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We study genetic bifurcations of equifibtia in one-parameter Hamiltonian systems with symmetry group F where 
eigenvalues of the linearized system go through zero. Theorem 3.3 classifies expected actions of F on the generalized 
eigenspace of this zero eigenvalue. Genetic one degree of freedom symmetric systems are classified in section 4; remarks 
concerning systems with more degrees of freedom are given in section 5. 

1. Introduction 

Hamiltonian systems can undergo an enormous 
variety of bifurcations. However, the "generic" 
possibilities-not destroyed by small changes in 
the Hamihonian-  are more restricted. For exam- 
ple it is well known that for a Hamiltonian system 
with one degree of freedom and no symmetry, the 
generic bifurcation when eigenvalues pass through 
zero is the standard "fish" picture, or saddle-node, 
shown in fig. 1 below. Indeed there is a simple 
"normal form" for such a bifurcation, see Meyer 
[1]. 

Symmetries in Hamiltonian systems are very 
common (and their study has a lengthy history). It 
has been observed in contexts other than the 
Hamiltonian one (e.g. Golubitsky and Stewart [2]) 
that the presence of symmetry forces other kinds 
of behaviour, which are non-generic in general but 
generic in the world of symmetric systems. It is 
often possible to use these symmetries to obtain 
detailed descriptions of the possible types of be- 
haviour. 

Of course similar remarks are valid for Ham- 
iltonian systems. The object of this paper is to 

establish a general setting in which to study generic 
bifurcations of Hamiltonian systems with symme- 
try (cf. Meyer [3]). That is, we assume that the 
Hamiltonian H is invariant under a compact Lie 
group F which preserves the symplectic structure, 
and we seek conditions on the group action for 
bifurcations that cannot be changed by small F- 
invariant perturbations of H. Our main result in 
this direction is theorem 3.3, which states that 
generically the action of F on the zero eigenspace 
is either irreducible (but not absolutely irreduc- 
ible), or a diagonal sum of two absolutely irreduc- 
ible actions. (A representation, or group action, is 
absolutely irreducible if it is irreducible, and the 
only commuting linear mappings are real scalar 
multiples of the identity.) We derive this from 
theorem 2.1, which establishes a canonical de- 
composition of a symplectic vector space, on which 
F acts, into mutually orthogonal symplectic in- 
variant subspaces. 

Because this theorem has important implica- 
tions for the structure of bifurcating Hamiltonian 
systems with symmetry, we feel that it is worth 
presenting an elementary proof based on the inter- 
play between representation theory and sym- 
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plectic structure. Similar results can be found in 
the representation theory literature, for example in 
Serre [4] p. 108. 

This study was to a large extent motivated by 
work of Lewis, Marsden, and Ratiu [5] and Lewis, 
Marsden, Montgomery and Ratiu [6] on bifurca- 
tions occurring in the dynamics of a rotating 
liquid drop, where a circularly symmetric equi- 
librium state can lose stability and break sym- 
metry. Their results suggested that it would be 
fruitful to seek a general setting for such prob- 
lems. We have found that such a setting exists, 
and that numerous special examples that have 
previously been analysed on a case-by-case basis 
can all be subsumed into the same broad picture. 
It is that broad picture that we wish to develop 
here: the examples are deliberately chosen for 
simplicity and the results in specific cases are not 
always new. 

As an example, in section 4 we briefly survey 
generic bifurcations (when eigenvalues pass 
through zero) of Hamiltonian systems with one 
degree of freedom, for the symmetry groups d, Z n, 
and SO(2). In this way we quickly obtain normal 
forms for the generic bifurcations. Our aim is to 
present a unified and simple treatment, capable of 
being generalized to other cases. 

In a subsequent paper we hope to develop this 
approach for bifurcations through purely imagin- 
ary eigenvalues, where new and interesting phe- 
nomena arise. 

2. The equivariant decomposition theorem 

Let Z be a symplectic vector space with sym- 
plectic form $2. Assume that /"  is a compact Lie 
group acting symplectically on Z, that is, 

vr r; o,w Z. 
(2.1) 

We call a subspace W c Z F-symplectic if W is 
F-invariant and symplectic. By symplectic, we mean 
that 12[W is nondegenerate. 

Our main theorem is: 

Theorem 2.1. Let V c  Z be a F-symplectic sub- 
space. Then there exist ~2-orthogonal F-symplectic 
subspaces W1,..., ge t such that 

V =  W 1 • . . -  • Wt, (2.2) 

where for each j either 
a) F acts irreducibly but not absolutely irre- 

ducibly on Wfi or 
b) Wj = ~  • Vj where /" acts absolutely irre- 

ducibly on Vj and by the diagonal action on 
Vj ~ Vj. (2.3) 

Remarks 2.2. 
a) Recall that a representation of F on V is 

absolutely irreducible if the only linear mappings 
V ~ V which commute with F are scalar multiples 
of the identity. For complex representations 
Schur's Lemma states that irreducibility and 
absolute irreducibility are equivalent. 

b) For real representations (the context of this 
paper) this is no longer the case. Now the space 
of commuting linear mappings is a real division 
algebra. By the classical Wedderburn Theorem 
(see Kirillov [7]) ~ is either R, C, or H, where H 
denotes the quaternions. Now V may be viewed as 
a vector space over 9 .  There is a consequence of 
this observation which we shall need later. Sup- 
pose that every commuting linear map in ~ has 
real eigenvalues: then 9-=- R. 

c) The canonical form for I2 follows directly 
from theorem 2.1 in the case F = ~. The trivial 
group has only one irreducible representation, and 
this is absolutely irreducible. Hence 

V= (VI ~ V1) ~ . . .  ~ (V ,  ~ V,), (2.4) 

where the 2-planes Vj ~ Vj are mutually $2- 
orthogonal. Choosing a suitable basis { pj, qj ) for 
Vj and rescaling if necessary we obtain 

~22 Y'~ dp jA  dqj 

which is the classical canonical form. 
d) Let V c Z be a /"-invariant subspace. It is 

always possible to decompose 

V =  K • W, (2.5) 
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where 

K =  ker(I2 IV) = {v ~ Vll2(v, V ) - O }  

and W is F-symplectic. It follows trivially from 
(2.1) that K is F-invariant, and since F is compact 
we can find a F-invariant complement W to K. It 
is clear that f2lW is nondegenerate, otherwise K 
would be too small. Thus W is F-symplectic. 

