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Symmetry Groupoids and Patterns of Synchrony
in Coupled Cell Networks*

lan Stewart’, Martin Golubitsky?, and Marcus Pivato®

Abstract. A coupled cell system is a network of dynamical systems, or “cells,” coupled together. Such systems
can be represented schematically by a directed graph whose nodes correspond to cells and whose
edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells that
preserves all internal dynamics and all couplings. Symmetry can lead to patterns of synchronized
cells, rotating waves, multirhythms, and synchronized chaos. We ask whether symmetry is the only
mechanism that can create such states in a coupled cell system and show that it is not.

The key idea is to replace the symmetry group by the symmetry groupoid, which encodes in-
formation about the input sets of cells. (The input set of a cell consists of that cell and all cells
connected to that cell.) The admissible vector fields for a given graph—the dynamical systems with
the corresponding internal dynamics and couplings—are precisely those that are equivariant under
the symmetry groupoid. A pattern of synchrony is “robust” if it arises for all admissible vector
fields. The first main result shows that robust patterns of synchrony (invariance of “polydiagonal”
subspaces under all admissible vector fields) are equivalent to the combinatorial condition that an
equivalence relation on cells is “balanced.” The second main result shows that admissible vector
fields restricted to polydiagonal subspaces are themselves admissible vector fields for a new coupled
cell network, the “quotient network.” The existence of quotient networks has surprising implications
for synchronous dynamics in coupled cell systems.
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1. Introduction. We use the term cell to indicate a system of ODEs. A coupled cell
system is a set of cells with coupling, that is, a dynamical system whose variables correspond
to cells, such that the output of certain cells affects the time-evolution of other cells. The
salient feature of a coupled cell system is that the output from each cell is considered to be
significant in its own right. A coupled cell system is not merely a system of ODEs but a
system of ODEs equipped with canonical observables—the individual cells (see [8]). From a
mathematical point of view these output signals can be compared, and this observation leads
to a variety of notions of “synchrony.” For surveys, see Boccaletti, Pecora, and Pelaez [2] and
Wang [14].

In this paper we discuss the architecture of a coupled cell system: which cells influence
which, which cells are “identical,” and which couplings are “identical.” We focus on how the
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system architecture leads naturally to synchrony. To do this, we must define carefully when
two cells or two couplings are “identical” or “equivalent.” Indeed, the main point of this
paper is to provide a general mathematical foundation for these ideas. This foundation uses
the algebraic structure of groupoids (see Brandt [1] and Higgins [10]) and greatly generalizes
the uses of symmetry in coupled cell systems that we have explored previously [7, 8].

Our conventions do not rule out “two-way” coupling, in which cells A and B both influence
each other. We represent such a state of affairs by having A coupled to B and B coupled to A.
We also do not rule out coupling where cells A and B both influence cell C. Here we consider
both A and B as being coupled to C. We do not assume the effects of A and B to be additive;
in fact, the time-evolution of cell C can in principle be any (smooth) function of the states of
C, A, and B.

In this paper we develop an abstract formalism for coupled cell systems, using simple
examples that have no particular role in applications, but it is worth noting that coupled cell
systems are used to model a variety of physically interesting systems. For examples, see [8]
and references therein. We intend to develop applications of the formalism derived here in
future work.

In this section we illustrate some central issues by discussing several examples.

Two-cell systems. We begin with the simplest system of two identical cells (with coordi-
nates z1 and x3 in Rk). Without making any specific assumption of the form of the “internal
dynamics” of each cell or the form of the “coupling between cells,” the differential equations
for the coupled system have the form

L'Ul = f(xl,.TQ),
(1.1) gy = f(xo,m1);

that is, the same function f governs the dynamics of both cells. There are three issues that
we discuss concerning system (1.1): the graph (diagram, network) associated to a coupled cell
system, symmetry, and synchrony.

Informally, the “network” of a coupled cell system is a finite directed graph whose nodes
represent cells and whose edges represent couplings. Nodes are labeled to indicate “equivalent”
cells, which have the same phase space and the same internal dynamic. Edges are labeled to
indicate “equivalent” couplings. The graph associated to system (1.1) is given in Figure 1. We
think of this graph as representing a pair of systems of differential equations in the following
way. The two cells are indicated by identical symbols—so they have the same state variables.
That is, the coordinates x; of cell 1 and x5 of cell 2 lie in the same phase space RF. Since we
can interchange cells 1 and 2 without changing the graph, we assume that the same is true
for the system of differential equations and that they must have the form (1.1). Note that for
this interchange to work, the arrow 1 — 2 must be the same as the arrow 2 — 1.

Figure 1. A two-cell network.
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The discussion in the previous paragraph can be summarized by the following: the per-
mutation o(z1,22) = (2, 1) is a symmetry of the system (1.1). Indeed, more is true: every
system of differential equations on R* x R¥ that is equivariant with respect to o has the form
(1.1). That is, abstractly the study of pairs of identical cells that are identically coupled is
the same as the study of o-equivariant systems. Two consequences follow from this remark.
First, synchrony in two-cell systems (solutions such that x1(t) = x2(t) for all time ¢) is a
robust phenomenon and should not be viewed as surprising. Second, time-periodic solutions
can exhibit a kind of generalized synchrony in which the two cells oscillate a half-period out
of phase.

The first remark can be restated as follows: the diagonal subspace V' = {z; = z2} C
R” x R* is flow-invariant for every system (1.1). This remark can be verified in two ways. By
inspection restrict (1.1) to V, obtaining

1 = f(z1, 1),
il = f(xl,xl).

It follows that if the initial conditions for a solution satisfy x1(0) = x2(0), then x1(t) = z2(t)
for all time ¢, and V is flow-invariant. Alternately, we can observe that V is the fixed-point
subspace Fix(c), and fixed-point subspaces are well known to be flow-invariant.

The second remark is related to general theorems about spatio-temporal symmetries of
time-periodic solutions to symmetric systems of ODEs. There are two types of theorems here:
existence theorems, asserting that certain spatio-temporal symmetries are possible, and bifur-
cation theorems, describing particular scenarios that can generate such solutions. The H/K
theorem [4, 7] is an existence theorem; indeed, it states necessary and sufficient conditions for
periodic solutions with a given spatio-temporal symmetry group to be possible. In particular,
it implies the existence of functions f having time-periodic solutions of period 1" satisfying

(1.2) 2o(t) = m(t+ T/2)

as long as the phase space of each cell has dimension & > 2. So states with this type of
spatio-temporal pattern can exist. Indeed, they can exist robustly (that is, they can persist
when f is perturbed) and are therefore typical in the appropriate coupled cell systems. In
this case, we can say more: such solutions can arise through Hopf bifurcation. This is a
consequence of the general theory of symmetric Hopf bifurcation, [7, 8, 9]. (Note that when
k = 1, nonconstant periodic solutions satisfying (1.2) must intersect the diagonal V' and hence
be in V for all time: this is a contradiction.)

A three-cell network. Consider the three-cell network illustrated in Figure 2. The systems
of differential equations corresponding to this network have the form

o1 = f(z1,72),
(1.3) iy = g(z2,71,23),
T3 = f($3,l‘2),

where g(zo, 1, 23) = g(x2, 23, 21), T1,23 € R¥, and 25 € R’. Note that all such systems are
equivariant with respect to the permutation 7(x1,z9,x3) = (x3, 22,21) and that synchronous
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Figure 2. A three-cell network with transposition symmetry.

solutions (where z1(t) = x3(t) for all time ¢) occur robustly because the “polydiagonal”
subspace W = {z : z; = z3} is flow-invariant for (1.3).

There are two differences between the three-cell network in Figure 2 and the two-cell
network in Figure 1. First, not all 7-equivariant systems on RF x R’ x R* have the form
(1.3), since in the general T-equivariant system f can depend nontrivially on both 7 and xs.
So there can be additional structure in coupled cell systems that does not correspond directly
to symmetry. Second, the half-period, out of phase, time-periodic solutions satisfy

(1.4) x3(t) =x1(t+T/2) and xa(t) = z2(t +T/2).

In particular, the oscillations in cell 2 are forced by symmetry to occur at twice the frequency
of those in cells 1 and 3. So multirhythms [7] can be forced by the architecture of coupled cell
networks.

Another three-cell network. We now show that robust synchrony is possible in networks
that have no symmetry. Consider the three-cell network in Figure 3. Here we have used two
distinct symbols (square and circle) for cells and three types of arrows for couplings. The
role of these symbols can be seen in the form of the ODE: identical symbols correspond to
identical functions in the appropriate variables.

Figure 3. A three-cell network without symmetry.

This network has no symmetry, but the network structure forces the “polydiagonal” sub-
space Y = {x : &1 = x2} to be flow-invariant. To verify this point observe that the coupled
cell systems associated with this network have the form

1 = f(z1,22,23),
(15) i"2 = f($27$17x3)a
3 = g(x3,x1),

where 21,22 € R* and 23 € R’. Restricting the first two equations to Y yields

1 = f(z1,21,23),
j72 == f($1,$1,$3),
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implying that Y is a flow-invariant subspace.

There is a precise sense in which cells 1 and 2 are equivalent within this network, and it is
this observation that will enable us to prove the flow-invariance of subspaces like Y in a more
abstract (and general) setting. Define the “input set” of a cell j to be the cell j and all cells
7 that connect to cell j. Also include the arrows from cells i to j. See Figure 4.

We can now explain why Y is flow-invariant, in terms of a permutation that acts on the
network. This permutation is not a symmetry of the whole network, but it preserves enough
structure to create a flow-invariant subspace. The key property is that the input sets of cells
1 and 2 are isomorphic via the permutation o that maps (12 3) — (21 3).

