wave branches and the 
parameter region where the secondary branch exists are all determined by the fifth-order 
terms. Thus in Fig. 8 We show that the secondary branch (labeled T) exists in subregion 
4d4, that the rotating wave branch is destabilized, and that the standing wave branch 
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FIG. 8. Results of nonlinear 0(2) Hopf bifurcation analysis of set A in the region where the leftmost m = 1 
Hopf point is a primary bifurcation point. The bottom row of bifurcation diagrams was produced by including 
fifth-order terms. 

is stabilized by the secondary bifurcations. Our lack of stability information for the T 
branch is reflected in the figure by drawing it as a vertical line. 

5.1.2. Sets B and C. It is convenient to combine our description of these two 
sets. Recall that the parameter values of these two sets differ only in that D2= 0.0015 
for set B, but D2 = 0.001 for set C. As described in ? 4, both sets have regions where 
the leftmost m = 1 and m = 2 Hopf points are primary bifurcation points. In Figs. 9 
(set B) and 10 (set C) we show schematic drawings of these regions including the 
codimension-one degenerate 0(2) Hopf curves that divide the regions into sub- 
regions. 

We remark that each codimension-one degenerate Hopf curve corresponds to 
either the leftmost m = 1 or leftmost m = 2 Hopf point. For example, the curve labeled 
III-1 signifies a type III codimension-one degenerate 0(2) Hopf bifurcation for the 
leftmost m = 1 Hopf point. Strictly speaking, in a region where one of the two Hopf 
points is a primary bifurcation point, only the codimension-one degenerate 0(2) Hopf 
curves divide that region into subregions of qualitatively different bifurcation diagrams 
for the primary bifurcation point. For the m = 2 Hopf points, we are unable to predict 
stable m = 2 rotating waves for set B because the type III degenerate 0(2) Hopf curve 
never enters region 4h. For set C stable m = 2 rotating waves exist in subregion 4h, 
and in a neighborhood of the type III degenerate 0(2) Hopf curve in subregion 4h2. 

The situation for the m = 1 Hopf point is more complicated. Certain features are 
shared between the two sets, and we describe these first. For both sets B and C there 
are type II, III, and IV degenerate 0(2) Hopf curves appearing. The type IV curve 
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FIG. 9. Results of 0(2) Hopf bifurcation analysis for set B, showing regions where the m = 1 and m =2 
Hopf points are primary bifurcation points. 

for set B lies entirely outside regions 4f and 4g and will not be part of our analysis. 
The type IV curve for the m = 1 Hopf point in set C has a small part inside region 4f, 
but aside from noting the existence of potentially very interesting type IX and X 
[Golubitsky and Roberts, 1987] codimension-two degenerate 0(2) Hopf bifurcation 
points on the type IV curve, we will not discuss this curve in detail either. 

The type II and III degenerate 0(2) Hopf curves for sets B and C are similar in 
shape and position relative to the hysteresis curve H. In fact, the actual positions of 
the two curves change little as D2 is decreased. Recall from ? 4 that decreasing the 
value of D2 from 0.0015 to 0.001 moved the three Hopf-Hopf interaction curves to 
larger values of y2. Thus most of the more complicated structure for set C is because 
the Hopf-Hopf interaction curves moved so that they now have more intersections 
with the codimension-one degenerate 0(2) Hopf curves. There are certain differences, 
however, such as the two codimension-two degenerate Hopf singularities referred to 
above. Note also that the termination point of the m =0, m = 1 six-dimensional 
Hopf-Hopf interaction curve on the curve of m =0 Takens-Bogdanov singularities 
(which is not shown in the figure, since it lies very close to the hysteresis curve) for 
set C is very close to the degenerate Takens-Bogdanov hysteresis singularity. We 
conjecture that this proximity is at least partially responsible for the complicated 
behavior of the m = 1 Hopf point referred to above and the degeneracies we encounter 
when we describe the m =0, m = 1 six-dimensional Hopf-Hopf interaction results 
below. 
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FIG 10. Results of 0(2) Hopf bifurcation analysis for set C, showing regions where the m-= 1 and m =2 
Hopf points are primary bifurcation points. 

5.2. Six-dimensional Hopf-Hopf mode interactions. In this section we report our 
computations and analysis of the cubic order truncated normal form on the curves of 
six-dimensional Hopf-Hopf interactions and use the results summarized in ? 3 to 
predict the stability of symmetry-breaking periodic solutions originating at Hopf points 
that are not primary bifurcation points. In other words, we extend our results on stable 
symmetry-breaking periodic solutions outside the regions of ? 5.1. A simple observation 
is that the symmetry-breaking periodic solution must be stable when it originates from 
a primary bifurcation point to restabilize via secondary bifurcation on the other side 
of the mode interaction curve. Thus the results of ? 5.1 clearly define the regions where 
we can hope to obtain stable symmetry-breaking periodic solutions from bifurcation 
points that are not primary via mode interactions. 