There are several ways to prove theorem 2.1, at 
different levels of abstraction. We have chosen to 
present a relatively concrete one in the hope of 
making the paper more widely accessible. We prove 
some preliminary results before presenting the 
proof of theorem 2.1. The first is a direct conse- 
quence of nondegeneracy of the form [2, but we 
include a proof since the result is crucial. 

Proposition 2.3. Every F-symplectic subspace has 
an fg-orthogonal r-symplectic complement. 

Proof. Let W c V be F-symplectic and define 

nondegeneracy of the pairing is equivalent to the 
following: 

The mapping qo: W 1 ~ WE* defined by 

q0(w) = $2(w, .) (2.8) 

is an isomorphism, where the action of ~ ~ F on 
w ~' ~ W2* is defined by 

r.w (w2)=w (r-iw2) (2.9) 

To obtain (2.8) use (2.1), which implies that 
~o(Tw) = y(~w).  Note that (2.9) implies that W x --- 
W2* as F-modules. However, for compact groups, 
any F-module W is always isomorphic to its dual 

W*, so Wl=- W2. 
To prove the last statement choose a metric 

( , ) on W in which F acts orthogonally. This is 
possible since F is compact (see e.g. Adams [8]). It 
is now easy to check that ~: W - ,  W* defined by 
~(w)  = ( w , . )  is a linear isomorphism commuting 
with F .  [] 

Y =  ( y ~  VIfJ(y, W )-=0). (2.6) 

Certainly Y is F-invariant and fJ(Y, W)----0. We 
claim that V = W $ Y. By the nondegeneracy of 12 
we have W n  Y= (0}. Also by nondegeneracy, 
dim V-- dim W + dim Y. Hence V = Y • W. 

To complete the proof we must show that ~2 [ Y 
is nondegenerate. Suppose that ~2(y, Y) = 0 for 
some y ~ Y. By (2.6) $2(y, V) -= 0, contrary to 
nondegeneracy. [] 

Lemma 2.4. 
a) Let W 1 and W 2 be F-irreducible subspaces 

of V. Then either 
i) W1 and W 2 are I2-orthogonal, or 
ii) f/ is a nondegenerate pairing of W 1 and 

W 2 and hence W 1 -= W 2. (2.7) 
b) If W is F-irreducible, then W is either iso- 

tropic or F-symplectic. 

Remarks 2.5. 
a) A subspace W is isotropic i f /2(W, W) = 0. 
b) A consequence of (2.7ii) is that the represen- 

tations of F on W 1 and W 2 are isomorphic. The 

Proof of lemma 2.4. Statement (b) follows directly 
from (a) by setting W =  W 1 = W2 and recalling 
the definition of an isotropic subspace (remark 
2.5a). 

To prove (a) define q,: W1---' W2* as in (2.8). 
Since ~k commutes with F, ker ~ and Im ~k are 
F-invariant. Irreducibility of W 1 implies that ker ~k 
= W 1 (whence W 1 and W 2 are ~2-orthogonal) or 
ker ~k = {0}, which we now assume. Then Im ff 4= 
{0} so the irreducibility of 1412 (and WE*) implies 
that Im ~p--- WE*. Thus the pairing of W 1 with WE 
by I2 is nondegenerate, so ~k: W1 ~ WE* is an 
isomorphism. [] 

Lemma 2.6. Let W be a F-symplectic subspace 
and let ( , ) be a F-invariant metric on IV. Define 
J: W ~ W  by 

I2(v, w) = (o, Jw)  Vv, w ~ W. (2.10) 

Then J commutes with the action of F. 

Proof. We have assumed that F acts symplecti- 
cally on W, so (2.1) holds. Combining this with 
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(2.10) we find that 

(v ,  J w )  = 12(v, w) = 12(To, yw) 

= J w) =  Vvw). 

Hence 

(2.11) 

Y × (0). Then 0 = I2(v, w) = (v,  Jw) .  Hence Jw 
is orthogonal to Y × {0) as claimed. 

Next, choose an orthonorrnal basis u 1 . . . .  , u, 
for V. Then (ul,0) . . . . .  (u,,0); (0, ux) . . . .  ,(0, u,)  is 
an orthonormal basis for Y • Y. The matrix of J 
in this basis has the form 

J = ytJ T. 

Since y acts orthogonally in this metric we have 
~,t = y -  1, so ~/J = J y  as claimed. [] 

Lemma 2.7. Let F act on the subspace Y and by 
the diagonal action on Y ¢ Y. Let A: Y ~ Y be 
linear and define 

V A = ( ( v ,  A v ) ~  Y ~  Y l u ~  Y } .  (2.12) 

Then V A is a F-invariant subspace if and only if A 
commutes with F. 

