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Abstract

Symmetry is used to investigate the existence and stability of heteroclinic cycles involving steady-state and periodic
solutions in coupled cell systems with,-symmetry. Using the lattice of isotropy subgroups, we study the normal form
equations restricted to invariant fixed-point subspaces and prove that it is possible for the normal form equations to have
robust, asymptotically stable, heteroclinic cycles connecting periodic solutions with steady states and periodic solutions with
periodic solutions. A center manifold reduction from the ring of cells to the normal form equations is then performed. Using
this reduction we find parameter values of the cell system where asymptotically stable cycles exist. Simulations of the cycles
show trajectories visiting steady states and periodic solutions and reveal interesting spatio-temporal patterns in the dynamics
of individual cells. We discuss how these patterns are forced by normal form symmetries. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Coupled systems of differential equations or cells are often used as models of physical systems. For example,
they are used by Hadley et al. [15] and Aronson et al. [2] to model arrays of Josephson junctions and by Kopell and
Ermentrout [16,17] and Rand et al. [23] to model central pattern generators (CPGSs) in biological systems. Recently,
Collins and Stewart [4—6] and Golubitsky et al. [12] have shown that many phase relations observed in animal
gaits can be modeled by coupled cell systems. In these works the symmetry of the cell network is important in
determining the patterns of oscillation that the system can support. See the works of Dionne et al. [7,8], Golubitsky
and Stewart [11], and the related work of Lamb and Melbourne [20].

In this paper, we discuss the existence of heteroclinic cycles in coupled cell systems. Such cycles model inter-
mittency and are known to occur robustly and asymptotically stably in systems with symmetry (see [9,10,14]).
Armbruster et al. [1] and Melbourne et al. [22] show that heteroclinic cycles can occur stably in systems with
0O(2)-symmetry and, in previous numerical work [3], we show that these cycles are also found stably in systems
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Fig. 1. Dg-symmetric six-cell network with nearest and second nearest neighbor coupling.

with D,,-symmetry,n > 5. In this paper, we provide the proofs behind the results in [3], continue our studies by
showing that heteroclinic cycles also occurinrings of coupled cells (which have structure in additjespmmetry),
and discuss how symmetry forces certain spatio-temporal patterns in the periodic solutions in the cycle.

1.1. Coupled cell systems

We assume that the cells are identical and that the internal dynamics of each cell is governed by a system of
differential equations (that may depend on parameters, which we suppress). That is, fot %,

dXx;

. = Xl ’ 1

a &) )
whereX; = (xj1, ..., xix) € R¥ denotes the state variables of defind f is smooth and independent ofsince

the cells are assumed to be identical). For instance, in biological applications (1) might be a Hodgkin—Huxley type
model.

A network is a collection of identical interconnected cells. For example, Fig. 1 illustrates a six-cell network
with nearest and next nearest neighbor coupling. We model the interconnected network by a system of differential
equations of the form

dx;

d_tl = f(X) + Y _aijh(Xi, X)), )
j—i

whereh is the coupling function between two cells, the summation is taken over thosg ¢kls are coupled to

celli, andw;; is @ matrix of coupling strengths.

1.2. Heteroclinic cycles

A heteroclinic cyclds a collection of solution trajectories that connects sequences of equilibria and/or peri-
odic solutions. For a more precise description of heteroclinic cycles and their stability, see the papers of Mel-
bourne et al. [22], Krupa and Melbourne [19], the monograph by Field [10], and the survey paper by Krupa
[18].
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Fig. 2. Pattern inside lattice of subgroups that suggests the existence of heteroclinic cycles.

Melbourne et al. [22] describe a method for finding heteroclinic cycles in symmetric systems of differential
equations. Lef” ¢ O(N) be a Lie subgroup and lgt: RY — R" beTI'-equivariant, i.e.

gy X) =yg(X)
for all y € I'. Consider the system

dx

o = g(X). 3

Note thatN = knin ann cell system withk state variables in each cell. Equivariancezdmplies that whenever
X (t) isasolution, soig X (¢). Using fixed-point subspaces, Melbourne et al. [22] suggest a method for constructing
heteroclinic cycles connecting equilibria. Suppose that I is a subgroup. Then the fixed-point subspace

Fix(2)={XeRY:6X=X Vo ez}

is a flow invariant subspace [13]. The idea in [22] is to find a sequence of maximal subgeupd" such that

dim Fix(¥;) = 1 and submaximal subgroufps C X; N X ;1 suchthatdim Fix7;) = 2 as is shown schematically

in Fig. 2. Such configurations of subgroups have the possibility of leading to heteroclinic cycles if saddle—sink
connections between equilibria in E&;) and FixXX;,1) exist in FiX(T;). Since saddle-sink connections are
robust in a plane, these heteroclinic cycles are stable to perturbatignsoofong ad -equivariance is preserved

by the perturbation.

