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Patterns in Physical and Biological Systems

Mathematics can be applied in many ways in science, but let’s begin by focus-
ing on one typical caricature. Study an application until it is possible to derive
a detailed mathematical model. Then use mathematics (by which we include
both analysis and computation) to solve that model and make predictions.
Compare the results of the model with experiments; if there is a discrepancy
refine the model and iterate the process. Spectacularly successful examples of
this caricature include the n-body problem (a model for planetary motion) and
the Navier-Stokes equations (a model for fluid motion) — though there are many
other examples.

The question that we want to discuss here is what happens when a model is
too complicated to be analyzed or when no detailed model can be derived. Can
mathematics still be used to help understand that application and even to make
predictions? The answer is yes — but one must ask the right kind of question.

The common approach is to understand the structure that a detailed model
must have and then use that structure to make predictions about the kinds of
solutions one can expect the unknown equations to produce. In the past 50 years
this meta-principle has appeared in a number of different guises including, for
example, catastrophe theory (R. Thom, 1972; E.C. Zeeman, 1977), bifurcation
theory (J. Guckenheimer and P. Holmes, 1983; M. Golubitsky and D.G. Schaeffer,
1985), and symmetry-breaking and pattern formation (L. Michel, 1972; D.H. Sat-
tinger, 1979; M. Golubitsky et al., 1988; M. Golubitsky and I. Stewart, 2002). In
these theories some structure is assumed and then the kinds of solutions consis-
tent with that structure are classified. Also, in these theories new solutions are
found by classifying typical transitions as parameters are varied.

For example, catastrophe theory classifies the expected transitions between
critical points as parameters are varied (assuming that the model has a potential
function) and bifurcation theory classifies the expected kinds of dynamics that
occur in systems of differential equations near an equilibrium that loses stabil-
ity as a parameter is varied. In both theories the expected transitions depend on
the number of (independent) parameters that the model is assumed to have. In
symmetry-breaking and often in pattern formation the additional assumed struc-
ture is a group of symmetries for the model equations.

This article will focus on symmetry-breaking and pattern formation in its
simplest form. We will discuss two applications where no detailed system of
model equations is known, but where a group of symmetries for these unknown
equations can safely be assumed. We will assume that there is a homogeneous (or
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group invariant) equilibrium and classify the symmetry properties of new solu-
tions when that equilibrium loses stability (a symmetry-breaking bifurcation) as
a single parameter is varied. And then - we will interpret these results for the
application. The focus will be on applications and predictions; only references
will be given for the needed mathematics. Our exposition will follow closely
the descriptions of these applications given in The Symmetry Perspective by (M.
Golubitsky and I. Stewart, 2002) (indeed some of the material is taken verbatim
from this volume). This reference also supplies many of the mathematical details
behind the arguments that we give here.

1 Patterns in Flames

There is a huge literature on patterns in a variety of classical fluid dynamical and
chemical reacting systems including the Taylor-Couette experiment, Bénard con-
vection, the Faraday experiment, and the Belouysov-Zhabotinskii reaction. See,
for example, the references in (M. Golubitsky and I. Stewart, 2002). An experi-
mental system that has received somewhat less discussion is the pattern-rich
porous plug burner studied for many years by the physicist Michael Gorman at
the University of Houston (M. Gorman et al., 1994a,b).

A cross-section of Gorman’s system is shown in Figure 1 (left). Viewed from
above the burner is circularly symmetric. The flame is ignited on top of the burner
and maintained by the fuel flowing continuously through the burner. A typical
steady flame pattern is also shown in Figure 1 (right).

