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1. INTRODUCTION

Lauterbach and Roberts [15] showed that when symmetry breaking
terms are added to an equivariant differential equation with a group orbit
of equilibria, heteroclinic cycles connecting equilibria on the perturbed
group orbit may result.

More precisely, let 1/O(n) be a Lie group acting on Rn and let

z* = f (z) (1.1)

be a 1-equivariant system of differential equations; that is,

f (#z)=#f (z)

for all # # 1. Suppose that (1.1) has an equilibrium at z0 . Then equivariance
implies that the manifold

X0=1z0

is a group orbit of equilibria. We assume that this group orbit is normally
hyperbolic; indeed, we assume that X0 is orbitally asymptotically stable.

Suppose now that we consider a small system symmetry breaking
perturbation of (1.1),

z* = f (z)+=g(z), (1.2)

where = is small and g is only 2-equivariant where 2/1 is a Lie subgroup.
When = is sufficiently small, normal hyperbolicity guarantees that there is
a (perturbed) flow invariant manifold X= for the perturbed system (1.2)
which is diffeomorphic to X0 [9]. However, the dynamics of the perturbed
flow on X= need not consist only of equilibria.

Indeed, when dim 2<dim 1 the dynamics on the perturbed orbit X=

will generally be more complicated than just consisting of equilibria.
Lauterbach and Roberts [15] show that, depending on the pair 1 and 2,
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certain equilibria may be forced to occur on X= . In addition, one-
dimensional flow invariant sets connecting these equilibria may be forced
by the residual symmetry 2, so that generically heteroclinic cycles connecting
the equilibria on X= can be forced. Lauterbach and Roberts [15] give an
example where heteroclinic cycles are forced by system symmetry breaking.
In this example 1=O(3) and 2=T (the group of symmetries of the
tetrahedron). More recently, Lauterbach et al. [13, 14] have classified all
pairs 1 and 2 which may result in heteroclinic cycles when 1 is either O(3)
or SO(3) and 2 is any proper Lie subgroup. This investigation is
completed when Rn is any of the natural irreducible representations of O(3).

We follow the work by Hou in [10] and continue this line of investiga-
tion by constructing an example where heteroclinic cycles are forced by
system symmetry breaking which is simpler than those of Lauterbach and
co-workers. In our example 1=D4+4 T2, 2=D2 , and n=4. These groups
occur when studying bifurcations of spatially periodic solutions to planar
Euclidean equivariant systems of PDEs on a square lattice (see [4]).

Specifically, we write R4$C2 and use complex coordinates
z=(z1 , z2) # C2. The action of D2 on C2 is generated by the reflections

}1 } (z1 , z2)=(z� 1 , z2)

}2 } (z1 , z2)=(z1 , z� 2).

The action of D4+4 T2 on C2 is generated by }1 and

} } (z1 , z2)=(z2 , z1)

(%, ,) } (z1 , z2)=(ei%z1 , ei,z2)

where (%, ,) # T2.
The idea behind the heteroclinic cycle that we produce is quite simple.

Suppose that there is an equilibrium to the unperturbed system (1.1) of the
form z0=(+, +) where +>0 is real. We call such an equilibrium a mixed
mode solution. Note that the isotropy subgroup of a mixed mode solution
is the group D4 generated by } and }1 . Thus, the group orbit X0 through
z0 is diffeomorphic to the 2-torus T2. The perturbed flow invariant
manifold X= is invariant under the remaining symmetry D2 . It is this
residual symmetry that gives structure to the dynamics on X= . Since
X= $X0 , we can use X0 as a model for the restrictions on the perturbed
dynamics given by 2=D2 symmetry.

In particular, the fixed-point subsets in X0 of subgroups of 2 are flow
invariant for the perturbed system. These fixed-point subsets are defined as
follows. Let (/2 be a subgroup. Then

Fix0(()=[z # X0 : vz=z \v # (].
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It is easy to compute the action of D2 on X0 $T2. Indeed, in the
standard coordinates of T2, we have that

}1(%, ,)=(&%, ,)

}2(%, ,)=(%, &,).

