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An interesting class of physical systems are those that exhibit local gauge symmetries: internal invariances that can be 
implemented independently at any space-time point. Systems in which these symmetries are spontaneously broken exhibit 
remarkable properties such as superconductivity, and if such systems also possess spatial symmetry, pattern formation can 
accompany the gauge symmetry-breaking. We conduct a careful analysis of a well-known example of this phenomenon: the 
formation of the Abrikosov vortex lattice in the Ginzburg-Landau model of Type-II superconductors. The study of this 
system has a long history and our principal contribution is to put the analysis rigorously into the context of steady-state 
equivariant bifurcation theory by the proper implementation of a gauge-fixing procedure. This example may be typical of the 
way that gauge and spatial symmetries intertwine to produce spatial patterns. 

1. Introduction 

In this article we wish to study the bifurcation 
behavior  in the G i n z b u r g - L a n d a u  equat ions us- 

ing the methods  of  bifurcation theory  in the pres- 

ence of  both  spatial and local gauge symmetries. 
The  original G i n z b u r g - L a n d a u  equat ions [6] are 

a model  for gauge symmetry breaking in super- 
conductivity and are formulated  in terms of  
two unknowns:  the electromagnetic vector potent- 
ial A which is a mapping  of  R 3 ~  R 3, and the 

Cooper pair wave function ~b which is a mapping  
of  R 3 --, C. The  main qualitative feature  of  these 

equat ions is that  they are gauge, Eucl idean and 
time-reversal invariant, and it is this feature  that  
we use to study the existence of  equilibria near  a 
"trivial" invariant equilibrium. 

It is well known that  equat ions with Eucl idean 
equivariance, such as the Boussinesq equat ions 
which model  convection, support  spatially peri- 
odic steady-state solutions and that  the origin of  

these solutions can be t raced to the Eucl idean 

symmetry [9, 4]. It is also known that  the 
G i n z b u r g - L a n d a u  equat ions support  solutions 

with a type o f  spatial  periodici ty,  cal led 
Abrikosov 's  vortex lattice [1, 10]; these states have 

also been  observed in experiments  [5]. A reason- 

able conjecture is that  the spatial periodicity in 
Abrikosov's  solution arises for the same reason 
that  spatially periodic solutions to the Boussinesq 
equat ions arise. This conjecture is false. What  we 

will show in section 6, however, is that  bifurcation 

problems having both  Abel ian gauge symmetries 
and Eucl idean invariance typically reduce  to a 

bifurcation analysis ei ther  like that  which leads to 
rolls and hexagons in the Boussinesq equat ions or 
like the one that  we will describe that  leads to 
Abrikosov 's  vortex lattice in the G i n z b u r g -  
Landau  equations.  

In this article we follow and build on a bifurca- 
tion analysis of  Lasher  [12] and Odeh  [13] to show 
how the spatial periodicity in Abrikosov's  solu- 
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tion arises. The story itself is based on an inter- 
esting utilization of both the gauge and spatial 
Euclidean symmetries. Making this connection 
precise in the mathematical sense will allow us to 
use standard techniques to study bifurcations 
found in the Ginzburg-Landau equations. 

The setting in which Abrikosov's solution oc- 
curs is the following. One assumes that in the 
interior of a horizontal plane layer of (possibly) 
superconducting material, the observed fields are 
constant in the vertical direction. One also as- 
sumes that a magnetic field is applied to the 
plane layer in the vertical direction. What is 
observed is that when the strength of that mag- 
netic field is large the material is not supercon- 
ducting, but when that strength is decreased 
slowly to a temperature lower than some critical 
temperature,  a bifurcation to superconductivity is 
observed. Moreover, depending on the value of a 
certain parameter  X, the Ginzburg-Landau pa- 
rameter, when this transition to superconductivity 
occurs either the magnetic field is excluded (the 
Meissner effect or Type I superconductivity) or 
the magnetic field forms a hexagonal lattice of 
vortices (Type II superconductivity). In our dis- 
cussion here we focus only on Type II supercon- 
ductors. 

The consequence of our assumption of inde- 
pendence of the fields in the vertical direction is 
to reduce the Ginzburg-Landau equations to 
equations whose unknowns are defined on the 
plane rather than in three-dimensional space. Of 
course this reduces the Euclidean symmetry to 
two dimensions as well. 

The main analytic question concerns how we 
can reduce the question of bifurcation of equilib- 
ria in the Ginzburg-Landau equations to a 
finite-dimensional bifurcation problem. We now 
give an overview of this process. 

Abstractly, the bifurcation problem we con- 
sider is finding new critical points of the 
Ginzburg-Landau functional (restricted to two 
dimensions, as noted previously) as the strength 
kex t of the external magnetic field is varied. We 
look for these critical points near the "trivial" 

non-superconducting state where the wave func- 
tion ~b is 0 and the electromagnetic vector poten- 
tial A is just the potential of the external mag- 
netic field. As we discuss in section 7 the external 
magnetic potential for a constant external field 
may be written in complex coordinates (after a 
preliminary gauge transformation) as - ikext~,. 

The major assumption that we make is that we 
are going to look only for critical points that 
correspond to fields whose observables are spa- 
tially doubly periodic. Of course, when we make 
this assumption we also have to choose the lattice 
S a on which this double periodicity is to be ob- 
served. We call fields whose observables are S a- 
periodic gauge Sa-periodic fields; these fields are 
defined and discussed in section 3. The external 
magnetic potential is gauge Sa-periodic for any 
lattice .~.  

Since the Ginzburg-Landau functional has 
both gauge and Euclidean symmetr ies-  so that 
any state that is gauge equivalent or Euclidean 
equivalent to a critical point is also a critical 
p o i n t - w e  may first perform preliminary gauge 
equivalences to specialize the form of A. This 
procedure is called fixing the gauge. The symme- 
tries and their precise actions on the fields ~b and 
A are described in section 2, and the gauge fixing 
procedure is described in section 4. The phrase 
"gauge fixing" is common in the literature and we 
wish to stress that our notion of gauge fixing is 
stronger in a way that we now describe. Most 
calculations in non-relativistic electrodynamics 
are done in the so-called Coulomb gauge, which 
is defined by divA =0 .  In fact this is only a 
partial f ixing-since it leaves an infinite dimen- 
sional local gauge group generated by the har- 
monic functions. We regard the gauge as fixed 
only when the residual gauge symmetry is a finite 
dimensional Lie group. In order to perform a 
bifurcation analysis we need m o r e -  we need the 
total symmetry group consisting of both residual 
gauge and spatial symmetries to form a finite 
dimensional compact Lie group. See ref. [9]. 

The main result on gauge fixing (see theorem 
4.1) is that after a preliminary gauge transforma- 
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tion any gauge .~-periodic field may be assumed 
to have the form where ~b is an Sa-theta function 
(see definition 4.2) and A is the sum of an 
-£a-periodic, divergence free, mean zero field and 
-ik£,  for some real constant k. That is, we can 
assume that the Ginzburg-Landau potential is 
defined on 3-~ × ~-~_~ × ~ where 3-_~ is the space 
of Sa-theta functions; ~-~.~ is the space of .~-peri- 
odic, divergence free, mean zero fields; and k is a 
constant. There are, however, some intrigues as- 
sociated with this constant k. 

The proof that gauge fixing is possible depends 
on being able to solve Laplace's equation in a 
parallelogram using non-standard boundary con- 
ditions (that generalize periodic boundary condi- 
tions). Although the proof of existence and 
uniqueness of solutions uses methods that are 
known in PDE theory, the actual theorem seems 
not to have been stated in the literature. The 
proof of this result is included in an appendix 
co-authored by Roland Glowinski and Helen 
Lopes. 

The total field A may have a part that is 
externally applied. By hypothesis we assume this 
part to be spatially constant. Thus the constant k 
is actually the sum of two constants kex t -  the 
strength of the external magnetic f i e l d - a n d  
kin t -  the strength of an internally induced field. 
A remarkable feature of the constant k is that it 
is fixed by the lattice .~; this point is discussed 
fully in section 5. 