N\, Flame front

burner
Cooling coils

Air & fuel Inert gas

Figure 1: Cross section of a porous plug burner and a typical pattern formed by the flame on
the burner’s top surface. Images courtesy of M. Gorman.
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% gymmetry enters the discussion of flames most prominently through time-
" . dic states. A theorem that has been proved many times in the literature in
? erlc.) . applicaltioms, but whose validity depends only on the existence of cir-
- gpecific metry (M. Golubitsky et al., 1988), is the following. When a circularly
: culat Ssglilc equilibrium of a circularly symmetric system (see Figure 2 (left)) loses
: Sym$8 to time-periodic oscillations two states form: rotating waves and stand-
stabi ;Zes. A rotating wave is a state whereby time evolution of the state is given
ing :Zi d rotation and a standing wave is a time-periodic state that has at least one
?V ; :’) f symmetry for all time. The physical implication is that when a rotating
lmve is found in an experiment, it can be presumed that standing waves are also
: ‘;Vrisent; hence it is not surprising that the standing waves will also be observed.

Figure 2: Flames on circular burner. (Left) Circularly symmetric flame; (right) rotating two-cell
flame. Images courtesy of M. Gorman.

Figure 3. Standing wave flames on circular burner. Two images on one trajectory illustrating
Same four lines of symmetry. Images courtesy of M. Gorman.
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This is precisely what Gorman found. He observed a rotating wave in the flame
experiment (see Figure 2 (right)) and sometime later (a year or so, as it happened)
Gorman also found the standing wave (see Figure 3).

2 Quadruped Central Pattern Generators

It is well known that all horses walk and that some horses trot while others pace.
In addition squirrels bound and deer will sometimes pronk. There is one feature
that is common to all gaits: they are repetitive; that is, they are time-periodic.

In the pace, trot, and bound the animal’s legs can be divided into two pairs —
the legs in each pair move in synchrony, while legs in different pairs move with a
half-period phase shift. The two pairs in a bound consist of the fore legs and the
hind legs; the two pairs in a pace consist of the left legs and the right legs; and
the two pairs in a trot consist of the the two diagonal pairs of legs. The quadru-
ped walk has a more complicated cadence (each leg moves independently with
a quarter-period phase-shift in the order left hind, left fore, right hind, and right
fore), whereas the quadruped pronk is a simple motion (all four legs move syn-
chronously).

We summarize the descriptions of these five gaits in Figure 4 by indicating
the phases in the gait cycle when each given leg hits the ground. For definiteness,
we start the gait cycle when the left hind leg hits the ground.
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Figure 4: Five standard quadrupedal gaits.
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(J.J. Collins and I. Stewart, 1993, 1994) and (G. Schéner et al., 1990) made the
observation that each of these gaits can be distinguished by symmetry in the fol-
lowing sense. Spatio-temporal symmetries are permutations of the legs coupled
with time shifts. So interchanging the two fore legs and the two hind legs of a
bounding animal does not change the gait, while interchanging the two left legs
and the two right legs leads to a half-period phase shift. In a walk permuting
the legs in the order left hind to left fore to right hind to right fore leads to a
quarter-period phase shift. Based on these gaits we consider three symmetries:
the bilateral symmetry that simultaneously interchanges left legs and right legs;
the transposition that interchanges front and back legs; and the walk symmetry.
Table 1 lists which of these symmetries are applicable to each gait and, if appli-
cable, the associated phase shift.

Table 1: Phase shifts corresponding to leg permutation symmetries in standard quadrupel gaits

Gait left-right front-back walk
trot 1/2 1/2 n.a.
pace 1/2 0 n.a.
walk 1/2 n.a. 1/4
bound 0 1/2 1/2
pronk 0 0 0

Biologists often make the assumption that somewhere in the nervous system is a
locomotor central pattern generator or CPG that produces the rhythms associated
to each gait. CPGs are known to exist in primitive animals but they have not been
identified in mammals. Nevertheless, suppose we assume that there is a locomo-
tor CPG in quadrupeds — how can we model it? Neurons themselves are modeled
by systems of differential equations (for example, the Hodgkin-Huxley equa-
tions (J. Keener and J. Sneyd, 1998)) and CPGs are thought to be a coupled array
of neurons (see (N. Kopell and G.B. Ermentrout, 1988, 1990), (G. Schoner et al.,
1990), (R.H. Rand et al., 1988)). So we may assume that our model is (a perhaps
large dimensional) system of coupled ODEs. What structure may we assume that
such a system of equations should have?