1.2.1. Cycles involving periodic solutions and broken symmetry

Near points of Hopf bifurcation, this method for constructing heteroclinic connections can be generalized to
include time periodic solutions as well as equilibria. Melbourne et al. [22] do this by augmenting the symmetry
group of the differential equations wist — the symmetry group of Poincaré—Birkhoff normal form at points of
Hopf bifurcation — and using phase—amplitude equations in the analysis. In these cases the heteroclinic cycle exists
only in the normal form equations since some of the invariant fixed-point subspaces disappear when symmetry
is broken. However, when that cycle is asymptotically stable, then the cycling-like behavior remains even when
the equations are not in normal form. This is proved by using asymptotic stability to construct a flow invariant
neighborhood about the cycle and then invoking normal hyperbolicity to preserve the flow invariant neighborhood
when normal symmetry is broken. Indeed, as is shown by Melbourne [21], normal form symmetry can be used to
produce stable cycling behavior even in systems without any spatial symmetry. More generally, it also follows that
if an asymptotically stable cycle can be produced in a truncated normal form equation (say truncated at third- or
fifth-order), then cycling-like behavior persists in equations with higher-order terms — even when those terms break
symmetry — and the cycling-like behavior is robust.

1.2.2. A cycle witltD(2)-symmetry

Melbourne et al. [22] prove the existence of robust, asymptotically stable heteroclinic cycles involving time
periodic solutions in steady-state/Hopf and Hopf/Hopf mode interactions in system® @ittsymmetry. In these
symmetry-breaking bifurcations each critical eigenvalue is doubled by symmetry — so the center manifold for a
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Fig. 3. Cycle connecting a steady-state with a standing wave in a syster@y@ith« S'-symmetry withS!-symmetry due to normal form.

steady-state/Hopf mode interaction is six-dimensional and for a Hopf/Hopf mode interaction it is eight-dimensional.
Itis well known thatO(2)-symmetry-breaking Hopf bifurcations at invariant equilibria lead to two types of periodic
solutions:standing wavesgsolutions invariant under a single reflection for all time) aoiting wavegsolutions

whose time evolution is the same as spatial rotation) [13]. Fig. 3 shows a cycle connecting a steady-state with a
standing wave obtained from a steady-state/Hopf mode interaction. The time series in this figure are taken from
three different coordinatesy is a coordinate in the steady-state mode &ndx, are coordinates in the Hopf mode.

In these coordinates a standing wave is an oscillation where both coordinates oscillate equally (with just a phase
shift). Other types 0D (2) cycles involving only periodic solutions are obtained from Hopf/Hopf mode interactions
and examples are shown in [3]. These cycles connect rotating waves with rotating waves and standing waves with
standing waves (see also Figs. 11 and 13).

1.2.3. A cycle witlbg-symmetry

In this paper, we prove the existence of heteroclinic cycles involving steady-state and time periodic solutions
in differential equations witlD,-symmetry. In [3], we presented numerical evidence for the existence of these
cycles. We approach the existence of heteroclinic cycles by studying various mode interactions — in particular,
the six-dimensional steady-state/Hopf mode interaction whgracts by its standard representation on the critical
eigenspaces. The exact cycles we discuss are found in the normal form equations whibh kaStsymmetry
whenn = 6 andn = 5 — though much of this discussion is relevant for the gerejadystem.

Reflectional symmetries of a hexagon come in two (nonconjugate) types: those whose line of reflection connects
opposite vertices of the hexagor) @nd those whose line of symmetry connects midpoints of opposite sides (

[13]. Itis known thaDg-symmetry-breaking steady-state bifurcations produce two nontrivial equilibria— one with
each type of reflectional symmetry — abBd-symmetry-breaking Hopf bifurcations produce two standing waves
— one with each type of reflectional symmetry. In normal form the symmetry groups of these four solutions are
Zo(k) x St Zo(yi) x St Zo(k) x ZS, andZa(yk) x ZS, whereZ§ = Z,(x, 7). In Section 2, we show that the
lattice of subgroups dbg x S* includes those subgroups pictured in Fig. 4.

Using the ideas in [22], Fig. 4 suggests that robust, asymptotically stable heteroclinic cycles can appear in
unfoldings ofDg normal form symmetry-breaking steady-state/Hopf mode interactions. The cycle connects the first
steady-state with the first standing wave with the second steady-state with the second standing wave and back to
the first steady-state. We prove that these cycles do exist and present the results of simulation of one such example
in Fig. 5.
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Fig. 4. Subgroups iDg x S! lattice that permit existence of heteroclinic cycles.

1.2.4. A cycle in aring of six coupled cells

A main point of this paper is to demonstrate the existence of robust, asymptotically stable, heteroclinic cycles in
rings of coupled cells with, -symmetry. Finding such a heteroclinic cycle directly from (2) requires the analysis of
a system of differential equations of dimensida This task is complicated when either the number of eetisthe
number of state variables of each del large. We proceed by using a (Maple-assisted) center manifold reduction
to normal form equations on a six-dimensional center manifold. Using this reduction we find parameter values of
the cell system where asymptotically stable heteroclinic cycles exist. In order to arrange for the steady-state/Hopf
mode interaction to occur, we need to use three state variables per cell.