Proof. y .  (v, Av)  = (Tv, yAv) ~ V A if and only if 
A applied to the first component yv equals the 
second component ~/Av. This identity is equivalent 
to AT = TA. [] 

Lemma 2.8, Let F act irreducibly on Y and by the 
diagonal action on Y *  Y. Suppose that Y • Y is 
F-symplectic and that every irreducible subspace 
of Y $  Y is isotropic. Then F acts absolutely 
irreducibly on Y. 

Proof. Our method is based on remark 2.2b. We 
show that every computing linear mapping A: 
Y ~ Y has real eigenvalues. Hence the space of 
F-commuting mappings A is isomorphic to • and 
F acts absolutely irreducibly on Y. 

We begin by choosing a F-invariant metric 
( , ) o n Y ~ Y i n w h i c h Y X ( 0 )  and (0) × Y are 
orthogonal, and for which 

( ( v ,O) , (w ,O) )= ( (o ,o ) , (O ,w) )  Vv, w e  r. 

Define the mapping J by (2.10) and observe that 
J ( Y  × {0}) is orthogonal to Y × (0). This follows 
from the fact that Y × (0) is isotropic. Let v, w 

[o 
Moreover, the antisymmetry a2(v, w ) =  -~2(w, v) 
implies that j r =  _ j .  Thus J has the form 

in this basis. Since J commutes with F on Y • Y it 
follows that Jcommutes  with F on Y. Moreover Y 
is invertible since f~ is nondegenerate. Now let A: 
Y---, Y commute with F. Then the subspace V~ is 
also F-irreducible since it is F-isomorphic to Y × 
(0}. Hence V A is isotropic, by hypothesis. 

Since Y X (0), (0) × Y and V~ are isotropic we 
compute, for all v, w ~ Y: 

0 = ~ ( (v ,  Av), (w, Aw)) 

= ~ ( (~ ,0 ) ,  (0, Aw)) + ~((0,  Ao) , (w,0) )  

= <(~,0), J(O, Aw)) + <(0, Ao), J(w,0)> 
= <v, YAw> + <Av, - y t w >  

= (V, ( JA  - A t j t ) w ) ,  (2.14) 

using (2.13). By (2.14) we have 

IA -- ( f A )  t. (2.15) 

The identity (2.15) implies that all eigenvalues of 
JA are real for every F-commuting matrix A. But 
f is invertible and commutes with F. Therefore 
the eigenvalues of A are rea l - jus t  replace A by 
J-1A. By remark 2.2b the result follows. [] 

Proof of theorem 2.1. Let V be a F-symplectic 
subspace of Z. Suppose there is a F-irreducible 
subspace W 1 of V. By proposition 2.3 we may 
write 

v =  w l  + v1, 
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where V 1 is a T-symplectic subspace of V, 12- 
orthogonal to W 1. Inductively we may decompose 

V as 

V =  W l  . . . . . w ,  . 1 7 ,  

where each Wj is T-irreducible and T-symplectic, 
the subspaces Wj and I7 are mutually 12-ortho- 
gonal, and no irreducible subspace of 17 is T- 
symplectic. By lemma 2.4b every F-irreducible 
subspace of 17 must be isotropic. 

The action of /" on ~ cannot be absolutely 
irreducible. To verify this claim, apply lemma 2.6 
to Wj to obtain a linear mapping Jj commuting 
with T. Since 121Wj is antisymmetric, J cannot be 
a multiple of the identity, so the action of F on Wj 
is not absolutely irreducible. 

We begin the next step by enumerating the 
distinct irreducible subspaces Y1,-.., Yr of 17. De- 
fine 

Uj --- • { all irreducible subspaces Y ---- Yj }. 

By standard representation theory 

1 7 =  u 1 .  . . . . u ,  

subspaces of Uj are isomorphic to each other by 
the definition of Uj.) 

Finally, note that every irreducible subspace of 
W s is isotropic, since every irreducible subspace of 
V is isotropic. By lemma 2.8, T acts absolutely 
irreducibly on ~,  as desired. [] 

3. Bifurcations with zero eigenvalue 

This section is divided into three subsections. In 
the first we give a short proof of the known result 
(cf. Williamson [9]) that generalized eigenspaces of 
symplectic maps are symplectic. In the second 
section we use theorem 2.1 to give a genetic de- 
scription of the kernels of symplectic mappings in 
the equivariant context. We then restrict to Ham- 
iltonian systems on the 'generic' kernel and show, 
in the third subsection, how the eigenvalues make 
the transition through 0. In the absolutely irre- 
ducible ( V ~  V) case, the change is from purely 
imaginary through zero to real. In the nonab- 
solutely irreducible case the eigenvalues are always 
purely imaginary. 

with each Uj F-invariant. Lemma 2.4a implies that 
the Uj are pairwise 12-orthogonal. It follows that 
each Uj is F-symplectic. 

To complete the proof of the theorem it suffices 
to show that theorem 2.1 is valid for V = Uj. Let Y 
be a F-irreducible subspace of Uj. There is another 
F-irreducible subspace Y ' c  Vj such that Y<9 Y' 
is F-symplectic. To see this, observe that by lemma 
2.4a, for any F-irreducible Y ' c  Uj, if Y *  Y' is 
not F-symplectic, then 12(Y, Y ' ) -  0. Thus if no 
such Y' exists, then 121Uj has a nontrivial kernel 
containing Y, contrary to nondegeneracy. 

Having chosen Y' so that W 1 = Y *  Y' is F- 
symplectic, choose a F-symplectic complement lg," 
to W 1 in Uj. Inductively we may decompose Us. as 
Uj = W 1 * . . -  * Wt, where the Wj are 12-orthogo- 
nal, F-symplectic, and of the form Wj = V j .  Vj 
where F acts irreducibly on Vj. (All irreducible 

3.1. Eigenspaces are F-symplectic 

In this section we give a quick proof of a result 
of Williamson [9]. Let g0(V) denote the (real) 
symplectic Lie algebra, consisting of R-linear maps 
A: V---> V such that 12( Av, w) + 12( v, Aw ) = O. 