We imagine that for each leg there is a single group of neurons whose job is
to signal that leg to move, and that the groups of neurons are otherwise identical.
Moreover, we assume that the groups of neurons are coupled in some manner —
and to simplify matters we assume that the kinds of coupling fall into a small
number of identical types. A natural mathematical question now arises — even at
this level of generality. Can couplings between these four groups of neurons be



34 = Martin Golubitsky

set up so that periodic solutions having the rhythms associated with each of these
gaits exist? The answet is, perhaps surprisingly, no. The reason for this is subtle.
It is known that trot and pace are different gaits. However, if a four group system
were capable of producing periodic solutions with the symmetries of walk, trot,
and pace, then walk and trot must be the same up to symmetry and would for all
practical purposes be the same gait.

The next simplest model would have eight groups of neurons with each leg
receiving signals from two different groups of neurons. (M. Golubitsky et al.,
1998) introduced the network shown in Figure 5 by assuming that the eight-node
network should independently have both bilateral x symmetry and the four-cycle
walk symmetry w. Thus the symmetry group of the eight-cell quadruped CPG is
T = Z,(k) x Z,(w). For expository purposes we assume that cells 1, ... , 4 determine
the timing of leg movements, and refer to the remaining four cells as ‘hidden’. We
also follow (M. Golubitsky et al., 1999) and show how the mathematical analysis
of the structure of this CPG network can still lead to testable predictions about the
structure of gaits.

-
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Figure 5: Eight-cell network for quadrupeds. Double lines indicate contralateral coupling;
single lines indicate ipsilateral coupling. Direction of ipsilateral coupling is indicated by arrows;
contralateral coupling is bidirectional.

In fact, the eight-cell network in Figure 5 (right) is essentially the only one that
can produce periodic solutions with the spatio-temporal symmetries of walk,
trot and pace (M. Golubitsky et al., 1998, 1999; P.L. Buono and M. Golubitsky,
2001). Next we ask the question: Which periodic solution types can be expected
to emanate from a stand equilibrium in systems of differential equations associ-
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ated with this cell network. We call these gait types primary gaits. It turns out
that such systems can produce a non-standard gait in addition to the five gaits
we have discussed previously. This gait is called the jump and can be described
as ‘fore feet hit ground, then hind feet hit ground after one beat, then three beats
later fore feet hit ground’. The existence of this quadruped gait is a prediction of
the model.

Indeed, we observed a gait with that spatio-temporal pattern of the jump at
the Houston Livestock Show and Rodeo. Figure 6 shows four equal time-interval
video frames of a bucking bronco. The timing of the footfalls is close to 0 and 1/4
of the period of this rhythmic motion. Later on we found that (P.P. Gambaryan,
1974) had identified the primitive ricocheting jump of a Norway rat and an Asia
Minor gerbil that also has the cadence of the jump.

Figure 6: Approximate quarter cycles of bareback bronc jump at Houston Livestock Show and
Rodeo.
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3 Geometric Visual Hallucinations

(H. Kliiver, 1966) observed that geometric visual hallucinations divide into four
form constants: tunnels and funnels; spirals; lattices including honeycombs and
phosphenes; and cobwebs. See Figure 7. (PC. Bressloff et al., 2001, 2002) are
able to explain the origins of the four form constants as symmetry-breaking with
respect to the Euclidean group of planar translations, rotations and reflections
as it acts on the primary visual cortex (V1). In this section we will describe that

action.

() (V)

Figure 7: Hallucinatory form constants. () funnel and (1) spiral images seen following ingestion
of LSD (R.K. Siegel and M.E. Jarvik, 1975), (i) honeycomb generated by marihuana (J. Clottes
and D. Lewis-Williams, 1998), (IV) cobweb petroglyph (A. Patterson, 1992).