The fixed-point subsets of subgroups of D2 acting on X0 are

Fix0(}1)=[(0, ,)] _ [(?, ,)]

Fix0(}2)=[(%, 0)] _ [(%, ?)]

Fix0(D2)=[(0, 0), (?, 0), (0, ?), (?, ?)].

So the fixed-point subset for each }j is the disjoint union of two circles; the
fixed-point subset of D2 consists of four points, which we label A, B, C, D.

Thus the flow of the perturbed system on X= must have four equilibria
(the points in Fix0(D2)). We call these four points the D2-equilibria.
See Fig. 1. Similarly, symmetry forces the existence of the one-dimensional
invariant circles Fix0(}1) and Fix0(}2) connecting these equilibria. If
we can show that each of the equilibria are saddles with inflow and out-
flow directions as noted in Fig. 1 and if we can show that there are no
other equilibria on these one-dimensional flow invariant manifolds, then

Fig. 1. Fixed-point subsets on the 2-tours X= .
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we will have proved the existence of a heteroclinic cycle connecting the
D2 -equilibria.

To establish the existence of heteroclinic cycles of this form, we must
prove the existence of orbitally stable mixed mode solutions in (1.1) and
then show that there are perturbation terms g(z), as in (1.2), such that the
D2 -equilibria are saddles and that there are no other equilibria.

We use equivariant bifurcation theory in the presence of D4+4 T2

symmetry to establish the existence of orbitally stable mixed mode
equilibria. That is, we assume that the vector field f in (1.1) depends on a
bifurcation parameter *

z* = f (z, *). (1.3)

We show that under certain easily verifiable conditions on the lower order
terms of f in (1.3), there exists a branch of orbitally asymptotically stable
mixed mode equilibria. We then show that if the first derivatives of g at the
origin satisfies certain inequalities, then for all fixed * sufficiently near zero
and all sufficiently small = (depending on *) the perturbed system has the
dynamics shown in Fig. 1. That is, there exists a structurally stable,
asymptotically stable, heteroclinic cycle.

Once we have established these conditions, we also show that the
existence of this cycle depends only on the existence of the D4+4 T2-
equivariant bifurcation to mixed mode solutions. That is, there exist an
open set of perturbation terms g that force the existence of the desired
cycle. We can then use these results to prove the existence of heteroclinic
cycles in the dynamics of a reaction-diffusion system. See Hou [10].

In 1980 Field [6] proved that heteroclinic cycles appear generically in
symmetric systems. More recently, such cycles have been shown to exist
through spontaneous symmetry breaking where the symmetry of the
equations never changes [8, 2, 16]. A discussion of heteroclinic cycles that
are produced both by spontaneous symmetry breaking and by system
symmetry breaking is given in Krupa [12]. Dynamics other than cycles is
also observed through system symmetry breaking (cf. [1, 3]).

We end this section by outlining the structure of this paper. The existence
and stability of mixed mode solutions obtained by bifurcation is discussed
in the next section. In Section 3 we describe the perturbations g in (1.2)
and present our main result (Theorem 3.2) on the existence of asymptotically
stable heteroclinic cycles. The proof of this theorem is given in the next
three sections. We discuss the stability of the saddles that make up the
cycle in Section 4 and the asymptotic stability of the cycle itself in
Section 6. The nonexistence of additional equilibria on the one-dimensional
invariant manifolds that connect the saddles is established in Section 5. An
example is discussed in Section 7.
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TABLE I

Isotropy Subgroups of D4 +4 T2 Acting on C2

Orbit representative Isotropy subgroup Fixed-point subspace Dimension

(0, 0) D4+4 T2 (0, 0) 0
(x, 0), x # R D2+4 S1 (x, 0) 1
(x, x), x # R D4 (x, x) 1

(x, y ), x, y # R D2 (x, y ) 2

2. MIXED MODE SOLUTIONS

The group action of D4 +4 T2 acting on C2 has the four (conjugacy
classes of) isotropy subgroups listed in Table I. We call the points with
isotropy subgroup D2+4 S1 pure modes; as noted previously, we call the
points with isotropy subgroup D4 mixed modes.