We verify the results of theory by simulating the coupled cell equationsmitht cells andc = 3 state variables
per cell. This simulation is of aN = 18 dimensional system of differential equations (see Fig. 6). As noted in [13],
the normal form symmetries appear in the coupled cell system as spatio-temporal symmetries where the spatial
symmetries are permutations of the cells. These symmetries have the curious property that in one of the standing
waves two of the cells are forced to oscillate at twice the frequency of the other four cells [13] (see Fig. 7).

1.2.5. Cycles iD,-symmetric Hopf/Hopf mode interactions

Numerical simulations show evidence of two types of heteroclinic cycld3sisymmetric Hopf/Hopf mode
interactions [3]. One cycle connects standing waves and the other connects rotating waves. In Section 4, we prove
the existence of the two types of cycles mentioned abow,isymmetric Hopf/Hopf mode interactions,> 5.
The proof of existence is done by inspection of the isotropy lattice of the actibp afT2 on C#, and by studying
the normal form equations with respect to this action, to show the existence of appropriate connecting trajectories.

= o-: C A e
G

t

Fig. 5. Heteroclinic cycle connecting steady stateéc) x St andZ(y«) x St with standing waveZ,(«) x Z§ andZz(y«) x Z§ in a system
with Dg x Sl-symmetry. Standing waves have different amplitudes. Coefficients listed in (18).



P.-L. Buono et al./ Physica D 143 (2000) 74-108 79

oSF T
= —\
T oo
-ost i A ;
1 2 3 ) s 6
05F * ; 3
% o R o) € E—T ]
o
-0s R
0 1 z 3 a 5 s
osF T ? 3 . T
g o i
-0st " “ . i i
1 2 3 4 5 s

41
o

-05 i . ry
[ 1 2 3 a 5 3
05F v T T T 3
e ° " Neelf w—— "]
X R R "
1 2z 3 4 s [3
0s T - T =
g o ' — ]
-0.5 N i s 4 -0 i =
0 1 2 3 a 5 3 ] 1 2 3 4 5 &

Fig. 6. Heteroclinic cycle in a six-cell ring. Up to third-order, the center manifold flow for this coupled cell system (after scaling) is the same as
the flow in Fig. 5: (left) first component and (right) second component of each cell. Coefficients are found in (24).

As explained in Section 4, these cycles are visualizeddg-aymmetric cell system without computing the reduced
equations on the center manifold (see Figs. 11,13 and 14).

This paper is organized as follows. In Section 2, we describe mode interactions in two-parameter families of
De-equivariant vector fields and prove the existence of robust, asymptotically stable cycles in the normal form
equations of steady-state/Hopf mode interactions. We prove the existence of a heteroclinic cycle in a ring of six
cellsin Section 3. In particular, we show that networks of six identical cells with nearest neighbor and second nearest
neighbor coupling can possess these heteroclinic cycles. In Section 4, we study Hopf/Hopf mode interactions in
systems witlD,,-symmetry > 5) and visualize the cycles ils-symmetric ring of cells. In Section 5, we discuss
briefly heteroclinic cycles in other ring systems widh-symmetry.
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Fig. 7. Enlargement of Fig. 6 illustrating the symmetries of SW1 (left) and SW2 (right) in a cell system. Observe that cells 1 and 4 oscillate at
twice the frequency of the other cells in SW2.
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2. Mode interactions with D,-symmetry

Consider the two-parametBy,-equivariant system of differential equations

dx
E =F(x, A, 1, ()

wherex € RY and, u € R. Assumex = 0 is aD,,-symmetric trivial equilibrium, i.e.
F@O,x, ) =0.

Assume also that the Jacobiéd F)o,0,0 has two nonconjugate critical eigenvalues lying on the imaginary axis.
Under these assumption@,, 1) = (0, 0) is acodimension-tw@oint. The codimension-two point is of one of the
following types:

Eigenvalue type Mode type

0,0 Steady-state/steady-state
0, twi Steady-state/Hopf

Fw1i, woi (w1, w2 inCOMmensurate) Nonresonant Hopf/Hopf

Mode interactions can be specified further by the actioD,pfon the critical eigenspaces. In this paper, we
assume that each critical eigenvalue is double andD@hadcts by its standard two-dimensional action on each
critical eigenspace. Moreover, in our analyses we consider only heteroclinic cycles whose nodes include periodic
solutions; therefore, we study only the steady-state/Hopf and Hopf/Hopf mode interactions.