Proposition 3.1. Let V be a symplectic vector space 
and let A ~ g0(V). Then E~, the sum of the 
generalized eigenspaces corresponding to the ei- 
genvalues /~,/2, - # , - / i ,  is symplectic. If A com- 
mutes with F then E~ is F-symplectic. 

Proof. Let B = (A -/~)(A -/2)(A + ~)(A +/~) = 
A 4 -  2Re/x z .A2+ I#14. It is easy to see that E~ = 
kerB t for all / > s o m e  integer k (for example, 
consider Jordan canonical form). Now 

E~, • Im B k = V. (3.1) 
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Next note that since A ~ ~ ( V )  we have 

~(Av ,  w) = - ~ ( v ,  Aw). 

Therefore ~2( A2v, w) = ~2( v, A2w ), so that 

 (8o, w )  = 

Inductively, 

12( Bkv, w) = 12(v, Bkw). (3.2) 

Eq. (3.2) implies that E~ and ImB* are ~2- 
orthogonal. Hence both 12JE~ and ~21ImB k are 
nondegenerate. 

Finally note that if A commutes with F then F 
obviously leaves E~, invariant. Thus E~ is F-sym- 
plectic. [] 

( P l  . . . . .  p ,}  on VX{0) and (ql , ' ' ' ,qn}  on 
(0} X V such that: 

a) ~2=Y~=zdpjA dqj; 
b) g~r (V~  V) consists of matrices of the form 

aI bI ] 
cI - aI 

relative to this basis. 

Remark. Lemma 3.1a shows that in the V~  V 
case the symplectic form may be put in canonical 
form by an equivariant linear change of coordi- 
nates. Another way to say this is that in a suitable 
coordinate system F acts separately on configura- 
tion space and momentum space, with isomorphic 
(and symplectically related) actions. 

3.2. Genericity of zero eigenoalues 

Let ~ r ( V )  denote the Lie algebra of sym- 
plectic maps commuting with /', and let A 
~ r ( V ) .  Proposition 3.1 implies that E 0, the gen- 
eralized eigenspace of A corresponding to the 
eigenvalue 0, is /'-symplectic. By theorem 2.1 we 
may decompose 

g o =  WIO - . .  I~1 ~Vst~ (Vl t~ Vl) 

• . .  v , ) ,  

where F acts nonabsolutely irreducibly on Wj and 
absolutely irreducibly on V k • Vg. In addition the 

and V k • V k are Y-symplectic and mutually 
Q-orthogonal. 

We claim that genetically in a 1-parameter 
family of A's, the generalized eigenspace E o is 
either a single W or a single V • V (though not 
necessarily those occurring in a given decomposi- 
tion of V, since this decomposition is not unique). 
We need two preliminary lemmas. 

Lemma 3.1. Let F act absolutely irreducibly on V 
and diagonally on the /'-symplectic subspace 
V O V. Let ( , )  be a F-invariant metric on 
V O V. Then we can choose orthonormal bases 

Proof. Let A ~ ~Pr(V~ V). Since A commutes 
with F and F acts absolutely irreducibly on V, we 
have 

A = [ alcI dlbI] (3.3) 

in block form, for suitable a, b, c, d ~ R. We as- 
sume the choice of an orthonormal basis. In par- 
ticular, if we define J by 

a(o, w) = <v, Jw> 

as in (2.10), then by lemrna 2.6 J commutes with 
F, so J has the form (3.3). 
Moreover J t = _ j ,  so that 

j_[0 
- bI 

Rescaling if necessary we may assume that b = 1, 

proving (a). 
Since ~2( Av, w) = -12( v, Aw ) we have 

<Ao, Jw> = - (o ,  J A w ) ,  

whence 

AtJ = - J A .  (3.4) 
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Substituting (3.3) into (3.4) we find that d = - a ,  
verifying (b). [] 

Lemma 3.2. Let F act irreducibly but not ab- 
solutely irreducibly on the F-symplectic subspace 
W. Let A ~ gOr(W). Then A is semisimple and 
the eigenvalues of A lie on the imaginary axis. 

Proof. Let ~ be the division algebra of linear 
mappings on W commuting with F. Since W is 
nonabsolutely irreducible, by remark 2.2b we have 

~ C or H. We may view W as a (left) vector 
space over ~ .  More precisely, W ~ ~ "  for some n 
and scalar multiplication by a commuting map d: 
W--* W is defined to be d . ( d l , . . . ,  d n ) =  
(dd  1 . . . . .  dd,) .  This shows that ~ acts semisimply 
on W. 

If A ~ ~Or(W) then by definition A commutes 
with F and hence must act semisimply. If in 
addition A is symplectic, then TrA = O. Now the 
trace of d is just n . T r ( L d )  where L d is left 
multiplication of d on ~ .  Identifying 2 with C or 
H it follows easily that Tr (L d) = 2 Re (d). Thus A 
has trace zero precisely when A is identified with 
b i ( ~  C) or bi + cj + d k  (2~- H). In each case, 
it can be checked that the eigenvalues of La, 
hence of A, are purely imaginary. [] 

Theorem 3.3. Let Ax be a 1-parameter family in 
g O t ( V )  such that 0 is an eigenvalue for A 0. 
Generically, either 

a) E o =  W, 
or (3.5) 

b) E o = V ~ V ,  
where F acts nonabsolutely irreducibly on W, and 
absolutely irreducibly on V. 