Gauge fixing allows us to make a rigorous 
reduction to a bifurcation problem in finite di- 
mensions; basically the domain of the function 
spaces 3-~ and ~ are now compact so that 
integration may be properly defined. Next we 
discuss what fields we allow to vary in our varia- 
tional procedure. Basically we consider perturba- 
tions of (0, 0) in J-~ x ~'.z and perturbations of 
kin t. We allow this last perturbation by fixing the 
geometry of the lattice S Q (that is, by considering 
only hexagonal lattices) and then varying the size 
of the lattice. This allows k and hence kin t to 
vary. The variational formulation of the Ginzburg-  
Landau equations is given in sections 7 and 8. 

The actual bifurcation problem that results de- 
pends on the linearization of the Ginzburg-  
Landau equa t ions-  which is presented in section 
9. Much of the bifurcation analysis then depends 
on the kernel of the linearized Ginzburg-Landau 
equations at the point of bifurcation. When sym- 
metries are present we may expect these symme- 
tries to act irreducibly on the kernel. Indeed, 
since both the Euclidean group and the group of 
gauge transformations are non-compact we may 
expect infinite dimensional kernels. Because of 
the compactification given by the gauge fixing 
only a small number of these symmetries remain. 
Indeed the total remaining symmetries (essen- 
tially) form the group 0(2); there are the global 
gauge transformations (S ~) and a reflectional 
symmetry (associated with the time-reversal sym- 
metry). These residual symmetries are discussed 
in section 6. 

The end result of this reduction procedure is 
that the expected bifurcation is a steady state 
bifurcation with 0(2)  symmetry. That  is, the ker- 
nel should be one or two-dimensional, and since 
we are expecting new solutions that break the 
global gauge symmetry we expect a two-dimen- 
sional kernel. This is what happens and the ac- 
tual finite dimensional bifurcation problem is 
actually quite easy to analyze. The resulting 
branch of solutions consists of the Abrikosov 
vortex lattice solutions. This analysis is presented 
in section 11. 

2. The symmetries 

The Ginzburg-Landau equations are usually 
derived via a formal variational procedure ap- 
plied to an appropriately constructed free energy 
density. One requirement on this density is that it 
must be both Euclidean and gauge invariant. We 
begin by presenting these symmetries. Note that 
our assumption that the fields are independent of 
the vertical direction allows us to reduce the 
space variables to the plane. In this plane we 
shall use complex notation, that is, we identify 



E. Barany et al. / Bifurcations with local gauge symmetries 39 

~2=~ C. Indeed, as we will see below, A also 
becomes a two-dimensional vector function; that 
is, a map of C - )  C. We indicate this by changing 
A to ~¢ at this point. To realize the reduction we 
d e c o m p o s e  R 3 ~ R 2 ~ ~. If  X = (Xl, X2, X 3) ~ R 3, 

then the first two coordinates correspond to R 2 
and the third component  to R. We identify R E ~ C 

by the construction z = x 1 + ix 2 ~ C. 
The Euclidean and gauge symmetries act on 

the fields ¢ and s¢ introduced previously. If  we 
let z be in C, then the Euclidean symmetries are 
defined as follows. Elements R ~ 0(2)  act by 

R .  ( ¢ ,  ..~')( z)  = ( ¢ (  Rz ) ,  R- l ,  aC( Rz)  ) 

while translations t ~ ~ 2  act by 

t - ( ¢ , . ~ ¢ ) ( z )  = ( ¢ ( z  + t ) , z C ( z  + t ) ) .  

constant. Note that in complex notation we may 
replace the gradient by the partial derivative a~. 
Physically, gauge symmetries are deemed unob- 
servable, and all measurable quantities must be 
gauge invariant constructions of ¢ and ~ ' .  Exam- 

ples are curl(~¢) and I¢1 z. 
There  is one final symmetry, the time-reversal 

symmetry, that acts by 

• . ( ¢ ,  = 

This is the standard time-reversal transformation 
for quantum systems, and does correspond to a 
symmetry of the t ime-dependent  Ginzburg-  
Landau equations when coupled to the transfor- 
mation t ~ - t. 

To conform with standard notation we write the 
field ~ ( z ) = g e l  i.~¢,2 where ~¢1 and ,J2~ ¢2 a r e  

real-valued functions. In this notation the action 
of R ~ 0(2)  is generated by the following: 

0" ( ¢ ,  (Z) = ( ¢ ( e  i° z ) ,  e i° ,JaC(e is z ) ) ,  

0 SO(2) ,  

K. ( ¢ ,  = 

where Kz = 2  is complex conjugation. In these 
coordinates we also have the following identities 
from vector analysis which are useful in what 
follows: 

div(,a¢) -- 2(0z.~ + Ova), 

[curl(~¢) I = 21 az.~7- 0~dl (2.1) 

The gauge symmetries of the Ginzburg-Landau  
equations are the so-called Abelian U(1) gauge 
symmetries, whose action we now describe. De- 
fine the action of a differentiable function g: 
C ~ R on ( ¢ , A )  by 

g" ( ¢ , d )  = (exig ¢,s~" + grad( g) ). 

where the Ginzburg-Landau  parameter  X is a 

3. Gauge de-periodicity 

Our goal is to look for spatially doubly periodic 
extrema to the Ginzburg-Landau  free energy, 
particularly for those solutions whose double pe- 
riodicity is supported on the hexagonal lattice. 
We do not care whether  the solutions are actually 
doubly pe r i od i c -on ly  that the observables are 
doubly periodic. With this in mind we make: 

Definition 3.1. Let de denote a planar lattice. A 
state (¢,  ~¢) is gauge de-periodic if for every 
t ~ d e  the translated state (¢,  ~¢)(z + t) is gauge 
equivalent to (¢ ,  .~¢)(z). 

In this section we discuss some of the generali- 
ties of gauge .~-periodicity. We begin by describ- 
ing the lattice de  more precisely. Two-dimen- 
sional lattices have bases consisting of two vec- 
tors; we shall only consider here those lattices 
whose bases consist of vectors of  the same length. 
Moreover, after rotation, we may always assume 
that the lattice de has a basis vector that is real: 
Thus we assume that .Z~ is generated by r ~ 
and s = r e i°. 
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Note that definition 3.1 is satisfied if the two 
translated states (~b, ~¢)(z + r)  and (4,, ~ ) ( z  + s) 
are gauge equivalent to (~b, sc')(z). 

We now show that even in this generality there 
is a restriction on the form that the gauge trans- 
formations can take. This restriction is called the 
Legendre relation in the mathematics literature 
[11] and corresponds to the fluxoid quantization 
condition in the physics literature [15]. Suppose 
that (~b, ~ ) ( z )  satisfies definition 3.1. Then there 
is a family of functions gt: C ~ R for each t ~ . ~  
such that 

Lemma 3.2. For any s, t ~ . ~  we have the Legen- 
dre relation 

K s , t  = 2 ; n ( s , t )  

where n is an integer-valued, antisymmetric, bi- 
linear form defined on S ~'. 

Proof. By construction the constant Ks, t is real- 
valued, antisymmetric and an integer multiple of 
2~r/X. We claim that Ks. t is also bilinear. Eq. 
(3.3) implies 

¢b( z + t) = exig'(z) d~( z ), 

~¢(z + t)  =.~¢(z) + Ozgt(z) .  

(3.1) 

(3.2) 

The constant X is introduced so that the form of 
gauge .~-periodicity defined here will be consis- 
tent with the units we choose for the Ginzburg-  
Landau potential described later. 

It follows from (3.1), (3.2) that the gauge trans- 
formation associated with translation by the lat- 
tice vector s + t is the same as the one obtained 
by first translating by s and then by t. Hence if 
~b(z) is non-zero, then (3.1) implies 

g S + t ( z ) = g t ( z + s ) + g S ( z ) + C s . t  (3.3) 

Kr+s,t(O ) = g t ( r  +s)  +gS(r )  +gr(O)  

- g S ( t  + r) - g r ( t )  - g t ( O ) .  