In this section, we consider steady-state/Hopf mode interactions. After performing a center manifold reduction
on (4), we arrive at a truncated reduced system of ODEs

dz
a:g(zv)"v ,bL), (5)

wherez € C3andg(0, A, u) = 0. The eigenvalues afl;g)o.0,0 are the critical eigenvalues dd, F)o,0,0 on the
imaginary axis. By an appropriate change of coordinates we can also assume that (5) is in Poincaré—Birkhoff normal
form up to any finite order. This introduces an ex®asymmetry, so thag is nowD, x St-equivariant. We can

then choose coordinates= (zo, z1, z2) such that thé, x Sl-action onC2 takes the following form [13]. Let

y =2n/n € Z, andd € St = [0, 2r), and letx be a fixed element iB, ~ Z,,. Then

(20, 21, 22) = (6”20, €21, € V'22), Kk (20, 21, 22) = (Zo, 22, Z1),
0(z0, 71, 22) = (20, €' 21, &' 22). (6)

As noted in Section 1, robust cycling-like behavior is proved by finding asymptotically stable heteroclinic cycles in
a truncated normal form equation.

2.1. TheDg x St lattice of isotropy subgroups

Using these subgroups B§ x St,

Zo(k) = {1k}, Za(yk) = {1, y«k}, Z5 = {1, (w, m)},
ZoGe, ) = (1, (km)},  Zotkm,m) = {1, (km, 7)),  Zg={(6,—0):0 € Zg),
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Fig. 8. Lattice of isotropy subgroups B§ x St acting onC2, up to conjugacy.

we can determine the lattice of isotropy subgroup®gfx S' as shown in Fig. 8. Embedded in this lattice is
Fig. 4 which suggests the possible existence of a heteroclinic cycleDig system. This cycle would connect
equilibrium B (Z2(x) x St) to standing wave SW1ZG(x) x Z$) to equilibrium B (Z2(y«x) x St) to standing
wave SW2 Z>(y«) x Z5) and back to E A cycle with a trajectory traveling in the opposite direction is also
possible.

To determine whether a cycle actually exists, we need to determimgthwariant functions an®g-equivariant
mappings. Then we use these mappings for calculating branching equations of solutions with maximal isotropy
subgroups. Finally, we determine the existence of the cycles and their stability.

2.2. Dg-invariants andDg-equivariants

Proposition 2.1. Every real-valuedg x Sl-invariant germ is a function of
0, N, ReA, ReB, ReC, ReD, ReE,
A, sImA, §lm B, s§imcC, slm D, sImE,
wheres = |22/ — |z1/ and
p=lzl’. N=laP+l? A=6  A=z5un,
B =2z}, C = (1122)°, D = z5(z1%2)%, E = 782172
See Appendix A for a proof of this proposition.

Proposition 2.2. TheDg x S'-equivariant germsf : C3 — C3 are generated over thB® x Sl-invariants by the
following mappings
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VI =(20,0,0) syl V2= (2021%2.0,0) i5V2,
V3= (z3,0,0 isv3, V%= (20(2122%0.0) isV4,
V® = (z3(2122), 0,0) sV, VO = (20(z172)%, 0, 0) isV6.
V7 =0 21, 22) iv7, sV8 =5(0,z1, —22) isV8,
VO = (0, z322%821) Ve, sVI0=5(0, 2322, —Z221) sV,
Vi = (0. %52 %670) v, 8V12=5§(0, 2322, —z8z1) isv12
V18 = (0, 237125, 232%72) ivis, §V14 = §(0, 222122, —:22%%2) isv14,
V=0 @2t @) 1V 3V18 =58(0, (7122)%z2, —(z122)%z1) 18V1E.

See Appendix A for a proof of this proposition.

2.3. Branching equations

It follows from Propositions 2.1 and 2.2 that the gen&galx St-equivariant mapping has the forgiiz, A, 1) =
(C(2), Q(z)) € C x C?, where

C(z) = Clzo + C3Z0z1%2 + C°Z3 + CZ0(Z122)? + C¥Z37122 + CMz0(2122)°, (7)
2 2 54 4
Z1 71 ZOZZ Zoz2 ZOZ2 ZOZZ
22 —22 ZOZl —2021 2021 —2021
525 2 52= 2 532 PRRY:
75212 76212 (z1z2)°z2 (z122)“22
+07 [ T+ 0%| UL |+t T |+ 0™ o (8)
752122 —2(2122 (z1z2)z1 —(z122)°21

wheres = |z2|2 — |z1]%, €7 = ¢/ + i8¢/ 1L, ¢/ are real-value®g x St-invariant functions and)/ = p/ + g/i are
complex-valuedg x St-invariant functions depending on two parametesnd .

Additionally, the eigenvalue structure gfleads toc'(0) = 0 andQ1(0) = wi. Solvingg = 0, we find steady-
state and periodic solutions that bifurcate from the trivial solutios 0 at the codimension-two poirit, 1) =
(0, 0). These solutions are listed in Table 1, where all coefficients for the branching equations are evaluated at
zero.