When we consider the six-dimensional Hopf-Hopf interactions for the three sets 
A- C of parameter values from this point of view, it turns out that there are only seven 
sets of local bifurcation diagrams that are important to our analysis, and these are 
shown in Fig. 11. Table 5.1 summarizes our six-dimensional Hopf-Hopf interaction 
results for the Gray-Scott model, providing values of ,3 and 72 and local diagram 
identifications corresponding to those in Fig. 11. As a convention, we are using ,3 to 
represent both a model parameter and an unfolding parameter in the normal form. 
The values of , in Table 5.1 are actual values of the model parameter, while in the 
local diagrams in Fig. 11, ,3 represents a deviation of , from its value on the Hopf-Hopf 
interaction curve. Identifications in the table marked with an asterisk mean that the 
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FIG. 11. Local diagrams for the seven most important distinct six-dimensional Hopf-Hopf interactions 
found in the Gray-Scott model. 

diagram is not one of the seven found in Fig. 11 and also that several degeneracies 
occur nearby, so the results are not well represented by a single set of diagrams. The 
most interesting diagrams from a practical standpoint are a, b, and f since they predict 
stable symmetry-breaking branches. Coincidentally, the most common diagrams for 
the m = 0, m = 1 interactions, in terms of persistence over large parameter ranges are 
also a, b, and f Thus the overall result is that the m = 1 rotating wave generally stabilizes 
via a secondary bifurcation for sets B and C of parameter values, and the m = 1 
standing wave stabilizes for set A. 

A change in the diagram designation in Table 5.1 means that at least one of the 
nondegeneracy conditions for the six-dimensional Hopf-Hopf interaction has been 
violated between the two entries. The nondegeneracy conditions fall into two general 
classes. The simplest class occurs when the direction of branching of one of the three 
primary branches changes. In a sense to be made more precise below, these types of 
degeneracies can be partially understood by considering higher-order terms for that 
particular branch, which simplifies the calculation considerably. More difficult to 
handle are degeneracies involving the secondary branches, requiring higher-order terms 
in the six-dimensional normal form and analysis that remains to be done. We will 
describe examples from each class in our discussion below. In general, for sets B and 
A the only degeneracies on the m = 0, m = 1 Hopf-Hopf interaction curve are of the 
simpler type arising from degenerate 0(2) Hopf bifurcations. For set C the second 
type of degeneracy occurs as well. In fact, for set C no less than seven degeneracies 
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(of both types) occur between Y2 = 0.0625 and y2 0.057, and further analysis will be 
needed to understand the complicated behavior in this region. 

5.2.1. Examples: Six-dimensional Hopf-Hopf mode interactions. To demonstrate 
how the results in Table 5.1 were obtained we provide in Table 5.2 numerical values 
of the parameters for m = 0, m = 1 Hopf-Hopf interaction points from each of the 
three sets. Also appearing in the table are values of the normal form coefficients and 
values (derived from the normal form coefficients) of the stability-determining quan- 
tities described in ? 3. Using these quantities and the information in Table 3.2 it is not 
difficult, although somewhat tedious, to derive the bifurcation diagram for each of the 
six-dimensional Hopf-Hopf interaction curves resulting in the information in Table 
5.1. We note that several degeneracies appeared in Table 5.1. Some are potentially 
quite interesting, but remain to be analyzed. 

5.3. Eight-dimensional Hopf-Hopf interactions and stable m = 2 rotating 
waves. Establishing stable m = 2 periodic solutions is a more difficult task. For sets B 
and C there are small regions where the m = 2 Hopf point is the primary bifurcation 
point, and for set C the results of [Golubitsky and Roberts, 1987] can be used to show 
that stable m =2 rotating waves exist in this region. This may not be true for set B 
because the m =2 standing and rotating waves both bifurcate subcritically in the region 
where the m = 2 Hopf point is the primary bifurcation point, and the degenerate 0(2) 
Hopf curves where they become supercritical never intersect this region. Thus the local 

TABLE 5.2 
Sample numerical values for the six-dimensional Hopf-Hopf interactions. 

x y A 72 P (1 @2 

A 7.06E - 01 1.52E - 02 2.78E - 02 1.71E-02 5.02E + 01 1.28E - 02 1.49E - 02 
B 7.01E-01 3.77E - 02 7.59E - 02 4.83E - 02 2.28E+01 5.66E - 02 5.87E - 02 
C 6.39E - 01 3.69E - 02 6.OOE - 02 3.70E - 02 2.49E+01 8.64E - 02 8.70E - 02 

PO,A POpO Poo Poi P1,A Pip Pio 

A 5.03E+O1 5.25E - 01 -1.28E+O1 -7.72E+OO 4.69E+O1 4.84E - 01 -1.07E+O1 
B 9.77E + 00 1.83E - 01 -6.70E-01 -4.96E-01 9.51 E + 00 1.78E - 01 -5.67E - 01 
C 4.89E+OO 4.70E - 02 -1.07E+OO -2.03E+OO 4.81E+OO 4.56E - 02 -9.98E - 01 

P11 P12 

A -1.79E+OO -1.43E+OO 
B 1.28E - 01 -3.38E - 01 
C -4.39E - 01 -9.74E - 01 

8I1 821 831 1i2 ?22 ?32 13 

A -1.28E+01 1.20E + 00 1.20E+00 -1.79E+00 3.57E-01 -5.80E+00 -3.22E+00 
B -6.70E - 01 8.53E - 02 8.53E - 02 1.28E-01 -4.67E-01 -6.28E-01 -2.1OE-01 
C -1.07E+00 5.79E - 02 5.79E - 02 -4.39E - 01 -5.35E - 01 -1.59E+00 -1.41E+00 

?23 833 EAP det 4 det 6 diagram 

A -3.57E - 01 -1.20E+01 -4.20E - 03 -6.OOE+01 -1.25E+02 f 
B 4.67E - 01 -7.76E - 01 -6.04E - 04 -3.67E - 01 -4.22E - 01 c 
C 5.35E - 01 -2.63E+00 -6.1OE - 04 -1.56E+00 -2.54E + 00 a 
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methods of this paper are not conclusive for set B, but only suggest that the m = 2 
rotating waves turn around and become stable. 

