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Numerical simulations of reaction-diffusion systems with Neumann boundary
conditions (NBC) on growing square domains by Maini et al. exhibit square and
stripe (or roll) patterns that are usually associated with bifurcations from a trivial
equilibrium on a square lattice. However, these patterns change as the domain
grows. In this article we discuss several of these transitions; namely, transitions
between different types of squares and between squares and stripes (or rolls).
We show that these transitions can be understood by tracing paths through the
unfoldings of certain co-dimension two mode interactions. To understand these
transitions, we need to discuss two issues: the speed at which the domain size
changes and the relations between NBC and periodic boundary conditions (PBC)
on a square. First, in the simulations, the domain growth takes place on a time
scale that is longer than the one needed for pattern formation. Therefore, we can
assume that the domain growth is identified with quasistatic variation of time;
that is, the domain grows slowly enough that the PDE solution of the time-
dependent system tracks equilibria of the reaction-diffusion systems posed on a
fixed size domain. Second, as is well-known, NBC problems on a square of side
length l can be embedded in PBC problems on a square with side length 2l. The
PBC problem has translation symmetries that are not present in the NBC
problem. These additional symmetries are called hidden symmetries in the
literature. Moreover, solutions to PBC that restrict to the smaller square and
satisfy NBC are just those solutions that satisfy certain symmetry constraints. We
show further that the transitions between different patterns can be understood by
considering relevant mode interaction bifurcation problems on the larger square
and then restricting to the smaller square. We have found that a generic
continuous transition can occur between two types of squares. Also, the transition
between squares and stripes can generically occur either via steady states and
time-periodic states (standing waves) or via a jump. Interestingly, in mode
interactions, the symmetry constraints induced by NBC are important in
understanding which solutions exist and which solutions are stable. For example,
diagonal stripes cannot occur as a primary branch in the NBC problem but do in
the PBC problem. Also, patterns can be stable in the NBC problem that are not
stable in the PBC problem. As a consequence, in the NBC problem we see
standing wave time-periodic solutions as stable patterns leading to stable stripes,
whereas in the PBC problem we see wavy rolls steady states as stable patterns
leading to stable stripes. In principle, a classification of all transitions in NBC
mode interactions is possible. However, we concentrate only on those transitions
that are relevant to the numerically observed transitions.
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1. Introduction

Turing [1] proposed that reaction-diffusion models can be used to explain pattern

formation in various biological systems. He demonstrated theoretically that a system of

two reacting and diffusing chemical concentrations, termed morphogens, could give rise

to spatial patterns in these concentrations via a chemical instability process now called

a Turing instability or a diffusion-driven instability. Turing patterns were first found by

Castets et al. [2] in a chloride-ionic-malonic-acid (CIMA) reaction. Ouyang and Swinney

[3] were the first to observe Turing instability from a spatially uniform state to a

patterned state. Morphogens have been identified in some biological systems [4], but

nevertheless the issue of self-organization via the Turing instability is highly

controversial [5]. The Turing theory for pattern formation on fixed domains has been

criticized in part because it is difficult to identify the morphogens that are responsible for

the patterns.

1.1. Growing domains

Growing domains have the mathematical effect of decreasing diffusion rates and hence

increasing the likelihood of crossing a Turing instability [6]. More precisely, [7,8] note

that a reaction-diffusion system on a growing domain with Neumann boundary

conditions (NBC) can be transformed into a reaction-diffusion system with NBC on a

fixed domain, but with time-dependent diffusion terms and time-dependent dilution

terms. Since growing domains effectively change diffusion rates, the identification of the

exact morphogens is less crucial in determining instabilities. Thus, the mathematical

understanding of the effects of domain growth on Turing patterns is an important

problem.
Kondo and Asai [9] illustrate the role of domain growth in pattern formation in

biological species by finding mode doubling in the patterns of the angelfish Pomacanthus

as it grows. The juvenile Pomacanthus, which is less than 2 cm long, has three dorsoventral

or vertical stripes; once the fish grows to twice this length, new stripes emerge between the

original stripes so that the original wavelength is maintained.
Numerical simulations on one-dimensional growing domains with different growth

functions are shown in [6,7,10]. Similarly, numerical simulations of reaction-diffusion

systems with NBC on two-dimensional growing domains (square, conical, circular,

hexagonal, triangular and rectangular domains) are shown in [7,8,11,12]. All of these

simulations use reaction-diffusion systems with NBC on fixed square domains and with

time-dependant diffusion and dilution terms (see [8]).
We focus on two transitions between patterns in the numerical simulations of a

reaction-diffusion system on a growing square domain: one observed in Plaza et al. [8]

and one in Madzvamuse et al. [1]. In this article we show how these two observed

transitions can be understood in the context of equivariant bifurcation theory,

specifically as paths through a certain co-dimension two mode interaction. In this

introduction, we present the relevant numerical results, recall how modes arise from

NBC and hidden symmetries, and specify the mode interaction that is to be studied.

168 A. Comanici and M. Golubitsky



1.2. Numerical simulations on square domains

The numerical simulations by Plaza et al. [8] of a reaction-diffusion system on

a square domain growing isotropically and linearly in time with a growth function �(t)
are reproduced in Figure 1. (Similar results are obtained by Crampin [7] using

Schnakenberg kinetics.) We concentrate on the first four pictures in row 1 in this figure.

Each of these pictures has square symmetry, but there is a difference in the pattern

between the first three and the fourth. We show below that the first three correspond to a

(2, 0)-mode and the fourth to a (2, 2)-mode. See Figure 2.
The numerical simulations of Madzvamuse et al. [11] use a reaction-diffusion system

with Schnakenberg kinetics on a square domain growing exponentially in time and some

of their results are reproduced in Figure 3. Observe that the first picture corresponds

to squares (the (2, 2)-mode mentioned above) and the second to stripes. We show below

that the stripes in this figure correspond to a (2, 0)-mode. There is no indication in Figure 3

of how the transition from squares to stripes actually occurs.
Both of these numerical simulations suggest that the theoretical study of steady

state (2, 0) and (2, 2)-mode interactions may be helpful in understanding the

observed transitions. We will show that both of these transitions of pattern can

be found in paths through the unfolding of such co-dimension two bifurcations.

To explain our results we need to discuss the relationship between a growing domain

problem and a bifurcation problem, the existence of hidden symmetries for reaction-

diffusion systems on square domains with NBC and the way that these hidden

symmetries relate to modes.

Figure 1. Transitions between different types of square patterns on a unit square domain with NBC
and growth function �(t) ¼ 1 þ 0.0005t.
Notes:

ut ¼ 0:899uð1� 0:5v2Þ þ vð1� 0:4uÞ þ
0:516

�2
�u�

10�3

�
u

vt ¼ uð�0:899þ 0:4uÞ þ vð�0:91þ 0:4995uÞÞ þ
1

�2
�u�

10�3

�
v:

Results from [8]; the sequence of pictures should be read by rows, starting at the top.
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1.3. Pattern transitions in growing domains and bifurcations

Our approach to pattern transition is based on quasistatic variation of time through frozen

systems. More precisely, for each time t0 we freeze the time-dependent diffusion rates and

dilution terms in the reaction-diffusion system on the fixed square domain, and then we

attempt to determine the asymptotically stable states of the frozen system. We assume that

the domain growth is on a time scale that is much longer than the time scale than it takes

the system to approach an asymptotic state in the frozen system. In this way, time becomes

a bifurcation parameter which, manifests itself through the quasistatic variation of

diffusion rates. Although we do not prove that this method is rigorous, we note that a

similar bifurcation theoretic approach is used by Izhekevich [13] to describe different kinds

of bursting in two time-scale systems.

Figure 3. Transitions between squares and stripes on a unit square domain with NBC and growth
function �(t) ¼ e�t with 10�5 � � � 10�2.
Notes:

ut ¼ 230:82ð0:1� uþ u2vÞ þ
1

�
�u� �u

vt ¼ 230:82ð0:9� u2vÞ þ
8:6676

�2
�v� �

Results from [11]; the sequence of pictures should be read by rows, starting at the top.
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Figure 2. Square planforms restricted to ½0, ð1=2Þ� � ½0, ð1=2Þ�.
Notes: (Left) mode (2, 0); level curves of e4�ixþ e4�iyþ c.c. (Right) mode (2, 2); level curves of
e4�i(xþy)þe4�i(x�y)þ c.c.
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In this scenario, pattern transitions correspond to bifurcations between asymptotic

states as the diffusion rates vary. Specifically we study co-dimension two bifurcations

where steady states corresponding to the desired patterns (squares, stripes, etc.) coalesce.

We identify the variation of t0 with a path through the two-dimensional unfolding space of

a co-dimension two bifurcation (a parameter plane). We determine, as is typically done in

multiparameter bifurcation theory, the regions in the parameter plane where equilibria and

periodic orbits exist and are stable. In the bifurcation problems we study, each equilibrium

corresponds to a different patterned state. Thus, pattern transitions are identified with

paths in parameter plane that cross boundaries where changes in the existence of stable

states occur. This approach was used in [14], where numerical simulation of paths through

unfoldings did successfully describe different kinds of bursting phenomena.
Stated in another way, by tracing a path in the parameter plane, we create a bifurcation

diagram that shows the equilibria and the periodic orbits of these systems as time t0 varies.

Our assumption on time scales implies that the solution to the time-dependent PDE system

will track the asymptotically stable solutions on this bifurcation diagram. In this sense, the

growing domain can be considered as quasistatic variation of time through a bifurcation

diagram.
In this article we construct the possible bifurcation diagrams from mode interaction

bifurcations in the frozen systems. Hidden symmetry is an important component of this

analysis. We have found that the study of a relevant mode interaction gives a theoretical

basis for the results of the numerical simulations. Indeed, there are paths that lead to

continuous transition between the two types of squares patterns, and there are paths that

lead to a transition between squares and stripes (via either intermediate steady states and

time-periodic states, or via a jump).

1.4. Hidden symmetries

Crawford et al. [15] observe that a reaction-diffusion system with NBC on a square

domain can be viewed as the restriction of the same reaction-diffusion system with periodic

boundary conditions (PBC) on a double side-length square domain and that this extension

has much greater symmetry than did the original NBC problem. These extra symmetries

are called hidden symmetries. This extension is accomplished by reflecting twice across the

horizontal and vertical boundaries of the small square.
Specifically, suppose that the small square is given by 0� x, y� ‘ and that a solution

u(x, y) to a reaction-diffusion system on that square satisfies NBC, that is,

uyðx, 0Þ ¼ 0 ¼ uyðx, ‘Þ and uxð0, yÞ ¼ 0 ¼ uxð‘, yÞ ð1:1Þ

Then extend u to the square 0� x, y� 2‘ by setting

uð2‘� x, yÞ ¼ uðx, 2‘� yÞ ¼ uð2‘� x, 2‘� yÞ ¼ uðx, yÞ ð1:2Þ

It is well-known that the extended u is a solution to the same reaction-diffusion system and

that u satisfies PBC, that is,

uð0, yÞ ¼ uð2‘, yÞ uxxð0, yÞ ¼ uxxð2‘, yÞ
uðx, 0Þ ¼ uðx, 2‘Þ uyyðx, 0Þ ¼ uyyðx, 2‘Þ

ð1:3Þ
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Moreover, any solution to the reaction-diffusion system on the larger square with
PBC (1.3), that also satisfies the symmetry constraint (1.2), automatically satisfies NBC
(1.1) on the small square.

This extension has the following consequence. The domain symmetry group of the
reaction-diffusion system on the small square satisfying NBC is the group D4,
the eight-element dihedral group of symmetries of the square generated by the rotation

and reflection

ðx, yÞ� ð y, xÞ and ðx, yÞ� ð‘� x, yÞ

whereas the domain symmetry group of the system on the large square satisfying PBC is
the group D4nT2, where D4 is generated by the rotation � and the reflection � defined by

�ðx, yÞ ¼ ð�y, xÞ and �ðx, yÞ ¼ ð2‘� x, yÞ ð1:4Þ

The torus group T2 consists of translations in R2 modulo the spatial period 2‘, that is,

ðx, yÞ� ðxþ x0, yþ y0Þ

for any (x0, y0)2R
2.

These additional symmetries change the generic behaviour of the NBC problem in two
ways. First, the torus symmetry allows us to equate generic co-dimension one bifurcations
with modes. Second, as discussed in Crawford [16], the details of co-dimension two steady
state mode interactions in the NBC case are quite different from those mode interactions

that involve only D4 symmetry. There is a long history of studies of the effect of hidden
symmetries, see [15,17]. In particular, the work of Crawford et al. [16,18] demonstrates
that hidden symmetries can lead to predictable, physically observable effects in the
Faraday experiment.