Next we determine the stability of the branching solutions. We do this by considering the isotypic decomposition
of C2 into a direct sum of-irreducible subspaces

CC=VoaV1i® -0V,

In Table 2, we show the isotypic decomposition by each of the isotropy subgroups of solutions. Other isotropy
subgroups are shown as well for later use in this section. Note th@ Ji¢ Vg for each subgrouf. Furthermore,
observe that wheR is a subgroup of a periodic solutiofDg x S')/ T forces one eigenvalue dfjto be zero. The
corresponding null vector is also listed in Table 2. In each case, the stability of solutions with maximal isotropy is
determined by ig|V;). We compute the Jacobiag th complex coordinates

(dg)(¢) = 82040 + 82000 + 82181 + 82101 + 82,82 + 85,02,

whereg = (¢o, ¢1. ¢2), g = (¢°, g1, ¢?) andg;; = (g?j, gzlj, gzzj). The eigenvalues ofgdare also listed in Table 2
up to fifth-order ing.
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Branches of solutions fdDg steady-state/Hopf mode interaction
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Solution Isotropy subgroup Orbit representative Branching equations
Trivial De x St (0,0) z=0
Steady stated; = E; Za(k) x St (x.0.0) _ (c% tfﬂ) )
A
. Cl - CSXZ
Steady stateds = E Zo(yk) x St (€7/2x,0,0) r=— ( L a ) x2
Standing waved, = SW1 Zak) x Z§ ©,r,r) A=— (2"1 :1p9r2> r2
A
Standing waveds = SW2 Zo(yk) x Z§ ©,r,e7r) A=— (217’1\’ ;lp9r2> r2
Rotating wave, RW Zs ©0.7.0) o (p,% + p;l;; - p2> -
p;.
Table 2
Isotypic decomposition by isotropy subgroup<iefx S, wherex e R,z € C
Isotropy Isotypic decomposition Null vectors Eigenvafues
De x St Vo=C8 pt (4 times):ct (twice)
Zo(k) x St Vo = (x,0,0) Vo: 2(6}) + 2c%x2)x2
V1= (ix,0,0) Vi —6c5x?
Va=(0,2,2) Va: pia+ (pp + pHx% + p'x? ()
V3 =1(0,z,—2) Va: pla + (p/l, — pOx2— pTxt (¥
Zo(yk) x St Vo = (é7/2x, 0, 0) Vo: 2(6/1) — 2¢%x?)x2
Vi = (€7/2ix, 0, 0) Vi 6c2x4
V2=(0,z,e7"7) Vi pi + (pp + pHa% = pTx* (%)
V3= (0,z,—e "7 Vai pi + (py — p¥)a% + p'a® (%)
Za(k) x Z3 Vo=(0.2,2) (0,1, ) Vo: 0, 4(p} + prd)r?
V1= (x,0,0) Viicir+ (ZClN + 3247
Vo = (ix, 0, 0) Va! c%)» + (2011\, + 32— Tt
V3 =(0,z,—2) Va: —2(p? + 2p%)r2 (*)
Zo(yx) x Z§ Vo=(0,z,€7"z) (0,i, i) Vo: 0, 4(p%, — p°r?)r?
Vi = (€7/2¢,0,0) Vit c%)» + (2611\, +cSr2 -t
Vo = (€7/2ix,0,0) Vaicth + (ZClN + 2+t
V3= (0,z,—e"7) Va: =2(p? = 2p°r?)r? ()
Zs Vo=(0,20) (0,i,0) Vo: 0, 2(py, — p? + (2p} — p2)rdHr?
V1= (z,0,0) Vizel ()
Vo = (0,0, 7) Va: 2p2r2 (*)

a(*) indicates real part of a complex conjugate pair.
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Table 3

Amplitude equations on F{Z)

Isotropy Fixed-point Restricted amplitude equations

subgroup subspace

Z5(k) x St (x,0,0) ¥ = (ct+ Bt

Za(yk) x St (€7/2x,0,0) i =(cr = SxhHx

Za() % Z§ ©,z,2) i=(pt+ porHr

Zo(yk) x Z§ (0.z,€777) F=(pt = porr

Zo() (x.2,72) F= (B2 4 S+ T 4 22 4 Sy f = (pl 4 pBx2 4 pPxd 4 pTr2e? 4 portyr
Zo(yk) (€7/2x,z,e77i7) X = (32— Sxt —cTrt — 22 — Oy, = (pl+ p3x2 — pixt — pTrex? — p%Hyr
Zo(k, ) (x.7,—2) F= (e = B2 St Tt = 9202 — )y ;= (pl— pBx2 — pBxt — pTr2x2 — ptyr
Zo(km, ) (ix,z,-2) = (et — 3% = Sxt — Tt 4+ 22 + MOy, 7= (pt — p3x2 + pPxt — pTrex2 4+ prhyr

In Table 3, we list maximal and submaximal isotropy subgroups and their fixed-point subspaceg. Siirce
Poincaré—Birkhoff normal form, the restriction of (7) and (8) to each of the fixed-point subspaces decouples into
amplitude/phase equations. Thus, using polar coordinatesr; €’ , we arrive at the amplitude equations listed
in the last column of Table 3. Observe that zeros of the amplitude equations withcorrespond to steady states
of (7), while zeros with- #£ 0 correspond to standing waves. Both types of solutions with maximal isotropy have
effective dimension equal to 1. Note also that the effective dimension of the fixed-point subspaces of the submaximal
subgroup<a(x), Z2(y«k), Z2(k), andZa(y«) is 2. Now let

Po = Fix(Z(k, 7)), P1 = Fix(Z2(x)), Py = Fix(Z(km, )), P3 = Fix(Z2(y«x)). 9)

Then these solutions lie on flow-invariant linkg = P; N P;_1. Next we show that robust heteroclinic cycles exist
and determine conditions for their stability.