Further analysis depends on the eight-dimensional Hopf interaction. The results 
in Tables 3.5 and 3.6 can be used to construct partial bifurcation diagrams near the 
eight-dimensional interaction curves from the values of the normal form coefficients. 
The diagrams are partial because we have neglected to include information on the two 
standing wave branches. However, it turns out that the quantities ?22 and ?23 are always 
positive so the standing waves and their secondary branches are unstable. Example 
results are given in Table 5.3. 

All we can say about set B is that if the m = 2 rotating waves become stable after 
the limit point as we conjectured above, then they are likely to remain stable when 
the m = 1 Hopf point is the primary bifurcation point. This follows because the 
secondary bifurcations on branch 4 occur for ,3 > 0 and ?24, ?34, and ?44 are all negative. 
The situation for set C is better because ?14 becomes negative and the m = 2 rotating 
waves bifurcate supercritically. In fact, the results in Table 3.6 can be used to show 
that near the eight-dimensional interaction curve with Y2< 0.0229 the m = 2 rotating 
waves become stable when the m = 1 Hopf point is the primary bifurcation, and vice 
versa for the m = 1 rotating waves when m = 2 bifurcates first. Furthermore, on either 
side of the interaction curve there are values of A for which the m = 1 and m =2 
rotating waves are simultaneously stable. 

TABLE 5.3 
Sample numerical values for the eight-dimensional Hopf-Hopf interaction. 

x y A Y2 P oI '2 

B 6.20E - 01 3.17E - 02 4.78E - 02 1.78E - 03 2.91E+01 7.02E - 02 7.39E - 02 
C 5.92E-01 3.30E - 02 4.63E-02 2.30E-03 2.93E+01 8.71E-02 8.88E-02 

P1,A Pi,, P11 P12 P13 P14 P3,A 

B 4.40E+00 4.18E - 02 -3.79E-01 -1.09E+00 7.33E-02 -6.31E-01 4.25E+00 
C 4.73E+00 2.26E - 02 -8.54E-01 -1.69E+00 -1.46E+00 -1.39E+00 4.61 E + 00 

P3,,g P31 P32 P33 P34 

B 3.59E - 02 -1.23E-01 -8.16E-01 6.02E-01 -4.45E-01 
C 1.98E - 02 -1.33E+00 -1.36E+00 -5.17E-01 -1.04E+00 

?11 ?21 ?31 ?41 ?12 822 832 

B -8.12E - 01 -7.29E-01 2.21E-01 -4.58E-01 3.08E+00 1.46E+00 4.70E - 01 
C -1.71E+00 -8.36E-01 -5.01E-01 -5.22E-01 -5.09E+00 1.67E+00 -2.07E-O01 

842 813 ?23 833 834 814 824 

B 4.70E-01 1.08E-01 2.10E+00 -7.52E-01 -7.52E-01 1.1OE+00 1.05E+00 
C -2.07E-01 -3.11E+00 1.04E+00 -1.25E+00 -1.25E+00 -1.03E+00 -5.20E--01 

?33 844 8A/3 det 7 det 8 

B 1.26E + 00 -5.76E-01 -4.49E-03 -9.01E-01 -3.24E+00 
C -8.56E - 01 -9.32E - 01 -2.20E-03 -6.03E+00 -5.75E+00 
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Now we can use the results in Table 5.1 for the set C m = 0, m = 2 six-dimensional 
interaction to conjecture that if Y2 < 0.0229 the m =2 rotating waves remain stable 
when mode 2 bifurcates after both modes 0 and 1. The results in Table 5.1 are certainly 
consistent with this picture, but local bifurcation theory cannot be used to prove that 
it actually happens. That is, local bifurcation theory only provides a neighborhood of 
the eight-dimensional interaction curve where stable m = 2 rotating waves exist; it does 
not guarantee that the neighborhood extends as far as the m -0, m = 2 interaction 
curve. Such a result could be obtained via local bifurcation theory it we could bring 
all three modes together simultaneously, but this does not seem to happen in this model. 

Appendix. In this section we describe the details of the normal form reductions 
for the various Hopf bifurcations and Hopf-Hopf mode interactions. We begin by 
considering the problem of computing the normal form for bifurcations of reaction- 
diffusion equations invariant under the action of the compact Lie group 0(2), although 
our methods would apply more generally. We then show, using group-theoretic results 
from [Golubitsky, Stewart, and Schaeffer, 1988], [Elphick et al., 1987], and [Chossat 
and Golubitsky, 1987] that if the eigenvalues of the center subspace are semisimple 
the problem of computing the normal form can be simplified because, in this case, the 
homological operator used in computing the normal form acts diagonally in a certain 
sense to be made precise below. These considerations, and some formal multivariable 
calculus results, finally lead us to an algorithm for generating formulas for the normal 
form coefficients based on elementary combinatorics. The advantages of this algorithm 
are that it eliminates errors in deriving the formulas and is suitable for computer 
implementation. We demonstrate the method by deriving some of the formulas used 
to obtain the results presented in ? 5. 

We assume that the reader is familiar with the material in [Guckenheimer and 
Holmes, 1983] and [Elphick et al., 1987], but, in general terms, the idea is that the 
local behavior of a complicated system can be determined near a bifurcation point by 
studying the behavior of a reduced set of ordinary differential equations, called the 
normal form, because it depends only on the type of bifurcation and can be studied 
independently of the original model, leading to a classification of the types of behavior 
that can occur near this bifurcation. Computing the coefficients in the normal form at 
a bifurcation point for a particular model enables us to take advantage of the general 
analysis of the normal form and to identify the behavior of the original system. 