There is a notational inconvenience that we must discuss here. The simulations using
NBC described below were computed on the unit square (‘¼ 1). The PBC theory that we
will discuss is most easily developed on that same unit square, but now with PBC
(‘ ¼ 1=2).

1.5. Modes in D4nT2- bifurcation problems

As is well-known [17,19] the study of bifurcations in a reaction-diffusion system on a
square with PBC is equivalent to the study of bifurcations in that same reaction-diffusion

system on the plane restricted to the space of planar spatially doubly periodic functions.
More precisely, let L be the square lattice generated by the vectors (1, 0), (0, 1). We can
rewrite a reaction-diffusion system on the square as an operator on functions that are
doubly periodic with respect to the square lattice.

Let L0 be the linearization at a trivial spatially homogeneous steady state. Let
k¼ (k1, k2)2Z

2 be a dual wave vector; that is, the associated plane wave e2�ik�(x,y) is an L
doubly periodic function. Due to T2 symmetry, all eigenfunctions of L0 have plane wave
factors. It is again well-known that generically ker L0 consists of all critical eigenfunctions
with a given critical wave number kc. That is

kerL0 ffi
X
jkj¼kc

zke
2�ik�ðx,yÞ þ c:c ð1:5Þ

where zk2C and c.c. indicates the complex conjugate.
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Typically, a symmetry-breaking bifurcations lead to kernels of L0 whose dimension is
either four or eight. When kc ¼ 1,

ffiffiffi
2
p

, 2, 2
ffiffiffi
2
p

with sample k¼ (1, 0), (1, 1), (2, 0), (2, 2), the
kernels are four-dimensional (Figure 4). (When kc ¼

ffiffiffi
5
p

, the kernel is eight-dimensional.)
It is also well-known that the non-linear analysis based on D4nT2 symmetry for such

four-dimensional bifurcations, which are called modes, generically leads to two kinds of
steady states: stripes and squares. Near bifurcation the pattern associated to stripes is just
the level curves of a plane wave (one zk¼ 1 and all other zk¼ 0 in (1.5)) and the patten
associated with squares is the level curves of the function in (1.5) where all zk¼ 1. Note that
stripes are horizontal when kc¼ 1, 2 and diagonal when kc ¼

ffiffiffi
2
p

, 2
ffiffiffi
2
p

. It is the horizontal
stripes that occur in the simulations in Figure 3. We will show later that diagonal stripes
never satisfy NBC. Squares are shown in Figure 2; we call these squares (2, 0) and squares
(2, 2), respectively. Note the close resemblence of these patterns with the patterns obtained
by numerical simulation in the first and fourth pictures in Figure 1.

Bifurcations to single modes with D4nT2 symmetry have often been studied
(cf 17,19–21). Various mode interactions with D4nT2 symmetry have been studied
previously, mostly by Crawford [16]. Proctor and Matthews [22] studied the (1, 0)–(1, 1)
mode interaction which is equivalent to, the (2, 0)–(2, 2) mode interaction. In particular,
they used the (1, 0)–(1, 1) interaction to explain the existence of a planform with square
symmetry, observed both in numerical and laboratory experiments on non-Boussinesq
convection, which has upflow in isolated plumes and downflow in connected sheets. Our
study of this mode interaction will consider the effects of NBC and also parameter regimes
different from those in [22].

1.6. The main results

We will show that there are paths in the parameter plane of an unfolding of the
co-dimension bifurcation where the steady state (2, 0) and (2, 2) modes interact.
Specifically, we determine the regions where equilibria and periodic orbits exist and are
stable (Figures 5 and 6). By tracing paths in the parameter plane, we create bifurcation
diagrams that show the equilibria and periodic orbits of these systems as time t0 varies
(Figure 7). We have found that a generic continuous transition can occur between
two types of squares (Figure 5). Also, the transition between squares and stripes can
generically occur either via steady states and time-periodic states (Figure 7) or via a jump
(Figure 6 (right)).

(1,0) (2,0)

(0,1)

(0,2) (2,2)(-2,2)

(1,1)(-1,1)

Figure 4. (1, 0), (2, 0)-modes (left) and (1, 1), (2, 2)-modes(right) in PBC.
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On the mathematical side, we also show that there are significant differences between
the stable patterns observed in the (2, 0)–(2, 2) mode interactions in the NBC and PBC
cases. For example, certain steady states that exist in PBC do not exist in NBC (diagonal
stripes) and certain states that are unstable in PBC are actually stable in NBC.In the NBC
problem, we see standing waves time-periodic solutions as stable patterns leading to stable
stripes (2, 0), whereas in the PBC problem we see wavy rolls steady states as stable patterns
leading to stable stripes (2, 0) (Figure 8).
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µ−λ=0
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µ+λ=0

Case (b); λ < 0, see (5.6)Case (a); λ > 0, see (5.5)

Figure 6. Regions in ��-plane of stable S2,2 squares.
Notes: (vertical dashed lines), stable R2,0 stripes (horizontal dash-dotted lines) and stable S2,0 squares
(horizontal dotted lines) for the given non-degeneracy conditions; 1¼ steady-state bifurcation curve;
2 and 4 indicate Hopf bifurcation curves; 3¼ line �(��	)þ �(�þ	)¼ 0. Thick lines parameterized
by � for fixed � show transitions: (left) from stable squares S2,2 to stable squares S2,0 and then to
stable stripes R2,0; (right) jump bifurcation from stable stripes R2,0 to stable squares S2,2.
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µ

µ−λ=0

µ+λ=0

Figure 5. Regions in ��-plane of stable squares.
Note: S2,0 (horizontal dotted lines); stable squares S2,2 (vertical dashed lines) for the non-degeneracy
conditions given by (5.4); 1¼ steady-state bifurcation curve; 2¼Hopf bifurcation curve; 3¼ line
�(��	)þ �(�þ	)¼ 0. Thick line path parameterized by � for fixed �>0 shows continuous
transition from stable squares S2,2 to stable squares S2,0.
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1.7. Outline of article

Our article is organized as follows. In Section 2, we recall known results about mode (2, 0)
and mode (2, 2) in the PBC problem and restrict them to the NBC problem using the
symmetry constraint imposed by NBC.

In Section 3, we study the PBC problem on the fixed square domain [0, 1]� [0, 1].
Namely, we use the group-theoretic approach to study the (2, 0) and (2, 2) mode
interaction in steady state bifurcation problems with D4nT2 symmetry. We use the
normal form for the D4nT2-equivariant vector field on C2

�C2 to determine the primary
branches in the PBC problem. The possible symmetries of the states are described by the
isotropy lattice, and the corresponding fixed-point subspaces are determined. The primary
branches of squares (2, 2), stripes (2, 2) and stripes (2, 0) occur in one-dimensional
subspaces, while the primary branch of squares (2, 2) belongs to a two-dimensional
subspace.

2

S2,2

S2,0

6

5

1

λ

µ

R2,0
WR

µ+λ=0

µ−λ=0

Figure 8. Regions in ��-plane of stable squares.
Notes: S2,2 (vertical dashed lines), stable squares S2,0 (horizontal dash-dotted lines), stable stripes
R2,0 (horizontal dotted lines), and stable WR wavy rolls (0, z,w,�w) (oblique dash-double dotted
lines) for some set of non-degeneracy conditions; 1 and 5 indicate steady-state bifurcation curves;
2¼Hopf bifurcation curve; 6¼ some curve of bifurcation points. The thick line parameterized by �
for fixed �>0 shows transition from stable squares S2,2 to stable squares S2,0, then to a region of
other solutions (which we do not investigate here), followed by stable WR wavy rolls, leading to
stable stripes R2,0 for some set of non-degeneracy conditions.
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−λ λµ1 µ22

H

µ

S2,2
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H S2,0

2

1
SS

−λ λµ31

H

µµ1

S2,2
R2,0

S2,0 H

1

2

µ31 µ22

Figure 7. Possible transitions from squares (2, 2) to stripes (2, 0) via time-periodic solutions, when
�>0 fixed for some open set of non-degeneracy conditions.
Notes: Branches 1 and 2 represent time-periodic solutions (standing waves); solid curves indicate
stability; dashed curves indicate instability.
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In Section 4, using isotypic decompositions, we compute the eigenvalues along the

primary branches of squares (2, 2) and stripes (2, 0), as well as the stability conditions and

the points of possible steady state bifurcation and Hopf bifurcation. We do not investigate

the primary branch of stripes (2, 2) because it does not satisfy NBC.
Along the primary branch of squares (2, 2), we can have two types of steady state

bifurcation leading to steady states with different symmetries. Only one of these steady

state bifurcations can occur if we restrict to the fixed-point subspace given by NBC.
Along the primary branch of stripes (2, 0), we can have a steady state bifurcation and

and a Hopf bifurcation leading to time-periodic standing waves solutions. However, only

the Hopf bifurcation can occur if we restrict to the fixed-point subspace given by NBC.
In Section 5, we restrict the previous results to the fixed-point subspace given by NBC.

We show here that generic continuous transitions from squares (2, 0) to squares (2, 2) and

transitions from squares (2, 2) to stripes (2, 0) (via a jump or via steady states and time-

periodic states) are possible. Moreover, we determine the open sets of non-degeneracy

conditions involving the coefficients of second- and third-order terms of the D4nT2-

equivariant vector field for which these situations occur. We also discuss differences

between the NBC and PBC problems.
Two appendices are included. In Appendix 1, we discuss the third-order truncated

normal form of the D4nT2-equivariant vector field in the (2, 0) and (2, 2)-mode

interaction. In Appendix 2, we show in detail how to find the eigenvalues of the

Jacobian DF along the relevant branches.

2. Modes (2, 0) and (2, 2)

As noted in (1.5), the kernels of linearizations of the PBC problem at single-mode

bifurcations are determined by symmetry. In particular, modes (k, 0) and (k, k) correspond

to four-dimensional kernels, which we identify with C2. In this section we recall results of

Crawford [18,20] that show that the bifurcation structure for these two modes are identical

in the PBC problem but are quite different in the NBC problem. In particular, (diagonal)

stripes exist for PBC in the (2, 2)-mode but not in the NBC problem.
We denote the coordinates of C2 for the (k, 0)-mode by (z1, z2), where the kernel of the

linearization is identified with

z1e
2k�ix þ z2e

2k�iy þ c:c: ð2:1Þ

where c.c. indicates the complex conjugate. We denote the coordinates of C2 for the

(k, k)-mode by (w1,w2), where the kernel of the linearization is identified with

w1e
2k�iðxþyÞ þ w2e

2k�iðx�yÞ þ c:c: ð2:2Þ

It is straightforward to compute the action of D4nT2 on the coordinates of these

kernels. Recall that a group element 
 acting on (x, y)2R2, acts on a function f(x, y) by

ð
 � f Þðx, yÞ ¼ f ð
�1ðx, yÞÞ

For example, let (�1, �2)2T
2 be a translation. Then this group element acts on the

eigenfunction (2.1) by

ð�1, �2Þðz1e
2k�ix þ z2e

2k�iy þ c:c:Þ ¼ z1e
2k�iðx��1Þ þ z2e

2k�iðy��2Þ þ c:c:

¼ ðe�2k�i�1z1Þe
2k�ix þ ðe�2k�i�2z2Þe

2k�iy þ c:c:
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It follows that we can write the action of (�1, �2) on the coordinates (z1, z2) by

ð�1, �2Þðz1, z2Þ ¼ ðe
�2k�i�1z1, e

�2k�i�2z2Þ

Observe that the kernel of the action of D4nT2 on C2 in the (k, 0) mode is the subgroup

hðð1=kÞ, 0Þ, ð0, ð1=kÞÞi, where h � � � i indicates the group generated by the listed group

elements. After dividing by this kernel, we see that the group action of D4nT2 on C2

reduces to the case k¼ 1.
A similar observation can be made in the (k, k) mode. Here the action of (�1, �2) on the

coordinates (w1,w2)2C
2 is

ð�1, �2Þðw1,w2Þ ¼ ðe
�2k�ið�1þ�2Þw1; e

�2k�ið�1��2Þw2Þ

Thus, the kernel of the action on C2 in the (k, k) mode is the subgroup

hðð1=2kÞ, ð1=2kÞÞ, ðð1=2kÞ, � ð1=2kÞÞi. After dividing by this kernel, we see that this

action on C2 also reduces to the case k¼ 1.
For ease of comparison with the numerical simulations, we phrase our results in the

case when k¼ 2. The action of D4nT
2 on the mode amplitudes for the (2, 0)-mode and the

(2, 2)-mode is given in Table 1.