If the system (1.5) were equivariant with respect to o, then the fixed-point space of o
would be flow-invariant by [9, 7]. Moreover, the fixed-point space of o is Y. However, (1.5) is
not equivariant with respect to o. Indeed, if we apply o, then the equation transforms into

o = f(z2,x1,23),
(1.6) 1 = f(21,22,23),
3 = g(xs,x2).

The first two equations are the same as in (1.5), but the third equation is not. However, the
third is the same on the space Y, where x9 = x1. So the restriction of the equations to Y is
o-equivariant, and this is enough to make Y flow-invariant.

- N
- @ W e W

Figure 4. Input sets for three-cell network without symmetry.

Traveling waves in a seven-cell network. Consider the seven-cell linear network in Fig-
ure 5. The corresponding differential equations have the general form

&1 = B(z1), o = Az, x1), 3 = A(xs,xa),
(1.7) g = A(xg,x3), @5 = A(xs,24), g = Al(we,xs),
1"7 = A($7,$6).

ORORORORORONG

Figure 5. Seven-cell linear network.

It does not seem to be a simple matter to determine whether traveling waves are present
in this network. If the cell phase spaces are all one-dimensional, there are no nontrivial
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time-periodic states so no traveling waves. With higher-dimensional phase spaces, special
assumptions are needed to produce traveling waves. However, if we introduce back coupling
from cell 3 to cell 1, as shown in Figure 6, traveling waves can typically be expected, even
in the one-dimensional case, as explained below. This is curious, because informally Figure 6
would normally be considered as being less regular in form than Figure 5. So the issue of
“regular form” for a coupled cell network is fairly subtle. The key feature here is that all
input sets for cells in the network in Figure 6 are isomorphic, whereas this is not true for the
cells in Figure 5. It is this additional “symmetry” on the groupoid level that makes traveling
waves typical. Indeed, Figure 6 has many groupoid symmetries (42 in all).

G2 (3) <D~

Figure 6. Seven-cell linear network with back connection.

We discuss why traveling wave solutions arise in two ways. First, the assumption that all
of the cells and arrows in Figure 6 are identical implies that the first equation in (1.7) is now

.ﬁl = A(.’El, 1'3).
If we set

Tr = T4 =T1 = Y1,
(1.8) e = T3 = Y3,
Ty = T2 = Y2,

then the system of seven equations reduces to a three-equation system
no = Aly1,y3),
A(

(19) 192 y%?ﬂ);
y3 - A(y?nyQ)a

which is the general form associated with the directed ring of coupled cells in Figure 7. It
is not hard to show using Hopf bifurcation (see [7, 9]) that the system (1.9) can support a
discrete rotating wave y(t), where

y2(t) = m (t - g) o ys(t) =2 (t - g) :

and y; is periodic of period T'. This solution yields a traveling wave solution for the network
in Figure 6. See a sample simulation in Figure 8. (The number 7 is not significant here: the
same ideas work for any chain containing three or more cells and with feedback from any cell
other than the first.)

More importantly, the three-cell ring in Figure 7 is a quotient network of the one in
Figure 6, where the quotient map [ takes x1,x4,27 to y1, T2, x5 to yo, and x3,zg to ys.
We define “quotient” in section 8, but the key point is that solutions for the three-cell ring
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Figure 7. Three-cell directed ring: Quotient of the network in Figure 6.
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Figure 8. Traveling wave solution in seven-cell chain.

naturally “lift” to solutions for the seven-cell network via (1.8). The crucial features here are
that § induces an isomorphism from each input set in the first network to an input set in the
second network, and every coupled cell system of differential equations in the quotient lifts to
a coupled cell system in the first network.

We seek to isolate the abstract structural features that are responsible for the behavior
described in the above examples and to place the discussion in a rigorous formal context.
We structure the paper as follows. Coupled cell networks are rigorously defined in terms
of nodes and arrows in section 2. The key concept, the groupoid structure of a coupled
cell network, is defined in section 3 in terms of input sets. The phase space and admissible
vector fields associated to a coupled cell network are discussed in section 4. Basically, the
intuitive ideas presented in this introduction are formalized as equivariance with respect to the
symmetry groupoid of the network. Section 5 describes an extended example, which motivates
the rest of the paper. In section 6 we introduce two different notions of robust synchrony:
flow-invariant subspaces and balanced equivalence relations. We prove that these notions
are equivalent. Quotient maps and quotient networks, which constitute a fourth equivalent
notion for synchrony, are discussed in section 8. Quotient networks are an especially useful
concept because they illuminate the generic dynamics of vector fields restricted to synchronous
invariant subspaces, which can include phase-locked states and synchronized chaos. Examples
illustrating these points are discussed in section 7. The relationship between the dynamics
on a synchronous subspace and the induced dynamics on the quotient network is discussed in
section 9.
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2. Coupled cell networks. We begin by formally defining a coupled cell network. At
this stage we consider only the abstract network architecture (a labeled directed graph). The
associated family of ODEs is discussed in section 4.
Definition 2.1. A coupled cell network G consists of the following:
(a) A finite set C ={1,...,N} of nodes or cells.
(b) A finite set of ordered pairs £ C C x C of directed edges or arrows. Each edge (c,d)
has a tail ¢ and a head d.

(c) An equivalence relation ~¢c on cells in C. The type or cell label of cell ¢ is the ~¢-
equivalence class [c]c of c.

(d) An equivalence relation ~g on edges in £. The type or coupling label of edge e is the
~pg-equivalence class [e]p of e. An edge (c,c) is an internal edge; a cell is active if it
has an internal edge. We assume that every cell is active, that is,

(2.1) Ac ={(c,c):ceC} CE.

In addition, we require the following compatibility conditions:

(e) Equivalent edges have equivalent tails and heads. That is, if (i,¢) ~g (j,d), then
i~c j andc~c¢ d.

(f) Internal edges are equivalent if their tails are equivalent. Internal edges and noninter-
nal edges are never equivalent. That is, for all c,d,d € C,

(¢,c) ~g (d,d') < d=d and d ~¢ c.

Formally, the coupled cell network G is the quadruple G = (C,&,~c,~Eg).

We represent a coupled cell network GG by a diagram constructed as follows.

(1) For each ~c-equivalence class of cells choose a distinct node symbol (), 0, A, and so

on.

(2) For each ~ pg-equivalence class of noninternal edges, choose a distinct arrow —,=,~»,

and so on.

The compatibility conditions in Definition 2.1 state that arrows between distinct cells can
be identical only when the nodes at the heads are identical and the nodes at the tails are
identical, and that node symbols can be interpreted as arrows from a cell to itself.

The above definition is essentially the standard concept of a directed graph (or digraph)
in graph theory (see, for example, Tutte [13], Wilson [16]) modified to incorporate labeling
of nodes and edges. We assume that the graph is finite because this makes the associated
dynamical systems (discussed in section 4) finite-dimensional. However, most of the theory
generalizes to infinite graphs. The assumption that all cells are active can be removed, at the
expense of notational complications, but the details are routine and we do not treat this case
here.

Example 2.2. Suppose that the network G is defined by

C=1{1,2,3,4},
&={(1,2),(1,3),(2,4),(3,1),(3,4)(4, )},
~¢ has equivalence classes {1}, {2,3}, {4},
~p has equivalence classes {(1,2),(1,3)},{(2,4),(3,4)},{(3,1)},{(4,1)},
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and all nodes are active. Then the diagram of G has the form shown in Figure 9 for the given
choices of symbols.

Figure 9. Ezample of the diagram of a coupled cell network.

3. Input sets and groupoids. In this section we define the basic algebraic structure of a
coupled cell network—its symmetry groupoid. Some preliminary concepts are required.

Input sets. As discussed in more detail in section 4 the variables that appear in a given
component f. of the vector fields f associated to a coupled cell network depend only on those
cells that are linked to cell ¢ by an arrow. This observation is abstracted as the following
definition.

Definition 3.1. The input set I(c) of a cell ¢ is

I(c)={ieC:(i,c) € &}.

Since all cells are active, ¢ € I(c). We call c the base cell of I(c).

Two cells with isomorphic input sets will be called “input equivalent.”

Definition 3.2. The relation ~; of input equivalence on C is defined by ¢ ~; d if and only
if there exists a base cell preserving bijection

(3.1) B:1(c)— I(d)
(by which we mean that B(c) = d) such that for alli € I(c)
(3.2) (i,¢) ~p (B(i), d).

Any such bijection (3 is called an input isomorphism from cell ¢ to cell d. The set B(c,d)
denotes the collection of all input isomorphisms from cell ¢ to cell d.

On setting ¢ = ¢ in (3.2), we see that ¢ and d have the same type (¢ ~¢ d) if they are
input equivalent (¢ ~; d). The converse is easily seen to be false. Moreover, B(c, d) is empty
unless ¢ ~y d.

An important class of networks is one in which all cells are input equivalent. So we define
the following.

Definition 3.3. A homogeneous network is a coupled cell network such that B(c,d) # (0 for
every pair of cells ¢, d.

Examples of homogeneous networks are given in Figures 14 and 15.
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Ezample 3.4. We return to Example 2.2 whose diagram is shown in Figure 9. The input
sets are shown in Figure 10. There are three ~r-equivalence classes: {1},{2,3}, and {4}. The
isomorphism between I(2) and I(3) is the bijection 7 : {2,1} — {3, 1} for which 7(2) = 3 and
7(1) = 1.