A direct calculation shows that 

Kr+,,t(O) = Ks, t (r)  + K~,t(O ) . 

Since Ks, t(z) is actually constant in z, it follows 
that 

Kr+s ,  t = Ks ,  t + Kr ,  t ,  

which establishes the claim. [] 

Note that the space of real-valued, antisymmet- 
ric, bilinear forms on R 2 is one-dimensional. 
Hence, we can also write 

for some constant Cs, t = (2rr/x)ms, ,  
is an integer. 

It follows that if we define 

g s , t ( Z ) = - g t ( z + s ) + g S ( z ) ,  

then (3.3) implies 

Ozgs, t = Ozgt, s. 

where ms, t 

(3.4) 

K,. t = ai(  si - gt ) 

for some real scalar a. We will see in section 5 
that a is proportional to the strength of the 
external magnetic field and so Ks, t is propor- 
tional to the magnetic flux through a parallelo- 
gram spanned by s and t. Thus the Legendre 
relation expresses the condition that the flux 
through the parallelogram is quantized. 

Hence (3.4) implies that for fixed s and t 4. Fixing the gauge 

Ks,t - g s , t  - g t , s  = C t , s  - Cs,t 

is a real constant. We now verify: 

(3.5) Since the Ginzburg-Landau functional is gauge 
invariant we may perform preliminary gauge 
transformations to specialize the form of ,a¢ and 
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~b. Recall that r ~ R and s = r e i° are assumed to 
be a basis for the lattice .~.  

harmonic function r/ and a real number k such 
that 

Theorem 4.1. Suppose (~b,~ ¢) is gauge _W-peri- 
odic. Then (~b,~¢) is gauge equivalent to (~b, 

+ C), where 

(a)  ~ is Sa-periodic with mean zero, 

(b) d i v ( ~ )  = 0 

(c) C(z)  = -ik,~ for some real number k, 

(d)  ~b(z +t)  =eXk(Jz-t*)fb( z) for t=r  and t=s.  

~¢(z)  = ~ ( z )  " ik£" - 17z(Z), (4.1) 

where ~ is _W-periodic. Our strategy is to first 
find k and then rl. The function ,~ is then 
determined by solving (4.1) for ,~. At that point a 
calculation will show that ,~ is actually .W-peri- 
odic. 

Recall that gauge Z-periodicity implies that 

,W(z + t)  =~¢ (z )  +gt ( z )  

Since 9 is .W-periodic we may average ~ over 
any fundamental cell of the lattice and get the 
same answer. This number is the mean of ~ .  We 
denote the space of _W-periodic, divergence free, 
mean zero ~ by a~_~. 

for all t ~S".  Henceforth we assume that the 
functions g '  are given; since div(,W) = 0 the func- 
tions g t are harmonic. 

Assume now that ~" has the form given in 
(4.1). Coupling this form with gauge .~-periodic- 
ity leads to 

Definition 4.2. A function ~b is an .W-them func- 
tion if th satisfies theorem 4.1d. We denote the 
space of .~-theta functions by 3-.~. 

Remark 4.3. Eq. (2.1) implies that cu r l (C) - -4k ;  
hence k is related to the magnitude of the ex- 
ternal magnetic field. In this way we may think 
of k as the bifurcation parameter  in the 
Ginzburg-Landau equations. It is noteworthy that 
this parameter  appears naturally in the decompo- 
sition given by theorem 4.1. Indeed, cu r l (~ )  may 
be interpreted as representing the internal mag- 
netic field. 

Proof of theorem 4.1. Step 1. The first step in this 
proof is to find a gauge equivalence that makes 
.a¢ divergence free. To do this we need to find a 
globally defined function p such that A p =  
div(.W). This is possible; hence the gauge equiva- 
lence ~¢ ~ ¢ -  Pz transforms ~¢ to a divergence 
free field. We now assume that ~ is divergence 
free. 
Step 2. Next we show that (~b, ~¢) is gauge equiva- 
lent to (Oh, ~ - ik£,) where ,~ is divergence free 
and 2-per iodic .  To do this we need to find a 

r / ( z )  - r / (z  + r)  - ik(Pz - r2) -{-g r = g r ( z ) ,  

(4.2) 

~7( z) -~7( z + s) - i k (  g z - s2 )  + Ks=gS( z),  
(4.3) 

where K r and K s are arbitrary constants. We can 
now solve for k explicitly. Just evaluate the ex- 
pression 

(4.2)(  z = 0) - (4.2) ( z  = s) 

- (4 .3 ) (z  = 0) + (4 .3 ) (z  = r )  

to obtain 

k = gr(O) _gr ($ )  __gS(O ) 
4 Im( s) - 4Im( s) ' 

(4 .4 )  

where the second equality follows from (3.5). 
We let W be the unit cell of the lattice Sa; that 

is, 

W= {xr +ys :  O_<x, y_< 1}, 

where r, s are basis vectors for So. 
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Next observe that if the harmonic function r / i s  
defined on the unit cell ~ ,  then we can use (4.2), 
(4.3) to define 7/ on the entire plane. Identity 
(3.3) will guarantee that the extended r/ is 
uniquely determined. This is checked by verifying 
that the double extensions r/((z + r)  + s) and 
r/((z + s) + r)  are equal. To carry out this calcula- 
tion begin by using (4.2), (4.3) to compute 

rl( ( z + r)  + s) = ~l(z)  - g S (  z + r)  - -gr(  z )  

-- i k [ ( ?  +S)z-  (r + s ) £ ' ]  

- ik (gr  - s f )  + g  r + K s ,  

~7(( z + s) + r)  =r/(  z )  - g r (  z + s) - g S (  z )  

- i k [ ( ?  +g)z-  (r + s ) £ ' ]  

- i k (  ?s - rg) + Kr + K s. 

It follows that r/((z + r)  + s) = "q((z + s) + r)  if 

K,,~ = 4k Im(~s),  

where Kr, s is defined in (3.5). Here  we use the 
fact that Kr,~ is independent of z. The validity of 
this equation follows directly from (4.4). 

We have reduced the question of finding -r/ to 
the problem of finding a harmonic function r/ on 
ft. We now show that r/ must satisfy certain 
non-standard boundary conditions on 0~. We 
make this point precise, as follows. Define the 
harmonic functions 

h r ( z )  = g r ( z )  + ik(?z  - r~ ' )  - K r ,  

hS( z )  = g S ( z )  + i k ( g z - s ~ )  - K  s. 

Note that h r and h s are themselves harmonic 
functions. In terms of the functions h r and h ~ 
equations (4.2), (4.3) for r /become  

tions 

~7( ys ) - n(  ys + r)  = hr ( ys ) , 

n(  xr)  - ~q( xr + s) = h~( xr)  

(4.7) 

(4.8) 

on a~. 
Observe that (4.5), (4.6) imply that 

h r ( z + s )  - h r ( z )  = h S ( z + r )  - h S ( z ) .  (4.9) 

The existence of a harmonic function r/ on c~ 
that satisfies the boundary conditions (4.7), (4.8) 
is proved in the appendix. This proof relies on 
the identity (4.9). The proof of uniqueness and 
smoothness of r/ up to the boundary of ~' (which 
is needed to make the extension of "r/to the plane 
described above harmonic) relies on specifying 
boundary conditions on the normal derivatives of 
r/. These conditions are obtained by taking the 
normal derivatives of (4.5), (4.6). This proof of 
uniqueness and smoothness, which is also given 
in the appendix, relies on the fact that h r and h s 
are globally defined harmonic functions. 

Finally, as indicated previously, we define 
by (4.1) and calculate that ~ is actually _~-peri- 
odic. 
Step 3. Next we apply a linear gauge equivalence 
(that is, a gauge equivalence in which g ( z )  is 
linear) to ensure that ~ has zero mean. 
Step 4. The last step in the proof of theorem 4.1 
is the verification of part (d). 