The idea of viewing the origin of geometric visual hallucinations dates to the
work of (G.B. Ermentrout and ].D. Cowan, 1979). Ermentrout and Cowan argue
that when an individual is under the influence of a drug, the entire primary visual
cortex is stimulated uniformly by the drug and not by the retina. When this forced
stimulus is sufficiently large, patterns of activation are formed on V1 and inter-
preted by the brain as visual images — often with a distinctly geometric flavor.
However, the work in (G.B. Ermentrout and J.D. Cowan, 1979) was completed
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pefore the nature of coupling of neurons in V1 was understood. Thus (G.B. Ermen-
trout and J.D. Cowan, 1979) assumed that models of V1 are Euclidean-invariant
with respect to the standard action of the Euclidean group on the plane and sym-
metry-breaking arguments only led to two of the four form constants (funnels and
spirals).

In this section we present part of the discussion of V1in (M. Golubitsky and I.
gtewart, 2002) (much of it verbatim), which itself is an abbreviated version of the
discussion in (P.C. Bressloff et al., 2001). In mammalian vision, neurons in V1are
known to be sensitive to the orientation of contours in the visual field. Moreover,
as discussed in (P.C. Bressloff et al., 2001), the pattern of neuronal connections
in V1 leads to a specific action of the Euclidean group that is different from the
standard one on the plane.

The V1 layer is approximately a square, 40mmona side. (D.H. Hubel and T.N.
Wiesel, 1974a,b,c) noted that V1is divided into small areas of about 1mm diam-
eter, called hypercolumns, and the neurons in each hypercolumn receive signals
from one small area in the retina. A hypercolumn contains all cortical cells that
correspond to such an area: its architecture allows it to determine whether a
contour occurs at that point in the retinal image, and if so, what its orientation is.
This task is accomplished by having all pairs of cells in a hypercolumn connected
by inhibitory coupling - so if a contour is detected by one neuron, it tends to
suppress the other neurons in that hypercolumn, a local winner-take-all strategy.
Experimental confirmation of the existence of hypercolumns is found in (G. G.
Blasdel, 1992), see the iso-orientation patches in Figure 8.

Figure 8: Distribution of orientation preferences in V1 obtained via optical imaging. Redrawn
from (G. G. Blasdel, 1992).

What is curious — and crucial from the symmetry point of view — is how hyper-
columns themselves are coupled. In recent years information has been obtained
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about connections using, for example, optical imaging with voltage-sensitive
dyes (W.H. Bosking et al., 1997). These studies show that cells that selectively fire
for one orientation make contact only every millimeter or so along their axons
with cells that fire selectively in the same orientation. See Figure 9, which illus-
trates the inhomogeneity in lateral coupling.

Figure 9: Lateral connections made by a cell in V1 superimposed on iso-orientation patches.
Redrawn from (W.H. Bosking et al., 1997).

In addition, it appears that the long axons that support such connections, -
known as intrinsic lateral or horizontal connections, tend to be oriented more or
less along the direction of their cells’ preference. See the schematic diagram in
Figure 10. Note that the strength of the lateral connection between hypercolumns
is small when compared to the strength of the local connections within hypercol-
umns. These observations lead to the schematic pattern of neuronal connections
shown in Figure 10.

Observe that when one makes the hypercolumns infinitesimal then the
resulting schematic is invariant under translations but that rotations spoil the
form of the lateral connections unless the orientation tuning of neurons within
a hypercolumn is also relabeled (by the amount of rotation). So the Ermentrout-.
Cowan and the Bressloff-Cowan models both have Euclidean symmetry, but the
ways that the Euclidean group acts are different and this leads to different pattern
formation results. The end result is that the Bressloff-Cowan model predicts plan-
forms of the type in Figure 11. Note the similarities with the geometric hallucina-
tions reported in Figure 7.
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Figure 10: Short and long range connections in the visual cortex. - - - inhibitory;
----- — excitatory.

4 Conclusions

We have attempted to show how the existence of symmetry (both in equilibrium
and time-periodic states) can help to understand patterns in applications even
when the application has no precise mathematical model.

The symmetry description of locomotor central pattern generators leads to
a variety of predictions about quadrupedal and bipedal gaits. In this article we
described only one: the existence of an unexpected but natural gait - the jump.
The proposed structure of CPG models leads to a variety of other predictions (the
difference between primary and secondary gaits; the physiological need for each
leg to be controlled by two neuron groups; and unexpected properties of centi-
pede primary gaits). See (M. Golubitsky et al., 1999; M. Golubitsky and I. Stewart,
2002).