3t 2 —
A.'@) 3 /7A

=z =3

Figure 10. Input sets for Figure 9.

The symmetry groupoid. We now introduce the central concept of this paper, the “sym-
metry groupoid” of a coupled cell network. The symmetry groupoid is a generalization of
the symmetry group of a symmetric network. It includes not just symmetries of the whole
network, but symmetries between particular subgraphs—mnamely, the input sets.

Definition 3.5. The symmetry groupoid of a coupled cell network G is the disjoint union

Bg = UC’dGCB(c, d).

The term “groupoid” was introduced by Brandt [1] and is developed at length in Hig-
gins [10]. The term refers to an algebraic structure that is similar to a group, with the
exception that products of elements may not always be defined. Different authors formalize
groupoids in slightly different (but mostly equivalent) ways. Essentially, a groupoid must
satisfy three conditions:

(1) The product operation is associative in the sense that whenever one of a(fv) and

(o) is defined, then so is the other, and they are equal.

(2) There are distinguished elements ¢; that act as identity elements, in the sense that
gja = a and agj = a whenever these are defined. (Here the indices j correspond to
the “objects” of the groupoid, which in our case are the cells.)

(3) Every element o has an inverse a~!, in the sense that both aa™! and a~la are
identities.

In the case of Bg, the groupoid structure is captured by the following:

(1) We define the product of 81 € B(c,d) and B2 € B(c,d’) if and only if ¢ = d, and then
we set (231 = (2001 € B(c,d’), where o denotes composition of maps. Composition is
of course associative when it is defined.

(2) The identity elements id; for ¢ € C are the groupoid identity elements.

(3) For inverses, observe that 3 € B(c,d) if and only if 3! € B(d,¢c).

It follows in particular that B(e, ¢) is a group, the vertex group corresponding to c¢. Vertex

groups are important in groupoid theory and play a key role in this paper.
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Remark 3.6. The term “disjoint union” in Definition 3.5 is used in a technical sense. The
sets B(c,d) for different pairs (¢, d) are not necessarily disjoint. For example, if C = {1,2},
where cells 1 and 2 are inequivalent, each coupled to the other by inequivalent arrows, then
B(1,1) and B(2,2) both consist of the identity map on {1,2}. It is convenient to make them
disjoint. One way to do this is to replace each bijection 3 € B(c, d) by the triple (3, ¢, d). Then
0 defines the permutation, ¢ is an index specifying its “domain,” and d is an index specifying
its “range.” As far as the groupoid structure is concerned, the product (23; is defined only
when ¢ = d. This occurs when the “range” of ; is equal to the “domain” of 32, in the sense
just specified. However, the set-theoretic ranges and domains of the corresponding bijections
may permit the composition of 31 and (5 as functions in cases where we do not wish to permit
them to be multiplied in the groupoid.

The point here is that we are not dealing merely with bijections on sets but with base
point preserving bijections on based sets. Composition must respect the base points as well
as the sets.

For simplicity, we use 3 to denote an input isomorphism, rather than the cumbersome
(8, ¢, d), because the appropriate ¢, d are usually obvious.

Alternatively, it would be possible to represent the input structure of a given cell as
consisting of that cell, all cells connected to it, and the associated arrows. Input isomorphisms
then necessarily preserve the base point (the cell at the head of all arrows). Technically,
however, this choice causes other complications—for example, input isomorphisms now act
on subgraphs and not on subsets of cells—so we shall not use it here. However, it is a useful
informal way to visualize input isomorphisms.

Ezample 3.7. Again, we return to Example 2.2. The nonempty sets B(c,d) are as follows:

B(1,1): The identity map on {1,3,4}.

3,3): The identity map on {3,1}.
4,4): The identity map on {4, 2,3} and the permutation o on {4, 2,3} for which ¢(2) =
= 2,0(4) = 4.
): The map 7: {2,1} — {3,1} for which 7(1) =1,7(2) = 3.
(3,2): The inverse 7! of 7.

Subgroupoids and connected components. For the basics of groupoids see Brandt [1],
Brown [3], Higgins [10], and MacLane [11]. For applications see Weinstein [15]. Groupoids
combine several features of groups with features of graphs, and we discuss one of each now.
The group-theoretic notion is that of a subgroupoid; the graph-theoretic one is that of a
connected component.

A subset S C Bg is a subgroupoid if S is closed under products (when defined) and taking
inverses.

The connected components of the groupoid Bg are in one-to-one correspondence with ~ -
equivalence classes on C. Specifically, let A be a ~j-equivalence class. Then the subgroupoid

(3.3) S(A) = Uc’deAB(c, d)

is a connected component of Bg. Moreover, we have the following lemma.



620 I. STEWART, M. GOLUBITSKY, AND M. PIVATO

Lemma 3.8. The groupoid Bg is the disjoint union of its connected components. That is,

Bo =, S(4).

where A runs through the ~-equivalence classes in C. Moreover, if A, A" are two such distinct
classes, and 3 € S(A), 3 € S(A"), then the product B3 is not defined.

We say that two cells ¢,d € C are in the same connected component of Bg if and only if
¢ ~y d. The mental image here is that associated with any groupoid there is a graph, whose
elements are the vertices of the groupoid and whose (directed) edges are the groupoid elements.
It is the connected components of this graph that are being described. See Higgins [10, Chapter
3].

If ¢, d belong to the same connected component, then the vertex groups B(c, ¢) and B(d, d)
are conjugate, in the sense that there exists v € B(c, d) such that

B(c,¢) =y 'B(d,d)y.

In particular, B(c, ¢) and B(d,d) are isomorphic groups.

Structure of B(c, d). For later use, we determine the general structure of the sets B(c, d).
(1) If ¢ %5 d, then B(c,d) = 0.
(2) If ¢ = d, then we define an equivalence relation =, on I(c) by

N=cje <= (j1,¢) ~E (j2,¢)

for ji1,j2 € I(c). Let the =.-equivalence classes of I(c) be Ky,... , K, for r = r(c) so
that

(3.4) I(¢) =Ko U---UK,.
We may choose Ky = {c} by Definition 2.1(f). Let

ks =|Ks|  (0<s<n).
Then B(c,c) is a group given by

B(e,¢) = Sk, x -+ x Sy,

where each Sy, comprises all permutations of K, extended by the identity on I(c)\ K.
(3) If ¢ ~; d and ¢ # d, define =4 on I(d) in the same way. Let 5 € B(c,d), and let

Ls = B(Ks)  (0<s<r(c)).

Then 3 and 3! preserve ~p, so the =4-equivalence classes of I(d) are the Ls(0 < s <
r(c)), and r(d) = r(c).
Choose a fixed but arbitrary g € B(c, d), having the above property. Then

B(e,d) = B(d,d)By = PoB(c, c).

Conversely, any (g : I(c) — I(d) such that Ly = Gy(Ks) for 0 < s < r(c) lies in B(c, d).



SYMMETRY GROUPOIDS AND PATTERNS OF SYNCHRONY 621

4. Vector fields on a coupled cell network. We now define the class ]:5 of vector fields
corresponding to a given coupled cell network GG. This class consists of all vector fields that
are “compatible” with the labeled graph structure or, equivalently, are “symmetric” under
the groupoid Bg. It also depends on a choice of “total phase space” P, which we assume is
fixed throughout the subsequent discussion. For example, in the two-cell system (1.1) we have
P = RF x R*, which depends on the choice of k.

For each cell in C define a cell phase space P,. This must be a smooth manifold of
dimension > 1, which for simplicity we assume is a nonzero finite-dimensional real vector
space. We require

c~cd = P.=PFy

and we employ the same coordinate systems on P, and P;. Only these identifications are
canonical. If P, = P; or P. is isomorphic to P; when ¢ % ¢ d, then the identification of P, and
P, will be deemed accidental and will have no significance for our present purposes. Although
the relation ¢ ~¢c d means that cells ¢ and d have the same phase space, it does not imply
that they have isomorphic (that is, conjugate) dynamics.

Define the corresponding total phase space to be

P:HPC

ceC
and employ the coordinate system
T = (Tc)eec

on P.
The cell projection corresponding to cell ¢ is the natural projection

e : P — P..

More generally, suppose that D is any subset of C. Define

Pp =]~

ceD

and let

m: P — Pp
be the natural projection. Further, write

xp = mp(T)

and suppress braces when D is a singleton. That is, m.(z) = . = v
Finally, suppose that Di, Dy are subsets of C and that there is a bijection § : D1 — Do
such that ((d) ~¢ d for all d € D;. Define the pullback map

g* : Pp, — Pp,
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by
(4.1) (ﬂ*(z))J = Z8(j) VJ €D,z € PDZ‘

By direct calculation it is easy to verify three simple properties of the pullback:

By = 7B,
(4.2) id* = id,
= 07

Note the reversed order in the first of these equations.

We use pullback maps to relate different components of the vector field associated with a
given coupled cell network. Specifically, the class of vector fields that is encoded by a coupled
cell network will be defined using the following concept.

Definition 4.1. A wvector field f : P — P is Bg-equivariant or G-admissible if the following
hold:

(a) For all ¢ € C the component f.(x) depends only on wy(); that is, there exists fo

Pry — Pe such that

~

(4.3) fe(z) = fc(ml(c))'

(b) For all ¢,d € C and 8 € B(e,d) (so that, in particular, d = (3(c))

A~

(4.4) fawra) = fe(B* (1)) Vo eP.

For brevity, we write this condition as

(4.5) Fao @) = 1.8 (@))  VaeP.

When using (4.5) it is necessary to bear in mind the constraint that f4(x) depends only on
Ty(q)- Otherwise, 3*(x) is not defined.