2.1. Modes (2, 0) and (2, 2) in PBC

As discussed in Section 1, we are primarily interested in the analysis of mode interactions

(2, 0) and (2, 2) that come from NBC bifurcations. In this section and the next we build

up to the analysis of this co-dimension two bifurcation by recalling results about

co-dimension one single-mode PBC and NBC bifurcations.
We now show that each of these PBC co-dimension one bifurcations lead to two

branches of solutions (squares and stripes). To do this we list the isotropy subgroups and

their corresponding fixed-point subspaces, and the equivariant functions for each

bifurcation. Recall:

Definition 2.1: (a) A subgroup
P
�D4nT2 is an isotropy subgroup if there exists an

z2C2 for which �¼�z, where

�z ¼ f
 2 D4nT2 : 
z ¼ zg:

Table 1. Action on modes (2, 0) and (2, 2), where �1, �22 [0, 1) and
�, � are defined in (1.4).

D4nT2 (2, 0) Mode (2, 2) Mode

1 (z1, z2) (w1,w2)
� (z2, z1) (w2,w1)
�2 ðz1, z2Þ (ðw1,w2Þ)
�3 (z2, z1) (w2, w1)
� (z1, z2) (ðw2,w1Þ)
�� (z2, z1Þ) (w1,w2)
��2 (z1, z2) (w2,w1)
��3 (z2, z1) (w1, w2)
(�1, �2) (e�4�i�1 z1, e

�4�i�2 z2) (e�4�i(�1þ�2)w1, e
�4�i(�1��2)w2)
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(b) The fixed-point subspace of a subgroup � is

Fixð�Þ ¼ fz 2 C2 : 
z ¼ z, for all 
 2 �g:

(c) A vector field f :C2
!C2 is D4nT2-equivariant if

f ð
zÞ ¼ 
f ðzÞ

for all 
 2D4nT2 and z2C2.

The isotropy subgroups and their corresponding fixed-point subspaces for the (2, 0)

and (2, 2)-modes in PBC are presented in Tables 2 and 3, respectively. They are easy to

obtain using the group actions defined in Table 1. Note that we classify the isotropy

subgroups of D4nT2 by conjugacy classes, since �
z¼ 
�z

�1 for any 
 2D4nT2.

Next we write the general form for the D4nT2-equivariant bifurcation problem

(an equivariant vector field that depends on a bifurcation parameter �) up to third-order.

The (2, 0)-mode bifurcation problem f :C2
�R!C

2 has the form

f 1ðz1, z2, �Þ ¼ z1ð�þ B1jz1j
2 þ C1jz2j

2Þ þ � � �

f 2ðz1, z2, �Þ ¼ z2ð�þ B1jz2j
2 þ C1jz1j

2Þ þ � � �
ð2:3Þ

where f¼ ( f 1, f 2) and B1,C12R. The (2, 2)-mode bifurcation problem g :C2
�R!C2 has

the form

g1ðw1,w2, �Þ ¼ w1ð�þ C2jw1j
2 þD2jw2j

2Þ þ � � �

g2ðw1,w2, �Þ ¼ w2ð�þ C2jw2j
2 þD2jw1j

2Þ þ � � �
ð2:4Þ

where g¼ (g1, g2) and C2,D22R. In each case we rescaled the coefficient of � to be 1.
Since fixed-point subspaces are flow-invariant for every equivariant vector field, we can

find branches of squares by restricting to the subspaces (z, z) and (w,w) (where z,w2R)

Table 3. Stripes and squares in mode (2, 2) with PBC.

Nomenclature Isotropy subgroup � Fix (�) dim (Fix(�))

D4nT2 {(0, 0)} 0
Stripes (2, 2) R2;2 � h��; �

2; ð�1; �1Þ; ð0;
1
2Þi {(0,w) :w2R} 1

Squares (2, 2) S2;2 � D4 � hð0;
1
2Þ; ð

1
4 ,

1
4Þi {(w,w) :w2R} 1

h��; �2; ð0; 12Þ; ð
1
4 ,

1
4Þi {(w1,w2) :w1,w22R} 2

Table 2. Stripes and squares in mode (2, 0) with PBC.

Nomenclature Isotropy subgroup � Fix(�) dim (Fix(�))

D4nT2 {(0, 0)} 0
Stripes (2, 0) R2;0 � h�; �

2; ð�1; 0Þ; ð0;
1
2Þi {(0, z) : z2R} 1

Squares (2, 0) S2;0 � D4 � hð0,
1
2Þ, ð

1
2 , 0Þi {(z, z) : z2R} 1

h�; �2; ð0, 12Þ, ð
1
2, 0Þi {(z1, z2) : z1, z22R} 2
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and branches of stripes by restricting to the subspaces (0, z) and (0,w) (where z,w2R).
Moreover, since the forms of f and g are the same, so are the stability analyses of solutions.

2.2. Modes (2, 0) and (2, 2) in NBC

We will show that NBC and PBC bifurcations are the same in the (2, 0)-mode and are quite
different in the (2, 2)-mode. This happens because NBC solutions are solutions to the PBC
problem that satisfy the NBC symmetry constraint (1.2) and stripes do not satisfy this
constraint.

From Table 1 we see that

Fixðh�, �2iÞ ¼ fðz1, z2Þ : z1, z2 2 Rg for ð2, 0Þ-mode

is two-dimensional and

Fixðh�, �2iÞ ¼ fðw,wÞ : w 2 Rg for ð2, 2Þ-mode

is one-dimensional. It follows that stripes and squares appear in the NBC (2, 0)-mode,
whereas only squares appear in the NBC (2, 2)-mode bifurcation. To verify this point,
observe that any solution conjugate to stripes has the form (0,w) or (w, 0), where w2C,
and none of these points belong to {(w,w) :w2R}.

The details about the branches bifurcating from trivial solution are summarized
in Table 4 and (Panels A and B). The bifurcation diagrams for NBC are shown in
Figures 9 and 10. These figures are obtained by restricting the D4nT2-equivariant
bifurcation problems given by (2.3) and (2.4) to Fix(h�, �2i).

3. (2, 0)–(2, 2) Mode interaction in PBC

In this section we review the study of (2, 0)–(2, 2) mode interaction steady state bifurcation
problems with D4nT2-symmetry (the PBC problem). Most results stated here can be
found in Proctor and Matthews [22].

The (2, 0)–(2, 2) steady state mode interaction bifurcation problem is a co-dimension
two linear degeneracy that corresponds to modes (2, 0) and (2, 2) going unstable
simultaneously as two parameters are varied. Such degeneracies are interesting because
non-linear terms couple the modes to create states whose behaviour is more complicated
than is expected from the modes individually. These new states are said to be produced by
mode interaction.

Table 4. Primary branches for (2, 0) and (2, 2) modes in NBC.

Isotropy
subgroup � f jFix(�)¼ 0

Primary branches
(NBC)

Eigenvalues
(NBC)

Panel A: (2, 0)-mode in NBC
S2,0 f 1¼ 0 at (z, z, �) �¼�(B1þC1)z

2
þ � � � 2(B1þC1)z

2

þ � � �2(B1�C1)z
2
þ � � �

R2,0 f 2¼ 0 at (0, z, �) �¼�B1z
2
þ � � � 2B1z

2
þ � � �(C1�B1)z

2
þ � � �

Panel B: (2, 2)-mode in NBC
S2,2 f 3¼ 0 at (w, w, �) �¼�(C2þD2)w

2
þ � � � 2(C2þD2)w

2
þ � � �
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We denote the coordinates of C2
�C2 by (z1, z2,w1,w2). The action of D4nT2 on

C2
�C2 is given in Table 1. The kernel of the action is the subgroup hð0, 1=2Þ, ð1=2, 0Þi.
We discuss the isotropy lattice and the corresponding fixed-point subspaces in

Section 3.1. The truncated normal form up to third-order terms of a D4nT2-equivariant

vector field in given in Section 3.2. We use it to determine the primary branches in

Section 3.3. We justify this truncation by noting that all the directions of the branching

and their stabilities computed in Sections 3 and 4 are determined by third-order terms.

3.1. Isotropy subgroups and fixed-point subspaces

The conjugacy classes of isotropy subgroups of the action of D4nT2 on C4 can be

computed using Table 1. The results are listed in Table 5 and Figure 11. Note that the

subgroup associated to NBC is an isotropy subgroup and its fixed-point subspace is the

three-dimensional subspace

N � Fixðh�, �2iÞ ¼ fðz1, z2;w;wÞ : z1, z2;w 2 Rg:

S2,2 S2,2

C2+ D2 >  0C2+ D2 <  0

λ λ

Figure 10. Bifurcation diagrams for (2, 2)-mode in NBC.
Note: unstable (dashed lines); stable (solid lines); S2,2¼ squares (2, 2).

R2,0

R2,0

R2,0

R2,0

S2,0

S2,0

S2,0

S2,0

S2,0

B1− C1= 0 B1+ C1= 0

0

B1

C1

λ
λ

λ

λ

λ

R2,0

Figure 9. Bifurcation diagram for (2, 0)-mode in NBC.
Note: unstable (dashed lines); stable (solid lines); R2, 0¼ stripes (2, 0); S2, 0¼ squares (2, 0).
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3.2. The normal form

Matthews and Proctor [22] obtained the normal form truncated up to third-order for the

D4nT2-equivariant vector field. In Appendix 1 we re-derive this truncated normal form.

The general normal form can also be obtained, but in Sections 3 and 4 we work only with

the truncated normal form up to third-order terms given by (3.1).
The steady state/steady state mode interaction is a co-dimension two bifurcation

problem with two parameters � and �, such that

Fð0; 0, �,�Þ ¼ 0 and ðDFÞð0;0;0;0Þ ¼ 0:

Γ

R2,2 S2,2 R

S2,0(5)

(7) (6) 

(9)(8)

1

Figure 11. Isotropy lattice in PBC; �¼D4nT
2.

Table 5. Fixed-point subspaces in PBC.

Nomenclature Isotropy � Fix(�) dim(Fix(�))

Squares (2, 2) S2,2 ¼ D4 � hð
1
4 ,

1
4Þi {(0, 0,w1,w1) :w12R} 1

Stripes (2, 2) R2,2¼h��, �
2, (�1, �1)i {(0, 0, 0,w1) :w12R} 1

Squares (2, 0) S2,0¼D4 {(z1, z1,w1,w1) : z1,w12R} 2
Stripes (2, 0) R2,0¼h�, �

2, (�1, 0)i {(0, z2, 0, 0) : z22R} 1
(5) h��; �2; ð14 ,

1
4Þi {(0, 0,w1,w2) :w1,w22R} 2

(6) h�, �2i {(z1, z2,w1,w1) : z1, z2,w12R} 3
(7) h��, �2i {(z1, z1,w1,w2) : z1,w1,w22R} 3
(8) h�2i {(z1, z2,w1,w2) : z1, z2,w1,w22R} 4
(9) h�i {(z1, z2,w1,w1) : z12R, z2,w12C} 5

1 C2
� C2 8

Note: The kernel hð0, 1=2Þ, ð1=2, 0Þi is not shown in the isotropy subgroups.
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The D4nT2-equivariant bifurcation problem truncated at third-order is given by

f 1ðz1, z2,w1,w2, �,�Þ ¼ ð��þ �Þz1 þ A1ðz2w2 þ z2w1Þ þ E1z1w1w2

þ B1jz1j
2 þ C1jz2j

2 þD1ðjw1j
2 þ jw2j

2Þ
� �

z1

f 2ðz1, z2,w1,w2, �,�Þ ¼ f 1ðz2, z1,w1,w2, �,�Þ

g1ðz1, z2,w1,w2, �,�Þ ¼ ð�þ �Þw1 þ A2z1z2 þ E2ðz
2
1w2 þ z22w2Þ

þ B2ðjz1j
2 þ jz2j

2Þ þ C2jw1j
2 þD2jw2j

2
� �

w1

g2ðz1, z2,w1,w2, �,�Þ ¼ g1ðz1, z2,w2,w1, �,�Þ,

ð3:1Þ

where F¼ ( f 1, f 2, g1, g2) and A1,B1,C1,D1,E1,A2,B2,C2,D2,E2 are real constants. In this

normal form we have chosen the parameters so that � is the bifurcation parameter and �
is the splitting parameter. The roles of these parameters are best understood by observing

the changes in stability of the trivial solution. The Jacobian of F at (0, 0, �,�) in block

form is

ðDFÞð0;0, �,�Þ ¼
ð��þ �Þ I0

0 ð�þ �ÞI

 !
:

Hence, the eigenvalues of (DF)(0,0,�,�) are ��þ� and �þ�, each with algebraic

multiplicity 4. The trivial solution loses stability first at either �¼�� or �¼ � depending

on the sign of �.