The symmetry of the primary visual cortex (determined experimentally) led,
through symmetry-breaking arguments, to an unexpected correlation between
this symmetry and the richness of geometric visual hallucinations. It is important
to observe that this correlation can be understood without the need of a detailed

model of the cortex V1 — just the symmetry structure that such a model should
have,
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(d)

Visual field planforms

Figure 11: Taken from Bressloff et al. 2002
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Thomas A. C. Reydon
Symmetry and the Explanation of
Organismal Form

Commentary on Martin Golubitsky

1 Introduction

Golubitsky (this volume) presented three examples in which the concepts of
symmetry and symmetry breaking, as well as their mathematical formaliza-
tions, played an important role in understanding patterns exhibited by physical
and biological systems. These examples concerned patterns occurring in burner
flames, in animal locomotion and in visual hallucinations. A striking feature
of these examples was that the same general mathematical model of symmetry
, breaking could be applied in all cases, even though the systems under consider-
3 ation came from quite different realms. Golubitsky’s claims were that the math-
: ematics of symmetry and symmetry breaking can help us understand the origins
of patterns observed in physical as well as biological systems, and that there is
a general “menu of patterns” that encompasses patterns that can be realized in
materially very different kinds of systems (this volume; Stewart and Golubitsky,
1993: 186, 207, 218).

The philosophical question that Golubitsky’s claims give rise to pertains to
mathematical models in general: If there are general mathematical models that
apply to materially very different kinds of systems, physical as well as biological
ones, and can help us understand how these systems work, then what exactly is
the role of such models in understanding and explaining the phenomena under
study? What is the epistemic work that such models do in science?

This is a very broad question, which needs to be constrained more. Here,
I will only consider one of Golubitsky’s examples, namely the explanations of
organismal traits such as the various locomotive patterns that animals exhibit.
Where do mathematical models of the sort discussed by Golubitsky fit into the
larger explanatory structure of biological science? I will begin by addressing the
role of mathematical models in biology in general.
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2 What work do mathematical models do in the
biosciences?

Although mathematical models are widespread in biology, the role of mathemat-
ics in biology seems quite different from its role in, for example, physics and
chemistry. In these latter sciences, mathematical formalisms constitute a core
feature of theories and explanations. But this is not so for the principal theories of
biology. For example, evolutionary theory and evolutionary explanations, which
constitute the backbone of biological science, are often presented in verbal/con-
ceptual form without using much mathematics. Similarly, organismal develop-
ment is usually explained in terms of the operation of different genes and gene
networks without necessarily relying on mathematical formalisms. This is not to
say that mathematics is unimportant in developmental and evolutionary biology:
itis not (e.g., Rice, 2004), but it does play a less prominent role in biology than in
the exact natural sciences. Accordingly, Emst Mayr (1982: 43) once claimed that
progress in biology does not occur by formulating strict laws of the sort found in
the physical sciences, but is largely a matter of the articulation and refinement of
concepts.

This suggests that mathematical models in biology do not play their main
parts in the formulation of explanations. Rather, their main roles might be heuris-
tic. They can aid communication and serve didactical and rhetorical purposes by
functioning as metaphors and analogies that represent real systems in ways that

are easier to understand than the complex “real thing” (e.g., Stewart, 2003: 184). .

Moreover, they enable scientists to simulate how systems behave under various
conditions in cases in which the “real thing” is difficult to access.