We begin by using the fact that (~b, ~ + C) is 
gauge .~-periodic to show that 

( ~  + C) (  z + t) = ( ~  + C ) ( z )  + a z g t ( z ) ,  

where g t ( z )  is a linear gauge. Indeed, a calcula- 
tion shows that 

azgt( z ) = - i k t .  

~7(z) -~q(z +r) =hr(z), 

n ( z )  - n ( z  + s )  = h S ( z ) .  

(4.5) 

(4.6) 

It follows that 

g t ( z )  = - i k ( i z - t S )  +fit ,  

It follows that r /mus t  satisfy the boundary condi- where •t is a real constant. 
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The gauge .~-periodicity now implies that equation may be rewritten as 

~b( z + t)  = e ixg'cz) ~b(z) 

= eXk(~z- tr)eixp,  ~ b ( z ) .  

To verify part  (d) of the theorem we perform a 
transformation that allows us to set fir and /3s to 
zero. The transformation that we use is a compo- 
sition of a linear gauge transformation and a 
translation. 

More precisely, let 

h " ( z )  = ~ z + a 2  

and let p be the composition obtained by first 
applying the gauge transformation h ~ and then 
the translation u. A calculation shows that if p is 
to preserve the form ~ -  ik2, where ,~ has zero 
mean, then 

Im(~u)  = fit 
4 k '  

which is easily solved for u. [] 

5. The lattice s ize 

We begin with the following: 

R e m a r k  5.1. Theorem 4.1d has the consequence 
of determining k from the size of  the lattice _~. 
In particular, this means that k is an invariant of 
a gauge .~-periodic field. 

Proof.  Suppose a basis for the lattice S ° is given 
by {r, r e ~°} for some angle 0 < 0 < "rr and some 
length r > O. In the notation of (3.1), 

a = - i k u .  g t (  z ) = - k i (  iz  - ~.t ) .  

For notational convenience we define Hence by (3.5) 

qU( z )  = h'~( z )  = i k ( ~ z  - u 2 ) .  Ks,  t = 2ki (g t  - s t ) .  

We can now explicitly compute 4~, the result of  
the action of p on ~b, as 

4~(z) = e ixq'(z) th(z + u) .  (4.10) 

A computation shows that 4~ transforms by 

fb( z + t )  = eixq"(z+t) ~p( z + u --1- t )  

= e xk(~z-t~)  dp(7.) e xk[2(~u-m)]+ixp,. 

(4.11) 

Theorem 4.1d will follow if u can be chosen so 
that 

2 k ( [ u  - try) + iB ,  = 0 

for the two basis vectors r and s. Indeed, this 

It now follows that 

Kr,re~O = - 4 k r  2 sin O. 

Lemma 3.2 implies that 

-n ,B"  

k = 2 x r Z  sin 0 ' (5.1) 

which determines k from the length of the lat- 
tice r. [] 

We now assume that we will be looking for 
gauge .2°-periodic extrema of the Ginzburg-  
Landau functional that satisfy (5.1) with n = - 1. 
Indeed, minima of the Ginzburg-Landau  func- 
tional satisfy this property at the bifurcation point. 

Identity (5.1) has several implications for the 
structure of the bifurcation problem we solve 
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later which are worth mentioning here. As noted 
previously, we will show that the strength of the 
external magnetic field determines k. Once k has 
been fixed the size of the lattice 5¢ that will 
support .2"-periodic solutions to the Ginzburg-  
Landau equations is also determined. (Here we 
assume that the material constant X and the type 
of the lattice 0 have been fixed.) 

We note here two mathematical observations 
that guarantee that k cannot vary once the 
strength of the external magnetic field is chosen. 

L e m m a  4.2. The number k is an invariant of 
gauge equivalence. 

Proof. Gauge orbits of gauge .2a-periodic pairs 
(~0, ~¢) are connected. By continuity and (5.1) the 
number n must be constant along gauge orbits. 
Hence k cannot vary along a gauge orbit. [] 

L e m m a  5.3. Let (~O,,J~) be a one parameter  
family of gauge .~-periodic fields, with the lattice 
.2 a fixed. Then the number k obtained by gauge 
fixing is constant in r. 

Landau equations on a fixed lattice .2 a where 

1 /  2 ~ . .  (5.2) 
r =  X V s i n 0  ' 

that is, where k = 1 ~X. This will be accomplished 
by a rescaling of the space variables in the 
Ginzburg-Landau equations that depends on k. 

We end this section with a discussion of the 
lattice transformations on the space 3-.~. 

L e m m a  5.4. The complete lattice transformation 
law for functions in 3-.z is 

(b( z + t )  = ( - 1) kt e-2xklm(t~)iqb( z ) ,  

where t = kr  + l r e  i° is in .ow. 

Remark  5.5. We denote kl  by ( t )  and call ( -  1) <t> 
the parity of t. 

Proof. We assume inductively that ~b transforms 
as  

Proof. Since the lattice .2 a is fixed in this defor- 
mation the number k is determined by (5.1) 
independently of ~'. [] 

Next we discuss how the bifurcation analysis 
will proceed. We denote the Ginzburg-Landau 
functional abstractly by V(qs, og). Formally we 
think of using variational theory to find critical 
gauge .~-periodic fields (~b,5~') for this func- 
tional. However, these fields are defined on the 
whole plane and it is difficult to carry out this 
plan rigorously since the variational process in- 
volves integration of quantities like curl(~ ')  over 
the whole plane. To remedy this we fix the gauge 
and reduce (~O, ~¢) to (~b, ~ -  ik2). This yields a 
functional involving integration only over a fun- 
damental cell of the lattice .~.  Hence, this varia- 
tional problem can be completed rigorously. 

Later, in section 7, it will be mathematically 
convenient to look for solutions to the Ginzburg-  

~b( z + t )  = •t e -2xk  Im(tY.)i t~(Z), 

where •t = + 1. Indeed, we know that this for- 
mula is valid for the basis elements of .2 a with 
• = 1. We now compute: 

6 ( z  + t I + t2) 

= et2 e -  2xk lm(t2(z-'~l)) i ~ (  Z + t 1) 

= • t2et ,  e - 2 x k  Im(t2(z--~0)i ~ ( Z )  e -2xk  lm(tl~)i" 

If we set t I = m l r  + n l r  e i° and t 2 --- m 2 r  q- 
n2r e i°, then we find 

etl  +t 2 = 6tl•t2 ( --  1) mln2--m2nl. 

Here we use the restriction on r (5.1). The result 
now follows. [] 
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6. Symmetries of the restricted spaces 

In sections 7 and 8 we show that the 
Ginzburg-Landau functional may be thought of 
a s  

~' :  ..Sr_~ X ~_~X R ~ [~, 

where 3-_~ is the space of _~-theta functions 
defined in theorem 4.1d, ~ is the space of 
divergence free, mean zero, _~a-periodic map- 
pings, and R is the space of C's parametrized by 
k. On these spaces we can perform a reduction 
to finite dimensions. Before doing that, we wish 
to discuss which of the symmetries introduced in 
section 2 still operate on ff-_~ × ,~:e x R, the space 
on which the operator T" is defined. We will also 
discuss how these symmetries can be expected to 
affect the bifurcation behavior of ~ .  

We begin by observing that the global gauge 
symmetries leave these spaces invariant for any 
lattice .~.  Recall that the global gauge transfor- 
mations are the gauge symmetries for which g is 
constant, and such transformations act by 

O.($,~,k) =(exi° gb,~,k). 

We let S 1 denote the circle group of global gauge 
symmetries. 

The existence of these global gauge symmetries 
on the restricted functional ~" leads to a funda- 
mental dichotomy in the expected bifurcation be- 
havior of equations like the Ginzburg-Landau 
equations. Roughly speaking, these symmetries 
force the bifurcation behavior to be either like 
the one that produces Abrikosov vortex lattice 
solutions in the Ginzburg-Landau equations or 
like the one that produces roils and hexagons in 
the Boussinesq equations. This dichotomy is seen 
by looking at the action of S ~ on the kernel of the 
linearized Ginzburg-Landau equations, as we 
now explain. 