The general form of the D4+4 T2-equivariant mapping is (see [7, 17])

f (z1 , z2 , *)=(A( |z1 | 2, |z2 | 2, *) z1 , A( |z2 | 2, |z1 | 2, *) z2), (2.1)

where A : R2_R � R. Assume A*(0, 0, 0){0. By rescaling * we can assume

A( |z1 | 2, |z2 | 2, *)=a |z1 | 2+b |z2 | 2&*+ } } } ,

Fig. 2. Region division.
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where a, b # R and } } } stands for high order terms. Let

K(z, *)=((a |z1 | 2+b |z2 | 2&*) z1 , (b |z1 | 2+a |z2 |2&*) z2) (2.2)

be the third-order truncation of f (z, *). We call K(z, *) the normal form of
f (z, *). If K satisfies certain nondegeneracy conditions, then the equilibria
of the vector field f (z, *) and the linear stability of these equilibria are
determined by K. More precisely:

Definition 2.1. A D4+4 T2-equivariant vector field f (z, *) is non-
degenerate if a{0 and a{\b.

Theorem 2.2. A nondegenerate D4+4 T2-equivariant vector field f (z, *)
is D4+4 T2-equivalent to K(z, *).

Theorem 2.2 is proved in [17] and follows from [7] Proposition X2.3.
The stability result follows from results in [11]. It follows that the two
parameters a and b in (2.2) determine the branches of solutions of f
near the bifurcation point and their orbital stability. Note that these non-
degeneracy conditions divide the ab-plane into six regions, as shown in
Fig. 2.

To simplify the computations, we assume that f (z, *) is in normal form.
The method we use to discuss the branching and stability of solutions of
the D4+4 T2-equivariant vector field K can also be used to discuss the same
issues for the nondegenerate D4+4 T2-equivariant vector field f. We
show later that the results for general f depend only on the third-order
truncation K.

Now we solve K(z, *)=0 explicitly. There are three different solutions
which are distinguished by their isotropy subgroups: the trivial, pure mode,
and mixed mode solutions. See Table II for the branching equation.

To discuss the orbital stability of these solutions, we need only consider
the restricted equations on Fix(D2). The T2 action guarantees that the two

TABLE II

Linear Stability

Solution Subgroup Subspace Equation Eigenvalues

Trivial D4+4 T2 (0, 0) z1=0=z2 &* (twice)
Pure mode D2+4 S1 (x, 0) *=ax2 2ax2, (b&a)x2

Mixed mode D4 (x, x) *=(a+b)x2 2x2(a\b)
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Fig. 3. Bifurcation diagram in region (2).

eigenvalues in directions transverse to Fix(D2) are zero. The restricted
equations satisfy

(ax2
1+bx2

2&*) x1=0

(bx2
1+ax2

2&*) x2=0.

The linearization on Fix(D2) is

(dK)|Fix(D2)=\3ax2
1+bx2

2&*
2bx1x2

2bx1x2

bx2
1+3ax2

2&*+ .

The computation of the eigenvalues of (dK)|Fix(D2) is summarized in
Table II.

Remark 2.3. We are interested only in bifurcations that produce
orbitally stable mixed mode solutions. Stable mixed modes occur only in
region (2) where a>|b|. In this region pure mode solutions are orbitally
unstable, though both branches bifurcate supercritically. See Fig. 3.

3. THE PERTURBED BIFURCATION PROBLEM

In this section, we study the form of ODEs on C2 that break symmetry
from D4+4 T2 to D2 .

Assuming nondegeneracy conditions, the dynamics of the D4+4 T2-
equivariant vector field f (z, *) is well understood via singularity theory and
local bifurcation theory [7]. The preceding section shows that when certain
conditions on the coefficients up to the third-order terms of the Taylor
expansion of f (z, *) are satisfied, the D4+4 T2-equivariant vector field has
an orbitally stable mixed mode solution which is a 2-torus, and this 2-torus
is normally hyperbolic. We denote this 2-torus by X0 .
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Now we perturb the vector field f (z, *) by the D2 equivariant mapping
=g(z), where = is small and g(0)=0. Let F : C2_R2 � C2 be defined by

F(z, *, =)= f (z, *)+=g(z). (3.1)

We consider the system of ODEs:

dz
dt

+F(z, *, =)=0. (3.2)

Normal hyperbolicity implies that for fixed *>0 but near 0 and for small
=, (3.2) has a flow invariant 2-torus X= which is a perturbation of X0 .