We call (a) the domain condition and (b) the equivariance condition on f.

Remark 4.2. If 3 belongs to the vertex group B(c,c), then (4.5) implies that

(4'6) fc(ﬂ*(x)) = fc(x) Vo e P.

That is, f. is B(c, c)-invariant. It is easy to check that this property is the same as the usual
property of invariance under a group, provided we consider B(c, c) as acting on Py ).

Definition 4.3. For a given choice of the P. we define the class .7-"5 to consist of all G-
admissible vector fields on P.

These are the most general vector fields on P that are consistent with the coupled cell
network.

Ezample 4.4. We describe .7-'5 for the diagram of Figure 9. There are three cell types
(0,0, A, and we choose three corresponding phase spaces U, V, W. Then the state variable is
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x = (x1, 2,23, 24), Wwhere 1 € U, z9,23 € V, 24 € W. There are four arrow types. We claim
that the G-admissible vector fields f are those of the form

filx) = A(z1,23,24), where A:U XV xW — U,

fo(x) = B(xg,z1), where B: V x U —V,

fs(x) = Blxs, 1),

fa(x) = C(xg,29,23), whereC: W xV xV — W,
and C' is symmetric in x9, z3.

To prove this, we consider the equivariance condition (4.5) for all the bijections [ listed
in Example 3.7. There are two nontrivial cases: B(2,3) and B(4,4). First, suppose that
¢ = 2andd = 3, and consider the bijection 7 : I(2) — I(3) for which 7(2) = 3,7(1) = 1.
Suppose that we define the function B : Prp — P by

B(x2,21) = fa()

so that B = f». Then fa(x) = fg(ﬂ:g, x1), and we wish to express this in terms of B.
It is easy to work out the pullback of 7. If we write the elements of Py in the form
r = (x3,71), then y = 7%(x) takes the form y = (y2,y1) € Pja), where

Y2 = (1‘)7(2) = I3,
Y1 = ($)7(1) =x1.

Then

7" (z3, 1) = (23, 21),

and condition (4.5) tells us that
f3(x) = B(as,x1)

as claimed. (The pullback 7* is not the identity, because its range and domain are different.
It is an identification.)

Similarly, if we consider o € B(4,4), then we have a function C defined by fi(z) =
C(z4, 72, 73). Now the pullback o* : P4y — P4y acts as

0" (x4, 2, x3) = (24, T3, T2),

and condition (4.5) tells us that
C(:L‘47 €2, $3) = f4($) = C(.’L‘4, €3, $2)
so that C' is symmetric in xo, x3.
Here and from now on we adopt the convention that z. is the first variable listed in the
argument of f.. We can show that f. is symmetric in some subset of variables by putting a
bar over that set so that here

Ja(z) = C(x4, T2, 73).

(To do this, we have to order the variables suitably, and in some cases this cannot be done
consistently. The use of a bar is convenient for the purposes of this paper.) Note that the
network G is not symmetric under the 2-cycle (2 3), because the arrow from cell 3 to cell 1
does not correspond to an arrow from cell 2 to cell 1.
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Admissible vector fields. The proofs of the main theorems of this paper rely on the
construction of certain special G-admissible vector fields. In this subsection we describe these
constructions.

As motivation, consider Example 4.4. Here, the most general G-admissible vector field is
specified by three functions A, B, C. These functions can be assigned independently of each
other. There is one such function for each ~j-equivalence class of cells, that is, each connected
component of Bg. If ¢ € C, then f. is B(c, c)-invariant; if d ~y ¢, then f; is uniquely defined
by f. through the condition of Bg-equivariance. We now give a formal statement of these
properties and show that they are valid in general.

The main point is that Lemma 3.8 implies that Bg-equivariance imposes conditions re-
lating components f., fg of f when ¢, d lie in the same connected component of B¢, but not
otherwise. We can therefore construct G-admissible vector fields g on P whose components
gc are zero for all ¢ outside a fixed ~r-equivalence class. We will prove that such vector fields

span }"g .
Let @ C C be a ~j-equivalence class. Define
(4.7) FEQ =A{f € F5: fs(2) =0 Vs ¢Q}.

Vector fields in FZ(Q) are supported on Q. The subset F£(Q) is a linear subspace of FZ.

The key constraint on a vector field in .7-"5 (Q) is B(q, q)-equivariance for some fixed but
arbitrary ¢ € Q). In fact we have the following lemma.

Lemma 4.5. Given a ~-equivalence class Q C C, let ¢ € Q and let gq : Prq) — Py be any
B(q, q)-invariant mapping. Then g, extends uniquely to a vector field in FL(Q).

Proof. For any r € @, choose y € B(q,r) (which exists since r ~; q) so that Gy(q) = r.
Equivariance forces us to define

(4.8) 9r(y) = 94(B5 () Yy € Prry,

so the extension to r € @ is unique if it exists. It is easy to show that g, does not depend on
the choice of (y. Finally, if r € @, we define g,(z) = 0.

We have now extended g, to a vector field g on the whole of P. We claim that g € Fg (Q).
Clearly, the components g, of g with r & @) vanish. It is therefore sufficient to show that if
r€Q,v € B(r,s), and z € Py, then

(4.9) 9s(2) = - (7" (2))-
The component g, is defined by choosing 51 € B(q, s) and setting
(4.10) 9s(y) = 94(B7(y)) Yy € Prs)-

To establish (4.9), let

6 = BB € B(g,q)

so that

v =B85y
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Then, using (4.2), we compute

9-(7"(2))

r((B16651)" (2))
((55)16" B (2))
o(B5(55) 6" 51 ()
a(6%(01(2)))
(
(

T

4(01(2))
2)

(where g4(6*(B1(2))) = g¢4(Bi(z)) because [{(z) € I(q) and g, is B(q, q)-invariant). This
calculation proves (4.9). |

The importance of such vector fields g stems from the following proposition.

Proposition 4.6.

I
Qe 9 9 9 9

s

F& =P FEWQ)
Q

where @ runs over the ~r-equivalence classes of G.
Proof. Suppose that f € .7-"5 , so that f is Bg-equivariant. Let () be a ~j-equivalence
class, and pick ¢ € Q. Define g € fg(Q) by setting

9q(2) = fy(x) Vz € P,

which is B(q, q)-invariant since f is Bg-equivariant. For the same reason,

gr(x) = fr(x) Ve e P,req,

where g, is defined as in Lemma 4.5. Recall that gs(x) = 0 for all s € Q. Repeating this
construction for all ~j-equivalence classes () we see that

F& =Y FEQ)

However, the definition of F£ (Q) shows that

N> FER) ={0}

R#Q
(where R ranges over ~j-equivalence classes other than @), so the sum is direct. [ |

5. Patterns of synchrony: Example. There are many kinds of synchrony in coupled cell
systems: for surveys see Boccaletti, Pecora, and Pelaez [2] and Wang [14]. Most notions of
synchrony depend on specific dynamics of cells and couplings. Some notions are model-inde-
pendent; that is, they are valid for any vector field consistent with the given cell architecture.
We believe that it is useful to distinguish model-independent properties from model-dependent
ones, because this separates the effect of the general architecture of the system from that of the
specific model equations employed, which clarifies the role of the model and its parameters.
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We now approach the central issue of this paper: conditions under which certain cells in
a coupled cell network can synchronize as a consequence of the network architecture. Because
the theoretical issues are somewhat abstract, we first discuss a motivating example.

Example 5.1. Consider the ten-cell network G of Figure 11. There are two cell types.
Cells 0 and 1 have type (O, and cells 2, 3, 4, 5, 6, 7, 8, 9 have type 0. There are three arrow

types —, =, — — —>. The shading on the nodes divides C into three classes:
(5.1) {0,1},{2,3,6,8},{4,5,7,9}.
| | ' i P
2 3 4 5 6 7 8 9
== L

Figure 11. A 10-cell system. The shading indicates a possible pattern of synchronous cells.

Figure 12. Input types for the 10-cell system, including shading.

There are three distinct input types, illustrated in Figure 12. Cells 2, 3, 6, 8 have no
inputs except themselves. Cells 4, 5, 7, 9 have two inputs: one is of type (), and the other is
of type O and in the class {2,3,6,8}. Cells 0, 1 have four inputs, all of type O; of these, two
are in the class {2,3,6,8}, and the other two are in the class {4,5,7,9}.

(We have deliberately included some cells without inputs—in this case, cells 2, 3, 6, and
8—to make it clear that such cells can be considered synchronous in our formalism. Of course
such a form of synchrony is dynamically unstable, but in this paper we are studying existence,
not stability, and we do not wish to rule out unstable synchrony because it still corresponds
to an invariant subspace for the dynamics. It is easy to modify this example to add further
connections that provide inputs to these cells: for example, each of cells 2, 3, 6, and 8 can
receive one input from any of the cells 4, 5, 7, and 9.)
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With appropriate choice of phase spaces, a vector field f € ]:51 takes the form

fo = A(xo,72,73,71,75), f5 = C(x5,70,72),
fi = A(x1,%6, @7, %8, 09), fo = B(xg),

(5.2) fo = B(z2), fr = C(x7,x0,28),
f3 = Blzs), fs = Blxs),
fa = C(x4,71,23), fo = C(xg,71,78).