2.4. Existence and stability of a cycle

We consider here conditions similar to those used by Melbourne et al. [22] for proving the existence of a
heteroclinic cycle, except that now we have a system Bgtsymmetry instead dD(2)-symmetry. We assume that
w = 0 and view (7) and (8) as a bifurcation probleniinThen, we encounter four symmetry-breaking branches of
solutions bifurcating simultaneouslyjiat= 0. Two of the branches contain steady states (not related by symmetry)
and two contain standing waves (not related by symmetry). Substitution of solutions of the branching equations in
the eigenvalues ofglleads to the following coefficients at lowest order, which are needed to assert the existence of
the cycle.

1 11’71 3 1 1171 3 1 3 1€
81=pp_cp_:)|_h+p s 82=pp_cp_])_\_p s 83=20N+C _ZpN_)i’
C)L CA p}\.
1 3 101% 1 3 Ci 1 3 Pi
da=2cy —c® —2py—4, 85 = (p, +p°) 11+(26N+C) 1
Py Py 2pyc;,

1 3, S 1 3, Pi
Se=(p, —P)— 7+ @y —c)s—7-
Py 2pyey
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Table 4

Signs of eigenvalues along primary branches

Equilibrium in Fix(Z2(x)) Fix(Zo(km, m)) Fix(Z2(yk)) Fix(Z2(k, 7))
Fix(Z2(x) x Sb) Sgn(81) Sgn(82)
Fix(Z2(x) x Z3) sgn(ds) Sgn(8s)

Fix(Za(yk) x Sh sgn(d2) sgn(é1)

Fix(Za(yx) x Z5) sgn(é3) sgn(da)

Theorem 2.3. Consider the generdbg x St-equivariant syster(i7) and (8)with . = 0 and solutions as listed in
Tablel. For A > 0, there exists a branch of robust heteroclinic cycles as suggested id Fig.

c)1L > 0, c}) <0, p)1L > 0, p,lV < 0, (10)
Sgn(81) = sgn(84) = —sgn(8z) = —sgN(d3), (11)
85 > —2, 36 > —2. (12)

Proof. Observe that all primary bifurcations of solutions are of pitchfork type. Conditions (10) imply that the trivial
solution is subcritically asymptotically stable, while the nontrivial solutions are supercritical. In order to prove the
existence of the cycle shown in Fig. 4, we must show that in each atieee conditions are satisfied.
1. One of the equilibria is a saddle and the other a sink. Specificallg, &saddle and SW1 a sinkin; SWlis a
saddle and Ea sink in P; Ez is a saddle and SW2 a sink ity; SW2 is a saddle and;Ea sink in P4. The cycle
can also be constructed in the reverse direction by interchanging saddles and sinks.
2. There are no other equilibria.
3. Solutions are bounded near the origin.

We verify part 1 as follows. Consider the transitiom—PéSWl. Assumptions (10) and Table 2 indicate that
both solutions, Eand SW1, have negative eigenvalues along tangent directions to the corresponding fixed-point
subspaces FiZ(k) x SY and FiXZ2(k) x Z%). Inside P1, symmetry forces the remaining eigenvectors to be
perpendicular to those fixed-point subspaces. A Taylor series expansion of the corresponding eigenvalues leads to
coefficientss; andéz, which appear in the column for RiZ2(x)) in Table 4. Wher$; andds are nonzero, the sign
of the relevant eigenvalues are determined near bifurcation by the ségnSifilar calculations for the remaining
transitions complete the entries in Table 4. When (10) and (11) hold, 1 is verifiedwheh We use the following
results to verify parts 2 and 3.

Proposition 2.4(Melbourne et al. [22]).Consider the system of ODEs
dx dy
dr dr

whereas, a» > 0,andby, b» < 0. Then all trajectories starting within a circle of radi®(+/2) stay bounded near
the origin ife = (c1a2/b2a1) + (c2a1/b1az) > —2.

(a1h + b1x2 + clyz)x, (a2) + 02x2 + b2y2)y, (13)

Remark 2.5 (Melbourne et al. [22]).If the equilibria in(13) on the axes are a pair of saddles and a pair of sinks,
then there are no equilibria off the axes

Part 2. follows by applying Proposition 2.4 and Remark 2.5 to the appropriate amplitude equations that appear
in Table 3.
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Fig. 9. Contracting and expanding eigenvalues of the heteroclinic cycle shown in Fig. 4.