In Section 2 we assumed that f (z, *) is in normal form. To simplify the
computations, we make this assumption here. Thus we consider the following
system of ODEs:

dz1

dt
+(a |z1 | 2+b |z2 |2&*) z1+=g1(z1 , z2)=0 (3.3)

dz2

dt
+(b |z1 | 2+a |z2 |2&*) z2+=g2(z1 , z2)=0. (3.4)

Here g=(g1 , g2) in coordinates. We assume that a>|b| is valid, so that
the mixed mode solution is orbitally stable. Note that since g(0)=0, the
trivial solution of K(x, *)=0 is still a solution in the perturbed system
(3.2).

Remark 3.1. It can be checked that:

(a) a Hilbert basis of the D2-invariant functions is: z1+z� 1 , z2+z� 2 ,
z1z� 1 , z2z� 2 ;

(b) a basis of the module of D2-equivariant mappings is: (1, 0),
(0, 1), (z1 , 0), (0, z2).

By Remark 3.1 we can rewrite the perturbation as:

g1=a1(z1+z� 1 , z2+z� 2 , z1z� 1 , z2z� 2) z1+b1(z1+z� 1 , z2+z� 2 , z1z� 1 , z2 z� 2)
(3.5)

g2=a2(z1+z� 1 , z2+z� 2 , z1z� 1 , z2z� 2) z2+b2(z1+z� 1 , z2+z� 2 , z1z� 1 , z2 z� 2)

where a1 , a2 , b1 and b2 are maps from R4 to R and b1(0)=b2(0)=0. Note
that the form of g implies that

g1, z2
(0, 0)= g1, z� 2(0, 0) and g2, z1

(0, 0)= g2, z� 1(0, 0) (3.6)
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though these equalities could have been obtained directly using the }1 and
}2 symmetries.

We now state our main theorem. Define

K1= g1, z� 1(0, 0)+ g1, z� 2(0, 0)

K2= g1, z� 1(0, 0)& g1, z� 2(0, 0)

L1= g2, z� 2(0, 0)+ g2, z� 1(0, 0)

L2= g2, z� 2(0, 0)& g2, z� 1(0, 0).

Theorem 3.2. Consider the system of ODEs (3.3) and (3.4) and assume
that:

a>|b| (3.7)

sgn(K2)=&sgn(K1); sgn(L1)=&sgn(K1); sgn(L2)=sgn(K1). (3.8)

Then for each fixed small *>0 and for every sufficiently small nonzero =,
there exist structurally stable heteroclinic cycles in (3.2) connecting the
D2 -equilibria. When

sgn(=)=sgn(L1K2&K1L2) sgn(K1) (3.9)

the heteroclinic cycle is asymptotically stable.

Note that (3.8) implies:

| g1, z� 2(0, 0|<| g1, z� 1(0, 0)| and | g2, z� 1(0, 0|>| g2, z� 2(0, 0)|. (3.10)

As we have seen (3.7) establishes the existence of orbitally stable 2-tori
of mixed modes in the unperturbed bifurcation problem when *>0. In the

Fig. 4. Region of existence of heteroclinic cycles in the *= parameter plane.
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next section, we use (3.8) to show that the D2-equilibria are saddles with
inflow and outflow manifolds consistent with a cycle. In Section 5, we use
(3.10) to prove that there are no additional equilibria that would block the
existence of the cycle. In Section 6 we use (3.9) to establish the asymptotic
stability of the cycle. It is worth emphasizing that the region in the *=
parameter plane where the existence of the heteroclinic cycles is asserted is
very small. See Fig. 4.