Consider the space
Y = {(u,u,v,v,w,w,v,w,v,w)}

determined by making entries constant on the classes (5.1). On Y the vector field f restricts
to

g = Au,v,v,w,w), g5 = Clw,u,v),

g = Alwvwvw), g = Bv),
(53) 92 = B(U) gr = C(w7u7v)7

g3 = B(v), g8 = B(v),

g1 = C(w,u,v), g9 = C(w,u,v)

By symmetry go, g1 are identical. Bearing this in mind, we see that Y is flow-invariant for f.
Identifying elements of Y with triples (u, v, w), we obtain an induced vector field f of the
form

Jo=A'(u,7,w)
?1 :B(U)7
s =C(w,u,v)

where
Al(u,v;w) = A(u, v, 0,w,0).

This is the class of admissible vector fields for the simpler coupled cell network G2 shown
in Figure 13. Here cells v, w have the same type, but we have shaded cell v to show which
equivalence class it corresponds to.

The coupled cell network G is an example of a quotient network. What structure in G
makes Y flow-invariant for all f € ]-'51 and permits this reduction to Go on Y7 The key
feature is how the three classes (5.1) relate to input isomorphisms. In section 6 we develop
the theory of flow-invariant subspaces, and in section 8 we develop the general theory of such
reductions.

6. Patterns of synchrony: Theory. We now isolate the abstract features of Example 5.1
that make Y flow-invariant. The classes (5.1) can be represented as the equivalence classes
corresponding to an equivalence relation. The properties of this equivalence relation, relative
to the symmetry groupoid of the network, turn out to control the existence of the flow-invariant
subspace Y and the quotient network G2. We begin by considering the equivalence relation.
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Figure 13. Quotient network G2 of the 10-cell system G1. Shading relates cells to those in Gy.

Let G = (C,&, ~c,~g) be a coupled cell network. Choose a total phase space P, and let
1 be an equivalence relation on C, partitioning the cells into equivalence classes. We assume
that 0 is a refinement of ~¢; that is, if ¢ > d, then ¢ and d have the same cell labels. It
follows that the polydiagonal subspace

Ay ={x € P:x. = x4 whenevercixd Ve,deC}

is well defined since x. and x4 lie in the same space P, = P;. The polydiagonal Ay is a linear
subspace of P.

For instance, in Example 5.1 we can define > to have equivalence classes (5.1), in which
case Ay =Y.

Definition 6.1. A trajectory z(t) of f € fg s pI-polysynchronous if its components are
constant on -equivalence classes. That 1is,

e d = x.(t) = zq4(t) Vte R

or z(t) € Ay for allt € R.

Polysynchronous states are patterns of synchrony. Trivially, any trajectory is polysyn-
chronous with respect to the relation of equality (which partitions C into its individual cells).
Only nontrivial polysynchrony is interesting.

Robust polysynchrony.
Definition 6.2. Let <1 be an equivalence relation on C. Then < is robustly polysynchronous
if Apq 18 invariant under every vector field f € .7:5. That is,

f(Aw) C Aw VfeFE.

Equivalently, if x(t) is a trajectory of any f € .7-“5, with initial condition x(0) € As, then
x(t) € Apq for allt € R.

We now find necessary and sufficient conditions on < to ensure that > is robustly polysyn-
chronous. We begin by showing that robust polysynchrony can occur only between cells that
have isomorphic input sets. This is intuitively clear because these are the only cells that
involve the “same” function in the corresponding components of admissible vector fields, and
the proof bears out this intuition.
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Lemma 6.3. If < is robustly polysynchronous, then 1 refines ~y. That is, for all c,d € C

cxld = c~yd.

Proof. By the discussion immediately preceding Lemma 3.8 we need to show that if ¢ > d,
then ¢ and d are in the same connected component ) of Bg. Suppose they are not; then
we will show that Ay is not flow-invariant. Choose z(0) € Ay so that z.(0) = z4(0) # 0,
and choose f € FL(Q), where d & Q. Let x(t) be the solution to the differential equation f.
Since f € FL(Q) implies that f, vanishes, z4(t) = 24(0) for all ¢. If we can choose f so that
fe(z(0)) # 0, then z.(t) # z.(0) for small ¢, so A is not flow-invariant, and we are finished.

It remains to choose such an f. By Lemma 4.5 we need only find a B(c, c)-invariant
mapping g : Pr) — P such that g.(z(0)) # 0, since such an invariant mapping extends
to a vector field in FL(Q). For example, we may take g.(r) = x.(0) # 0, which is
B(c, ¢)-invariant. [ |

Balanced equivalence relations. In order to motivate our characterization of robustly
synchronous equivalence relations <1, we repeat the analysis of Example 5.1 with a slightly
different equivalence relation. Suppose that we partition the ten cells into the classes

{07 1}7 {27 37 8}7 {47 57 67 77 9}

so that the color of cell 6 is now gray instead of white, all other colors remaining as in Figure 11.
Now the associated polydiagonal is

V' = {(u7u7 v7v7w7w7w7w7v’w)}.

The general vector field (5.2) remains unchanged, but its restriction (5.3) to Y changes in just
one component: now

g1 = A(uv w,w, v, w)

This is no longer the same as gy, so no reduction to the three-cell network is possible.

What is the source of this difference? The symmetry property of A (that is, its B(1,1)-
invariance) implies that the order of the v’s and w’s does not matter, but there are three
occurrences of w in ¢g; and only two occurrences in gg. Similarly there is one occurrence of
v in g1, but there are two occurrences in gg. This difference in “multiplicity” makes g; differ
from gp and so destroys the possibility of Y’ being an invariant subspace.

This and similar examples lead to the following concept.

Definition 6.4. An equivalence relation > on C is balanced if for all ¢,d € C with c > d
and ¢ # d, there ezists v € B(c,d) such that i <1 v(i) for all i € I(c).

In particular, B(c,d) # () implies ¢ ~; d. Therefore, balanced equivalence relations refine
~7.

The equivalence relation for Example 5.1 is balanced; the modified equivalence relation is
not balanced. It turns out that this is the crucial distinction when it comes to constructing a
quotient network; see Theorem 6.5 below.
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There is a relatively simple graphical way to test whether a given equivalence relation >
is balanced. Color the cells in a network so that two cells have the same color precisely when
they are in the same t<-equivalence class. Then < is balanced if and only if every pair of
>i-equivalent cells is connected by a color preserving groupoid element.

For example, consider the seven-cell network in Figure 14. Let <t be the equivalence
relation with equivalence classes

{1,4,7}, {2,5}, {3,6},

as indicated by the colors in Figure 14. Observe that the pink (light gray) cells have input
sets “white to pink,” the white cells have input sets “blue (dark gray) to white,” and the blue
cells have input sets “pink to blue.” So < is a balanced equivalence relation, since all cells in
the same equivalence class have identically colored input sets.

Figure 14. Seven-cell linear network with t<-equivalence classes indicated by color.

The main theorem on polysynchrony. An examination of these examples leads to the
following general result.

Theorem 6.5. Let 1 be an equivalence relation on a coupled cell network. Then < is
robustly polysynchronous if and only if < is balanced.

Proof. 1f < is balanced, then Definition 6.4 implies that Ay is invariant under any ad-
missible vector field; that is, b is robustly polysynchronous. This is obvious in the “color”
interpretation: as we have seen, < is balanced if and only if every pair of cells of the same
color are related by a color preserving input isomorphism. This implies that if f € .7:5 and
cxad, then fo(x) = fa(x) for all z € Ay, That is, Ay is flow-invariant for f.

To prove the converse, suppose that > is robustly polysynchronous. Then every f € .7:5
maps Ax to Anq. We wish to prove that < is balanced; that is, if ¢ <1 d and ¢ # d, then there
exists v € B(c,d) such that i < v(7) for all ¢ € I(c). Since X refines ~; (Lemma 6.3), the set
B(c,d) is nonempty.

Define Ky, ..., K, asin (3.4) so that there is a partition

I(c)=KyU---UK,,

where i,7 belong to the same K if and only if (i,¢) ~g (¢, ¢). Similarly, there is a partition
I(d)=LoU---UL,

with the corresponding property. We may choose the numbering so that

(6.1) i€ Ks,j€Ls= (i,¢c) ~g (4,d), 1<s<r.

As before, we may take Ky = {c}, Lo = {d}. (Because ¢ ~; d, the sets K, and L, have the
same cardinality for 0 < s < r, and the same r occurs for I(c) and I(d).)
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Suppose that we can prove that for any s with 0 < s < r and any <-equivalence class
UCCc,

(6.2) |UN K| =|UnN L.
Then we can define a bijection ~ : I(c) — I(d) such that
(6.3) WUNK)=UNL, (0<s<r)

for all U. By (6.1), v € B(c,d). Moreover, (6.3) implies that (i) > for all i € I(c). For we
may take U such that i € U, and then (i) € U as well.

Thus it remains to prove the cardinality condition (6.2). To do so, we introduce a Bg-
equivariant map h, which depends on s, and apply it to an element y € Ay that depends on
U, as follows.

Let M : P, — P, be a nonzero linear map, where i € K,. Let h, : Pry — Fe be defined
by

(6.4) mw=M<Zm»
€K

which is B(c, ¢)-invariant, since K, is a B(c, ¢)-orbit. By Lemma 4.5 we may then define, for
all other ¢ € C,

he(2) = he(8* () = ) M(xy),
JEL(Ks)
where (3 is some (hence any) element of B(c,c’) and ¢’ ~; ¢, and
hcl (.CC) =0

otherwise. Moreover, the resulting h is Bg-equivariant. Since < is polysynchronous, h maps
Apq to itself.
Next, define y € P by

R U? ] 6 U7
S WU Y o
for some fixed v € P, for which M (v) # 0, where a € U N K.