3.3. Primary branches

The details about the primary branches in PBC are summarized in Table 6.

The Equivariant Branching Lemma [19] guarantees the existence of branches of

solutions corresponding to each one-dimensional fixed-point subspace. In this mode

interaction there are three such primary branches, and they are listed in Table 5

(along with their isotropy subgroups): squares (2, 2) (S2,2), stripes (2, 2) (R2,2), and stripes

(2, 0) (R2,0).
A more interesting fact is the existence of a primary branch of squares (2, 0) in the

two-dimensional submaximal subspace Fix(D4). This non-axial branch is discussed next.

Table 6. Primary branches in PBC.

� f jFix(�)¼ 0 Primary branches

S2,2 D4 � hð1=4, 1=4Þi g1 (0, 0,w,w, �,�)¼ 0 �¼��� �w2
þ � � �

R2,2 h��, �2, (�1, �1)i g2 (0, 0, 0,w, �,�)¼ 0 �¼���C2w
2
þ � � �

R2,0 h�, �2, (�1, 0)i f 1 (z, 0, 0, 0, �,�)¼ 0 �¼ ��B1z
2
þ � � �

S2,0 D4 f 1/z¼ 0, g1¼ 0 at (z, z,w,w, �,�) if A1A2 6¼ 0

Note: Note that the kernel hð0, 1=2Þ, ð1=2, 0Þi is not recorded in the isotropy subgroups. Here z,w2R.
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3.3.1. Primary branch of squares (2, 0) in Fix(D4)

Observe that when restricted to z¼ z2¼ z12R and w¼w2¼w12R, the equation

f 1=z ¼ 0 and g1 ¼ 0

are

��þ �þ 2A1wþ �z
2 þ 	w2 ¼ 0

ð�þ �Þwþ A2z
2 þ 2
z2wþ �w3 ¼ 0:

ð3:2Þ

where

� ¼ B1 þ C1; 	 ¼ 2D1 þ E1; 
 ¼ B2 þ E2 and � ¼ C2 þD2: ð3:3Þ

Let u¼ z2 and rewrite (3.2) as

��þ �þ 2A1wþ �uþ 	w
2 ¼ 0

ð�þ �Þwþ A2uþ 2
uwþ �w3 ¼ 0:
ð3:4Þ

When A1A2 6¼ 0, we can use the Implicit Function Theorem to solve (3.4) for u¼U(�, �)
and w¼W(�, �), where U(0, 0)¼W(0, 0)¼ 0. Thus, when � is fixed and near zero, a curve

of solutions to (3.4) is given by (U(�, �),W(�, �)). However, only those � for which

U(�, �)	 0 are actually solutions to (3.2), that is, squares (2, 0) solutions (S2,0).
To understand the possible bifurcation diagrams of squares (2, 0) solutions as � varies,

we begin by setting �¼ 0. Implicit differentiation of (3.4) leads to

W�ð0; 0Þ ¼ �
1

2A1
U�ð0; 0Þ ¼ 0 U��ð0; 0Þ ¼

1

A1A2

So, if A1A2<0 there are no solutions to (3.2) and when A1A2>0, there are two

transcritical branches of squares (2, 0)

ðz;wÞ ¼ ð
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A1A2

p , �
1

2A1
Þ�þ � � � and ðz;wÞ ¼ ð�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A1A2

p , �
1

2A1
Þ�þ � � � ;

and these two branches are related by the symmetry (z,w)� (�z,w). The

bifurcation diagrams at �¼ 0 are given in Figure 12. Other bifurcation diagrams are

also possible.
Next we determine the structure of solution branches when � 6¼ 0. This is most

simply done by computing the region in the (�, �) plane where U	 0. The Taylor

expansion of U begins with quadratic terms in � and �. Specifically, implicit differentiation

yields

U�ð0; 0Þ ¼ 0 U��ð0; 0Þ ¼
1

A1A2
¼ �U��ð0; 0Þ U��ð0; 0Þ ¼ 0:
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so that

Uð�, �Þ ¼
1

2A1A2
ð�2 � �2Þ þ � � �

It follows from the singularity theory with a distinguished parameter approach to

bifurcation theory [23] that there is a change of coordinates (�, �)! (�0, �0) with �0

depending only on � such that in the new coordinates

Uð�, �Þ ¼ sgnðA1A2Þð�
2 � �2Þ;

where, to simplify notation, we delete the primes on �0 and �0.
Hence, the region of the plane where U	 0 is the region given in Figure 13 with

two bounding curves defined by U(�, �)¼ 0. Observe that �¼ � and u¼w¼ 0 is a solution

to (3.4). Uniqueness of solutions obtained by the Implicit Function Theorem implies that

U(�,�)¼ 0¼W(�,�). Hence, the solution of (3.4) that corresponds to the line �¼ � is the
trivial solution. Conversely, u¼w¼ 0 implies that �¼ �. Hence, the solution to (3.4)

that corresponds to the other branch of U(�, �)¼ 0 is not the trivial solution. Indeed,U¼ 0

and W 6¼ 0 at this bifurcation. From Table 6 we see that such solutions are of type

squares (2, 2).
When A1A2>0 and �>0 (represented by the horizontal dashed line in Figure 13

(left)), observe that there are two solution branches as � varies – with the first branch

ending at approximately �¼�j�j and the second branch beginning at �¼ j�j. The first

branch ends at a squares (2, 2) solution (S2,2) and the second branch begins at a trivial

solution. When �<0, the first branch ends at a trivial solution and the second begins at a

square (2, 2) solution. The symmetry (z,w)� (�z,w) guarantees that both branches are

parabolas.

U>0

U>0
U<0

U<0

U<0

U<0

U>0

U>0

µ

λ

Figure 13. U>0 for (�, �) in white region; U<0 for (�, �) in hatched region.
Note: (Left) A1A2>0; (right) A1A2<0.

λ=0  and  A1A2  >0 λ=0  and  A1A2  <0

µ0

S2,2
R2,2
R2,0

S2,0

S2,0

µ0

S2,2

R2,0

R2,2

Figure 12. Sample mode interaction bifurcation diagrams.
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Similarly, when A1A2<0, the region of the plane where U	 0 is the region given
in Figure 13 (right). In this case, when � is fixed and non-zero, there is a single isola
branch of squares (2, 0) solutions as � varies that connects a trivial solution with a squares

(2, 2) solution. The isola exists between � and approximately ��.
Possible bifurcation diagrams for � 6¼ 0 showing only the primary branches and a

secondary branch of the primary mode squares (2, 0) are given in Figures 14 and 15. There
are other possible bifurcation diagrams.

4. Eigenvalues and secondary bifurcations in PBC

In this section we discuss secondary bifurcations from the primary branches of squares
(2, 2) and stripes (2, 0). We do not consider stripes (2, 2), since these solutions do not

appear in the NBC case. In Section 5.1 we compute the eigenvalues of the Jacobian DF
along the primary branch of squares (2, 0) in the NBC problem.

The approach is standard: we track the eigenvalues of DF along the primary branches
and use symmetry, in the form of isotypic components, to determine the kinds of
bifurcations that can occur. The Jacobian at an equilibrium is an 8� 8 matrix whose
eigenvalues can be determined using symmetry. There are two restrictions on DF (see [19]).

First, the isotropy subgroup corresponding to a solution decomposes C
4 into isotypic

components, which provide coordinates that block diagonalized DF. Second, continuous
group orbits of solutions force zero eigenvalues.

In Section 4.1 we list the isotypic decomposition for the isotropy subgroups along the
primary branches; see Table 7. Then, we use this information to determine the eigenvalues
along these solution branches in Section 4.2 and discuss the secondary bifurcations; these

results are summarized in Table 8. Part of these results were also obtained by Proctor and
Matthews in [22].

λ<0
−λλ µ

R2,0

R2,2

S2,0

S2,2

λ>0
λ−λ

R2,0S2,0

R2,2 S2,2

µ

Figure 14. Bifurcation of primary branches when A1A2<0.

λ<0

µλ −λ

R2,0

R2,2

S2,2

S2,0

S2,0

−λ λ
λ>0

R2,0

R2,2
S2,2 S2,0

S2,0

µ

Figure 15. Bifurcation of primary branches when A1A2>0.
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4.1. Isotypic decompositions

An isotypic component of an isotropy subgroup � is the sum of all isomorphic irreducible

representations of � in C4. The first fact is that every isotypic component is (DF)z
invariant, where the isotropy subgroup of z is �. The second fact is that C4 can be written

Table 8. Data for secondary bifurcations along squares S2,2 ((0, 0,w,w) with �¼����w
2
þ � � �) and

stripes R2,0 ((0, z, 0, 0) with �¼ ��B1z
2
þ � � �) in PBC.

�
Nonzero

eigenvalues (PBC)

Points of
secondary
bifurcation

Nondegeneracy
conditions

S2,2 2�w2
þ � � � No bifurcation � 6¼ 0

�� �þ 2A1wþ	w
2
þ � � � �11 � ���

�

A2
1

�2 þ � � � �A1>0

�� �� 2A1wþ	w
2
þ � � � �12 � ���

�

A2
1

�2 þ � � � �A1<0

2(C2�D2)w
2
þ � � � No bifurcation C2 6¼D2

�� �þ (2D1�E1)w
2
þ � � � �13 � ��

2D1 � E1 þ �

2D1 � E1 � �
þ � � � �(2D1�E1� �)>0

R2,0 2B1z2þ � � � No bifurcation B1 6¼ 0

�þ �þ (B2�E2)z
2
þ � � � �21 � �

�B1 � B2 þ E2

B1 � B2 þ E2
þ � � � �(B1�B2þE2)>0

tr¼ 2�þ (C1þ 
)z
2
þ � � �

det¼�2A1A2z
2
þ � � �

�22 � �
C1 þ 


�2B1 þ C1 þ 

þ � � � A1A2<0

�(�2B1þC1þ 
)<0

Note: Steady-state bifurcations occur at �11,�12,�13,�21 and Hopf bifurcation occurs at �22.

Table 7. Isotypic decompositions of C4 for S2,2,R2,0,S2,0.

� Isotypic decomposition for � ker(�) on Vj
i

S2,2 V1
1 ¼ Rð0, 0, 1, 1Þ S2,2

V1
2 ¼ Rð1, 1, 0, 0Þ D4

V1
3 ¼ Rð1, � 1, 0, 0Þ h�, �ð14 ,

1
4Þi

V1
4 ¼ Rð0, 0, 1, � 1Þ h��, �2, ð14 ,

1
4Þi

V1
5 ¼ Rfð0, 0, i, 0Þ, ð0, 0, 0, iÞg
 hð14 ,

1
4Þi

V1
6 ¼ Rfði, 0, 0, 0Þ, ð0, i, 0, 0Þg 1

R2,0 V2
1 ¼ Rð0, 1, 0, 0Þ R2,0

V2
2 ¼ Rð0, i, 0, 0Þ
 h�, (�1, 0)i

V2
3 ¼ fð0, 0,w, � wÞ : w 2 Cg 1

V2
4 ¼ fðz, 0,w,wÞ : z,w 2 Cg h��2i

S2,0 V3
1 ¼ Rfð1, 1, 0, 0Þ, ð0, 0, 1, 1Þg S2,0

V3
2 ¼ Rfð1, � 1, 0, 0Þ, ð0, 0, 1, � 1Þg h�, �2i

V3
3 ¼ Rfði, 0, 0, 0Þ, ð0, i, 0, 0Þ, ð0, 0, i, 0Þ, ð0, 0, 0, iÞg 1

*Note: Indicates nullspace.
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uniquely as a direct sum of isotypic components V1� � � ��V‘ for �. One isotypic

component is standard for every isotropy subgroup, namely,V1¼Fix(�).
In Table 7 we list the isotypic decomposition of C4 for S2,2,R2,0, and R2,0. We also list

the nullvectors of DF that are forced by symmetry. These nullspaces are found by

computing the tangent vectors to the group orbits through the solution point, which is

done as follows.

d

ds
ðs; 0Þðz1, z2,w1,w2Þjs¼0 ¼

d

ds
ðe�4�isz1, z2; e

�4�isw1; e
�4�isw2Þjs¼0 ¼ �4�iðz1; 0;w1;w2Þ

d

dt
ð0; tÞðz1, z2,w1,w2Þjt¼0 ¼

d

dt
ðz1; e

�4�itz2; e
�4�itw1; e

4�itw2Þjt¼0 ¼ �4�ið0, z2,w1;�w2Þ:

4.2. Eigenvalues and bifurcations along the primary branches

Using the isotypic decompositions, we determine the eigenvalues of the Jacobian DF along

the primary branches of squares (2, 2) and stripes (2, 0) in the PBC problem. This

information is summarized in Table 8. In Section 5.4 we will use the eigenvalues of the

Jacobian DF along the primary branches of squares (2, 2) and stripes (2, 0) in the PBC

problem to show the difference between stable solutions in the NBC and PBC problems.