Golubitsky’s example of animal gaits supports this suggestion (this volume;
Field and Golubitsky, 1992: 32; Stewart and Golubitsky, 1993: Chapter 8; Golu-
bitsky et al., 1998; 1999; Stewart, 2003; Pinto and Golubitsky, 2006). There,
models play two heuristic roles. First, they provide information about how indi-
vidual animals realize locomotion, thus contributing to the study of how organ-
isms work. According to a widely held (but not uncontroversial — Stewart and
Golubitsky, 1993: 201-203) assumption, animal locomotion is controlled by
so-called central pattern generators (CPGs), neural networks that control limb
motion (Stewart and Golubitsky, 1993: 199-203; Golubitsky et al., 1998: 57; Gol-
ubitsky et al., 1999: 693; Stewart, 2003: 197; Pinto and Golubitsky, 2006: 475).
CPGs themselves are difficult to study in vivo or in vitro, o investigators work

1 Allegedly, “nothing in biology makes sense except in the light of evolution” (Dobzhanskys
1964: 449; 1973: 125).
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backwards and try to derive information about how CPGs function from observa-
tions about the patterns they produce. The models used by Golubitsky and co-
workers start from observed symmetries in animal gaits and symmetry breakings
that occur in transfers between gaits. From this, the possible structures of the
underlying CPGs are inferred, guided by the thought that the observed symme-
tries and symmetry breakings must correspond to those that an abstract network
of a limited number of nodes can produce. The observed symmetries thus allow
inferences about the symmetries of the underlying networks: “symmetry can be
used to infer a plausible class of CPG network architectures from observed pat-
terns of animal gaits” (Golubitsky et al., 1999: 693). In turn, from the symmetries
of these general network architectures possible gaits can be predicted and looked
for in animals in nature.?

Second, the relations between the various models of animal gaits can be used
as indirect evidence for possible evolutionary scenarios (Pinto and Golubitsky,
2006: 487; Stewart, 2003: 196). The number of steps required to get from one set
of gaits to another can be interpreted as an indication of the number of steps that
evolution must have taken on its way from a taxon exhibiting one set of gaits to a
taxon exhibiting the other set. For example, the steps needed to get from the set
of gaits characteristic of quadrupedal locomotion to the set for bipedal locomo-
tion can be taken to indicate the steps taken in the evolution of bipedal organisms
from quadrupeds. Thus, mathematical models can provide clues about the evolu-
tionary distance between and evolutionary history of taxa.

In both these cases, the inference is toward a class of possibilities (a class of
possible CPG structures and a class of possible evolutionary routes). The models
provide clues about which architectures or routes are possible, but not about
the actual architectures or routes involved and thus don’t provide any concrete
explanatory details. The question thus remains open whether mathematical
models can be more than heuristic tools and might perform “proper” explana-
tory roles. I will address this question by considering the search for a theory of
organismal form.

2 Golubitsky’s example of visual hallucinations works in the same manner (Bressloff et al., 2001:
323-326; Bressloff et al., 2002: 476-477). The question is which neural network architectures are
required to produce the variety of geometrical patterns found in visual hallucinations. This is
answered by relating the observed symmetries of hallucination patterns to the symmetries thata
producing network must possess. In this way the possible architectures of the visual cortex area
responsible for producing visual hallucinations are inferred from the actual patterns of observed
hallucinations.
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3 What natural selection does not explain

Among the principal questions of biological science are why we have the organ-
ismal diversity that we do (rather than a different diversity) and why the organ-
isms we find around us have the traits they do, instead of other possible traits
they might have exhibited (and that sometimes organisms of different species
do exhibit). Ever since Darwin’s work an important part of the answers to these
questions is given in terms of natural selection. But it has long been clear that
selection constitutes only part of the answer.
In the first place, not all organismal traits are necessarily explained by
selection, as paleontologist Stephen Jay Gould and geneticist Richard Lewontin
pointed out in their famous «“spandrels” paper (Gould and Lewontin, 1979). They
criticized a procedure commonly followed by biologists, namely to break organ-
isms down into discrete traits and to propose a separate adaptive story. for each
trait. Each trait’s presence is then explained as a consequence of some function
that it performed in ancestral organisms, endowing these with a selective advan-
tage over organisms not possessing the trait in question. The underlying assump-
tion is that “natural selection [is] so powerful and the constraints upon it so few
that direct production of adaptation through its operation becomes the primary
cause of nearly all organic form, function, and behaviour” (Gould and Lewontin,
1979: 584-585). However, Gould and Lewontin argued, this assumption stands
unsupported: many organismal traits might be correctly explained as products of
evolution by means of natural selection, but not necessarily all or nearly all traits
are. Other explanatory factors besides natural selection, such as constraints
on organismal development, also play important roles and may outweigh the
explanatory importance of selection. Thus, Gould and Lewontin argued in favor
of a pluralistic approach to biological explanation in which a plurality of explan-
atory factors can be invoked when explaining biodiversity and organismal traits.
As they pointed out (Gould and Lewontin 1979: 589), this is in line with Darwin’s
own view “that Natural Selection has been the main but not exclusive means of
modification” (Darwin, 1859: 6).