We are assuming that ¢ ~; d so that B(c,d) # (0. Let 8 € B(c,d), which implies that
B(Ks) = Ls. Clearly

(6.5) ha(z) = > M(zj)  Va € Aw

j€ELs
Since h preserves Ay,

(6.6) he(z) = hq(z) Vo € A
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Apply (6.5),(6.6) to y:

he(y) = |U N K[ M(v),
ha(y) = [U N Ls| M (v).

By (6.6), since M (v) # 0, we deduce that
’UﬂK8’ = |UOLS‘

for all U and all 0 < s < r. However, this is (6.2), so x is balanced. [ |

7. Dynamics on polysynchronous subspaces. As illustrated in Example 5.1 the restric-
tion of a coupled cell vector field to a polysynchronous subspace has itself a special structure.
The restriction is an admissible vector field for an associated “quotient” coupled cell network.
In this section we construct the quotient network for a given polysynchronous subspace and
illustrate some of the implications for the dynamics of the restriction. We begin with an
example.

Ezample 7.1. Consider the five-cell network illustrated in Figure 15 (left). All cells are cell-
equivalent, so a phase space for this network has the form P = (Rk )5 for some k. Since all
cells are also input-equivalent (that is, have isomorphic input sets) the diagonal (z,z,z,x, x)
is polysynchronous. Recall that a network is homogeneous when all of its cells are input

} >@/\

)

Figure 15. A homogeneous five-cell network with a balanced relation leading to a quotient three-cell bidi-
rectional ring.

There is, however, a more interesting 3k-dimensional polysynchronous subspace Ay, asso-
ciated to the balanced relation illustrated in Figure 15 (center). That subspace is

Al><1 = {(li,y,iﬂ,y,z) 1T,Y, 2 € Rk}

Next we discuss the structure of the restriction of an admissible coupled cell vector field
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to Asq. The general admissible vector field has the form

.fl = (a:l,xg,a:5),
Ty = f(x2,73,T5),
(7.1) ig = f(xg,w4,$5),
iy = f(24,71,75),
i5 = f(zs5,71,72),

where f : (R¥)3 — R” is symmetric in the last two arguments. The restriction of (7.1) to Ax
has the form

j"‘ = f(x’ y? Z)?
(7.2) v = f(y,77),
2 = f(z,7,9).

Observe that (7.2) is the general vector field associated to the three-cell bidirectional ring
illustrated in Figure 15 (right). We will show that there is a general construction that leads to
this three-cell quotient, but first we discuss some implications for the dynamics of the five-cell
System.

Observe also that the restriction (7.2) has D3 symmetry and is, in fact, the general D3-
equivariant vector field on (Rk )3. So it is possible for a quotient network to have symmetry
even when the original network has none. It is known that when k > 2, such vector fields can
support discrete rotating waves and solutions where two cells are out of phase, while the third
cell has twice the frequency of the other two [9, 7]. These solutions are also solutions to the
original five-cell system. Typical simulations are shown in Figure 16. The middle and right
simulations are obtained just by changing initial conditions.
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Figure 16. Simulations in homogeneous five-cell network in Figure 15. (Left) rotating wave; (middle)
double frequency in cells 2 and 4; (right) double frequency in cell 5.

It is also possible for the restricted system to exhibit symmetric chaos, as illustrated in
the five-cell simulations in Figures 17 and 18.

Perhaps the simplest example of a network that has no symmetry but does have a quotient
network with symmetry is the three-cell network in Figure 19. This is the same as the “master-
slave” network of Pecora and Carroll [12]. This network is part of the same family of networks
as the seven-cell network described in section 1 (Figure 6) and again in section 6 (Figure 14).
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Figure 17. Simulations in homogeneous five-cell network in Figure 15. (Left) time series for chaotic
attractor with Zo symmetry; (middle) phase plane with cells 1,3,5 and cells 2,4 exhibiting symmetry on average;
(right) double frequency in cell 5.
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Figure 18. Simulations in homogeneous five-cell network in Figure 15. (Left) time series for chaotic
attractor with Zs symmetry; (right) phase planes with all cells exhibiting symmetry on average.

Construction of the natural quotient network. Let 1 be a balanced equivalence relation
on a coupled cell network G = (C,&,~¢,~pg). In a series of steps we construct the quotient
network Gpq corresponding to the polysynchronous subspace A.. To do this we need to
define the cells and edges of the quotient network and the equivalence relations on them; that
is, we must define Cu, ~cy., E, ~E,,. Most steps are straightforward, but those related to
edge-equivalence are more complicated.

(A) Let ¢ denote the p<-equivalence class of ¢ € C. The cells in Cyq are the p<-equivalence
classes in C; that is,

Coa={c:ceC}.

Thus we obtain Cy by forming the quotient of C by < that is, Coqy = C/ <.
(B) Define

ENCMCZ <~ c~¢d.

This is well defined since i refines ~¢.
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@ -@— —~0
Figure 19. A three-cell network with no symmetry having a quotient two-cell network with Zo symmetry.

(C) The edges in the quotient network are the projection of edges in the original network
that do not link distinct but <-equivalent cells. That is,

Ea={(3,0) : (i,¢) € E,ivkc} U{(c,C) : c € C}.
(D) We now define ~f,_ . Suppose that (j,d) € &, and let ¢ € C satisfy ¢ = d. Define
(7.3) Qe(j) ={i€1(c) :i=j}.
Now let (ji1,d1), (j2,d2) € Ex. We say that

(J1,d1) ~E (J2,d2)

if and only if for some c1, co € C with ¢ = dj, ¢ = dy there exists v € B(ci, ¢2) such that

(7.4) V(e (1)) = Qe, (J2)-

Remark 7.2. We interrupt our discussion to provide a word picture of the construction of
edge-equivalence ~g_. Suppose that the cells of C are colored by p<-equivalence classes, as
discussed previously. So every cell in Cq can be identified with a unique color. The set .(7)
consists of those cells in the input set I(¢) having color j. The edges (j1,d1) and (j2,dz) are
~ g, -equivalent if there is an input equivalence of I(c;) to I(c2) that maps cells of color j; to
cells of color j3. In particular, the number of cells in I(¢;) of color j; must equal the number
of cells in I(c2) of color js.

This completes the construction of Gy = (Cix, E, ~Cous ~Eny )» €Xcept for one final techni-
cal remark. As stated, the definition of ~g,_, appears to depend on the choice of ¢;, ¢z in (D).
In fact, it does not.

Lemma 7.3. Suppose that < is balanced. Let c1,c2,¢),cy € C, where ¢i > ¢} and ca >4 .
Let j1, j2 € Csq. Suppose that there exists 3 € B(cy,c2) such that

6(901 (]1)) = ch(j2)'

Then there exists 3 € B(c|,ch) such that

BI(QC’I (]1)) = Qc’2 (]2)

Proof. Since < is balanced, there exists (for k = 1,2) an element ;, € B(cy, ¢},) such that
(i) ¢ for all @ € I(cg). Therefore,

Ve (e, (k) = Qe (Gi)-
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Clearly 8" = v287; ! is an input isomorphism and by construction 3’ (chl (1)) = Qe (J2). [ |

Lemma 7.3 implies that if (D) holds for some choice of ¢, co satisfying the required con-
ditions, then it holds for any choice of ¢y, cs.

Finally, we show that G is a coupled cell network. To do so, we must verify the compat-
ibility conditions in Definition 2.1(e,f).

(E) If (j1,d1) ~E. (j2,d2), then j1 ~c,, j2 and di ~¢,, da.

Choose cq, ca € C such that ¢ = dy and ¢3 = dz. The definition of ~g,_ implies there exists
v € B(ep,c2) such that v(Qe, (71)) = Qc,(j2). Since v is an input isomorphism, it preserves
cell type, so ¢; ~c c2. However, now the definition of ~¢,, shows that d; ~¢c,, d2. Next
choose any i € Q¢, (j1). Then (i) € Qc,(j2), and i ~¢ y(i). Therefore, ji ~c,, jo.

(F) Internal edges are never equivalent to noninternal ones; that is,

(J1,J1) ~Ew (J2,d2) < jo = daand jo ~c, j1

for all jl,jg, dy € CN.

We prove =>. Assume that (j1,71) ~g. (Jj2,d2) and choose cj,co € C such that ¢1 =
j1 and ¢ = dg. The definition of ~p_ implies that there exists v € B(ci,c2) satisfy-
ing (7.4): vQ¢, (j1) = Qe (j2). Suppose that Q. (j1) = {c1,i1,... ,9p}. Then Q,(j2) =
{v(c1), (i), v(ip)} = {e2, (i), ..., v(ip)} and dy = T = y(i1) = -+ = (i) = j2 by
definition of Q,(j2). Thus jo = dy. As jo = ¢2,j1 = ¢1, and ¢1 ~ ¢o (since B(cy,ca) # 0),
then j1 ~c,, J2.

The converse is obtained by direct calculation.

It remains to prove that the restriction of each G-admissible vector field to Apg is a G-
admissible vector field. This result follows from Theorem 9.2, whose proof uses “quotient
maps,” which are introduced in section &.

Remark 7.4 (on the symmetry groupoid of the natural quotient). It is reasonable to ask for
a characterization of the symmetry groupoid of the natural quotient G/ < in terms of the
symmetry groupoid of G and its relation to <.

Define

Y™ (c,d)={oc € Ble,d):o(i)xi  Viel(c)},
T™(¢,d) = {1 € B(e,d) 1 i1 j < 7(i) > 7(j) Vi,j e I(c)}.

Then define two subgroupoids of Bg by

— ‘ >
=, )

D> >
T _Uc,deCT (¢, d).