The method of finding the eigenvalues listed in Table 8 is described in Appendix 2.
The primary branches are orbitally stable if all the eigenvalues of the Jacobian DF

along the primary branches, not forced by symmetry to be zero, have negative real part.

Steady-state (SS) secondary bifurcations occur along primary branches if one of the

eigenvalues of DF is zero andHopf (H) secondary bifurcations occur when there is a pair of

purely imaginary eigenvalues. The information regarding possible secondary bifurcations

is summarized in Table 8.
The calculations needed to obtain the information listed in Table 8 are given in

Appendix 2; in particular see (A7), (A8), and (A9). Recall that the constants �,	, 
, � are
defined in (3.3).

For example, steady state bifurcations can occur from the S2,2 branch by having a zero

eigenvalue in one of the isotypic components V1
2 and V1

3 if

a2 ¼ �� �þ 2A1wþ 	w
2 þ � � � ¼ 0 or a3 ¼ �� �� 2A1wþ 	w

2 þ � � � ¼ 0:

See (B2). These two equations are equivalent to

a2a3 ¼ ð�� �þ 	w
2Þ

2
� 4A2

1w
2 þ � � � ¼ 0 ð4:1Þ

In addition,S2,2 solutions satisfy

�þ � ¼ ��w2 þ � � �

Thus, to second order in � and �, (4.1) has the form

�4
A2

1

�2
ð�þ �Þ þ

ð�� 	Þ2

�2
�2 þ

ð�þ 	Þ2

�2
�2 � 2

�2 � 	2

�2
��þ � � � ¼ 0 ð4:2Þ

and there is a steady state bifurcation in one of V1
2 and V1

3 when � ¼ ��� ð�=A2
1Þ (using

the implicit function theorem for (4.2)). Another calculation shows that whether a2¼ 0 or
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a3¼ 0 depends on the sign of A1�. The expansions of �11 and �12 to second order in � are

needed for the stability analysis of squares (2, 2) given in Section 5.
Also, a Hopf bifurcation can occur from the R2,0 branch if

tr ¼ 2�þ ðC1 þ 
Þz
2 þ � � � ¼ 0 and det ¼ �2A1A2z

2 þ � � � > 0:

Then z2 ¼ �ð2�=C1 þ 
Þ þ � � �. Substituting �¼ ��B1z
2
þ � � � into the expression for z2,

it follows that ð�=�2B1 þ C1 þ 
Þ5 0. Also, det>0 implies A1A2<0. Substituting

z2 ¼ ð�� �=B1Þ þ � � � into the expression for the trace, we obtain the value of �22 listed

in Table 8.

5. Restriction to NBC

In the first three sections of ‘Introduction’, we restrict the PBC problem to the

three-dimensional fixed-point subspace given by NBC

N � Fixðh�, �2iÞ ¼ fðz1, z2;w;wÞ : z1, z2;w 2 Rg:

In Section 5.4 we point out interesting differences between the PBC and NBC

problems.
From (3.1), the normal form of the D4nT2-equivariant vector field F truncated at

third-order and restricted to N is given by

f 1ðz1, z2;w;w, �,�Þ ¼ ð��þ �Þz1 þ 2A1z2wþ B1z
2
1 þ C1z

2
2 þ 	w

2
� �

z1

f 2ðz1, z2;w;w, �,�Þ ¼ ð��þ �Þz2 þ 2A1z1wþ C1z
2
1 þ B1z

2
2 þ 	w

2
� �

z2

gðz1, z2;w;w, �,�Þ ¼ ð�þ �Þwþ A2z1z2 þ 
 z21 þ z22
� �

þ �w2
� �

w;

ð5:1Þ

where FjN ¼ ðf 1, f 2, g; gÞ : N � R2!N . The isotropy lattice restricted to NBC is

presented in Figure 16.
We discuss the following interesting situations that occur generically in the restriction

of the PBC problem to N � Fixðh�, �2iÞ:

(a) continuous transition from squares (2, 0) to squares (2, 2);

Γ

S2,2 R2,0

S2,0

(6) 

Figure 16. Isotropy lattice restricted to N � Fixðh�; �2iÞ.
Note: Subgroups are defined in Table 5.
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(b) transition via steady states and time-periodic states (standing waves) between

squares (2, 2) and stripes (2, 0);
(c) transition between squares (2, 2) and stripes (2, 0) via a jump.

We determine non-degeneracy conditions, which are valid on an open set of

parameters, involving second and third-order terms of FjN for which (a, b, c) each occur

generically in the NBC problem. These non-degeneracy conditions can be used

to construct generic reaction-diffusion systems with NBC on growing square domains

that show prescribed transitions between different types of patterns, though we have not

done this.
We mentioned in Section 3 that solutions on the primary branch of stripes (2, 2) (R2,2)

do not satisfy NBC. Therefore, we redisplay the bifurcation diagrams (in �) that

contain only those primary branches that do appear in the NBC bifurcation problems.

See Figure 17 for the (most relevant) diagrams when �¼ 0 and Figures 18 and 19 for these

cases when � 6¼ 0.
In Section 5.1 we discuss the data needed to find secondary bifurcations along squares

(2, 2), stripes (2, 0) and squares (2, 0) in the NBC problems.

λ<0
−λλ µ

S2,0

S2,0

S2,2

R2,0 R2,0

S2,2 S2,0

S2,0

λ> 0
µλ−λ

Figure 19. Restriction to NBC of PBC bifurcation diagrams in Figure 15: A1A2>0.

λ=0 and  A1A2 >0 λ=0 and  A1A2 <0

0 µ

S2,2

R2,0

S2,0

S2,0

µ0

R2,0

S2,2

Figure 17. Restriction to NBC of PBC bifurcation diagrams in Figure 12.

µ−λλ
λ<0

 

R2,0

S2,0 S2,2

λ>0
λ−λ

S2,2

R2,0S2,0

µ

Figure 18. Restriction to NBC of PBC bifurcation diagrams in Figure 14: A1A2<0.
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We determine non-degeneracy conditions in Section 5.2 for which a continuous

transition from squares (2, 0) to squares (2, 2) can occur (Figure 5). In Section 5.3 we

determine non-degeneracy conditions for which the transitions from squares (2, 2) to

stripes (2, 0) can occur via steady states and time-periodic states (see Figure 7) or via a

jump (see Figure 6 (right)).
We note that the planforms of the solution branches in the NBC problem inherit the

reflectional symmetry about the mid-axes of ½0, 1=2� � ½0, 1=2� due to the extra

translational symmetries ð0, 1=2Þ and ð1=2, 0Þ. See Figure 2.
We have already noted that stripes (2, 2) exist in PBC problems but do not exist in

NBC problems. In Section 5.4 we also show the stable patterns leading to stripes (2, 0) can

be standing waves in the NBC problem and wavy rolls in the PBC problem.

5.1. Secondary bifurcations in NBC

In this section, we discuss the possible secondary bifurcations in the NBC problem along

the primary branches of squares (2, 2), stripes (2, 0) and squares (2, 0), together with the

eigenvalues of DFjN along these branches.
In Table 9 the action of h�, ð0, 1=4Þ, ð1=4, 1=4Þi on N � Fixðh�, �2iÞ is given. In Table 10

we list the invariant subspaces of N for squares (2, 2) ((0, 0,w,w) with w2R), stripes (2, 0)

((0, z, 0, 0) with z2R) and squares (2, 0) ((z,w,w,w) with z,w2R). Using these invariant

subspaces in NBC and Table 8, it is straightforward to get the eigenvalues of the Jacobian

DFjN along the primary branches of squares (2, 2) and stripes (2, 0) listed in Table 11.

Table 10. Invariant subspaces of N � Fixðh�, �2iÞ in NBC for squares (2, 2)((0, 0,w,w)
with w2R), stripes (2, 0)((0, z, 0, 0) with z2R) and squares (2, 0)((z, z,w,w) with
z,w2R).

Isotropy � Invariant subspaces for � in NBC ker(�) on Vj
i

h�, ð14 ,
1
4Þi V1

1 ¼ Rð0; 0; 1; 1Þ h�; ð14 ,
1
4Þi

(squares (2, 2)) V1
2 ¼ Rð1; 1; 0; 0Þ �

V1
3 ¼ Rð1;�1; 0; 0Þ �ð14 ,

1
4Þ

ð14 , 0Þ(stripes (2, 0)) V2
1 ¼ Rð0; 1; 0; 0Þ ð14 , 0Þ

V2
4 ¼ Rfð0; 0; 1; 1Þ; ð1; 0; 0; 0Þg 1

�(squares (2, 0)) V3
1 ¼ Rfð1; 1; 0; 0Þ; ð0; 0; 1; 1Þg �

V3
2 ¼ Rð1;�1; 0; 0Þ 1

Note: Note that the kernel hð0, ð1=2ÞÞ, ðð1=2Þ, 0Þi is not recorded in the isotropy
subgroups.

Table 9. Action of h�, ð0, ð1=4ÞÞ, ðð1=4Þ, ð1=4ÞÞi
on N � Fixðh�; �2iÞ.

� (z2, z1, w, w)

ð0; 14Þ (z1, �z2, �w, �w)

ð14 ,
1
4Þ (�z1, �z2, w, w)
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The primary branch of squares (2, 0) was discussed in Section 3.3. More information

about this branch is needed to understand the possible secondary bifurcations along it.

5.1.1. Squares (2, 0)

We use implicit differentiation for the vector field FjN given by (5.1) restricted to Fix(D4)

to compute the primary branch (z,w,w,w) of squares (2, 0):

w ¼ �
1

2A1
�� �þ

�

2A1A2
ð�2 � �2Þ þ

	

4A2
1

ð�� �Þ2
� �

þ � � �

z2 ¼
1

2A1A2
ð�� �Þð�þ �þ k2�

2 þ k3�
2 þ k4��Þ þ � � � ;

ð5:2Þ

where the values of k2, k3 and k4 can be computed via implicit differentiation of (3.2).

We do not compute these values here, but we note that it can be proved using the implicit

differentiation that �þ �þ k2�
2
þ k3�

2
þ k4��þ � � � ¼ 0 implies

� ¼ ���
�

A2
1

�2 þ � � � ð5:3Þ

The discussion of the eigenvalues of DFjN along the primary branch (z,w,w,w) of squares

(2, 0) is summarized in Table 11 and described in Appendix 2 (see (A12) and (A15)).
Only a Hopf bifurcation can occur along squares (2, 0) in NBC, when the

corresponding trace is zero and the corresponding determinant is positive, i.e. A1A2<0

Table 11. Data for secondary bifurcation along squares S2,2 ((0, 0,w,w),w>0 with
�¼����w2

þ� � �); stripes R2,0 ((0, z, 0, 0) with �¼ ��B1z
2
þ � � �); and squares S2,0 ((z, z,w,w) with

w>0 given by (5.2)).