Our approach is specifically intended for numerical implementation of center 
manifold/normal form calculations. For this reason there are certain differences 
between our approach and the usual one for performing center manifold/normal form 
calculations by hand [Guckenheimer and Holmes, 1983] or with the aid of symbolic 
manipulators [Rand and Armbruster, 1987]. Simply stated, the more classical approach 
consists of three steps: (1) a change of coordinates is performed to bring the system 
into block-diagonal form; (2) the reduced vector field on the center manifold is 
computed; (3) the reduced vector field on the center manifold is brought into normal 
form. In the numerical approach we are using, step 1 is not performed and steps 2 
and 3 are combined. This seems to offer calculational advantages that will beome more 
important as the size of the system grows. We hasten to state that these are not really 
new ideas; our adaptation and implementation of the ideas in the method of [Elphick 
et al., 1987] is similar in many ways to the method of alternative problems, or, in its 
more formalized form, the Lyapunov-Schmidt method, but it is also important to note 
that we are doing a center manifold/normal form reduction so stability information 
is maintained in a rigorous way. What is new in our approach is an algorithm based 
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on combinatorics for deriving the formulas for the normal form coefficients. Potentially, 
this algorithm could be programmed so that the expended formulas would never need 
to be written down; the program would be responsible for the expansions. 

Consider a set of reaction diffusion equations with distinguished bifurcation 
parameter A 

(A.1) u, = DAu +f(u, A; a) 

defined on a circularly symmetric, bounded domain with smooth boundary. Other 
examples of suitable domains are annuli and disks, but in this paper we will consider 
only the circle to simplify the calculations. We assume that for a fixed value of a the 
invariant steady-state solution u = u0, A = Ao is a bifurcation point, i.e., the linearization, 
L, of (A. 1) about this point has eigenvalues with zero real part. Since we are considering 
only Hopf bifurcation, the invariant steady-state solution has a smooth local extension 
uo(A, a). Thus without loss of generality we can assume that (A.1) has a trivial solution 
uo(A, a) 0. This assumption simplifies the presentation somewhat. The details of 
how to do this locally are described in [Farr, Labouriau, and Langford, 1989]. 

The underlying function space for our analysis is the Hilbert space H of Fourier 
series with values in R', using the inner product given by composing the standard 
inner product in R' with the standard L2 inner product. (In our calculations it will be 
convenient to use complex Fourier series with the obvious change in the inner product.) 
Thus by standard theorems [Henry, 1981] we can write H = E 3 W, where E is the 
(finite-dimensional) critical eigenspace and the eigenvalues of LI have nonzero real 
part. (To obtain stable solutions from the reduction they must have negative real part.) 
For the singularities we are interested in, dim (E) is even, so let dim (E) = 2p. Further- 
more, it is quite easy to show that the operator L is sectorial, which is a technical 
condition needed to apply the center manifold theorem [Henry, 1981]. 

Complex coordinates for E are the most natural for Hopf bifurcation because the 
action takes a particularly simple form. For example, for an m = 1 symmetry-breaking 
Hopf bifurcation any solution of the linearized equation vt = Lv can be written in the 
form 

(A.2) z1c ei(I+&Jt) + Z2c e'(t ct- q) + 51 j ei(I?t) + Z2i e (q 

where c is the appropriate eigenvector as in (2.4) and (zI, Z2) c C2. The reader can 
check that the action of 0(2) given in (2.2) and a phase shift, after rescaling time, 
generate the action of 0(2) x S' claimed in ? 3 on (zI, Z2). For the reduction we make 
the amplitudes time dependent and write, using the eigenfunctions of L, 

(A.3) Y =zic e"f+ Z2c e - "f++fi e `f+ 52 ce 

but retain the S' action on (zI, Z2). For the other singularities of interest, similar 
expressions of the form 

(A.4) Y = z1 41 +* + zpop + complex conjugate 

can be written down, where Oi is an eigenfunction of LIE, so we will identify Y with 
the complex coordinates (zl, - - *, zp) where p = 2 for symmetry-breaking Hopf 
bifurcation and p = 3 or p = 4 for the mode interactions. We also let 

(tk1, * * *, /p, /p+l, * , /k2p) be the eigenvalues of LIE written in the proper order so 
that L4i = ,igi, l= 1, p, and p+j = I, j = 1, p. Following [Elphick et al., 1987] we 
introduce a projection PO: H -> E, which commutes with L. This can be done in a 
standard way by using the eigenfunctions of L*, the adjoint of L. 
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The center manifold/normal form reduction begins by substituting u = Y+ T( Y) 
into (A.1) to obtain 

(A.5) Y+ d? * Y= dA(Y+P)+f(Y+P, A; a). 

The formal normal form equation is 

(A.6) Y=F(Y,A;a) 

and the idea is to find the simplest possible form for (A.6). Let A be the matrix 
representing L on the coordinates Y for E. Then [Elphick et al., 1987] show that in 
the semisimple eigenvalue case F can be chosen to commute with the group S generated 
by exp (At). In the case of Hopf bifurcation or Hopf-Hopf mode interactions, 
[Golubitsky and Stewart, 1985] and [Chossat, Golubitsky, and Keyfitz, 1986] show 
that S is isomorphic to the torus Ti for some j. If the partial differential equation 
(PDE) (A.1) also commutes with the action of a compact group F (= 0(2) in our case) 
then these results and those in [Elphick et al., 1987] combine to show that F can be 
chosen to commute with F x S. 