We denote the Ginzburg-Landau equations by 
g '(~b, ,~,k) = 0, where g ' =  VT'. Since ~r" is in- 
variant under S 1, ~' must commute with this 

symmetry. It follows that at a bifurcation point 
(0,0, k), which is fixed by S I, the kernel K of 
(dg ' )  must be SLinvariant. 

We claim that 

K = K,t , • K~ ,  

where K6 consists only of kernel vectors of the 
form (~b,0) in 3 . ~ ×  ~_~, and K~ consists of 
kernel vectors of the form (0, ~'). This decompo- 
sition follows since S ~ acts trivially on K~ and 
nontrivially on each nonzero vector in K~. 

Now observe that all of the other symmetries 
listed in section 2 leave both spaces K6 and K~ 
invariant. It follows that for codimension one 
bifurcations we expect that (generically) the ker- 
nel K will equal either K~ or K~. We will show 
that in the former case it is natural to ex- 
pect bifurcations like those used to produce 
Abrikosov's vortex lattice, while in the latter we 
may expect bifurcations typical of those found in 
planar B6nard convection (with periodic bound- 
ary conditions). 

To verify the latter observe that the set of 
vectors V ~ =  {(0 ,~ ,k)}  is just the subspace of 
J-.~ × ,~_~ × ~ fixed by the global gauge symme- 
tries SL The space V~ is an invariant subspace 
for the nonlinear operator g', since fixed point 
subspaces are always invariant subspaces. It fol- 
lows that should K = K~ then the wave function 
~b is completely removed from the problem, and 
the bifurcation problem proceeds as if it were 
posed on the lattice S a with only the Euclidean 
symmetries present. That  is, just like the bifurca- 
tion behavior in the planar B6nard problem. See 
ref. [9]. 

Next we show that for the two planar lattices of 
real interest, the hexagonal and the square lat- 
tices, the group of symmetries leaving the space 
3-.zx~'_~ invariant is at least O ( 2 ) x Z  2 for 
the hexagonal lattice and the semidirect product 
0(2)  × D 4 for the square lattice. For each of 
these lattices, there is also a reflection symmetry 
(involving time reversibility) that does not com- 
mute with the global gauge group and that leaves 
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the space 3-.~ × ~ x ~ invariant. For the hexag- 
onal lattice this symmetry is 

T h e x =  * "x'R~/3, 

We now state the following. Let Gsymm be the 
group of symmetries that both leave the space 
3-~ × ~-~'.~ × ~ invariant and leave the trivial equi- 
librium ik2 invariant. 

and for the square lattice it is 

'7"square ~ * " K, 

where r is the reflection of the plane z ~ 2 and 
* is the time-reversal symmetry. These symme- 
tries act on (6,  ~ ,  k) by 

"rhex " ( 6 ,  , ~ ,  k ) ( z  ) 

= (6 (e  -`'~/3 Y . ) , - R . ~ / 3 9 ( e  - i ' ~ / 3 5 ) , k ) ,  

and 

 s,u.r¢ • ( 6 ,  k ) ( z )  = k ) .  

Together  the global gauge symmetries and these 
symmetries generate the group 0(2). 

In addition, there is a subgroup of the holo- 
hedry of the lattice that leaves the function spaces 
invariant. For the hexagonal lattice it is generated 
by the rotation through the angle "rr, that acts by 

ohex 

= ( 6 ( - z ) ,  k ) ,  

while for the square lattice it is generated by the 
1 rotation by ~rr, that acts by 

O's,:,,,.are = R.~ /,, " ( 6 , ~ ,  k ) ( z )  

= ( 6 ( i z ) ,  i ~ ( i z ) ,  k ) .  

Observe that these symmetries commute with the 
global gauge symmetries. Also, ~hex commutes 
with %¢x and these symmetries generate the 
group 0 ( 2 ) ×  7 2, as claimed. On the square lat- 
tice, however, ahe x (which is of order four) and 
rsq,ar¢ (which is of order two) do not commute. It 
is easy to check that these symmetries generate 
the group D 4. It follows that on the square lattice 
these symmetries generate the group 0 ( 2 ) x  D4, 
as desired. 

Theorem 6.1. For hexagonal and square lattices 
the groups of symmetries Gsymm are just the group 
of symmetries described above. 

It is a straightforward exercise to check that 
these symmetries have the desired properties; it 
is more difficult to show that these are the only 
such symmetries. In our discussion of the 
Abrikosov vortex lattice we use only the existence 
of these symmetries. For this reason we only state 
this theorem here without proof. 

Finally we discuss the implication of this theo- 
rem for the bifurcation behavior  of the 
Ginzburg-Landau equations. We expect in one- 
parameter (codimension one) bifurcations that 
the kernel K will be an irreducible representa- 
tion of the symmetry group Gsymm. (This has not 
been p r o v e d - b u t  is consistent with expected 
transversality properties of the Ginzburg-Landau 
equations.) Moreover, the global gauge group S I 
must act nontrivially on K if K = K6 and hence 
dim K is even. Now the even dimensional irre- 
ducible representations of Gsymm are all two- 
dimensional for the hexagonal lattice and either 
two- or four-dimensional for the square lattice. 
Moreover, when dim K = 2 it follows that the 
expected codimension one bifurcation in the 
pitchfork of revolution which produces one non- 
trivial branch of (group orbits of) solutions. 

The remainder of this paper is devoted to 
setting up the Ginzburg-Landau bifurcation 
problem more precisely and checking that the 
Ginzburg-Landau equation actually satisfies the 
conclusions of this discussion. The one nontrivial 
branch of solutions is the Abrikosov vortex lattice 
solutions. 

We also note that when dim K = 2 there are 
some symmetries that must act trivially on K, 
since the largest compact group that acts faith- 
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fully on a two-dimensional space is 0(2). In par- 
ticular, this implies that the o- symmetries will act 
trivially on the eigenfunctions of such a bifurca- 
tion. We will verify this point in section 9. 

7. The variational formulation 

The Ginzburg-Landau  equations are derived 
formally using the so-called Ginzburg-Landau 
free energy. As we now show, this derivation is 
rigorous once one makes the ansatz of restricting 
to gauge _W-periodic fields. One can think of the 
Ginzburg-Landau  free energy as a mapping from 
the space of fields (~b, .a¢) to the space of map- 
pings from C ~ ~. 

To introduce the explicit form of the Ginzburg-  
Landau free energy, we return briefly to three 
dimensions. Since we wish to interpret our results 
as describing thermodynamic phase transitions in 
superconductors in the presence of an external 
magnetic field, we construct the Ginzburg-  
Landau free energy as the Gibbs free energy of 
nonrelativistic scalar electrodynamics. (Cf. ref. 
[15], section 8.3.) This can be written as 

g ' ( $ , A )  = ( ¼ V + A ) ~ b  z+EId,12+ ½lthl 4 

+ I V  x ( A  -Ao)l ~, (7.1) 

where  A = hin t + A 0. In electromagnet ism, 
curl(A) is the (physically observable) magnetic 
field, and curl(A 0) is the part  of the field that is 
externally applied. By definition cur l (h i ,  t) is the 
m a g n e t i z a t i o n - o r  the internal part  of  the mag- 
netic field. The constant X is the same as that 
which occurs in the gauge transformation law and 
is interpreted here as a material constant (like 
density). Recalling remark 1.5, this means that we 
will identify the decomposition A = A int + h 0 with 
the decomposition .~' = , ~  + C derived in section 
4, with h i n  t identified with ~ '  and A 0 identified 
with C. This will be seen explicitly below after the 
reduction to two dimensions. From the point of 

view of bifurcation theory, the field configuration 
(~b, A)  = (0, A 0) is the trivial solution from which 
the bifurcation will occur. Prior to gauge fixing 
this is a relative equilibrium consisting of a gauge 
orbit of fields equivalent to A 0. By hypothesis, we 
assume that A 0 describes a spatially constant 
field pointing in the vertical direction which upon 
gauge fixing can be written in complex coordi- 
nates as ~¢0 = - i k 0 L  Note that the symmetries 
defined above actually act on A; their action on 
A 0 and Aim follow naturally. 