� Eigenvalues (NBC)

Points of
secondary
bifurcation

Bifurcation
occurs when:

S2,2 2�w2
þ � � � No bifurcation � 6¼ 0

�� �þ 2A1wþ	w
2
þ � � � �11 � ���

�

A2
1

�2 þ � � � �A1>0

�� � �2A1wþ	w
2
þ � � � �12 � ���

�

A2
1

�2 þ � � � �A1<0

R2,0 2B1z
2
þ � � � No bifurcation B1 6¼ 0

tr ¼ 2�þ ðC1 þ 
Þz
2 þ � � �

det ¼ �2A1A2z
2 þ � � �

�22 � �
C1 þ 


�2B1 þ C1 þ 

þ � � �

A1A2 5 0
�ð�2B1 þ C1 þ 
Þ < 0

S2,0 2(�� �)þ � � � No bifurcation

tr ¼ 2�þ 2A1wþ ð3�þ 2
Þz2

þð	þ 3�Þw2 þ � � �

det ¼ �4A1A2z
2 þ � � �

�31 � ���
3�

A2
1

�2 þ � � �
A1A2 < 0
�� < 0

Notes: Secondary Hopf bifurcations occur at �22 and �31; steady-state bifurcations occur at �11

and �12.
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(see Table 11 and Appendix 2). Substituting the expressions for S2,0 solutions given by

(5.2) into the trace and using the implicit differentiation for the trace lead to the value of

�31 listed in Table 11. The discussion in Section 3.3 and (5.3) show that the primary branch

of squares (2, 0) is an isola between �¼� � and � ¼ ��� ð�=A2
1Þ�

2 when A1A2<0; in

order for Hopf bifurcation to occur at �31 along this isola branch, the point �31 needs to

be between �¼�� and � ¼ ��� ð�=A2
1Þ�

2. Hence, a simple calculation yields ��<0.

The expansion of �31 to second order in � is needed when the stability analysis of squares

(2, 0) is discussed.

5.1.2. Non-degeneracy conditions

In the (2, 0) and (2, 2)-mode interaction in the NBC problem, we are interested only

in non-degenerate situations, i.e. the primary branches have well-defined directions and

well-defined stabilities. From Table 6, Section 3.3 and Table 11, we derive the following

non-degeneracy conditions in the NBC problem:

A1A2 6¼ 0, B1 6¼ 0, � 6¼ 0:

This list shows that there are different possible bifurcation diagrams, which result from

the interaction of (2, 0) and (2, 2)-modes in the NBC problem. Moreover, there are other

non-degeneracy conditions, which appear when we consider the details of perturbation

occurring when � 6¼ 0.

5.2. Squares (2, 0) to squares (2, 2)

To illustrate the continuous transition from squares (2, 0) to squares (2, 2), we determine

non-degeneracy conditions for which the region in the ��-plane with stable squares (2, 2) is

next to the region with stable squares (2, 0). See Figure 5.
Next we discuss the procedure we used to find the non-degeneracy conditions

corresponding to Figure 5. Since ð0, 1=4Þðz1, z2;w;wÞ ¼ ðz1;�z2;�w;�wÞ, we may assume

w>0.

5.2.1. Stripes (2, 0)

Recall that R2,0 solutions satisfy �¼ ��B1z
2
þ � � �. Hence,R2,0 solutions exist in the

region of the ��-plane given by

�� �

B1
< 0:

Then the non-degeneracy condition B1>0 implies that R2,0 solutions exist for �� �<0

and bifurcates sub-critically at �¼ � for any � fixed. Table 11 shows that the R2,0 branch is

unstable, because the eigenvalue 2B1z
2
þ � � � is positive.

5.2.2. Squares (2, 2)

Recall that S2,2 solutions exist for

�þ �

�
< 0:
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S2,2 branch is stable if all the eigenvalues of DFjN along this branch have negative real

part. A necessary condition is that the eigenvalue 2�w2
þ � � � listed in Table 11 is negative.

This implies �<0, and the region of existence of S2,2 solutions in the ��-plane is

�þ�>0. A further analysis based on the eigenvalues and points of secondary

bifurcations listed in Table 11 shows that S2,2 is a stable branch in the region of ��-plane
given by

�þ � > 0; �þ �þ
�

A2
1

�2 < 0 and �ð�� 	Þ þ �ð�þ 	Þ < 0;

where the last inequality is obtained by adding the following eigenvalues of DFjN along

S2,2 branch:

a2 ¼ �� �þ 2A1wþ 	w
2 þ � � �

and

a3 ¼ �� �� 2A1wþ 	w
2 þ � � � ;

after substituting w2 ¼ �ð�þ �=�Þ þ � � �.
The line �(�� 	)þ � (�þ 	)¼ 0 divides the ��-plane in two regions. See line 3 in

Figure 5. The signs of �þ 	 and �� 	 determine which region (left or right) between the

line �þ �¼ 0 and the parabola �þ �þ ð�=A2
1Þ�

2 ¼ 0 contains stable S2,2 solutions. To get

the correct region, we need �þ 	<0 and �� 	<0, which implies that the inequality �<0

is redundant.

5.2.3. Squares (2, 0)

Recall that the isola of squares (2, 0) as � varies exists between � and ��� ð�=A2
1Þ�

2 when

A1A2<0. S2,0 solutions branch is stable if all the eigenvalues of DFjN along it have

negative real part. A further analysis based on Table 11 gives the region of stability for the

isola of S2,0 solutions in the ��-plane:

�� �5 0, �þ �þ
�

A2
1

�2 4 0 and �þ �þ
3�

A2
1

�2 4 0:

Since �<0, we have an open region of stable S2,0 solutions in the ��-plane. Curves 1

and 2 in Figure 5 have equations �þ �þ ð�=A2
1Þ�

2 ¼ 0 and �þ �þ ð3�=A2
1Þ�

2 ¼ 0,

respectively.
Along the isola of S2,0 solutions we have w ¼ �ð1=2A1Þð�� �Þ þ � � � > 0 and

�� �<0. It follows that A1>0, which combined with A1A2<0 yields A2<0.

5.2.4. Non-degeneracy conditions

Previous analysis gives the following open set of non-degeneracy conditions:

A1 4 0, A2 5 0, B1 4 0, �� 	5 0 and �þ 	5 0: ð5:4Þ
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5.3. Squares (2, 2) to stripes (2, 0)

In order to determine possible transitions from squares (2, 2) to stripes (2, 0), we trace

paths through unfoldings of the (2, 0) and (2, 2)-mode interaction and we determine

non-degeneracy conditions for which the following two types of transitions are observed in

the ��-plane:

(a) transition from squares (2, 2) to squares (2, 0) and, then to stripes (2, 0) via some

other stable states – one possible situation being via time-periodic solutions

(standing waves). See Figure 6 (left);
(b) transition from squares (2, 2) to stripes (2, 0) via jump. See Figure 6 (right).

In what follows we discuss the procedure to get the non-degeneracy conditions

corresponding to Figure 6. As before, since ð0, 1=4Þðz1, z2;w;wÞ ¼ ðz1;�z2;�w;�wÞ,
we may assume w>0.

For both cases (a) and (b), we retain the non-degeneracy conditions obtained in

Section 5.2 for stable squares (2, 0). For case (a), we also use the non-degeneracy

conditions obtained in Section 5.2 for stable squares (2, 2). In this section, we determine

non-degeneracy conditions such that an open region of stable stripes R2,0 exists in the ��-
plane for both cases (a) and (b). Also, we determine non-degeneracy conditions for stable

squares (2, 2) in case (b). Note that the equations for curves 1 and 2 in Figure 6

are �þ �þ ð�=A2
1Þ�

2 ¼ 0 and �þ �þ ð3�=A2
1Þ�

2 ¼ 0, respectively; and that the equation

for line 3 is �(�� 	)þ �(�þ 	)¼ 0.

5.3.1. Stripes (2, 0)

Recall that R2,0 solutions exist for ð�� �=B1Þ5 0. The R2,0 branch is stable if all the

eigenvalues of DFjN along this branch have negative real part. A necessary condition is

that the eigenvalue 2B1z
2
þ � � � listed in Table 11 is negative. Hence,B1<0 and the

region of existence of stripes (2, 0) in the ��-plane is �� �>0. A further analysis based on

Table 11 gives the region of stability for R2,0 branch in the ��-plane:

�� � > 0 and �ð2B1 � C1 � 
Þ þ �ðC1 þ 
Þ > 0:

The line �(2B1�C1� 
)þ �(C1þ 
)¼ 0 divides the ��-plane in two regions. (See curve 4

in Figure 6). The signs of 2B1�C1� 
 and C1þ 
 determine the quadrants ((I and III) or

(II and IV)) in which the line �(2B1�C1� 
)þ �(C1þ 
)¼ 0 is contained, and which

region (left or right) between the lines �� �¼ 0 and �(2B1�C1� 
)þ �(C1þ 
)¼ 0

contains stable R2,0 solutions.
To get the left region of stable stripes (2, 0), as in Figure 6 (left), it is enough to choose

C1þ 
<0 and 2B1�C1� 
>0. Since B1<0, the inequality C1þ 
<0 is redundant.

5.3.2. Non-degeneracy conditions for (a)

Previous analysis gives the following open set of non-degeneracy conditions for Figure 6

(left):

A1 4 0, A2 5 0, �� 	5 0, �þ 	5 0;

B1 5 0 and 2B1 � C1 � 
4 0:
ð5:5Þ
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5.3.3. Non-degeneracy conditions for (b)

Similarly, the open set of non-degeneracy conditions for Figure 6 (right) is:

A1 4 0, A2 5 0, �5 0, �� 	4 0,

�B1 þ C1 þ 
5 0 and 2B1 � C1 � 
5 0:
ð5:6Þ

Namely, to get the left region of squares (2, 2), as in Figure 6 (right), is enough to

choose �þ 	<0 and ��	>0. Since �<0, the inequality �þ 	<0 is redundant.
To get a non-empty overlapping region of stable R2,0 solutions and stable S2,2

solutions, as in Figure 6 (right), we need

2B1 � C1 � 
 < 0 and C1 þ 
 < 0

(the line �(2B1�C1�
)þ�(C1þ
)¼ 0 is contained in quadrants (II and IV) and the stable

R2,0 solutions are to the left of this line) and the slope of the line

�(2B1�C1�
)þ�(C1þ
)¼ 0 needs to satisfy the inequality

�
C1 þ 


2B1 � C1 � 

< �1:

All these imply the inequality �B1þC1þ
<0. Also, �B1þC1þ
<0 and 2B1�C1�
<0

imply that the inequalities B1<0 and C1þ 
<0 are redundant.
The thick lines parameterized by � for fixed �, as in Figures 6, lead to the

bifurcation diagrams in Figure 7. In these figures, the primary branch of squares (2, 2)

bifurcates at �¼�� from the trivial solution and is stable until �¼�11, where a stable

isola of squares (2, 0) bifurcates. This isola branch loses stability at �¼�31 via a

sub-critical or supercritical Hopf bifurcation leading to time-periodic solutions (standing

waves).
The primary branch of stripes (2, 0) bifurcates at �¼ � from the trivial solution and

is unstable till �¼�31, where a sub-critical Hopf bifurcation occurs leading to stable

time-periodic solutions (standing waves) in NBC.
The tertiary branch of time-periodic solutions bifurcating from �¼�31 may connect

to the secondary branch of time-periodic solutions bifurcating from �¼�22. As a

consequence, the transition from squares (2, 2) to stripes (2, 0) occurs via squares (2, 0) and

standing waves.

5.4. Differences between NBC and PBC problems

In this section we discuss interesting differences related to different stable patterns

observed in the NBC and PBC problems.To simplify the discussion, we restrict the

D4nT2-equivariant vector field F to the flow-invariant subspace

Fixðh�2iÞ ¼ fðz1, z2,w1,w2Þ : z1, z2,w1,w2 2 Rg ¼ R4:

As a consequence, the primary branch of stripes (2, 2) (R2,2 branch) exists. Throughout this

subsection, we impose non-degeneracy conditions such that this branch is unstable.
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The D4nT2-equivariant vector field F truncated up to the third-order and restricted to

Fix(h�2i)¼R4 is given by

f 1ðz1, z2,w1,w2, �,�Þ ¼ ð��þ �Þz1 þ A1z2 w1 þ w2ð Þ þ E1z1w1w2

þ B1z
2
1 þ C1z

2
2 þD1 w2

1 þ w2
2

� �� �
z1

f 2ðz1, z2,w1,w2, �,�Þ ¼ ð��þ �Þz2 þ A1z1 w1 þ w2ð Þ þ E1z2w1w2

þ B1z
2
2 þ C1z

2
1 þD1 w2

1 þ w2
2

� �� �
z2

g1ðz1, z2,w1,w2, �,�Þ ¼ ð�þ �Þw1 þ A2z1z2 þ E2 z21 þ z22Þw2

� �
þ B2 z21 þ z22

� �
þ C2w

2
1 þD2w

2
2

� �
w1

g2ðz1, z2,w1,w2, �,�Þ ¼ ð�þ �Þw2 þ A2z1z2 þ E2 z21 þ z22Þw1

� �
þ B2 z21 þ z22

� �
þ C2w

2
2 þD2w

2
1

� �
w2;

ð5:7Þ

where FjR4¼ ( f 1, f 2, g1, g2) :R4
�R2

!R4. Recall that we have defined the following

constants:

� ¼ B1 þ C1, 	 ¼ 2D1 þ E1, 
 ¼ B2 þ E2 and � ¼ C2 þD2:

Table 8 shows that along the R2,0 branch a new steady state bifurcation can occur in

Fix(h�2i) at �21. This leads to the following generic situation: in the NBC problem we see

time-periodic solutions (standing waves) as stable patterns leading to stable stripes (2, 0),

whereas in the PBC problem we see steady states (wavy rolls) as stable patterns leading to

stable stripes (2, 0).
We can follow the same approach as for the restriction to the NBC problem: determine

regions of various stable steady states (Figure 8) and trace a path in the ��-plane to

illustrate different transitions from squares (2, 2) to stripes (2, 0) in the NBC and PBC

problems: transition via a steady state bifurcation in the PBC problem (Figure 8) and

transition via a Hopf bifurcation in the NBC problem (Figure 6).