In practice a Taylor series approximation ot T is calculated to obtain the truncated 
normal form. As we will see below, computing this expansion for T proceeds by 
defining a projection P and solving a series of nonhomogeneous linear problems. By 
writing the right-hand sides of (A.1) and (A.6) as Lu+f(u, A; a) and AY+ F( Y, A; a), 
equation (A.5) can be rearranged into the more standard form 

(A.7) L?-d? - AY= F(Y, A; a)+ dT - F(Y, A; a)-f(uo+ Y+T, A; a) 

where the linear operator, LT - d T * A Y, on the left-hand side of (A.7) is a Lie bracket 
often abbreviated as adL in the literature [Elphick et al., 1987]. It is proven in [Ruelle, 
1973] that the mapping T can be constructed to be invariant under F, but this follows 
in the present case from the simpler considerations detailed below. The procedure of 
[Elphick et al., 1987] is to use the projection P0 to split (A.4) into two equations. It 
turns out, however, that in the case of semisimple eigenvalues there is a more convenient 
projection that simplifies the calculations. This projection will be developed below, 
after we introduce some background material. 

A convenient notation for the Taylor coefficients of P is given by 

z 
(A.8) t= Z ta, 

IaI-2 a! 

where a = (al, , ap, ap+1,.* , a2p) is a multi-index and 

(A.9) za = z. Zpz-p+ I .. I*2p 

The coefficients Ta take values in H, so they have Fourier series. It will be shown 
below that the action of 0(2) on them can be determined by its action on z. More 
precisely, it comes from tensor products of the action, as was shown by [Sattinger, 
1979] for the similar Lyapunov-Schmidt reduction. In practice this means that 

(A.10) Pa() - 4, e in(a) 

that is, only a single Fourier mode contributes. For example, for a mode m 0(2) Hopf 
bifurcation n (a) = m (a - a2- a3+ a4). Since the value of n is determined by m and 
a, we will often use Ta and ta interchangeably. 

Now, let Pk(0(2)) be the space of homogeneous polynomial maps in z of degree 
k, k- 2, with values in H generated by terms of the form ZaTa, where Ta satisfies 
(A.10). We further require that the maps be invariant under 0(2). It is easy to check 
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that this is a finite-dimensional space. It turns out that by exploiting the compactness 
of S we can construct a projection P that simplifies the calculations. The requirements 
on P in [Elphick et al., 1987] are that it is a projection onto E and that it commutes 
with L. Since the actual calculations take place in Pk(0(2)), we can obtain a useful 
projection as follows. Let PO be the projection onto E. The action of 0(2) x S on the 
critical eigenfunctions spanning E generates an action of 0(2) x S on the coordinates 
z (z C' where dim (E) = 2p) we have chosen on E. Let PE(0(2) x S)) be the subspace 
of Pk(0(2)), which has values in E and is equivariant under the action of 0(2) x S. 
Since S is compact, it is a general result [Rudin, 1973] that there exists a unique 
normalized Haar measure, denoted do-, on S. It is trivial to generalize on a result 
proven in [Golubitsky, Stewart, and Schaeffer, 1988, Lemma 5.10, p. 292] to show that 
p: Pk(0(2)) -> Pk(0(2) x S) defined by 

(A.11) p(P)= { -F1POT(c. z) do- 
s 

is a linear projection. 
Now the results in [Elphick et al., 1987] and [Golubitsky, Stewart, and Schaeffer, 

1988] can be used to see that 

ker (adL) = Pk (0(2) x S), 
(A. 12) 

Pk (O (2)) = 
PE( 0(2) x S) i) adL(Pk(0(2))). 

Thus if we use p for the projection and require pT = 0, (A.7) can be split into the two 
equations: 

(A.13a) 0=F(Y,A; a)-pf(Y+T,A; a), 

(A.13b) adL(T) =-(1 - p)f( Y+ P, A; a) + dP - pf( Y+ P, A; a). 

In practice the integral over S in (A. 11) can be done analytically because it reduces 
to a complex Fourier series calculation, and well-known orthogonality relations can 
be used. For example, for a mode m Hopf bifurcation the group S is just S' and the 
action of 4 ceS' on ZaTa iS 

(A.14) 4) (Za) = eiP(a)-Ozaa 

where p(a) = al + a2- a3 - a4. For each of the Hopf-Hopf mode interactions, there 
are two phase variables (4), 4)2) and two functions pl (a) and P2(a). Thus in the 0(2) 
Hopf case, p(a) $ ?1 means p(Za Ta) = 0 so for many terms in the series for T the 
projection p is trivial to compute. If p (a) = ?1 then the projection PO is important and 
more care is needed. However, the 0(2) invariance of T and the original PDE in (A.1) 
also simplify this procedure, as we will see below. 

Calculation of the normal form coefficients proceeds by expanding the terms in 
(A.13) in a Taylor series and equating coefficients. It is clear from the equations that 
we could begin by computing all of the quadratic terms and then move up to the cubic 
terms, etc., but this is not the most efficient procedure. On the contrary, much needless 
computation can be avoided by starting at the highest order and determining precisely 
which lower-order terms are needed. Symmetry can also be used to reduce the calcula- 
tion effort. For example, for symmetry-breaking 0(2) Hopf calculations up to seventh 
order, the savings in minimizing the number of terms in T that must be computed are 
detailed in Table A.1. To show more concretely how symmetry is useful, we show in 
Table A.2 the ten quadratic terms in the expansion of T for an m = 1 Hopf bifurcation 
and the relationships that reduce the number of distinct coefficients to four. Using the 
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TABLE A.1 
Calculational savings for 0(2) Hopf bifurcation. 