Proof. Let V =  E o $ Z where Z = E~,.oE.. Then 
E o and Z are A-invariant and ILorthogonal. Sup- 
pose that /~ ~ $~r(Eo).  Then we may define B 
~ r ( V )  by B I E  o = B and B I Z -  O. Observe that 

E o(A  + eB) c Eo, 

since (A  + eB) IZ- - -A  IZ whose eigenvalues are all 
nonzero by construction. 

Next we choose J~ so that Eo(A + eB) has the 
form either of a W (3.5a) or a V~  V (3.5b). Begin 
by rewriting (3.2) as 

Eo--- U I ~  " '" ~U~+t, 

where the Uj are F-symplectic and F-orthogonal. 
(Each Uj is either a W k or a V k • Vk.) Define/J as 
follows. Assume 

i) BIU~ = 0; 
and for j > 2 

ii) /~1 Uj is identical with multiplication by i if 
Uj is a W k, cf. lemma 3.2; 

iii) /~1~ is [01 _0] if Uj is a V k ~ V  k, cf. 
lemma 3.lb. 
We claim now that 

Certainly Eo(A o + eB) ~ U1, since (A 0 + eB)l f l  
= Aol U v To verify the claim we show that (A  o + 
e B ) I U  J ( j > 2 )  must have nonzero eigenvalues 
when e ~ 0. Suppose U~ is a W k. Then Ao[ W k is 
semisimple and since all eigenvalues of A01Wk are 
zero, it follows that A0l W k - O. Therefore (A 0 + 
eB)Uj = eJ~[ Uj which has all eigenvalues equal to 
+ ei by (ii) above. Suppose finally that Uj is a 
V k • V k. Using the coordinates of lemma 3.1 we 
see that 

F/ + E) I 
C = (Ao + eB)l Uj = / ' a  

[ d 

(3.6) 

The eigenvalues of C are just the eigenvalues of 
the 2 × 2 matrix 

repeated n times. Now 

det C 1 = - e ( 2 a  + e), (3.7) 

since the assumption that A o has zero eigenvalues 
• implies that a 2 + bc = 0. Moreover e(e + 2a) ~ 0 
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for e nonzero and sufficiently close to 0, regardless 
of the value of a. 

Thus generically the generalized eigenspace E 0 
consists of exactly one F-symplectic subspace (of 
the form W k or V k • Vk). [] 

3.3. The simplest zero eigenvalues 

For  the remainder of this subsection we assume 
that the symplectic vector space Z under consider- 
ation is either W or V ~ V as above. 

Proposition 3.4. Let A x be a genetic 1-parameter 
family of matrices in S p r ( Z )  with Eo(Ao) = Z. 

a) If Z = W, then A 0 = 0 and the eigenvalues 
of A x lie on the imaginary axis and cross through 
0 with nonzero speed. 

b) If Z =-- V ~  V, then A 0 is nilpotent and the 
eigenvalues cross through 0 going from purely 
imaginary to real (or vice versa). 

Proof .  

a) As we observed in lemma 3.2, the matrices 
A x may be identified with the scalars e ( ) t ) ~  
(equal to C or H). By assumption e (0 )=  0, and 
e ( h )  for ~, 4= 0 is purely imaginary and nonzero. 
Generically d e ( ) Q / d ~  ~ 0. 

b) Lemma 3.1b shows that 

[ a (h ) I  b(X)I ] 
A x =  L c ( X ) I  - a ( X ) I  ' 

where det A o = 0. Generically, A 0 4= 0, and after a 
F-equivariant linear change of coordinates we may 
assume 

A ° = [  0 0 0 I ] .  

4. Systems with one degree of freedom 

In this section we consider several possibilities 
for F where dim Z = 2. In this case, level surfaces 
of the Hamiltonian H ( p , q )  determine the dy- 
namics. Since right equivalences on H [10, 11] 
preserve the topology of the level sets, we can use 
them to put  the Hamiltonian in normal form, even 
though such coordinate changes do not respect the 
symplectic structure. 

The groups we consider are 1, Z , ,  and SO(2). 
The cases Z 2 and Z 4 are treated separately: the 
former because of differences in the representation 
theory, the latter because it has special features. 

4.1. F = I  

The only irreducible representation of ! is the 
trivial one V = R, which is absolutely irreducible. 
Then Z = V • V. 

In this case if the Hamiltonian vector field has a 
linear part with a zero eigenvalue, then genetically 
it has a nilpotent normal form 

[0 0 

and the Hamiltonian is 

H ( p , q ) =  +_q2+ " " .  

Generically 

H ( p , q )  = +p3 + q2 + . . .  (4.1) 

and the • • • in (4.1) may be eliminated by a tight 
equivalence. The model 1-parameter family, in 
this case, has the normal form 

H ( p ,  q, )t ) =p3 + q2 + )tp. (4.2) 

Now 

d e t A x = ( - 1 ) ' ( a ( X ) :  + b ( h ) c ( h ) ) ' .  

The level curves of (4.2) exhibit the well-known 
'fish' structure pictured in fig. 1. See also Meyer 
[1]. 

Generically, d[a(2t) 2 + b( ~t )c( h )]/d)t = c'(O) -~ O, 
so the determinant of A x changes sign as )t crosses 
zero. Since TrA x = 0, the eigenvalues go from 
purely imaginary to real. [] 

4.2. F = Z  2 

The only nontrivial irreducible representation of 
Z 2 is the 1-dimensional one V = R where Z 2 acts 
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x<O 

x<O 

Fig. 1. The 'fish' in genetic bifurcation of a Hamiltonian 
vector field with trivial symmetry. 

x>o 

Fig. 3. A circle of fixed points in generic bifurcation of a 
Hamiltonian vector field with SO(2) symmetry. 

as - 1. Thus Z = V • V and the natural action is 

- 1 . ( p , q ) = ( - p , - q ) .  