5.4.1. Wavy rolls solutions

Implicit differentiation for the truncated normal form given in (5.7) leads to a new branch

of steady states (0, z,w,�w) of small amplitudes – called wavy rolls:

z2 ¼
ð�2D1 þ E1 � �Þ�þ ð�2D1 þ E1 þ �Þ�

Ks
þ � � �

w2 ¼
ðB1 � B2 þ E2Þ�þ ðB1 þ B2 � E2Þ�

Ks
þ � � � ;

ð5:8Þ

where Ks¼B1�� (2D1�E1)(E2�B2). The region of existence for wavy rolls solutions in

the ��-plane is:

ð�2D1 þ E1 � �Þ�þ ð�2D1 þ E1 þ �Þ�

Ks
	 0

ðB1 � B2 þ E2Þ�þ ðB1 þ B2 � E2Þ�

Ks
	 0:
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5.4.2. Stripes (2, 2)

Recall that R2,2 solutions have the form (0, 0, 0,w) with �¼���C2w
2
þ� � � and they exist

in the PBC problem in the region of the ��-plane given by

�þ �

C2
< 0:

The eigenvalues of the Jacobian of the restriction of the vector field F to Fix(h�2i) along
squares (2, 2), squares (2, 0), stripes (2, 2) and wavy rolls (0, z,w, �w) help us to determine

the stability of these solution branches. The information about these eigenvalues is

summarized in Tables 12 and 13. The calculations needed to obtain these tables can be

found in Appendix 2. Table 12 contains the eigenvalues of the Jacobian of the vector field

FjFix(h�2i) along squares (2, 2) and stripes (2, 0), which is straightforward to obtain from

Table 8.
A possible generic situation showing regions of the various stable steady

states mentioned before in this section is presented in Figure 8. The corresponding set

of non-degeneracy conditions can be determined, but we do not pursue this matter

Table 12. Data for secondary bifurcations in Fix(h�2i) along squares S2,2 ((0, 0,w,w),w i 0 with
�¼���(C2þD2)w

2
þ � � �); stripes R2,0 ((0, z, 0, 0) with �¼ ��B1z

2
þ � � �); and squares S2,0

((z, z,w,w) with w>0 defined by (5.2)).

�
Eigenvalues
(Fix(h�2i))

Points of
secondary
bifurcation

Bifurcation
occurs when:

S2,2 2�w2
þ � � � No bifurcation � 6¼ 0

�� �þ 2A1wþ	w
2
þ � � � �11 � ���

�

A2
1

�2 þ � � � �A1>0

�� �� 2A1wþ	w
2
þ � � � �12 � ���

�

A2
1

�2 þ � � � �A1<0

2(C2�D2)w
2
þ � � � No bifurcation C2 6¼D2

R2,0 2B1z
2
þ � � � No bifurcation B1 6¼ 0

�þ �þ (B2�E2)z
2
þ � � � �21 � �

�B1 � B2 þ E2

B1 � B2 þ E2
þ � � � �(B1 �B2þE2)>0

tr ¼ 2�þ ðC1 þ 
Þz
2 þ � � �

det ¼ �2A1A2z
2 þ � � �

�22 � �
C1 þ 


�2B1 þ C1 þ 

þ � � �

A1A2 5 0
�ð�2B1 þ C1 þ 
Þ5 0

S2,0 2(�� �)þ � � � No bifurcation

tr ¼ 2�þ 2A1wþ ð3�þ 2
Þz2

þð	þ 3�Þw2 þ � � �

det ¼ �4A1A2z
2 þ � � �

�31 � ���
3�

A2
1

�2 þ � � �
A1A2 5 0
��5 0

�þ �þ 2B2z
2 þ ð3C2 �D2Þw

2

þ � � �

�32 ¼ ���
3C2 �D2

2A2
1

�2

þ � � �

� (C2�D2)<0

Notes: Secondary Hopf bifurcations occur at �22 and �31; the remaining bifurcations are
steady state.
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here – since it is difficult to find the eigenvalues of the 3� 3 matrix

U1 0 Z1

0 U2 Z2

2V 2V Q

0
BB@

1
CCA:

where

Q ¼ 2ðE2z
2 þ 2C2w

2Þ þ � � �

U1 ¼ 2B1z
2 þ � � �

U2 ¼ ðC1 � B1Þz
2 þ � � �

V ¼ A1zþ � � �

Z1 ¼ A2zþ � � �

Z2 ¼ 2ðB2 þ E2Þzwþ � � �

: ð5:9Þ

The expressions for Q,V,U1,U2,Z1 and Z2 are computed in Appendix 2.
We trace a thick line path parameterized by � for �>0 fixed in Figure 8 to show the

transition from stable squares (2, 2) to stable stripes (2, 0) via stable squares (2, 0) and

stable wavy rolls steady states (0, z,w, �w).
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Table 13. Data for (steady-state) secondary bifurcations in Fix(h�2i) along stripes R2,2

((0, 0, 0,w),w>0 with �¼���C2w
2
þ � � �) and wavy rolls WR ((0, z,w,�w) with w>0.

�
Eigenvalues
(Fix(h�2i))

Points of
secondary
bifurcation

Bifurcations
occur when:

R2,2 �� ��A1wþD1w
2
þ � � � �41 ¼ ���

2C2

A2
1

�2 þ � � � �A1>0

�� �þA1wþD1w
2
þ � � � �42 ¼ ���

2C2

A2
1

�2 þ � � � �A1<0

2C2w
2
þ � � � þ � � � No bifurcation C2 6¼ 0

(D2�C2)w
2
þ � � � No bifurcation C2 6¼D2

(0, z,w,�w) 4�w2
þ � � � No bifurcation � 6¼ 0

(wavy rolls)
U1 0 Z1

0 U2 Z2

2V 2V Q

0
@

1
A *

Note: w and z are defined by (5.8)); U1,U2V*,Z1,Z2 and Q are defined by (5.9).
*Indicates that other bifurcations might occur.
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Appendix 1. Third-Order truncation of F

In this appendix we re-derive the normal form of the D4nT
2-equivariant vector field F truncated up

to third-order terms (given in (3.1)). We recall that the action of D4nT2 is given in Table 1 and
D4¼h�, �i.

Let F¼ ( f 1, f 2, g1, g2) :C2
�C

2
!C

2
�C

2 be D4nT
2-equivariant. The ��3-equivariance and

��2-equivariance of F imply

f 2ðz1, z2,w1,w2Þ ¼ f 1ðz2, z1,w1,w2Þ

g2ðz1, z2,w1,w2Þ ¼ g1ðz1, z2,w2,w1Þ:

Therefore, it is sufficient to find the forms of f 1 and g1 up to third-order. Let

f 1ðz1, z2,w1,w2Þ ¼
X

a�1	1
1�1�2	2
2�2z
�1
1 z1

�2z	12 z2
	2w
11 w1


2w�12 w2
�2

g1ðz1, z2,w1,w2Þ ¼
X

b�1	1
1�1�2	2
2�2z
�1
1 z1

�2z	12 z2
	2w
11 w1


2w�12 w2
�2 ,

ðA1Þ

where �i, 	i, 
 i, �i are non-negative integers and the subscripted constants a, b are complex. Note,
however, that �2-equivariance forces these constants to be real.

Truncated form of f 1 up to third-order terms

T
2-equivariance of F implies

�1 � �2 þ 
1 � 
2 þ �1 � �2 ¼ 1

	1 � 	2 þ 
1 � 
2 � �1 þ �2 ¼ 0
ðA2Þ

and third-order truncation implies

�1 þ �2 þ 	1 þ 	2 þ 
1 þ 
2 þ �1 þ �2 � 3:

Therefore, if we consider all possible cases in (A2), we get

f 1ðz1, z2,w1,w2Þ ¼ a1z1 þ b1z2w2 þ c1 �z2w1 þ E1z1w1w2

þ B1jz1j
2z1 þ C1jz2j

2z1 þ d1jw1j
2z1 þ e1jw2j

2z1, ðA3Þ

where a1, b1, c1, d1, e1,B1,C1,E1 are real. The �-equivariance of F implies that b1¼ c1 � A1 and
d1¼ e1 � D1.

Truncated form of g1 up to third-order terms

The T
2-equivariance of F implies

�1 � �2 þ 
1 � 
2 þ �1 � �2 ¼ 1

	1 � 	2 þ 
1 � 
2 � �1 þ �2 ¼ 1:
ðA4Þ

and third-order truncation implies

�1 þ �2 þ 	1 þ 	2 þ 
1 þ 
2 þ �1 þ �2 � 3:
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Therefore, if we consider all possible cases in (A.4), we get

g1ðz1, z2,w1,w2Þ ¼ a2w1 þ A2z1z2 þ b2z
2
1w2 þ c2z

2
2w2

þ d2jz1j
2w1 þ e2jz2j

2w1 þ C2jw1j
2w1 þD2jw2j

2w1 ðA5Þ

where a2, b2, c2, d2, e2,C2,D2,E2 are real. The �-equivariance of F implies that d2¼ e2 � B2 and
b2¼ c2 � E2.

Appendix 2. Eigenvalues of DF along primary branches

In this appendix we compute the eigenvalues listed in Tables 8, 12 and 13. To simplify the notation,
we omit explicit reference to the parameters � and � in F. As before,F :C4

!C4 is a function of the
complex variables z1, z1, z2, z2,w1, w1,w2, w2. In these coordinates theJacobian (DF)(z1, z2,w1,w2)

can be
written as

ðDFÞðz1, z2,w1,w2Þ
ðu1; u2, v1, v2Þ ¼ Fz1u1 þ Fz1u1 þ Fz2u2 þ Fz2u2 þ Fw1

v1 þ Fw1
v1 þ Fw2

v2 þ Fw2
v2:

ðA6Þ

Eigenvalues of DF along squares (2, 2) (Table 8)

Let V1
j ð1 � j � 6Þ be the isotypic components listed in Table 7. Recall that S22 solutions have the

form (0, 0,w,w) where w2R and

ðDFÞð0;0;w;wÞðV
1
j Þ � V1

j :

Recall also that V1
1, . . . ,V4

1 are one dimensional, V1
5 is a two-dimensional null space of (DF)(0, 0,w,w),

and V1
6 is a two-dimensional absolutely irreducible representation of S2,2. Hence, in a basis adapted

to the subspaces Vj
1, we get the block diagonalization

ðDFÞð0, 0,w,wÞ ¼

a1 0 0 0 0 0

0 a2 0 0 0 0

0 0 a3 0 0 0

0 0 0 a4 0 0

0 0 0 0 0 0

0 0 0 0 0 a6I

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

where ai2R. It follows that any vector in Vj
1 is an eigenvector of (DF)(0,0,w,w) and these vectors are

listed in Table 7. Thus

ðDFÞð0, 0,w,wÞð0, 0, 1, 1Þ ¼ Fw1
þ Fw2

þ Fw2
þ Fw2

¼ ðg1w1
þ g3w1

þ g1w2
þ g1w2

Þð0, 0, 1, 1Þ;

ðDFÞð0, 0,w,wÞð1, 1, 0, 0Þ ¼ Fz1 þ Fz1 þ Fz2 þ Fz2

¼ ðf 1z1 þ f 1z1 þ f1z2 þ f1z2 Þð1, 1, 0, 0Þ;

ðDFÞð0, 0,w,wÞð1, � 1, 0, 0Þ ¼ Fz1 þ Fz1 � Fz2 � Fz2

¼ ðf 1z1 þ f 1z1 � f1z2 � f1z2 Þð1, � 1, 0, 0Þ;

ðDFÞð0, 0,w,wÞð0, 0, 1, � 1Þ ¼ Fw1
þ Fw1

� Fw2
� Fw2

¼ ðg1w1
þ g1w1

� g1w2
� g1w2

Þð0, 0, 1, � 1Þ;

ðDFÞð0, 0,w,wÞði, 0, 0, 0Þ ¼ Fz1 i� Fz1 iþ Fz2 i� Fz1 i

¼ ðf 1z1 � f 1z1 Þði, 0, 0, 0Þ:
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where the partial derivatives are evaluated at (0, 0,w,w). Here we used the facts f 2z1 ¼ f 1z1 and f 2z1 ¼ f 1z1
along (0, 0,w,w).