Order Possible terms Minimum terms Required terms 

2 10 4 4 
3 20 5 5 
4 35 11 11 
5 56 14 9 
6 ? 26 9 

TABLE A.2 
Quadratic expansion of 4, top, and relations between coefficients, bottom. 

2z14f2ooo e1+ z1g121010? z1z2P1100+ z12P1001 e2ii + IZ2P-2 
2 ei24 + z2 2_0101 + 2P0020 e-2' 

?Z1Z22oe 11+21z2'0110 e2i+ZI2t4rooo2 e2 22 
A A A A A A A A A A A A 

tO200 = O 4'2000 0101 =t1oio 'kOO20 = T2000 tOol 1 =1 0110A= 1001 00024'2000 

remark after (A.1O), the reader can verify that the Fourier modes shown are the correct 
ones. It is generally true even Fourier modes appear at even orders and conversely at 
odd orders. 

We now show how to organize the equating of Taylor coefficients in the expansion 
of (A.13) so that elementary combinatorics can be used to generate correct formulas 
for numerical evaluation. This approach rests on some simple formal results in multi- 
variable calculus and a convenient shorthand notation. Suppose we let G( Y) = 
f(Y+T(Y)), where f(-) is as in (A.5), Y is as in (A.4), T begins with quadratic 
terms, and we have suppressed the parameter dependence of f for simplicity. Then 
the derivatives of G up to fifth order evaluated at Y= 0 are given by 

dG = dF, 

d2G= df. d2+ d2f, 

d3G= df. d3 +3d2f(I d2 )+d3f 

d4G = df. d4P +4 d2f(I, d3T) + 6 d3f(I, I, d2T) 
(A.15) 

+3 d2f(d2P, d2P)+d4f, 

d5G= dF- d5t+5 d2f(I d4P)+ 10 d3f(I, I, d3P) 

+10 d2f(d2P, d3P) 15 d3f(I d2T, d2T) 

+10 d4f(I, I, I, d2T)+d5f 

The formal computations used to derive (A.15) are straightforward, but the notation 
needs explaining. By dkG we mean the symmetric k-linear form, which acts on k 
vectors vi, , Vk. To simplify the expressions appearing in (A.15) we have used the 
following convention. A term like d2f(I, d2T) must act on three vectors V1, V2, v3 and 
be invariant under permutations of the vectors. Hence we define this action to be 

3 d2f(I, d2P)(v , v2, v3) d2f(vj, d2P(v2, v3)) 

(A.16) + d2f(v2, d 2p(v, v3)) 

+ d2f(v3, d2p(v1, v2)), 

This content downloaded by the authorized user from 192.168.52.78 on Wed, 14 Nov 2012 10:47:31 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


216 W. W. FARR AND M. GOLUBITSKY 

that is, all permutations of v1, V2, v3, which leads to distinct terms. The letter I stands 
for the identity operator, and the integer coefficients preceding terms give the number 
of distinct terms. These coefficients can be obtained from elementary combinatorics, 
using binomial and multinomial coefficients, by treating it as the problem of dividing 
k distinct objects, vI, *. , Vk, into groups. A slight complication arises for terms like 
d3f(I, d2T, d2T) when some of the groups may themselves be permuted, but this is 
easily dealt with by dividing by the number of such permutations. An advantage of 
taking this point of view is that in actual calculations the vectors vl, - - - -, Vk are often 
not distinct but themselves consist of several groups, with each element in a group 
being identical. In this case it is not necessary to write out the full expansion as in 
(A.16). Rather, we can employ combinatorics to determine only the distinct terms and 
their multiplicities. As an example to clarify these ideas, we will present formulas 
below for one of the fifth-order 0(2) Hopf coefficients. 

Before doing so, we need another formal calculus result. Let T( Y) be as above, 
F: E e F, and H( Y) = d - F( Y). Then the derivatives up to fifth order of H evaluated 
at Y 0 are given by 

dH=d2P(I, F)+ d - dF, 

d2H = d 3(I, I, F) + 2 d2 (1 dF) + d - d 'F, 

d3H d4 (I, I, I, F)+3 d3 (I, I, dF)+3 d2 (I, d2F) +d d3F, 

(A.17) d4H = d5P(I, I, I, I, F) + d d4P(I, I, I, dF) 6 d 3(I, I, d 2F) 

+4 d2 (I, d3F) + dP- d4F, 

d5H= d6P(I, I, I, I, I, F) + 5 d5P(I, I, I, dF)+ 10 d4 (I, I, I, d2F) 

+ 10 d3(I, I, d 3F) + 5 d2 (I, d 4F) -K d - d5F 

using the same convention as in (A.16). 
As an application of (A.17), let T be in Pk(0(2)) and IaJ = k, k _ 5. It is a simple 

calculation to see that 

(A.18) da(dT * AY)ly=o=a, va, 

where a * ,u = a Iu +* + a2ptk2p This result was noted much earlier in the context of 
ordinary differential equations in [Arnold, 1983]. The importance for our work is that 
it implies that adL acts diagonally on each term in the Taylor series for T. As an aside 
we note that it can also be used to provide a direct, rut inelegant proof of (A.12). 
Furthermore, (A. 18) can be generalized to any singu Larity with semisimple critical 
eigenvalues. 