The model normal form in this case is 

H ( p ,  q, X) = p 4  -t- q2 + }kp2. (4.3) 

The level curves of (4.3) are shown in fig. 2. See 
also Guckenheimer and Holmes [12] chap. 7. We 
emphasize that fig. 2 represents the natural transi- 
tion in a Hamiltonian system when Z 2 symmetry 
is present. 

4.3. F = SO(2) 

The only nontrivial irreducible actions of SO(2) 
are 2-dimensional and not absolutely irreducible, 
thus Z = W. Factoring out the kernel of the action 
we may (subject to suitable interpretation) assume 
the action is faithful. Then the only possible ac- 
tions are 

We note here that these two actions of SO(2) 
are not symplectically equivalent (that is, equiv- 
alent by an isomorphism preserving the symplectic 
structure), though this point is not important here. 

The model Hamiltonian in this case is easily 
seen to be 

H ( p , q , ) t ) = ( p 2 + q 2 )  2 +)~(p2+q2).  (4.5) 

The level curves exhibit the transition in fig. 3, 
where a circle of fixed points appears for X > 0. 

4.4. F = Z  m ( m > 3 ,  m ~ 4 )  

Again, the only nontrivial irreducible actions of 
Z,~ are 2-dimensional and not absolutely irreduc- 
ible, thus Z = 14,'. We assume the action is faithful 
(by factoring out the kernel if necessary): the 
results for non-faithful representations may easily 
be deduced from this case. The group action is 
generated by 

O.z=e+-iOz, (4.4) ~ . z  = ei~z, (4.6) 

where we identify Z with C. where ~" = 2~r/m. 

k>O x<O 

Fig. 2. The 'figure eight' in genetic bifurcation of a Hamiltonian vector field with Z 2 symmetry. 
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Wassermann [13] has classified singularities of 
func t ions -up  to right equivalence- invariant un- 
der the group Z ,,. The universal unfoldings of the 
(topological) codimension-1 singularities are: 

(a) e(zz.)2+aRezm-~zz (m > 5), 
(b) fl(zZ) 2+ Rez 4 - h z ~  (m > 4), (4.7) 
(c) R e z a - X z ~  ( m = 3 ) ,  

where e = + 1, h is the unfolding parameter, and 
a > 0, fl 4= + 1 are modal parameters. Recall that f 
and g are right equivalent if there exists a diffeo- 
morphism q0 such that 

g(z) = f ( ~ ( z ) ) .  

For  Z,.-fight equivalence, we demand that q0 be 
Z ,.-equivariant. 

For our purposes we are interested only in 
drawing the level curves of f .  Therefore, finding 
the level curves of a.f(z) is just as good as 
finding the level curves of f .  In particular we may 
transform the normal forms f(z, ~) in (4.7) by the 
scalings 

af ( bz, cX) 

to obtain the normal forms 
(a) (z~)2+Rezm-~zZ (m > 5), 
(b) ( z z )  2 ..{_ ,y R e  z 4 _ ~ z ~  ( m  = 4) ,  

(c) Rez3-~z~ (m = 3), 
where the modal parameter "f 4= 0, _+ 1. 

(4.8) 

Remarks. 
a) From our point of view, the importance of 

(4.8a) is that the modal parameter a and the sign e 
have been eliminated from consideration. How- 
ever, because (zZ) 2 and Rez 4 are of the same 
order, the modal parameter cannot be eliminated 
from (4.8b). 

b) The term (z~) 2 is of higher order when 
m = 3 and could have been included in (4.8c) to 
conform to (4.8a). 

Observe that when k < 0, the level curves of 
(4.8a) are strongly elliptic near the origin, being 

Fig. 4, Level curves of normal form (4.8a) in the typical case 
m = 6, when  k > 0. 

Fig. 5. Level curves of normal form (4.8c), m = 3, h > 0. 

These contours are identical with fig. 3 when 
< 0. However, when ~ > 0 the symmetry-break- 

ing term (Re z " )  becomes important. The level 
surfaces (for m = 6 which is typical) are pictured 
in fig. 4. 

When m = 3 the level curves for ~ < 0 are ob- 
tained from those with ~ > 0 by considering the 
reflection through the origin z ~ - z .  The level 
curves for (4.8c) with h > 0 are pictured in fig. 5. 

4.5. F = Z  4 

We treat this case separately since it has special 
features: in particular, the modal parameter 3'- 
The normal form is given by (4.8b), namely 

( Z Z )  2 "l- y R e z  4 - -  X z z .  

(-k)zZ+(z~)2+h.o.t.=const. If ~ is changed to -~, the phase portrait is 



M. Golubitsky and L Stewart/Generic bifurcation of Hamiltonian systems with symmetry 401 

/ 
f < 

y=0.5  X>O 

\ 

/ 

Fig. 6. Level curves for normal  form (4.8b), corresponding to 
the g roup  Z 4. Each sequence is for a fixed value of 3' and 
shows  X < 0, X = 0, and X > 0. The two rows show the cases 
"t = 0.5, 7 = 1.5. 

unchanged except for a 45 ° rotation. We therefore 
assume 3' > 0. There are two exceptional values of 
3', namely 0 and 1 (or - 1 )  at which the topology 
of the phase portrait changes. The transition is 
shown in fig. 6 for typical values 3' = 0.5 and 1.5. 
The value 0.5 is typical of the range 0 < 3' < 1; the 
value 1.5 is typical of the range 1 < 3' < oo. (The 
value 3' = ~ can be interpreted as yielding the 
function Re z 4 - ~,z~ and is then also exceptional.) 