It turns out that T™ consists precisely of the t<x-compatible elements of B¢, a concept that
we introduce later in Definition 8.6. It follows that Bg ., consists precisely of the bijections
induced on C/ > by the subgroupoid T of Bg.

Moreover, the elements of ¥ act as the identity on C/ <. In fact, they form the isotropy
subgroupoid of any generic element of the polydiagonal Ay, (that is, an element = € Ay such
that z; = x; < i j). By analogy with the group-symmetric case, we expect Bg g to be
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equal to the quotient groupoid T*'/¥*. Moreover, T™ ought to be the “normalizer groupoid”
of X™ in Bg.

Dias and Stewart [5] prove the above statements. We omit the proofs here because they
involve technicalities about quotient groupoids that would take us too far afield.

Remark 7.5 (on the lifting of Gq admissible vector fields). In symmetric dynamics the is-
sue of “hidden symmetry” arises. Here, the restriction of an equivariant vector field onto
the fixed-point space of a subgroup X is always equivariant under the normalizer of 3, but
sometimes it obeys extra constraints. See [9, 7]. The next example shows that the same issue
arises in the groupoid context. In particular, vector fields that are admissible with respect to
the quotient network Gq do not always lift to vector fields that are admissible with respect
to the original coupled cell network G.

Consider the four-cell network in Figure 20 (left). The equivalence relation < indicated
by color is balanced, and consider the natural quotient three-cell network in Figure 20 (right).

S e
o: . - @

4

Figure 20. A four-cell example.

Admissible vector fields of the four-cell network have the form

&1 = A(x1,%2,73,%4),
jS‘Q = B($2),

7.5 .

( ) xr3 = B(fl?g),
T4 = B(zyg).

Admissible vector fields of the three-cell network have the form

= f(uy,ug,us),
(7.6) iy = g(u2),
a3 = g(us).

If we identify (z1,z2,x3,x4) With (u1, ug, us, us), we induce a vector field from (7.5), and we
thereby obtain one of the form

Q:Ll - A(Ul,UQ,U3,U3),
(7.7) iy = B(uz),
Q:L3 = B(U3),

which is admissible by (7.6).
Note that not every Gu-admissible vector field (7.6) can be extended to a G-admissible
vector field. Compare the linear terms in A (namely, cuy + 3(u2 +2us3)) with the linear terms
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in fin (7.6) (namely, cu; + Bug +~yus3). This is a groupoid analogue of hidden symmetry and
raises similar issues. Dias and Stewart [5] give a complete groupoid-theoretic characterization
of the cases when every G q-admissible vector field extends to a G-admissible vector field.

8. Quotient maps. In this section we give a formal definition of a quotient map ¢ : G; —
G9, where G1 and G are coupled cell networks. The definition is purely graph-theoretic.
Definition 8.1. Let G; = (C;, &, ~c;, ~E,) be coupled cell networks. The map

¢:C— Cy

is a quotient map if the following hold:
(a) Cells lift: ¢ is surjective.
(b) Input arrows lift: If (i,c) € &1, then (¢(i),d(c)) € E. Conversely, if (j,d) € E and
c € Cy such that ¢(c) = d, then there exists i € C1 such that ¢(i) = j and (i,c) € &;.
(¢) Input isomorphisms lift: Let d,d’ € Co and 3y € B(d,d"). Choose ¢, € Cy such that
¢(c) =d and ¢(') = d'. Then there exists 31 € B(c,c) such that

(8.1) Ba((i)) = ¢(B1(4))

for all i € I(c).
There are several observations that follow directly from the definition of a quotient map
¢ : C1 — C3. Define the equivalence relation t<iy on Cy by

(8.2) ey d = ¢(c) = ¢(d).

That is, any two cells in C; that project by ¢ onto the same cell in Cy have the same color
(that is, are ><g-equivalent).

Lemma 8.2. Let ¢ : C1 — Cy be a quotient map. Then the following hold:

(a) If ¢(c) = d, then

(8.3) ¢(I(c)) = 1(d).

(b) For every c,c € Cy such that ¢(c) = ¢(c') there is an input isomorphism 3 € B(c,c)
such that
(8.4) o(i) = o(B(4))

for alli € I(c).

(c) The equivalence relation < is balanced.

Proof. Part (a) follows directly from Definition 8.1 (b). Part (b) follows from Defini-
tion 8.1 (c) by setting d = d’ and B2 = id on I(d). The existence of 8 € B(c, ) in Part
(b) implies that ¢ ~7, ¢ and hence ¢ ~¢, ¢. Using (8.2), identity (8.4) is equivalent to
i<y ((4) for all @ € I(c), which is the definition of “balanced” in Definition 6.4. Thus Part (c)
holds. [
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Quotient networks are examples of quotient maps.

Theorem 8.3. Assume that < is a balanced equivalence relation on C, and let Cyq be the
natural coupled cell network whose cells are the equivalence classes of <. Let ¢ denote the
p-equivalence class of the cell c € C. Then the map ¢ : C — Cyx defined by ¢ — ¢ is a quotient
map.

Proof. We verify that ¢ : C — Cx is a quotient map; that is, we verify Definition 8.1
(a)-(c).

(a) Cells lift since ¢ is onto by construction.

(b) Input arrows lift by definition. See part (C) in the construction of the network Cy.

(c) We show that input isomorphisms lift. Recall that Definition 8.1 (c) states the fol-
lowing: For every d,d’ € Cuw, ¢, € C such that ¢ = d,¢ = d', and By € B(d,d'), there
exists 1 € B(c, ) such that B2(i) = $1(i) for all i € I(c). So we must construct the input
isomorphism f; : I(c) — I(¢).

We first show that input sets lift; that is, I(c) = I(¢) for each ¢ € C. Suppose that
j € I(¢). Since input arrows lift, there exist i/, ¢’ € C such that i/ = j, ¢ = ¢, and (i/,¢') € &.
By construction of Cy, ¢ and ¢ are <-equivalent. Since > is balanced, there exists v € B(d, ¢)
for which ¢ = y(i') > ¢’. It follows that v(i’,c’) = (i,¢) € £ and that ¢ = j. Thus each input
arrow in I(¢) lifts to an input arrow in I(c).

Next we show that 1 exists. The set Q.(j), defined in (7.3), consists of cells in I(c) that
are <requivalent and project onto the node j € C. Therefore, we can choose a finite set J of
j such that

16) =, 20

Since input sets lift, the existence of 35 implies that

AN ' , .
1) = _,00(30))
We construct the permutation (3; by finding bijections

Bila.( : Qi) — 2 (B2(5))

for all j € J and letting 57 be their union. The existence of By € B(d,d’) implies that
(4,d) ~B,, (B2(j),d’). Recall from (7.4) that the definition of ~p,_ implies that there exists

v € B(e,d) such that v(Q:(5)) = Qu(B2(5)). Thus Bo(i) = (i) for all i € Q.(j). Now set
ﬁl’QC(j) = . |

Nonuniqueness and universality.

Theorem 8.4. Assume that 1 is a balanced equivalence relation on C, and let Gy be the
associated natural quotient network with quotient map ¢. Then the pair (Gsq, @) is universal.
That is, if G' is a coupled cell network with a quotient map ¢’ with >y =, then there is a
quotient map & : Guq — G’ such that ¢'(c¢) = £(p(c)) for all ¢ € C.

In this situation we say that (G, ¢') factors through (G, ¢). Note that with the definition
of ¢ given in Theorem 8.3, c < d if and only if ¢ >y d.
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First, we give an example to show that quotient networks need not be unique. Then we
prove Theorem 8.4, which shows that the natural quotient is universal. That is, all other
quotient networks are quotients of G of a rather trivial kind: distinct cells remain distinct.

Example 8.5. Figure 21 shows three coupled cell networks. The network G is the seven-
cell chain of Figure 6. The network G is the three-cell ring of Figure 7 in which all three
arrows are equivalent. The network G’ is another three-cell ring, in which the arrows are not
equivalent. It is easy to see that there exist three quotient maps ¢ : G — G, ¢' : G — G,
and £ : Gy — G’, shown by the coloring of the figure. Moreover,

¢'(c) =&(p(c))  Veel.

Clearly ¢ and ¢’ induce the same equivalence relation on G; that is, b1y =<y, However, Gy
and G’ are not isomorphic.

In fact, there are three other quotient networks with the same equivalence relation.
Namely, form a three-cell ring and define two arrows to be equivalent but the third to be
different. These three networks can be inserted between Gyq and G’.

5080000
G@/\@G

Q :

Figure 21. Two distinct quotients with the same equivalence relation.

The essential point now is that Example 8.5 exhibits the only way in which uniqueness
fails. The natural quotient Gy defined above is the one in which as many arrows as possible
are edge-equivalent. All other quotients are obtained from the natural one by employing the
same cells and refining ~g.

It will be helpful to introduce the following concept.

Definition 8.6. Let v : J — K be a bijection between subsets J, K C C, and let > be an
equivalence relation on C. Say that 7y is >i-compatible if for all j1,j2 € J

(8.5) J1 > j2 < (1) 22y (2)-
Essentially, the point here is that ~ permutes t<t-equivalence classes. Note that in the

definition of “balanced” we have the stronger condition i < (), in which v fizes ><-equivalence
classes.
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Such maps arise for the following reason. Suppose that ¢ : G — G’ is any quotient map of
coupled cell networks, and let 8 € B be an input isomorphism. The definition of “quotient”
requires there to exist a lift 3 € Bg. The definition of “lift” clearly implies that

(8.6) B is >4 -compatible

with J = I(c), K = I(d), whence 3 € B(c,d) (if 8 € B(¢(c), ¢(d)) C Bgr).