To illustrate the technique, we derive formulas for on-e of the fifth-order coefficients 
Z2- of the m = 1 0(2) Hopf normal form (3.3). We choose the term z1z-z2z2, which appears 

in the i1 equation of (3.3) because it is the most difficult of the three fifth-order 
coefficients. Suppose that c and Ct are as in (A.3) and that c has been normalized so 
that I c| = 1. Write L = DA + B, where B is the Jacobian matrix of f at the bifurcation 
point. Let d satisfy (Bt - D)d = - iw d, that is, d e i is an eigenfunction of L* with 
eigenvalue -iwo. Assume that d*- c = 1, where d* is the conjugate transpose of d. Let 
v(q+) E H. Then the first component of the projection Pov is given by 

1 t2ha 
(A.l19) J e-iO d* -v(+f) d+f. 

27r 0 

To obtain the fifth-order coefficient that we want, we must compute the first component 
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of p(d5G(01, Xl, 41, 4)2, 412)) where the Xi's are as in (A.4) and G( Y) =f( Y+P( Y)). 
If we substitute into the last equation of (A.15) and assume that (A.10) holds, we will 
show below that there is a factor of ei'i multiplying the whole expression, so there is 
no need to carry along factors of eOI in our calculation. We do, however, need to 
distinguish between the four eigenfunctions in our calculations so we use cl, c2, El, c2 
in deriving the formula. Remember in evaluating them that cl = C2= c and cl = E2= c. 
The result of making this substitution and expanding the right-hand side is shown in 
Table A.3. The coefficient we want can now be calculated using (A. 19) as 
d* * (expression in Table A.3). 

From Table A.3 we can pick out all of the terms in the expansion of T that we 
need. Using symmetry as before, we can choose a minimal set that must be calculated. 
One such choice is given in Table A.4. (Additional terms are needed to calculate the 
other two fifth-order coefficients.) We need all four of the quadratic terms, but consider- 
ing one of them in detail will serve to illustrate the procedure. P2000, for example, is 
obtained by solving 

(A.20) (L - 2ii&I)P2000 =-d2f(c e i+ c eiI) 

but, by using the bilinearity of d2f, we can factor out e 2i on the right-hand side and 
get 

(A.21) (L-2iwI)P2oo0 =e2id2f(c, c), 

which shows that (A.10) is satisfied for this particular term. The reader can easily 
verify that (A.10) is satisfied for all of the other quadratic terms and that the relations 
shown in Table A.2 are correct. Verifying that (A.10) holds to any finite order of 
expansion now proceeds easily by induction. 

Equation (A.21) can also be written in the form 

(A.22) (B - 4D - 2iWI)P2ooo = - d2f(c, c). 

TABLE A.3 

Expandledform of D5G(ql, 01, 01, 02& 2)- 

2Df(, t1lll 2f(il, 2100)+ D2f(C2, 9 201 1 )+D2f( j2, 
' 
21 10) +D3f(C2, C-2, 1'20I0) +D f(jI, j2, I P2100) 

+ D3f( cl, C2, I'2001) + 2D3f(cl, C-2 , tPl 10) + 2D3f(cl,el, T1101))+2D3f(cl, C2, P 1o11 ) 

+D3f(cl,cl,c T'l lI)+ D2f(T2010, ' 
%0101)+ D2f( ' 2100, 0011)+D2f( P 2001 T0110) 

+2D2f('P111, P0lool)+2D2f(P111 P 0lolo)+2D f(P0oI1, TIIoo)+ D2fQ(0111, II2oo) 

+ 2D3f(c+I IIo, P ) + 2D3f(c1, 0, T2000 + 2D3f(c1 P1001, o + D3f(c1, P2ooo, P0101) 

+2D3f(c1,+IoIo,PIooI)+D3f(c2DT2oooToo,1)+2D3f(c2,lPo1o,lPool)+D3f(c2,t200,olooloo) 

c2, 2, CP2000) + 2D4f(cl, C2, C-2,P0)+ 2D4f(cl, cl, C-2, 1p 100) 

+2D4f(cl, C-1, C2, '0)D4(l C1, I e2,tlo+4(l 1 2t0l+ (l 1 lt1 

+D5f(c1, C1, -1,, C2 C2) 

TABLE A.4 

Order Minimal set of Taylor coefficients 

2 "K2000, "0llOO, I lOlOI" lool 

3 I'2100, I'2010, I'2001, t 1101 

4 IP2110, IP2011, IP2101, lp1111 
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Thus computing the coefficients Ta can be reduced to solving a series of finite- 
dimensional linear algebra problems. We note that for general values of m, the 
right-hand side takes the form 

(A.23) (B -(n (a ))2 D - a ,tJ)Ta 

Table A.5 presents the calculations for the remaining terms that we need in the 
expansion of T. For the first and fourth third-order terms, the projection I - p in 
(A.13b) does not act trivially. This is because z2z1 and Zz2iZ2 are terms that appear in 
the first component of the normal form, so we have to subtract the component on the 

TABLE A.5 
Second-, third-, and fourth-order terms needed to compute the z, Z2f2 fifth-order term in the 0(2) Hopf 

normal form. 