Finally, we verify part 3. by showing that solutions starting near the origin are boundgdfinom the amplitude
equations shown in Table 3, we find

X = (C)%A + c%x2 + (2011\, + c3)r2)x, F= (p)%k + (pllj + ps)x2 + 2p11\,r2)r.

After applying Proposition 2.4, we arrive at (12). Similar calculations for the remaining invariant planeég)ireld
(12). Hence, when > 0, 1-3 show the existence of a heteroclinic cycle. O

Note that the robustness of saddle—sink connections guarantees the existence of the cycle in an open region in
parameter space. We now address the stability of the heteroclinic cycle with the aid of Fig. 9. At each equilibria
A}, define the maximum real part of the eigenvaluegdgf 4, as follows. The strongest expanding eigenvalue of
the equilibriumA ; is e}, the weakest contracting eigenvalue transverstq + P; ist;, the weakest contracting
eigenvalue in the radial directionsg, and the weakest contracting eigenvalue restricta®} 1q is c; (see Table 5).

Under these assumptions, c;, ande; are positive, and; is negative. In the absence of transverse eigenvalues,
sett; = —oo.

Theorem 2.6(Melbourne et al. [22]).Consider a heteroclinic cycle connecting steady states and standing waves
as in Theoren?.3.Let WY(A ;) denote the unstable manifold of the equilibrium. Assume that for each j, there

is a flow-invariant subspac®; such thatW"(4;) c P; and A1 is a sink inP;. Then the heteroclinic cycle is
asymptotically stable when

k k
Hmin{cj,ej—tj}> Hej. (14)
j=1 j=1
Using (14), we arrive at the following result.

Theorem 2.7. Assume the following conditions are satisfied

p2 > 0, (15)
18184] < |82 Min{—33, 84 + 2p?}, (16)
16283] < |81 min{—84, 83 + 2p?}]. (17)

Then the heteroclinic cycle of Theorén3is asymptotically stable
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Table 5

Eigenvalues along the cycle

Eigenvalue Restriction

=T Lj

—c; Pi_1

€j P

t; NormaltoP;_ 3 + P;

Table 6

Eigenvalues along the cycle

Equilibrium Contracting: Expandinge; Transverse;
E: —82, —2c} 81 —6¢5

Ez —82, 2c} 81 6c5
swi —83, —4p}, 54 —2p%(0)
SwW2 —83, —4p% 54 —2p%(0)

Proof. The existence of the desired subspakgdollows from (10) and (11). Next we verify the structure of the
eigenvalues at each equilibrium. Wh&n> 0, the direction of motion is\1 — A, — A3z — A4. The opposite
direction is obtained whe#y < 0. Now assumé; > O.

From Table 4, we find contracting, expanding, and transverse eigenvalues as in Table 6; Siricé follows
from (11) thats, > 0,82 < 0, andd3 < 0. These conditions together with (10) imply that all contracting and
expanding eigenvalues are positive. From (15), we note that transverse eigenvalues are negative at the standing
waves. At the steady states, however, one of the transverse eigenvalues must be positive —6ettioerce®.
Since these eigenvalues are determined to fifth-order (see Table 4), they are dominated by the remaining eigenvalues
and do not play a role in the stability of the cycle. Theorem 2.6 is still applicable. Substitution of the eigenvalues
(to third-order) in (14) yields (16) and (17), while2p? < 0 implies (15). Whem; < 0, the roles o8, ands, are
reversed and the roles &f ands, are also reversed. Similar calculations yield (17). |

Using the generdDg x St-equivariant map (7) and (8), we numerically integrate the system (5) with the following
coefficients

c¢l=2%—15p—4N, ? =13, A=-9 =05
pt=121-3p—N, pd=4, p? =4, pS=4, gt =081+ 1, q° =8, (18)

and all other coefficients set to zero. The results are shown in Fig. 5 whérg Re= 1, 2, 3, is plotted. The two
standing waves can be distinguished by their amplitudes.

3. A network of coupled cells withDg-symmetry

Consider a coupled cell system with nearest neighbor and next nearest neighbor coupling in a ring of six identical
cells as in Fig. 1. We show that a heteroclinic cycle between equilibria and standing waves can occur in these
coupled cell systems by performing a center manifold reduction to the normal form equations of Section 2 at a
steady-state/Hopf mode interaction point. From the reduction we then find parameter values of the cell system where
an asymptotically stable cycle exists. We discuss how patterns in the cell dynamics are forced by the symmetries of
the normal form equations.
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Table 7
Eigenvalues of.
Irreducible representation Subspace Eigenvaluds of
Trivial 1D Vo J
Standardg Vi, Vs J—A-3B
Standard3 Vo, Va J—3A-3B
Nontrivial 1D V3 J —4A
Let X; denote cell. Assuming that each cell is described bgtate variablest; = (x;1, ..., xix) € R¥, we

have a system of six equations

dXx; .