Proof of Theorem 8.4. Suppose that G is a coupled cell network and < is a balanced
equivalence relation on C. Let (Guq, ¢) be the natural quotient by > so that p<gy = <. Let
(G, ¢') be any quotient network with g = <. We claim that ¢’ factors through ¢.

Define € : Gy — G’ as follows. Let ¢ € Cyq be a cell of Guy. Define

£(©) = ¢/(0).

The map £ is well defined because py = =1<4. It is a bijection £ : Cog — C'.

We claim that £ is a quotient map. The defining properties are obvious, except for the
condition that input isomorphisms lift from G’ to G Suppose that 3 € Bg. Then § lifts
from G’ to G, yielding an input isomorphism B € Be. By (8.6), (3 is -compatible. Therefore,
it induces a bijection v on Cy defined by

v(e) = B(c).
The definition of edge-equivalence in the construction of G implies that v is an input iso-
morphism in Gu. Therefore, every 5 € Bgr lifts to some v € Bg,. . [ |

Several other properties follow directly from this proof. To state them, we need the
following definition:
Definition 8.7. Let £ : G — G’ be bijective on cells. Then G’ is an edge-refinement of G if

f(ivc) ~E’ 5(]7 d) = (iac) ~E (]7 d)

Corollary 8.8.

(a) Ewvery quotient network corresponding to a given balanced equivalence relation < is an
edge-refinement of the natural quotient Gu.

(b) Conversely, every edge-refinement of Gyq is a quotient network corresponding to t<.

(¢) Let G',G" be edge-refinements of Guq. Then G” is an edge-refinement of G' if and
only if Bar 2 Bar.

(d) The condition Bg: 2 Bgn is equivalent to FL, C FL, for any choice of phase space P
on cells, where cells in G',G" are identified if they correspond to the same X-class of
cells in G.

The above corollary establishes that the phenomena described in Example 8.5 are typical

of the general case.

9. Induced vector fields are admissible. Now we come to the second main theorem of
this paper. We show that any quotient map ¢ : G; — G2 converts Gi-admissible vector fields
into Ga-admissible vector fields in a natural way.

The basic idea is the following. Let A, denote the polydiagonal subspace correspond-
ing to the equivalence relation >y (previously denoted Ay ¢). We claim that the space of
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G1-admissible vector fields restricted to Ay can be naturally identified with a subspace of
the space of Gs-admissible vector fields. The main consequence of this observation is that
interesting dynamics (rotating waves, symmetric chaos) in this subspace for the cell system
G2 corresponds to the same dynamics in the cell system (1, in which <-equivalent cells are
synchronous.

We first choose cell phase spaces P. for ¢ € C;. Then ¢(c) € Ca, and we let the corre-
sponding cell phase space be Fd)(c) = P,.. The space ﬁd)(c) is well defined since quotient maps
preserve the relation ~..

Choose a set of representatives R for the map ¢. That is, R C C; and for each d € Cy
there exists a unique ¢ € R such that ¢(c) = d. Thus the set of all ¢(c) runs through the
elements of Co without duplication when ¢ runs through R. Then define

P =11 Pow =1 P-

ceER ceER

If ¥ = (zc)cec, defines coordinates on P, we can consider y = (yg(c))g(c)ec, as defining coor-
dinates on P. Moreover, for each ¢ € C; there exists a unique r € R such that ¢(c) = ¢(r),
and then y4 ) is identified with yg(,).

In section 8 we introduced the notion of a quotient map between coupled cell networks.
The key property that we wish to ensure is that a quotient map ¢ : Gi — G3 induces a natural
mapping qﬁ : ]—"51 — ]-'52, where P is obtained by identifying the relevant factors of P.

Quotients preserve admissibility. We now establish an important property of quotient
maps: they induce admissible vector fields.

Suppose that ¢ : G; — Gq is a quotient map. There is an injective map a : P — P
defined by

(9.1) a(Y)e = Yo(e) Ve € Cr,y € P.

Note that Ay = a(P), so a: P — Ay is a bijection. Replacing y by a™ 'z, for z € Ay, (9.1)
becomes

(9.2) (ofla:)qﬁ(c) =2, Ve e Cy.

Definition 9.1. Since f € ]—"51 leaves Ay invariant, we can define a vector field f on P, the
induced vector field, by restricting f to Ay and projecting the result onto P by a~'. More
precisely,

(9-3) fly) = a™ (f(a(y))) Vy € P.

We will also denote f by qg(f)

The main result of this section is Theorem 9.2 below. Several applications of this theorem
can be found in [6].

Theorem 9.2. For any f € .7:P1, the induced vector field f lies in ]-"52.

Proof. Since f € .7-'51 is G1-admissible, it satisfies the two conditions of Definition 4.1: the
domain condition (4.3) and the equivariance condition (4.5).
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The domain condition states the following: For all ¢ € C; there exists a function fe :
Py — P such that

(9.4) fe(z) = fc(ml(c))'

Equivalently, f. depends only on variables from cells in I(c).
B, -equivariance states the following: For all ¢,¢ € C; and for all v € B(e, ') we have

(9.5) fe() = fe(v"(2)) Vz € Pre),
where
(9.6) (V" (@))i = zy) Vi € I(c)

and is undefined elsewhere.

We must verify Definition 4.1. That is, we must show the following:

(a) The vector field f satisfies the domain condition for Gs.

(b) The vector field f satisfies the equivariance condition for Gj.

To prove (a), let d € Cz, and suppose that ¢(c) = d. We must show that f,(y) depends
only on yyg) for y € P. We have

faw) = fo(y)

= (f¥)eo

= (a7 (f(a®))))ge) by (9:3)

= (fla()))e by (9.2)

= fela(y)) by definition.

By (9.4), the value of f.(a(y)) depends only on (a(y))s(). However, by (9.1),

(W) 1(e) = Yo(1(c)) = YI(a)

since ¢(I(c)) = I(d) by (8.3). This proves (a).

We interrupt this proof to verify a lemma.

Lemma 9.3. Let d,d’ € Cy and let § € B(d,d’). Choose c,c € Cy such that ¢(c) = d, ¢() =
d'. Suppose that 3 lifts to 3 € B(c,c). Then for ally € P we have

(9.7) B (a(y)) = a(5(y))-

Proof. For all i € I(c) we have

(B (a(y))): (@®)gu by (9.6)
= Yo(3) by (9.1)

= Yp(e(i)) by (8.1)

= (6*(v))gu) by (9.6)

(a(B*(y)))i by (9.1),

which proves (9.7). [ |
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Now we return to the proof of Theorem 9.2. To prove (b) we must show that for all
d,d" € Cy and 3 € B(d,d'),

(9.8) To) = Fa(B*() Yy € Pray,
where by definition

(B*(y)): = Yp(i)-
Choose ¢, € Cy such that ¢(c) = d,¢(c') = d’. Use Definition 8.1 (c) to lift 5 : I(d) —

I(d") to B : I(c) — I(¢/). That is, by (8.1),

B(p(i)) = B(B(i)) Vi e I(c).
We know that
fe(x) = fo(B(2)) Vo € P.
Therefore, setting z = a(y), we have
(9-9) fela(y)) = f(F*(ay)) vy € P.
By Lemma 9.3,
(9.10) fela(y)) = fe(a(B"()))-
Now, by definition (9.3), f(y) = a~!(f(a(y))). Therefore,
faly) = (a ' (fla(y))a
= (@' (fla®))g(e
= (fla()))e by (9.2)
= fe(a(y))
Similarly,
FaB W) = (F(B*W))a
= (a7 (f(a(B()))))a
= (f(a(B*(¥))))e by (9.2)
— fua(@ ()
fe(B(a(y))) by (9.7),

and the result follows from (9.9). [ |

Theorem 9.2 is valid for all of the quotients in Example 8.5. However, it is clear that
Ber is a proper subset of Bg,,. Therefore, im(é) = im(qg’ ) € Fa,. C Fgr, so we gain more
information about induced vector fields f and their lifts f if we work with (G, ¢) rather than
(G, ¢).

Note that Example 7.5 is the natural quotient, so QAﬁ need not be surjective when ¢ is
natural. It is never surjective when ¢ is not the natural quotient map.
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10. Final comments. The formalism of symmetry groupoids proposed in this paper can
be set up for many analogous systems that possess a network structure. Here, we have
associated to each cell (node of the network) a continuous-time dynamical system defined on
a manifold, and to each directed edge a coupling between such systems. We briefly consider
variations on this theme.

Extra constraints can be imposed, an important one being to make the system Hamilto-
nian; see [8]. An analogous formalism can be introduced for discrete-time dynamics (coupled
map lattices and generalizations to networks), or discrete-time discrete-space dynamics (cellu-
lar automata), and groupoid-equivariance implies constraints on the dynamics (in particular,
on patterns of synchrony). If cells represent states of a stochastic process and edges represent
transitions, then the network corresponds to a Markov chain, and now the symmetry groupoid
implies constraints on the stationary probability density function. We can also extend the
groupoid formalism to stochastic differential equations and delay-differential equations.

The theory developed here is a preliminary step toward a formal understanding of pattern-
formation in general, not necessarily symmetric, coupled cell networks. Its main focus is robust
synchrony. Many other questions about the dynamics of coupled cell networks can be tackled
within the groupoid framework; indeed, work is in progress on several of these. In all cases,
the central role of the symmetry groupoid as a formal algebraic structure that captures the
constraints imposed by the network topology is paramount.
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