Finally the parameter  E is a measure of the 
temperature and is proportional to T -  T c where 
T c is the critical temperature  of the superconduc- 
tor. For E > 0 the only extremum of the free 
energy density is the trivial extremum (~b, A ) =  
(0, A0). When E < 0, the possibility of supercon- 
duction occurs, as can be seen from the exis- 
tenced of the extremum (~b, A) = (x/Z- ~ ,0) when 
A 0 = 0. We wish to study bifurcation to supercon- 
ducting extrema as the strength of the external 
field is varied. For present purposes we assume 
that E < 0 and we choose the temperature  scale 
so that E = - 1 .  These are the units that were 
originally introduced by Abrikosov [2]. (This form 
of the Ginzburg-Landau  free energy is obtained 
from the form usually found in physics texts by a 
tempera ture  dependent  scaling of the fields and 
coordinates. Cf. ref. [3]) 

In the notation of section 2 the free energy 
density becomes 

'8"( qb, A) = 2 ( XOz +.~c)d) 2+ 2 ( ~Or +.~)ck 2 

- 14~12  + ½1~bl 4 

+ 4 a~( ,.~¢' -.J~'o) - c3~ ( . ~ -  J~o) 2 

+ 41 a3( ' - d 0 )  - az( h3 -h0 ,3) [  2. 
(7.2) 
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We now specialize to a two-dimensional system 
where 

~34, = ~3 "~ = ~3"~¢0 =A3 = 0, 

so that the free energy density is 

g ( 4 , , ~ ' )  2 ( i ~  2.{.. 2 ( i o  2 
= X z + ~ )  4, X ~ + f f ) 4 ,  

- 14)12 + ½14,14 + 4 0~(~¢ -.at0) 

__ 0z ( . ~ -  3~0 ) 2. (7.3) 

We now implement the gauge fixing procedure by 
making the ansatz that $' is defined only on the 
space of gauge -2a-periodic fields. Adopting the 
notation of section 4 and denoting the gauge-fixed 
free energy as ~ ,  we obtain 

and the free energy becomes 

~-(4,, ~ ,  1,) 

=2(ivSxk--xk-L + ~ ) 4 , 2  

+ 2 (il--xk---xk- Z + + ~ )  4, 2 - 14,,z + ½14,14 

+41 k ~ ( a ~ - a w ~ ) - 2 i ( k - k 0 ) l  2. 

(7.5) 

Let f~ be a fundamental cell for the lattice ~ .  
The variational functional is then: 

~(4 , ,~ ,  k) = f f  ~'/(4, + ~' , .~ + ~ ,  k) 
(7.6) 

7/( 4,,.~,k ) = 2 ( xaZ + 9 -  ik2)4, 2 

+ 2  ~ O ~ + ~ + i k z  4, 

- 14,12+ ½14,14 

+ 4 l O ~  - O z ~ -  2i( k - k0)12. 

(7.4) 

where (~', S '~) are arbitrary elements of J t  x ~ .  
Note that this integral converges since c~ is com- 
pact. The previous remark shows that the val- 
ue of the integral in (7.6) is independent of 
the choice of the fundamental cell c~. This now 
rigorously defines the variational problem which 
allows us to derive the Ginzburg-Landau equa- 
tions, which we do in the next section. 

The free energy (7.4) is equivariant under the 
action of the two-dimensional Euclidean group 
and is invariant under the two-dimensional gauge 
transformations. 

It follows from the Euclidean equivariance of 
~v- that translations in the lattice S a leave ~" 
fixed. With this observation we can set up a 
variational problem. Recalling that the size of the 
lattice is determined by k, it is convenient to 
rescale the complex coordinates so that the size 
of the lattice is fixed. In light of (5.1), an accept- 
able rescaling is to define w = kvrk-x - z, whence the 
size of the lattice is now X/'rr/(2sin 0) .  We also 
define 

8. The Ginzburg-Landau equations 

In this section we derive the Ginzburg-Landau 
equations as the equation for the critical points of 
the Ginzburg-Landau functional. First, we con- 
sider the determination of the parameter k in the 
context of the bifurcation problem. We are inter- 
ested in the loss of stability of the trivial state 
( 4 , , ~ )  = (0,0) as the strength of the external 
field is varied. It is convenient to begin by deter- 
mining the value of k in terms of k 0 in the trivial 
state. To do so, we require that 

~k ~o(O, o, I,) =o 

L+ = aw + w, L = 0 w - ~,  at the appropriate value of k. A simple calcula- 
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tion shows that this occurs for k = k 0, so that k is 
purely external, and the lattice is in fact deter- 
mined solely by the value of the external field at 
the bifurcation point. We now dispense with the 
distinction between k and k 0, and refer only 
to k. 

To proceed, we follow Lasher [12] and simplify 
the Ginzburg-Landau free energy by defining 

X X~ = X 
, I 

In these coordinates the Ginzburg-Landau free 
energy is simply 

v(,~, <e) = I( L _ -  i~),t/s I ~ + I (L +-  i~)~b 12 

- 2(1 - x)l@l" + ¼1@14 

+ 2x21a~,¢ - a ~ l  2. (8.1) 

where (~', g") ~ 3-~ × ,~'.~ and ~ is the funda- 
mental cell in the lattice S a. 

The Ginzburg-Landau equations are obtained 
by finding functions (~b, ~ )  for which 7/'~ = 0 for 
all (~', S~). Recalling that V is actually a function 
of (~b, a~O, a ~ ,  ~', aw~', a ~ )  and their complex 
conjugates, the total derivative of V is 

ff~( ov ov 
a(o~¢,) 

+ ~ ( o ~ : )  + c.c. 

ov (aw~)+ ov ) 
+ o(o.#-~y a ( a ~ )  ( o ~ )  + c.c. 

We digress briefly to discuss properties of the 
linear operators L +. Define the inner product  on 
complex-valued functions by 

(4~,g,)-ff~dxdy, (8.2)  

where c~ is the fundamental cell of the lattice .S a. 
A calculation verifies 

Using the inner product defined in (8.2) we 
obtain 

+ o(o~),a~ +c.c. 

L e m m a  8.1. 

(g,,  a=,~) = - % g , ,  4,) 

when ~b, ~b ~ 3-_~ or ~b, ~ ~ ~-~. 

(8.3) 

+ ~-~'ff + o(a.,~),o~ff 

)) + a ( a ~ ' )  , a ~  + c.c.  

It follows from lemma 8.1 that the adjoints of 
L+ and L_ are 

(L+)*  = - L _ ,  (L_)*  = - L + .  (8.4) 

In this notation the Ginzburg-Landau varia- 
tional functional is then 

Since qJ, ~" are Sa-theta functions and ~', S a are 
_~-periodic functions we may integrate by parts to 
obtain 

av av av [ )  + c.c. 
~";= ~ ' ° -~ (o - - f ¢ , )  ~a(o~¢,) '  

~(~',  ~ )  -- ffv(¢, + ~ ,  ~ + ~ ) ,  (8.5) 
aV av av  ) 

+ ~-~ - 0w o (0w~)  oF o ( a ~ a )  ' ~ + c.c 
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Upon substituting the form of V in (8.1) we 
obtain the Ginzburg-Landau equations 

To solve (9.3) we make a simple calculation. 
Indeed, let 

( L _ L + -  A ) ,  

= [ 1 ] , ] 2 +  le12 + i (~ ,L++ ~ L _ ) ] , ,  (8.6) 

, ( w )  = e-W~'sr(w); 

then 

a ~ '  = ---~1 [0(iaw - i~  + ~ ' ) ,  
8x 2 

+ , ( - i a w -  i~ + ~ ' )~  ] (8.7) 

9. The linearized equations 

We recall (5.2) that in the scaled variable w 
we are working on a lattice of fixed size 
r=v/~/(2sinO ) . To obtain the linearized 
Ginzburg-Landau equations one just sets the 
right hand sides of (8.6) and (8.7) to zero. As we 
shall see a steady-state bifurcation takes place in 
this equation when A = 0. 