4. STABILITY OF PERTURBED EQUILIBRIA

For fixed *>0 and for = small, (3.2) has four equilibria A, B, C, D��the
D2 -equilibria. In the unperturbed equation, the mixed mode equilibria that
are also in Fix0(D2) are (\+, \+) where +=- *�(a+b). For the purpose
of our discussion we set, when ==0,

A=(+, +) B=(+, &+) C=(&+, &+) D=(&+, +).

The D2-equilibria are parameterized by the system symmetry breaking
parameter =. In our discussion, we assume that these equilibria are
parameterized explicitly by (:(=), ;(=)).

Orbital stability of the mixed mode solution to the unperturbed problem
guarantees that these four equilibria are stable in directions transverse to
the 2-torus X= ; that is, in directions in the subspace Fix C2(D2). To prove
the existence of a heteroclinic cycle on X= , we need to compute the eigen-
values corresponding to eigenvectors of dF in directions tangent to X= .
Using the group structure, this computation can be done in a straight-
forward manner. The D2-isotypic decomposition of C2 is

C2=V0 �V1 �V2 ,

where

V0=Fix(D2)=[(x1 , x2) : x1 , x2 # R]

V1=[( y1 i, 0), y1 # R]

V2=[(0, y2 i) : y2 # R].

Observe that V1 and V2 are tangent to X= at each of the D2-equilibria.
Since the Jacobian dF commutes with }1 and }2 , it follows that e1=
(i, 0) # V1 and e2=(0, i) # V2 are eigenvectors of dF. We denote the eigenvalues
of dF in the e1 and e2 directions by

_1(=) and _2(=),

respectively. In this section we prove:
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TABLE III

Eigenvalues in the Tangent Direction

Equilibria sgn(_1(=)) sgn(_2(=))

A &sgn(K1=) &sgn(L1 =)
B &sgn(K2=) &sgn(L2 =)
C &sgn(K1=) &sgn(L1 =)
D &sgn(K2=) &sgn(L2 =)

Theorem 4.1. For fixed small * and for small = (3.8) are necessary and
sufficient conditions for proving that the D2 -equilibria on X= have inflow and
outflow directions that are consistent with having a heteroclinic cycle.

Proof. This theorem is proved by showing that the signs of the eigen-
values at the D2-equilibria are determined by the entries in Table III. The
necessary and sufficient condition that each D2-equilibria is a saddle is

_1(=) _2(=)<0.

From Table III, we can see that when (3.8) is valid, then for equilibria A
and C

sgn(_1(=) _2(=))=sgn(K1L1)=&1,

and for equilibria B and D,

sgn(_1(=) _2(=))=sgn(K2L2)=&1.

In addition, the outflow direction from point A must be the inflow direction
of point B and the inflow direction of point A must be the outflow direction
of point D (or conversely). See Fig. 1. The remainder of this section is
devoted to verifying the entries in this table. K

Remark 4.2. If one of the inequalities in (3.8) is invalid, then there
must exist other equilibria on the invariant circles.

Lemma 4.3. At the D2 -equilibria

_1(=)=F 1
z1

&F1
z� 1

_2(=)=F 2
z2

&F 2
z� 2

where the derivatives are evaluated at (z1 , z2)=(:(=), ;(=)).
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Proof. Using complex coordinates, we see that for every !, ' # C

(dF )(!, ')=\F 1
z1

!+F 1
z� 1 !� +F 1

z2
'+F 1

z� 2 '�
F 2

z1
!+F 2

z� 1!� +F 2
z2

'+F 2
z� 2 '� + .

The commutativity condition

(dF ) } }1=}1 } (dF )

implies that

\F 1
z1

!� +F 1
z� 1 !+F 1

z2
'+F 1

z� 2 '�
F 2

z1
!� +F 2

z� 1 !+F 2
z2

'+F 2
z� 2 '� +=\ F 1

z1
!� +F 1

z� 1!+F 2
z2

'� +F 1
z� 2'

F 2
z1

!+F 2
z� 1 !� +F 2

z2
'+F 2

z� 2'� + .