Furthermore, even for traits that are correctly explained as products of natural
selection, selection is only part of the answer. Selection explains the trait’s pres-
ence and its adaptive aspects, but there is more to say. Soon after the publica-
tion of the Origin of Species, biologists have begun to criticize Darwin’s theory
for addressing the spread and persistence of traits through ancestor-descendant
lineages but not being able to explain how these traits arise in the first place (see
Reydon, 2011). The criticism, which is also voiced by some contemporary biolo-
gists (Fontana and Buss, 1994; Gilbert, 2000), is that even if natural selection can
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cause the differential reproduction of organism types with varying traits, it needs
material to work with: natural selection filters, but it does not create new traits.

These two criticisms constitute the motivation behind a tradition of work
in biology aiming to develop a theory of the origins of organismal forms, where
‘form’ is understood broadly as encompassing the shapes of organisms as well as
their other physical and behavioral traits. The theory sought after should explain
the origins of organismal traits and complement the theory of selection, which
explains their preservation and spread.

4 Growth and form: D’Arcy Thompson’s project

A key figure in the quest for a theory of organismal form was zoologist D’Arcy
Wentworth Thompson. In his On Growth and Form, Thompson developed the
project of comparing organismal forms to forms and patterns found in non-liv-
ing systems and understanding these as instances of the same phenomena. The
central thought in Thompson’s book is that the principal causes of organismal
forms are physical forces, such that organismal traits should be explained by
taking recourse to general physical and chemical principles rather than selec-
tion and adaptation. Thompson thought of natural selection as a mere filter that
could not create evolutionary novelty and thus could not explain organismal
form (Bonner, 1992: xvii).

In a famous example, he compared the shapes of jellyfish to the shapes that
liquid drops assume when falling through other liquids and suggested that both
phenomena might be susceptible to the same explanation (Thompson, 1942:
392-398). Jellyfish here are modeled as expanding drops of a fluid with a differ-
ent density than the water in which they are immersed and the observed shapes
are explained as consequences of the operation of the physical laws that govern
the flow of fluids in fluids.? It is unclear, however, exactly how much explanatory
work Thompson’s mathematical models do. For instance, Thompson writes:

[W]e may use a hanging drop, which, while it sinks, remains suspended to the surface ...
[T]he figure so produced, in either case, is closely analogous to that of a medusa or jelly-
fish ... It is hard to say how much or little all these analogies imply. But they indicate, at the
very least, how certain simple organic forms might be naturally assumed by one fluid mass
within another, when gravity, surface tension and fluid friction play their part (Thompson,
1942: 395-398; emphasis added).

h
3 Note that another of Thompson’s (1942: 39-50) examples concerned animal locomotion and
flight.
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Although Thompson was careful not to imply too much, this quotation does
suggest that he took the analogy as having some explanatory value in that the
various shapes of jellyfish can be explained as what is bound to occur for particu-
lar fluids under particular conditions.

Similarly to Golubitsky’s models, Thompson’s models take recourse to physi-
cal laws to map out the spectrum of what is possible under various conditions
(Bonner, 1992: xxii). In this respect, the laws of physics function in the same way
in explanations of organismal form as in explanations of phenomena in the non-
living realm: in both cases there are general physical principles that apply uni-
versally and determine what is bound to occur in such-and-such kinds of systems
under such-and-such conditions, irrespective of the systems’ material bases.
As Thompson writes at the end of his book: “So the living and the dead, things
animate and inanimate ... are bound alike by physical and mathematical law”
(Thompson, 1942: 1097).