Second-order terms 

(B-4D -2iwI)T2000=-D2f(c1, c) 

(B)4101z= -D2f(C1, jl) 

(B-2iwI)P 100= -D2f(Cl, c2) 

(B -4D)T1001 = -D f(c1, cl ) 

Third-order terms 

(B - D - iwI)P20i0 = -[2D2f(c, Tolo) + D2&f(l, T2000) + D3f(c, C1, j )] 

+ {d* . [2D2f(c, 1lol) + D2f(Lc1, T2000) + D3f(c1, cl, J,)]}c1, d* * 2010 ? 

(B-D-3 i'wI)P2100= -[2D2f(cl, P 1100) + D2f(c2, P2000) + D2f(c1, c1, C2)] 

(B-9D- iwl)AP200, =-[2D2f(cl, IT100) + D2f(.U2, T2000) + D2f(c1, c1 ,-2)] 

(B-D- )I)P1lo, = -[D2f(Cl , T0101) + D2f(c2, t1001) + D2f(U2, T 1100) + D3f(c1, c2, e2)] 

+ {d* * [D2f(cl, P0101 ) + D2f(c2, 'PI01 ) + D2f(c2, 'PI00) 

D3f(CI, c2, c2)]}c1, d* 'I i =0 

Fourth-order terms 

(B - 2icol)P2110 = -[2D f(c1, P11 1) + D2f(c1, P2100) + D f(c2, 42olo) + Df(, c2,000) 

+ 2D3f(c1, c2, 4'1010) +2D f(c1, cL, P 100) + D f(c1, c1, P0110) + D f(P2000, 'oI lo) 

t (lol, tloo + f c1,c, c2, cl )] +(a +2b)P1 1oo 

(B -4D)420 = -[2D2f(cI, PO) + D2f(C1, P2001) + D2f(C2, P2010) + D3f(j1, C2, A2000) 

+ 2D3f(c1, C2, P14010)+2D3f(cl, c , P1001) + D3f(c1, c1, 011l)+D f( 2000, t0011) 

+2D f( 1010, t 1001) + D f(cI , cl, C2, E)] + (a + 2 b)P 100 

(B-4D-2ifI)P21 2 c = -[2D2f (c1I,1 01) +D2f0(c2, 4r2001f)+D2f(c2 21+0) + Df (c2, C2, 

+ 2D2 3 (c 1, c, 1A ) + 2D2fD(c1, cl2, l +) + DDf( cl, c1, 
2 

lOl ) D f 00010 

+ 2Dff (P1 1OO 100, 0D1)f+cD4f(cI, c2, c2, c2)]+2bT2000 

(B)41112= [D2f(c211,1 1)+2D2f(cl ,Plol)+D2f(c2, To200) + D2f(iU2, P100io) + D3f(c2, cE2, P2000) 

+D4t(cl, c2, C-1, c2)]+(b+b)[P10A0+3C0A0A 

where 

a = d * .[2D2f (c1, t1OlO + D2f(cl, P2000) + D3f(c2, c1, 
A 

)] 

b = d* [D2f(cl,P o1o1)+ D2f(c2, P Ioo1)+ D2f( C2, Pi 1OI)+DD3f(ci, c2, cf2)] 
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right-hand side, which is in PE((0(2) x S), to solve the equation. The orthogonality 
conditions come from our requirements that pT = 0. 

The fourth-order terms in Table A.5 also include contributions from the term 
dT pf-( Y+ , A; a) on the right-hand side of (A.13). As an example we consider the 
contribution this term makes to the equation for P2011. The easiest way to see it is to 
recall from (A.13a) that F( Y, A; a) = pf( Y+ , A; a) and use the last line of (A.17) 
to obtain 

d4[df * F](cl, cl, l, c2) = 2 d2P(cl, d3F(cl, el, c2)) 

(A.24) + d2P(el, d3F(cl, cl, c2)) 

+ d2T(c2, d3F(cl, c1, el)). 

Note that all of the other terms vanish because T and F both begin with quadratic 
terms. Now the first and third terms on the right-hand side of (A.24) can be identified 
with cubic terms in the normal form, but the second term cannot, so it must vanish. 
With the aid of (A.13a) and the definitions of a and b in Table A.5, (A.24) becomes 

(A.25) d4[dT * F](cl, c, l, cl2)=2bd2(c, c2)+dd2d(c2, cO), 

and the entry in the table is verified. 
So far we have not considered any parameter derivatives in our normal form 

calculations. Certain derivatives are needed, however, and we now briefly describe 
how this is done. For Hopf bifurcation, there are essentially two methods. In the first 
method, the eigenfunctions at the bifurcation point are replaced with their parameter- 
dependent extensions in a neighborhood of the bifurcation point. Using this method, 
we obtain parameter derivatives of the normal form coefficients by direct differentiation. 
For other singularities, these smooth extensions may not exist, so a more general 
method uses only the eigenfunctions at the bifurcation point, and equations for 
parameter derivatives of F and T are obtained by differentiating (A.13). For example, 
to obtain A derivatives the equations are 

0 = dAF(Y, A; a)-pp[df(Y+P, A; a). dAP+ dAf(Y+P, A; a)], 

(A.26) adL(dAP) = -(I - p)[duf( Y+ T, A; a) dAT + dAf(Y+T, A; a)] 

+ dydAT F( Y, A; a)+ dyP - dAF( Y, A; a). 

The methods used above still apply, but as the reader can imagine, the formulas rapidly 
become tedious to write out. The second equation can be used to show recursively 
that dAk PJ = 0 for k = 1, 2, , so the parameter-dependent expansion for T begins 
with O(YA) terms. 
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