Thus

F 2
z1

=F 2
z� 1 , F 1

z� 2=F 1
z2

, F 1
z1

, F 1
z� 1 # R.

A similar argument, using the fact that (dF ) commutes with }2 , shows that

F 1
z2

=F 1
z� 2 , F 2

z� 1=F 2
z1

, F 2
z2

, F 2
z� 2 # R.

Thus

F 2
z1

=F 2
z� and F 1

z2
=F 1

z� 2

F 1
z1

, F 1
z� 1 # R, F 2

z1
=F 2

z� 1 # R and F 1
z2

=F 1
z� 2 # R.

Hence

(dF )(!, ')=\F 1
z1

!+F 1
z� 1 !� +2F 1

z2
Re(')

2F 2
z1

Re(!)+F 2
z2

'+F 2
z� 2 '� + .

We can now compute

(dF ) e1=(F 1
z1

&F 1
z� 1) e1

(dF ) e2=(F 2
z2

&F 2
z� 2) e2 ,

where the derivatives are evaluated at (z1 , z2)=(:(=), ;(=)). K
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Lemma 4.4. The signs of the two eigenvalues _1(=) and _1(=) at
D2 -equilibria in directions tangent to X= are those given on Table III.

Proof.
F1=(a |z1 |2+b |z2 | 2&*) z1+=g1(z1 , z2) (4.1)

F2=(b |z1 |2+a |z2 | 2&*) z2+=g2(z1 , z2). (4.2)

Note that at a equilibrium point F1=0=F2. Hence

a |z1 | 2+b |z2 | 2&*=&=
g1(z1 , z2)

z1

b |z1 | 2+a |z2 | 2&*=&=
g2(z1 , z2)

z2

.

Using Lemma 4.3, we obtain

_1(=)=a |z1 | 2+b |z2 | 2&*+=(g1, z1
& g1, z� 1)

== \&
g1

z1

+ g1, z1
& g1, z� 1+

_2(=)=b |z1 | 2+a |z2 | 2&*+=(g2, z2
& g2, z� 2)

== \&
g1

z2

+ g2, z2
& g2, z� 2+

where the right hand sides are evaluated at (z1 , z2)=(:(=), ;(=)). Fixing
*>0 (which is equivalent to fixing +>0) we can compute the linear terms
of _1 and _2 in =, as follows. Write

:(=)=$1++O(=)

;(=)=$2++O(=),

where $1=\1 and $2=\1. The choice of sign depends on which of the
points A&D are the base points for the calculation. Expanding in =, we
find

_1(=)=\&
g1($1 +, $2+)

$1+
+ g1, z1

($1+, $2+)& g1, z� 1($1 +, $2+)+ =+O(=2)

(4.3)

_2(=)=\&
g2($1 +, $2+)

$2+
+ g2, z2

($1+, $2+)& g2, z� 2($1 +, $2+)+ =+O(=2).

(4.4)

42 HOU AND GOLUBITSKY



File: 505J 320114 . By:CV . Date:10:12:96 . Time:15:06 LOP8M. V8.0. Page 01:01
Codes: 3078 Signs: 1756 . Length: 45 pic 0 pts, 190 mm

To determine the signs of _1(=) and _2(=) we need only determine the signs
of the coefficients of the = term in (4.3), (4.4). We can do this for small +
(that is, for * near 0), as follows. Since g1(0, 0)=0= g2(0, 0) we have

g1($1 +, $2+)=($1 g1, z1
(0, 0)+$1g1, z� 1(0, 0)+$2 g1, z2

(0, 0)

+$2g1, z� 2(0, 0)) ++O(+2)

g2($1 +, $2+)=($1 g2, z1
(0, 0)+$1g2, z� 1(0, 0)+$2 g2, z2

(0, 0)

+$2g2, z� 2(0, 0)) ++O(+2).

Substituting into (4.3), (4.4), we see that

_1(=)=&[2g1, z� 1(0, 0)+$1 $2g1, z2
(0, 0)+$1$2g1, z� 2(0, 0)+O(+)] =+O(=2)

_2(=)=&[2g2, z� 2(0, 0)+$1 $2g2, z1
(0, 0)+$1$2g2, z� 1(0, 0)+O(+)] =+O(=2).