5. Several degrees of freedom 

f ixed-point  subspace of A to be 

F i x ( A ) = { z ~ Z l & = z f o r a l l S ~ A } .  

If the choice of Z is not clear from the context, 
write Fixz(A ) for this set. Observe that Fix(A) is 
the sum of all irreducible subspaces on which A 
acts trivially. By theorem 2.1 applied to A, in 
particular (2.16), Fix(A) is a symplectic subspace 
of Z. Our main result in this section is: 

Proposition 5.1. Let H: Z ~ R be a F-invariant 
Hamiltonian and let X H be the associated Ham- 
iltonian vector field. Then X H leaves Fix(A) in- 
variant and XHIFix(A ) is a Hamiltonian vector 
field with Hamiltonian HIFix(A).  

Proof. View X H as a mapping Z ~ Z. We claim 
that X H commutes with F, from which it follows 
that XH: F i x ( A ) ~ F i x ( A ) .  Since Fix(A) is a 
symplectic subspace the proposition holds. 

Of course X H commutes with F provided that 

3' .x .=x.  

for all 3' ~ F. Now X H is defined uniquely by 

d H  = XHI~2 , (5.1) 

where I2 is the symplectic 2-form on Z. Apply 3', 
to (5.1) to obtain 

d(3 '*H)  = (3'. X, ,)13' '9.  

But 3'*I2= I2 since F acts symplectically, and 
3'*H = H since H is F-invariant. Thus 

d H  = 3",XH]~ 

and 3",X H = X n by the uniqueness of (5.1). [] 

Corollary 5.2. If d i m F i x ( A ) = 2 ,  then the dy- 
namics of XnIFix(A)  is determined by the meth- 
ods of section 4. [] 

Let F act symplectically on the vector space Z 
and let A c F  be a Lie subgroup. Define the 

This corollary is the Hamiltonian analogue of 
the steady-state Equivariant Branching Lemma of 
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Vanderbauwhede [14] and Cicogna [15]. See 
Golubitsky, Stewart and Schaeffer [16]. 

Remarks.  
i) HIFix(A ) is not arbitrary. In particular, if 

N(A) is the normalizer of A in F then N ( A ) / A  
acts on Fix(A) and HIFix(A) is invariant under 
this action. However, there may be additional 
more subtle restrictions. A general discussion of 
the restrictions placed on HIFix(A)  by the 
invariance of H under F is given in Golubitsky, 
Marsden, and Schaeffer [17]. 

ii) As discussed in section 3 the basic examples 
are Z = V • V where F acts absolutely irreducibly 
on V, and Z = W where F acts non-absolutely 
irreducibly on W. In the first case 

d i m V i x v . v ( A )  = 2. dim F ixv (a  ). 

Therefore the application of corollary 5.2 in the 
case Z = V ~  V requires finding (isotropy) sub- 
groups A c F for which 

d imFixv(A ) = 1. 

Such computations have been carried out for a 
number of examples- in  particular for the case 
/" = O(3) in any irreducible representation V, see 
Ihrig and Golubitsky [18]. 

The case F = 0(2) on R 4 

We end this section with an example. Let F = 
0(2) act by its standard representation on V = C 
and let Z = C • C. Let A = Z 2 = (z ~ - z ) .  Then 

Fix (Z2) = R ~) R 

which is 2-dimensional. Note also that N(Z 2) = 7 2 
and that N(Z 2)//7 2 is generated by z ~ ei~z = - z .  
By Remark (i) we know that H]Fix(Z2) is in- 
variant under Z 2-= N(72)/72, hence we expect 
the bifurcation picture of HIFix(Z2) to be like 
that of figure 2. 

To verify this last statement we must compute 
the general Hamiltonian on C • t2 commuting 

with 0(2). This is easily done, yielding 

H ( z l ,  z2) = h(Izll 2, Iz212,Re(zl~2)). (5.2) 

Restricting H to Fix(i[2) = R • R yields 

HIFix(Z z) = h(  x] ,  x22, x t x z ) ,  (5.3) 

where zj = x j  + iyj. Of course (5.3) is the most 
general function invariant under the Z z-action on 
R • R, taking (xl,  Xz) to ( - X l , - x 2 ) ,  discussed 
in section 4.2. Hence fig. 2 does give the generic 
bifurcation picture of HI Fix(Z 2). 

In particular, we observe 

Proposition 5.3. Homoclinic and periodic orbits 
occur generically in the unfoldings of steady-state 
bifurcations of Hamiltonian systems with 0(2) 
symmetry when 0(2) acts on Z = C ~ C. 

Similar results may be obtained whenever there 
exist subgroups A of F acting absolutely irreduc- 
ibly on V, for which 

d imFixv(A ) = 1. 

Thus our methods, while not giving complete in- 
formation, yield some fairly delicate dynamics in a 
very direct and simple fashion, for a variety of 
complicated Hamiltonians. 

We can also determine the stability of the equi- 
librium points occurring in this bifurcation, in the 
full 4-dimensional system. Assume (for compati- 
bility with fig. 2) that the eigenvalues are purely 
imaginary for ~ > 0 and pass through zero at 

= 0. By the 0(2) symmetry the eigenvalues are 
double: for ~ > 0 they are a purely imaginary 
complex conjugate pair + ito of multiplicity 2; for 

= 0 there are four zero eigenvalues; and for 
X < 0 there are two real eigenvalues +/~ of multi- 
plicity 2. Thus the origin makes a transition from 
being elliptic (4 purely imaginary eigenvalues) to 
hyperbolic (4 real). 
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The new equilibria that appear away from the 
origin when X < 0 clearly have at least two imag- 
inary eigenvalues, from fig. 2. We can determine 
the remaining two eigenvalues as follows. Since 
the isotropy group Z 2 commutes with the linear- 
ization of the vector field, it follows from section 2 
that the linearized matrix can be written in block 
form as 

[: o] 
where A and B are symplectic 2 × 2 matrices. The 
eigenvalues of A are purely imaginary (and non- 
zero). Since the orbit of the equilibrium under 
0(2) is 1-dimensional there is at least one zero 
eigenvalue, which must occur in B. But B, being 
symplectic, has trace zero and consequently has 
both eigenvalues 0. Thus the eigenvalues at the 
bifurcating equilibria are of the form (~ i, - ~i, 0, 0). 
This represents "orbital ellipticity", that is, all 
eigenvalues not forced to zero by the group action 
are imaginary. 