Using the third-order truncation of the D4nT2-equivariant vector field F given in (3.1),
it follows that

a1 ¼ g1w1
þ g1w1

þ g1w2
þ g1w2

¼ �þ �þ 3�w2 þ � � �

a2 ¼ f 1z1 þ f 1z1 þ f1z2 þ f1z2 ¼ ��þ �þ 2A1wþ 	w
2 þ � � �

a3 ¼ f 1z1 þ f 1z1 � f1z2 � f1z2 ¼ ��þ �� 2A1wþ 	w
2 þ � � �

a4 ¼ g1w1
þ g1w1

� g1w2
� g1w2

¼ �þ �þ ð3C2 �D2Þw
2 þ � � �

a6 ¼ f 1z1 � f 1z1 ¼ ��þ �þ ð2D1 � E1Þw
2 þ � � � :

ðA7Þ

Along squares (2, 2) we have �¼�� ��w2
þ � � �. The eigenvalues listed in Table 8 for the isotropy

subgroup S2,2 are found by substituting this equation into (A7).

Eigenvalues of DF along stripes (2, 0) (Table 8)

Let V2
j ð1 � j � 4 be the isotypic components defined in Table 7, where V2

1 and V2
2 are

one-dimensional, V2
2 is the null eigenspace of (DF)(0,z,0,0), V2

3 is a two-dimensional irreducible
representation and V2

4 consists of two isomorphic two-dimensional absolutely irreducible subspaces.
Recall that R2,0 solutions have the form (0, z, 0, 0) where z2R and that

ðDFÞð0;z;0;0ÞðV
2
j Þ � V2

j

for j¼ 1, . . . , 4. Hence, we get the block diagonalization

ðDFÞð0;z;0;0Þ ¼

b1 0 0 0 0

0 0 0 0 0

0 0 b3I 0 0

0 0 0 b4I b5I

0 0 0 b6I b7I

0
BBBBBBBB@

1
CCCCCCCCA
;

where bi2R. It follows that the seven non-zero eigenvalues of DF are b1, b3 repeated twice, and the
eigenvalues of ð b4b5b6b7

Þ repeated twice. Table 7 along (0, 0, z, 0) gives

ðDFÞð0, z, 0, 0Þð0, 1, 0, 0Þ ¼ Fz2 þ Fz2 ¼ ðf2z2 þ f2z2 Þð0; 1; 0; 0Þ;

ðDFÞð0, z, 0, 0Þð0, 0, 1, � 1Þ ¼ Fw1
þ Fw1

� Fw2
� Fw2

¼ ðg1w1
þ g1w1

� g1w2
� g1w2

Þð0, 0, 1, � 1Þ

The four-dimensional subspace V2
4 consists of vectors of the form (u, 0, v,w) where u, v2C.

To compute b4, . . . , b7 we need only compute

ðDFÞð0, z, 0, 0Þð1, 0, 0, 0Þ ¼ b4ð1, 0, 0, 0Þ þ b6ð0, 0, 1, 1Þ

ðDFÞð0, z, 0, 0Þð0, 0, 1, 1Þ ¼ b5ð1, 0, 0, 0Þ þ b7ð0, 0, 1, 1Þ

The needed calculations yield

ðDFÞð0, z, 0, 0Þð1, 0, 0, 0Þ ¼ Fz1 þ Fz1

ðDFÞð0, z, 0, 0Þð0, 0, 1, 1Þ ¼ Fw1
þ Fw1

þ Fw2
þ Fw2
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A further calculation yields

b4 ¼ f 1z1 þ f 1z1

b6 ¼ g1z1 þ g1z1

b5 ¼ f 1w1
þ f 1w2

þ f 1w1
þ f2w2

b7 ¼ g1w1
þ g1w2

þ g1w1
þ g1w2

Since

f 1z1 ¼ 0, g1z1 ¼ 0, f 1w1
¼ 0, f 1w2

¼ 0,

at a point (0, z, 0, 0) we have

AStr �
b4 b5

b6 b7

 !
¼

f 1z1 f 1w1
þ f 1w2

g1z1 g1w1
þ g1w2

 !

Using the truncation of the D4nT2-equivariant vector field F given by (3.1), the eigenvalues of
(DF)(0, z, 0, 0), which are not forced to be zero by symmetry, are:

b1 ¼ ��þ �þ 3B1z
2 þ � � �

b3 ¼ �þ �þ ðB2 � E2Þz
2 þ � � � [twice]

AStr ¼
��þ �þ C1z

2 þ � � � 2A1zþ � � �

A2zþ � � � �þ �þ 
z2 þ � � �

 !
[twice]

ðA8Þ

Hence,

trðAStrÞ ¼ 2�þ ðC1 þ 
Þzþ � � �

detðAStrÞ ¼ �2A1A2z
2 þ � � �

ðA9Þ

Note that generically there are no steady state bifurcations in V2
4, since generically we can assume

that A1A26¼ 0. Then the matrix AStr is invertible and has no zero eigenvalues in a neighborhood of
the origin. However, Hopf bifurcation can occur in V2

4 if A1A2<0, since then the matrix AStr can
have purely imaginary eigenvalues. This happens when tr(AStr)¼ 0.

Recall that stripes (2, 0) solutions satisfy �¼ ��B1z
2
þ � � �. On substituting this equation into

(A8) and (A9), we obtain the eigenvalues listed in Table 8 for the isotropy subgroup R2,0.

Eigenvalues of DF along squares (2, 0) (Tables 11 and 12)

Recall that S2,0 solutions have the form (z, z,w,w) with z,w2R.
Using the truncation up to third-order of the restriction of F to Fix(h�2i)¼R4 given by (5.7), the

Jacobian along (z, z,w,w) with z,w2R is

A B C C

B A C C

D D E F

D D F E

0
BBBBB@

1
CCCCCA; ðA10Þ
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where

A ¼ �� �þ ð3B1 þ C1 þ 	Þz
2 þ 	w2 þ � � �

B ¼ 2ðA1wþ C1z
2Þ þ � � �

C ¼ zðA1 þ 	wÞ þ � � �

D ¼ zðA2 þ 2
wÞ þ � � �

E ¼ �þ �þ 2B2z
2 þ ð3C2 þD2Þw

2 þ � � �

F ¼ 2ðE2z
2 þD2w

2Þ þ � � � ,

and z and w are given by relations (5.2). A further calculation shows that with respect to the basis

fð1, � 1, 0, 0Þt, ð1, 1, 0, 0Þt, ð0, 0, 1, 1Þt, ð0, 0, 1, � 1Þtg,

the Jacobian matrix given by (B.5) becomes

A� B 0 0 0

0 Aþ B 2C 0

0 2D Eþ F 0

0 0 0 E� F

0
BBBBB@

1
CCCCCA: ðA11Þ

A further calculation shows that the eigenvalues of matrix (A11) are

A� B ¼ �� �� 2A1wþ ð3B1 � C1Þz
2 þ 	w2 þ � � � ¼ 2ð�� �Þ þ � � �

E� F ¼ �þ �þ 2ðB2 � E2Þz
2 þ ð3C2 �D2Þw

2 þ � � � ;
ðA12Þ

plus the eigenvalues of the 2� 2 matrix

A20 ¼
Aþ B 2C

2D Eþ F

 !
: ðA13Þ

Hence,

trðA20Þ ¼ Aþ Bþ Eþ F

detðA20Þ ¼ ðAþ BÞðEþ FÞ � 4CD:
ðA14Þ

Also, notice that (1,�1, 0, 0)t is the eigenvector corresponding to the eigenvalue A�B and
(0, 0, 1,�1)t is the eigenvector corresponding to the eigenvalue E�F.

Taking into account the expressions for S2,0 solutions given by (5.2), we notice that in order to
determine the stability of S2,0 solutions, it is enough to consider linear terms in � and � for the
eigenvalue A�B (i.e. A�B¼ 2(�� �)þ � � �), but we need to consider the second-order terms in �
and � for the eigenvalue E�F.

Again, the expressions for S20 solutions given by (5.2) allow us to rewrite (A14) as follows:

trðA20Þ ¼ 2�þ 2A1wþ ð3�þ 2	þ 2
Þz2 þ ð	þ 3�Þw2 þ � � � ¼ �þ �þ � � �

detðA20Þ ¼ �4A1A2z
2 þ � � � :

ðA15Þ

Hence, we get the eigenvalues listed in Tables 11 and 12 for the isotropy subgroup S2,0.
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Note that generically there are no steady state bifurcations due to matrix A20, since generically
we can assume that A1A2 6¼ 0. Then the matrix A20 is invertible and has no zero eigenvalues in a
neighbourhood of the origin. However, Hopf bifurcation can occur in if A1A2<0, since then the
matrix A20 can have purely imaginary eigenvalues. This happens when tr(A20)¼ 0.

Eigenvalues of DF along wavy rolls

Recall that wavy-rolls solutions have the form (0, z,w, �w) with z,w2R (Table 13).
Using the truncation up to third-order of the restriction of F to Fix(h�2i)¼R4 given by (5.7), the

Jacobian along (0, z,w, �w) with z,w2R

U1 0 V V

0 U2 V V

Z1 Z2 W R

Z1 Z2 R W

0
BBBBB@

1
CCCCCA; ðA16Þ

where

R ¼ ðE2z
2 � 2D2w

2Þ þ � � �

U1 ¼ �� �þ C1z
2 þ ð2D1 � E1Þw

2 þ � � �

U2 ¼ �� �þ 3B1z
2 þ ð2D1 � E1Þw

2 þ � � �

V ¼ A1zþ � � �

W ¼ �þ �þ B2z
2 þ ð3C2 þD2Þw

2 þ � � �

Z1 ¼ A2zþ � � �

Z2 ¼ 2ðB2 þ E2Þzwþ � � � ,

and z and w are given by relations (5.8). A further calculation shows that with respect to the basis

fð1, 0, 0, 0Þt, ð0, 1, 0, 0Þt, ð0, 0, 1, 1Þt, ð0, 0, 1, � 1Þtg

the matrix given by (A16) becomes

U1 0 Z1 0

0 U2 Z2 0

2V 2V Wþ R 0

0 0 0 W� R

0
BBBBB@

1
CCCCCA;

and its eigenvalues are W�R, corresponding to the eigenvector (0, 0, 1,�1)t and the eigenvalues of
the 3� 3 matrix

AWR ¼

U1 0 Z1

0 U2 Z2

2V 2V Wþ R

0
B@

1
CA:

Substituting z and w given by (5.8) into W�R and into matrix AWR, we get:

W� R ¼ 4�w2 þ � � � ðA17Þ
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and

AWR ¼

U1 0 Z1

0 U2 Z2

2V 2V Q

0
B@

1
CA; ðA18Þ

with

Q ¼ 2ðE2z
2 þ 2C2w

2Þ þ � � �

U1 ¼ 2B1z
2 þ � � �

U2 ¼ ðC1 � B1Þz
2 þ � � �

Z1 ¼ A2zþ � � �

Z2 ¼ 2ðB2 þ E2Þzwþ � � �

V ¼ A1zþ � � � ,

ðA19Þ

that is, we obtain the eigenvalues listed in Table 13 for the wavy rolls solutions.

Eigenvalues along stripes (2, 2)

Recall that R2,2 solutions have the form (0, 0, 0,w) with w2R (Table 12).
Using the truncation up to third-order of the restriction of F to Fix(h�2i)¼R4 given by (5.7),

the Jacobian along (0, 0, 0,w) with w2R is

�� �þD1w
2 þ � � � A1wþ � � � 0 0

A1wþ � � � �� �þD1w
2 þ � � � 0 0

0 0 �þ �þD2w
2 þ � � � 0

0 0 0 �þ �þ 3C2w
2 þ � � �

0
BBBBB@

1
CCCCCA;

where �¼��C2w
2
þ � � �. It is easy to get the eigenvalues listed in Table 12 for the isotropy

subgroup R2,2.
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