Finally, we use (3.6) to verify that for each small +>0 and all sufficiently
small = (with the maximum size of = depending on +)

sgn(_1(=))=&sgn(=) sgn(g1, z� 1(0, 0)+$1 $2 g1, z� 2(0, 0))

sgn(_2(=))=&sgn(=) sgn(g2, z� 2(0, 0)+$1 $2 g2, z� 1(0, 0)).

It follows that the signs of the eigenvalues are as claimed in Table 3. K

5. NONEXISTENCE OF NONSYMMETRIC EQUILIBRIA

In this section we derive sufficient conditions for the existence of
heteroclinic cycles. The remaining item left to prove is that there are no
equilibria other than the D2-equilibria on the one-dimensional invariant
manifolds on X= connecting the D2-equilibria.

As before we assume that (3.7) and (3.8) are valid. We claim that the
validity of (3.10) is sufficient to establish that there are no other equilibria
on the invariant circles, thus proving that heteroclinic cycles do exist.
Specifically, we show that there are no additional equilibria in Fix0(}1) and
Fix0(}2) on X0 , and then use continuity to establish the result for small =.

Recall that the perturbed vector field (3.1) has the form

F(z, *, =)= f (z, *)+=g(z),

where recalling (2.1) and (3.5) we have:

f (z, *)=(A( |z1 | 2, |z2 | 2, *) z1 , A( |z2 | 2, |z1 | 2, *) z2)

g(z)=(a1z1+b2 , a2z2+b2)
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Suppose that ( y, *, =) is an equilibrium of F that is in Fix(}2) but is not
in Fix(D2). If there were an equilbium in X= blocking the heteroclinic cycle,
it would have to be either in Fix(}1)tFix(D2) or in Fix(}2)tFix(D2). We
show that there are no such equilibria which are near the group orbit of
mixed mode solutions; that is, near X0 .

Let Y be the group orbit under T2 containing the point y=( y1 , y2) and
let

? : C2 � Ty Y

be orthogonal projection. In coordinates

?(w1 , w2)=\w1&
y1

| y1 | 2 Re(w1 y� ), w2&
y2

| y2 | 2 Re(w2 y� 2)+ .

Verify this formula by checking that ?( y1 , 0)=0, ?(0, y2)=0, ?(iy1 , 0)=
(iy1 , 0), and ?(0, iy2)=(0, iy2). That is, ? vanishes on the directions
normal to Y and is the identity on the tangent space directions.

Suppose that a and b are real numbers, then

?(ay1 , by2)=0.

Using the form of F, f, and g in it follows that

?(F( y, *, =))=\b1&
y1

| y1 | 2 Re(b1 y� 1), b2&
y2

| y2 | 2 Re(b2y� 2)+
=\i

y1

| y1 | 2 Im( y� 1) b1 , i
y2

| y2 |2 Im( y� 2) b2+
=0.

Note that the coefficient of b1 vanishes precisely when Im( y1)=0, which is
just when y # Fix(}1). Similarly, the coefficient of b2 vanished precisely
when y # Fix(}2). Thus

?(g)|Fix(}1)=\0, i
y2

| y2 |2 Im( y� 2) b2+
?(g)|Fix(}2)=\i

y1

| y1 |2 Im( y� 1) b1 , 0+ .

In addition, the coefficients of the bj vanish precisely at the D2-equilibria.
So if y � Fix(}2), then b1 |y=0. Similarly, if y � Fix(}1), then b2 |y=0.
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So, if we can find conditions on b1 and b2 so that

b1 |Fix0(}2) and b2 | Fix0(}1)

are bounded away from zero on X0 , then the only zeros of F on X= for =
sufficiently small will be the D2-equilibria and the existence of the hetero-
clinic cycle will be proved.

Observe that

Fix0(}1)=[(+, z2) : |z1 |=+]

Fix0(}2)=[(z1 , +) : |z1 |=+].