This motif is found elsewhere too. For example, zoologist Rupert Riedl
remarked that “[tJhe living world happens to be crowded by universal patterns
of organization which ... find no direct explanation through environmental con-
ditions or adaptive radiation, but exist primarily through universal requirements
which can only be expected under the systems conditions of complex organization
itself” (Riedl, in Gould and Lewontin, 1979: 594). In a similar spirit, mathemati-
cian (and frequent collaborator of Golubitsky’s) Ian Stewart remarked about the
observed symmetry breakings in the developmental cycle of the alga Acetabularia
acetabulum that these are the same as found in a particular type of fluid flow,
“qs they should be since such patterns are universal in cylindrically symmetric'
systems” (Stewart, 2003: 190; emphasis added). And it seems to me to be the motif
underlying Golubitsky’s suggestion that thereis a general “menu of patterns” that
can be realized in materially very different kinds of systems found in different
realms in nature (this volume; Stewart and Golubitsky, 1993: 186, 207, 218).

Invoking such universal patterns that can be captured in mathematical
models of symmetry and symmetry breakings does not explicate what is actually
the case in a system under study, as it abstracts away from the system’s character-
istics. It narrows down the set of possible explanations of the phenomenon under
study to a limited number of possible scenarios. On some accounts of explana-
tion this could be accepted as “proper” scientific explanation and Thompson’s
and Golubitsky’s models would count as “how possibly” explanations (O’Hara,
1988; Brandon, 1990; Resnik, 1991; Reiner, 1993). However, whether “how pos-
sibly” explanations should be accepted as “proper” scientific explanations is still
a controversial issue in the philosophy of science.
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5 Conclusion

As Golubitsky showed, symmetry breaking is common in the living world, e.g.,
in animal locomotion or organismal growth.* In Thompson’s project, too, the
concept of symmetry played an important role: “In all cases where the principle
of maxima and minima comes into play [...] the configurations so produced are
characterized by obvious and remarkable symmetry. Such symmetry is highly
characteristic of organic forms and is rarely absent in living things” (Thompson,
1942: 357). If this is right, there clearly must be epistemic work to do for the con-
cepts of symmetry and symmetry breaking and their mathematical formaliza-
tions in explanations of organismal form. But there are good reasons to think of
this work as not being explanatory in and by itself.

Even though mathematical models of symmetry and symmetry breaking seem
to provide “how possibly” explanations, the mathematics itself does not provide
explanatory force: the applicable physical laws and system specifications do (cf.
Stewart, 2003: 191). Similarly, symmetry breaking itself does not explain much.
The explanatory work is done by the causes underlying symmetry breakings, i.e.,
the physical laws that govern particular kinds of systems and the slight imbal-
ances in an overall symmetrical system that at some point causes the breaking of
its symmetry (Stewart, 2003: 188). That the same mathematical model applies to
a number of very different systems merely indicates that in all these systems the
same physical laws are involved. Mathematical models of symmetries and sym-
metry breakings do not capture the complexity of the systems under study, but
abstract away from much detail, allowing us to focus on the relevant overall pat-
terns and to identify the relevant underlying laws. While this is important to gain
insight into what could occur in the system under consideration, actual explana-
tions of concrete phenomena will need to specify the details of the system itself.

Golubitsky’s examples showed how models of symmetries and symmetry
breakings provide clues about what might possibly be the case in the systems
under study. The models describe how organismal function, development and
evolution are constrained by the general laws of physics and chemistry, making
some traits possible and others impossible (cf. Stewart, 2003: 200). One might
interpret such models as adding “how possibly” explanations to the “how and
why actually” explanations of functional, developmental and evolutionary
biology. But in my view their role in fact is more heuristic in nature and it is to be
doubted whether such “how possibly” explanations should count as “proper”
scientific explanations on an equal level with other explanations in biology.

h‘
4 Another example: non-spherically-symmetrical starfish develop from spherically symmetrical
€ggs (Field and Golubitsky, 1992: 32).
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