At A = 0 we may rewrite the Ginzburg-Landau 
equations linearized about the trivial solution as 

L+,(w) = e-W~'O~:(w). 

It now follows t h a t ,  is a solution to (9.1) if ~: is a 
complex analytic function. 

Of course, we are looking for solutions , that 
are S:-theta functions. It is easy to check that , 
satisfies theorem 4.1(d) if ~: satisfies 

~(W + t )  = e(2W+t)i ~ ( w )  (9.4) 

for all basic vectors t ~ .~ .  Identity (9.4) just 
states that ~: is related to the third Jacobi theta 
function 03. Lang [11] shows that there is, up to a 
complex scalar, one such s c satisfying (9.4). 

It now follows that the kernel of the linearized 
Ginzburg-Landau equations when A = 0 is two 
(real) dimensions and has the form (cvo(w),O) 
where c ~ C and 

L_L+, = O, (9.1) 

a wj = o. (9.2) 

Solutions ~' to (9.2) must be quadratic in w 
and ~. Since these solutions are .~-periodic, they 
must be constant. Since they have zero mean, 
they must be identically zero. 

Next we observe that i f ,  is a solution to (9.1), 
then 

L + , = 0 ;  (9.3) 

the converse is trivially true. 
To verify (9.3) we observe that if L_L+¢ = 0, 

then lemma 8.1 implies 

0 = (L_L+O,O) = - ( L + , , L + , ) .  

Vo(W ) = e~,~w_~)03 ( r  ; e w  i0~} 

where 

n = o o  

o[W.eiO] ( 7  ) 3~ r ' ) = ~ exp (2nw + n2r e i°) . 
n ~ 4 o o  

See ref. [16]. 
Recall from section 6 that when the kernel is 

two-dimensional certain symmetries (trhe x and 
trsnuare) must act trivially. In figs. 1-3 we give 
contour plots of v 0 in the square and hexagonal 
cases which verify this point. (We also remark 
that this invariance can be obtained from the 
uniqueness property of the Jacobi theta function.) 
We also present contours of the absolute values 
of these eigenfunctions to illustrate that the ob- 
servables have the desired double periodicity. 
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Fig. 1. Hexagonal case: (a) real part, (b) imaginary part. 
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Fig. 2. Square case: (a) real part, (b) imaginary part. 
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Fig. 3. Absolute values: (a) hexagonal case, (b) square case. 
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10. The reduced variational structure 

One standard approach to determining the bi- 
furcation behavior of the Ginzburg-Landau 
equations is to perform a splitting Lemma reduc- 
tion on the Ginzburg-Landau functional and an- 
alyze the reduced potential defined on the kernel 
of the linearized equations. See refs. [7, 14]. Due 
to the SO(2) global gauge symmetry the reduced 
potential must have the form 

To prove this we must show that both coefficients 
in (10.3) have the same sign. Abstractly the for- 
mulas for these coefficients are 

ay,(O,  O) = ( I - E )  [dC (Vo) 

+ W,(O, 0))] 

and 

v ( z , A )  = a ( y , A ) ,  (10.1) 

where a: ~ × $ --) R is some smooth function and 
y = Izl 2. It is easy to see, however, that nontrivial 
critical points of (10.1) occur only when ay = O. 
To see this note that Vv(z ,  A) = 2ay(y,  A) z. 

It then follows that the bifurcation equations 
for the Ginzburg-Landau equations must have 
the form 

g( z, A) - ay(Izl 2, A)z = 0, (10.2) 

and that the expected bifurcation is just a pitch- 
fork bifurcation. Indeed, one only has to compute 
two numbers to check this; namely, 

ayy(0,0)  and arA(0,0 ). (10.3) 

Since the time-reversal symmetry implies that eq. 
(10.2) actually has 0(2)  symmetry, we may com- 
pute the numbers in (10.3) using a Lyapunov-  
Schmidt r educ t ion-  which is slightly easier to im- 
plement than the splitting lemma reduction. The 
numbers in (10.3) will be computed in the next 
section. 

ayy(O,O) = W,z(O,O)) 

+ 

where v 0 is the eigenfunction in the kernel of the 
linearized Ginzburg-Landau equations (dm~) is 
the mth derivative of ~ evaluated at the bifurca- 
tion point, E is the projection onto the kernel, 
and W is the implicitly defined function in a 
Lyapunov-Schmidt reduction. See ref. [8], p. 32. 

Since there is a trivial solution, I41,(0,0)= 0 
(ref. [8], p. 33 (3.22b)); hence the quadratic terms 
in ~' do not contribute to a,(0,0). Since the 
quadratic terms in ~'~¢ involve only cross terms 
with both a .~ and a 4) and the kernel vector c 0 
has a zero ~ component we see that (d2~)(v0, • ) 
= 0. Hence the quadratic terms do not contribute 
to the direction of branching of these equations. 

One now calculates that 

ayy(O,O) = - 3  f f l vo l  4 < 0  

and 

11. The branching of  Abrikosov's solutions 

We show now that the nontrivial branch of 
(Abrikosov's) solutions that bifurcate from the 
trivial uniform field solution appears for A < 0. 

ayx(O,O ) = - f f l v o l  2 < 0 .  

So both coefficients have the same sign, as de- 
sired. 
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Let r and s be linearly independent vectors 
and let h r and h s be two globally defined har- 
monic functions in the plane. Denote by ~ = 
~ ( r ,  s) the open parallelogram generated by r 
and s. (See fig. A.1). 

In this appendix we prove that there exists a 
harmonic function u in ~ ,  with the difference of 
u on opposite sides of the parallelogram given by 
restrictions of h r and h s. By supplying the differ- 
ences of normal derivatives and requiring that u 
has mean zero in ~ we obtain uniqueness. We 
then extend u to the whole plane by adding the 
given differences. The extension is harmonic and, 
therefore, smooth. 

More precisely, we will prove the following 
proposition. In the statement we use the notation 
above. 

Proposition 1. Let h '  and h S satisfy the compati- 
bility condition 

hr(z +s) - h r ( z )  =hS(z +r) -hS ( z ) ,  

for every z ~ •2. Then there exists a unique 
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/ 
C = C(r, s) 

T nr 

Fig. A.1. Parallelogram generated by r and s, with unit out- 
ward normals n r and n s. 

smooth solution u to the following problem: 

AU = 0  
u( s + tr)  - u(  tr)  = hS( tr)  

u(  r + ts) - u(  ts) = hr(  ts)  

Ou ( s + tr ) - Ou Oh ~ . . Onr -~r  ( tr ) = - ~  ( tr ) 

Ou Ou Oh ~ . . 
On----~s ( r + ts)  - - ~ (  ts) = - ~ (  ts) 

f u = 0 .  

in ~ ,  
f o r 0 < t <  1, 

for 0_<t_< 1, 

fo r0_< t  < 1, 

for 0_<t < 1, 

(1) 

Here  n r denotes the outward unit normal to the 
side of the parallelogram parametr ized by s + tr, 
and n s is the outward unit normal to r + t s ,  
0 < t < l .  

Moreover  u has a harmonic extension to all 
of R 2. 

This problem has a variational formulation: the 
solution is a minimizer of an appropriate  energy 
functional. The solution is originally obtained in 
the Sobolev space H I ( ~ )  and the boundary data 
is interpreted in the trace sense. Uniqueness of 
the minimizer is also easily obtained. The diffi- 
culty is regularity at the boundary. We first ex- 
tend the solution to adjacent parallelograms and 
show that the extension is smooth in the union of 
two such parallelograms. 

Hereaf ter  we will restrict our attention to the 
case r = (1,0) = e 1 and s = (0, 1) = e2; however, 
the proof  of the general case is identical since the 

precise geometry of the parallelogram is not used. 
The formulation of this specific case is as follows. 