A more general theory of the constraints im- 
posed on eigenvalues by symmetry, depending on 
the geometry of the momentum mapping, may be 
found in Montaldi, Roberts and Stewart [19]. The 
results are applied there to obtain equivariant 
versions of the Liapunov centre theorem and the 
Weinstein-Moser theorem. 
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Appendix 

Bifurcation, reduction, and normal forms 
by J.E. Marsden 

In this appendix, we wish to point out a use of 
the theory of reduction in Hamiltonian systems 
with symmetry (Marsden and Weinstein [20] and 
Abraham and Marsden [21]) to the bifurcation 
theory begun in this paper. Our goal is to give a 
simple exposition of a result of Cushman and Rod 
[22]; related references are Churchill, Kummer 
and Rod [23], Iwai [24], and van der Meer [25]. 
The result of Cushman and Rod concerns the 
bifurcation at the 1:1 semisimple resonance in 
which a pair of eigenvalues at a fixed point be- 
come double as they move vertically on the imag- 
inary axis. The nonsemisimple 1 : -  1 resonance in 
which a pair of eigenvalues cross the imaginary 
axis in opposite directions is considered by van 
der Meer. (This is what Abraham and Marsden 
[21] p. 604 call the Brown or Trojan bifurcation 
since it occurs in the restricted three-body prob- 
lem for a mass ratio near Routh's critical value. 
Van der Meer calls it the Hamiltonian Hopf bifur- 
cation.) The semisimple case is considered by Iwai 
and can be done by the same procedure that we 
outline here, with SU(2) replaced by SU(1,1) and 
the three-spheres replaced by hyperboloids. It is 
hoped that the ideas of reduction will be of use in 
the general theory of bifurcation of Hamiltonian 
systems with symmetry, and our aim is merely to 
bridge the gap between workers in these areas and 
update the Hamiltonian techniques a little. 

Let P be a Poisson manifold, let F and G be 
two Lie groups acting canonically on P with 
equivariant momentum maps Jr and Jc: 

Jr :~ 
~,* ~ p ---~ g*, 

where y* and g* are the duals of the Lie algebras 
of F and G respectively. Suppose that F acts 
transitively on the level sets of JG. (This assump- 
tion is related to the notion of a dual pair; see foi 
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example Marsden and Weinstein [26].) If H: P --+ 
R is a F-invariant Hamiltonian, then by transitiv- 
ity of the F-action on level sets of JG, it is obvious 
that this Hamiltonian collectivizes, that is, 
is of the form H = h o JG- (See Guillemin and 
Sternberg [27], Holmes and Marsden [28], and 
Marsden et al. [29] for some general properties of 
collective motion.) We refer to h as the normal 

form for H. In specific cases, the methods of 
singularity theory can be used to show that h is a 
smooth function. However, since Jc is a Poisson 
map (see the preceding references) the dynamics 
of H projects to the Lie-Poisson dynamics on g*, 
that is to Hamiltonian dynamics on g* with the 
Lie-Poisson bracket 

( F,  H }(/*) = (la, [8F/81~, 8H/8#] ) ,  

where [ , ] denotes the Lie bracket on g and 
8F/81* ~ g denotes the functional derivative of F, 
that is, the dual of the Fr6chet derivative. 

These remarks apply to give some of the results 
of Cushman and Rod [22] as follows. Let P = R 4 

C ) C,  F = S 1, and G = SU(2). Let H 0 = J r  
1 2 = ~(x I + y 2 + x ~ + y ~ )  and let S t act by the flow 

of H o. The group SU(2) acts on R 4 by quater- 
nionic multiplication; its momentum map is easily 
computed to be the Hopf map 

JG(Xl ,  Yl, X2, Y2) = (W1, I'~2, W3),  

where g is identified with R3 and where 

W1 = 2(xtx2 + YtY2), 

W 2 = 2 ( x 2 y  1 - xlY2) , 

W3 = (x 2 + y 2 _  x 2 _ y2),  

as in Cushman and Rod [22]. The level sets arc are 
the circles in the Hopf fibration ~r: S 3 --+ S 2, and so 
F acts transitively on them. Thus any Sl-invariant 
Hamiltonian (for example one that is obtained by 
averaging) collectivizes through the Hopf map. 
(We can also regard H as a function of J~ and H 0 
since H ~ = ( w  2+ W 2 +  W2)/4.) Thus the dy- 

namics of such an H reduces to dynamics on R 3, 
with respect to the rigid body Lie-Poisson struc- 
ture 

{F ,  H } ( I ) =  (l, V F ×  ~TH). 

Since the symplectic leaves of this Poisson struc- 
ture are the two-spheres, the bifurcation problem 
is reduced to studying the dynamics of a Hamilto- 
nian on S 2, which is certainly more tractable than 
the original problem. 

It seems that this procedure will work whenever 
the unperturbed system (here H0) is completely 
integrable by the method of collectivization. 
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