Therefore,

b2 |Fix 0(} 1)=b2(2+, z2+z� 2 , +2, +2)

b1 |Fix0(}2)=b1(z1+z� 1 , 2+, +2, +2).

Next we write z1=+ei,1 and z2=+ei,2. Then

b2 | Fix0(}1)=b2(2+, + cos(,2), +2, +2)

=2(b2, 1(0)+b2, 2(0) cos(,2)) ++O(+2)

b1 | Fix0(}2)=b1(+ cos(,1), 2+, +2, +2)

=2(b1, 1(0) cos(,1)+b1, 2(0)) ++O(+2).

Hence for small + these quantities are bounded away from zero uniformly
in ,1 and ,2 if

|b2, 1(0)|>|b2, 2(0)|

|b1, 2(0)|>|b1, 1(0)|.

Using the form of g in (3.1), it follows that

b1, 1(0)= g1, z� 1(0, 0) b1, 2(0)= g1, z� 2(0, 0)

b2, 1(0)= g2, z� 1(0, 0) b2, 2(0)= g2, z� 2(0, 0).

Thus we see that the bj are uniformly bounded away from zero when (3.10)
is valid.
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6. ASYMPTOTIC STABILITY OF CYCLE

We begin by summarizing our results. Suppose that (3.7) and (3.8) are
valid. Then for *>0 and for all sufficiently small =, the perturbed vector
field has a flow invariant 2-torus X= . There are four saddles on X=��the
D2 -equilibria��and there are four flow invariant circles on X=��each circle
intersects two other circles at D2-equilibria. Moreover, the dynamics on
these circles forms a heteroclinic cycle. We now assume (3.9) and use a
result of dos Reis [5] to prove that the heteroclinic cycle is asymptotically
stable.

Proof. The eigenvalues of dF in the tangent directions of X= are _1 and
_2 . At each of the equilibria A�D, one of the _1 and _2 is attracting (the
positive one), the other one is repelling (the negative one). Since X= is
attracting in the normal directions, dos Reis' result implies that if the
product of the four attracting eigenvalues is greater than the product of the
four repelling eigenvalue, then the heteroclinic cycle is asymptotically
stable. In the case K1=>0, the four attracting eigenvalues are _A

2 , _B
1 , _C

2 ,
_D

1 and the four repelling eigenvalues are _A
1 , _B

2 , _C
1 , _D

2 . Thus the
heteroclinic cycle connecting A�D is asymptotically stable if

_A
2 _B

1 _C
2 _D

1 >|_A
1 _B

2 _C
1 _D

2 |.

For fixed + small and for sufficiently small =, this is equivalent to L2
1K 2

2&
K2

1L2
2>0. Hypothesis (3.8) implies that L1K2+K1L2>0. Thus, the condition

for asymptotic stability is L1K2&K1L2>0, which is just (3.9). If K1=<0,
then the attracting and repelling eigenvalues are interchanged. Hence the
inequality guaranteeing asymptotic stability is reversed and is L1K2&
K1L2<0. K

We end by noting that our results are independent of higher order terms
in f. The reason is simple��the existence and stability of solutions on the
mixed mode branch does not depend on terms of order higher than three.
The existence and stability properties of the D2-equilibria depend only on
terms in g and not on any terms in the unperturbed vector field f (beyond
the orbital stability of the mixed modes).

7. AN EXAMPLE

An example of a D2-equivariant perturbation of D4+4 T2-equivariant
vector field that satisfies the hypotheses of Theorem 3.2 is:
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dz1

dt
+\ |z1 | 2+

1
2

|z2 | 2&*+ z1&= _1
2

(z1+z� 1)+(z2+z� 2)&=0 (7.1)

dz2

dt
+\ |z2 | 2+

1
2

|z1 | 2&*+ z2+= _(z1+z� 1)&
1
2

(z2+z� 2)&=0. (7.2)

From (7.1) and (7.2) we see that a=1, b= 1
2, and

K1=&3
2 K2= 1

2 L1= 1
2 L2=&3

2.

Thus Theorem 3.2 guarantees that there is an asymptotically stable hetero-
clinic cycle on X= .
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