Proposition 2. Let h e~ and h e: satisfy the compat- 

ibility condition 

h e , ( x , y +  l ) - h e , ( x , y )  

= h e 2 ( x  + 1, y)  - he2(x,  y) ,  

for every (x, y) ~ R 2. Then there exists a unique 
smooth solution u to the following problem. 

Au = 0  

u ( x ,  1) - u ( x , O )  =he2 (x ,O)  

U(1, y)  -- U(0, y)  = he ' (0 ,  y)  

in (0, 1) x (0, 1), 

for 0_<x < 1, 

f o r O < y <  1, 

~u ( x , 1 )  - Ou Ohe2(x,O ) 
0-y = 

for 0_<x_< 1, 

OU aU "0 3he1 
a x ( 1 , y )  - , y )  = --ff-x (0, y)  

f o r 0 < y  < 1, 

f( u ( x , y ) d x d y  = 0 .  (2) 
0,1) x(0,1) 

Moreover u has a harmonic extension to all 
of ~2. 

We will extend the solution u above by defin- 
ing it on an adjacent square to be the value of u 
on the "previous square" added to the value of 
the "difference function" on the previous square: 

u ( x , y )  = u ( x , y - 1 )  + h e 2 ( x , y - 1 )  

= u ( x -  l , y )  + h e ~ ( x -  l , y ) .  

Note that it is possible to compute u(x  + 1, y + 1) 
in terms of u(x ,  y) using two different paths: 

u ( x + l , y + l )  

= u ( x , y )  + h e ~ ( x , y )  + h e 2 ( x +  1 , y )  

= u ( x , y )  + h e 2 ( x , y )  + h e ' ( x , y  + l ) .  

Hence the need for the compatibility condition 
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he,(x, y + 1) - hel(X, y )  = he2(x + 1, y)  - 

he2(x, y). It is possible to obtain an example of a 
pair of harmonic functions which satisfy this by 
adjusting coefficients of two linear functions. 

The choice of conditions on the normal deriva- 
tives of u at the boundary of the square was 
dictated by the extension we made. 

The first step in the proof of proposition 2 is a 
lemma establishing existence and uniqueness of a 
minimizer for the associated variational problem. 

In what follows all restrictions of functions in 
H 1, and their normal derivatives, to the boundary 
of the unit square are to be interpreted in the 
trace sense. Given smooth functions fi ,f2 we 
define the admissible set ~¢ to consist of those 
functions v ~ Hi((0, 1) × (0, 1)) satisfying 

(a) f(o.l)×(o,l)v(x, y)dx dy = O, 
(b) v(1, y) - v(0, y) = f~(y), 
(c) v(x, 1) - v(x,O) =f2(x).  

Remark 3. If f l ( l ) - f l ( O ) = f 2 ( 1 ) - f 2 ( O )  then the 
admissible set .a¢ is nonempty. 

Lemma 4. Let f l ,  ]'2 and gi, g2 be given smooth 
functions. If ~ '  is nonempty then there exists a 
unique minimizer u ~ Hi((0, 1) × (0, 1)) of 

The next lemma will show that, for specific 
fm, fz, gl, g2 the minimizer of the variational 
problem above solves (2). The Euler-Lagrange 
equation satisfied by the minimizer is the Laplace 
equation. The minimizer automatically satisfies 
the boundary condition by definition of the ad- 
missible set; the only remaining task is to recover 
the normal derivatives. 

Let f l  be a domain in the plane with boundary 
F. Recall the following weak form of Green's 
formula: 

f nVvVudx= - fnvAudx + frv~n dS, (4) 

valid for every u in Hl ( f l )  with Au in L2(~'~) and 
for every v in Hi ( l ) )  (see pages 370-377 in ref. 
[1]). (The integral over F is, in effect, the pairing 
between H1/E(F) and H-1/2(F): the restriction of 
Ou/an to the boundary is, in the trace sense, in 
H-1/2(F) whereas the restriction of v, in the 
trace sense, is in nl/2( l")) .  

Lemma 5. Choose f l (Y )  = he'(o, y), f 2 ( x ) =  
hez(x, 0), g l (x)  = (Ohe2/OY)(X, 0) and g2(Y) = 
(Ohel/OxXO, y). Then the minimizer of (3) solves 
(2) in Hi((0,  1) × (0, 1)). 

l f( 0 [VvlEdxdy I[v] = 2 ,1)×(0,1) 

- folv( x ,O) gl( X ) dX 

- -  f0lu( 0, Y) g2(Y) dy  

o v e r ~  ¢. 

(3) 

Proof. First observe that the choice of f l  and f2 
satisfy the condition in remark 3 and hence ~¢ is 
nonempty. Let u be the minimizer of (3). The 
Euler-Lagrange equation can be computed by 
introducing the variation u + t~" for doubly peri- 
odic ~" (i.e. ~'(x,0) = ~(x, 1) and ~'(0, y) = ~'(1, y)); 
this assures that the variation remains in the 
admissible set. Thus u satisfies the following 
Euler-Lagrange equation: 

Proof. The proof of existence is standard since it 
is easily verified that I[ .]  is weakly lower-semi- 
continuous over ~¢ and the admissible set is 
weakly closed. Uniqueness follows by contradic- 
tion: if v i and v 2 are distinct minimizers then 
½(Cl + v2) is in the admissible set and I[½(v 1 + 
V2)] < ½/[Vi] + ½I[v2] which cannot hold. [] 

f( Vu • Vsrdx dy 
0,1) x(O, 1) 

= fol~'(O, y) g2(y)dy + f01~'(x,0) g l (x )  dx,  

for every ~" ~ CI((0, 1) x (0, 1)), ~r doubly periodic. 
By taking the subclass of smooth test functions 
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Ul U2 

0 1 2 

Fig. A.2. Regularity of two adjacent squares. 

with compact support we observe that u is a weak 

solution of the Laplace equation (and hence a 
classical solution). Since u ~ '  it automatically 

satisfies 

U(X,1)--U(X,0) =he2(x,O), 
u(1, y)  - u(0, y)  = he'(0, y)  

in the trace sense, in H 1/2 of the boundary. We 

then apply the formula in (4) to recover the 
conditions on the normal derivatives. [] 

We conclude with the proof of proposition 2. 

Proof  o f  proposition 2. The only remaining issue 

is regularity at the boundary. Classical theory 
shows that u is smooth in the interior of the 

square. We obtain regularity by considering two 
adjacent squares, say the unit square and (1, 2) × 

(0, 1) (see fig. A.2). First extend u to the second 
square as we described earlier. Call the restric- 
tion to the original square u 1 and the restriction 

to the second square u 2. By construction u I and 

u 2 are harmonic in each respective square and 
agree, in the trace sense in H 1/2, across the 

common boundary. Hence the function u whose 

restriction to the first square is u I and to the 
second square is u 2 belongs to Hi((0,2) × (0, 1)) 

(see lemma A.8 in ref. [2]). Also, by construction 

the normal derivatives of u I and u 2 agree, in the 
trace sense in H -1/2 across the common bound- 
ary. Remove a small strip, with width e, around 

this common boundary. Apply Green's formula 

(4) to u on the complement of the strip in the 

squares, against a smooth test function with sup- 
port in the union of both original squares. By 

passing to the limit as e goes to 0 and by using 
the two facts above we obtain that u satisfies the 

Laplace equation, in the weak sense, in (0, 2 )×  

(0,1). Thus u is smooth in the interior of the 
union of both squares. Of course this argument 

can be repeated in the two squares immediately 

above these two, so we now have a harmonic 
function in Hi((0,1) × (0,2)) and another in 

H~((1,2) × (0,2)) whose restrictions to (0, 1) × 
(0, 1) and to (1,2) × (0, 1) are u I and u 2, respec- 
tively. Due to the compatibility conditions on the 
difference functions h e' and h e2 these new func- 

tions and their normal derivatives also agree, in 

the appropriate trace sense, across the extended 

common boundary {1} × (0,2). Hence, using the 
same argument above, we obtain a harmonic 
function in the interior of these four squares. 
Since this argument can be repeated inductively 

on the whole plane, u is a globally defined har- 

monic function. [] 
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