e FXi, M) +AXis1—-2X; + X;i—1) + B(Xij2—2X; + X;—2), i=1...,6 (19)

whereF : R¥ — R* is an arbitrary smooth function that satisfi&€d) = 0, A a bifurcation parameter, antiand
B arek x k constant matrices which define the strength of the nearest neighbor and next nearest neighbor coupling,
respectively. Note that addition in the indices is taken mod 6. The linearization of (19) at the origin is

] —2A-2B A B 0 B A

A J—2A —2B A B 0 B

L B A J—2A —2B A B 0
0 B A J—2A —2B A B ’

B 0 B A J—2A —2B A
i A B 0 B A J—2A—2B |

whereJ = (dF)o. The eigenvalues df can be calculated by complexifying = (X1, ... , Xe) € R% to C®. Let
. = exp{%ni} be a sixth root of unity irC and consider the decomposition

C*x=vo@- - -@Vs,
where
Vi ={[v, ¢, %, %, ¢Yv, %] v e RY)

are invariant subspaces underA calculation shows that the eigenvaluesig¥/; are those off — 2(A + B) +

(¢ 4+ %)A + (¢% + ¢*)B (see Table 7). Observe thatVy and L| V3 have simple eigenvalues, while other
subspaces have eigenvalues of multiplicity 2. Wiien A — 3B has a zero real eigenvalue and a purely imaginary
eigenvalue, each of multiplicity 2, then we have symmetry-breaking steady-state/Hopf mode interactions in (19).
This mode interaction occurs Wy @ Vs which is the standard representatiorDgf, and requires that > 3. Next

we seek conditions for the eigenvalues of the remaining subspaces to have negative real part.

Proposition 3.1. Assumé& = 3in (19)and

a 0 O
J=10 o -/,
0 w «
wherea < 0in the linearization 0{19). Assume diagonal diffusive couplings of the fotma=- —al and B = —bl,

wherea < 0, —3b < a < —b. Then the eigenvalues af V, and L|V3 have negative real parts, and the real parts
of the eigenvalues df|V; are zero ifa + a + 3b = 0.
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Proof. Direct calculations show that eigenvaluesigfi, and L|V3 are those of/ — 3al — 3bl and J — 4al,
respectively. Note that eigenvaluesiofirea anda =+ wi, which have negative real part. Singe-b < 0 anda < 0,
it follows that eigenvalues of — 3al — 3bl andJ — 4al also have negative real parts. The eigenvaludg &t are
those of/ + al + 3bl with real partw + a + 3b. O

3.1. Center manifold reduction

Under the conditions of Proposition 3.1, the flow restricted to the irreducible representation of the standard
action of Dg is asymptotically stable insidR%. We can then consider a center manifold reduction onto the
center subspac®; & Vs. Before performing the reduction, we must put (19) in a suitable form.X et
(X110, -+ » X1ks - -+ » XB1, - - - » Xgr) @nd write,

dx;

where f(X;, A) = F(X, A) — LX contains only nonlinear terms. The actionf on X is generated by the cyclic
permutationy = (123456 and the flipxk = (26)(35). LetU = (u1, ... , u1g). We transform the system from
coordinates t@/ coordinates using the linear transformat®nr= PU, where the columns a® are the eigenvectors
of the action oDg on C®:. In the new coordinate system, we have

% =LU; + f(U, 1), (21)
whereL =diaglJ —A—3B,J —A—3B,J —3A—3B, J —3A—3B, J —4A, J)andf = P~1f(PU).

It follows from Proposition 3.1 that the first two columnsiirspan the center eigenspace, and all other columns
span spaces with negative eigenvalues. In the new coorditiatéee action oDg on the ring of cells is given by
[7]1 = P~1y]P and k] = P~1[«]P. Observe that the action of] and [¢] on the center eigenspace is not yet of the
form (6). We must introduce an additional linear change of coordinated/ ket(vy, v, ... , v1g), wo = v1 + v4i,
w1 = v2 + v3i, w2 = vs + vgi, andsg = u1 + ual, s1 = uo + usi, s, = uz + ugi. We change coordinates on the
center eigenspace as follows:

50 = wo, §1= w1+ wo, 52 = (w1 — wo)i.

In real coordinates, this last change of coordinates is of the torm QV, where

10 0 0 0 O

01 0 0 01 0 0 1 0O

0o 5 o 0|00 L0 0 -1

- 6 : '“loo o 1 0 ol
0 0 Ig

00 1 0 0 -1

(01 0 0 -1 0

and/g is a 6x 6 identity matrix. Under the transformatidn = QV, (21) becomes

dav; . N

5 = LVi+ o, (22)
whereL = L, sinceQ, commutes with/ — A — 3B, andf = 0~ 1P~1£(PQV. Using complex coordinates, it
can be shown that thBg-action on the center eigenspaeey, wi, wy) is the same as (6). The cell system (22) is
now in a suitable form for a center manifold reduction [24].
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Table 8

Patterns in solutions forced by isotropy in a six-cell system

Solution Isotropy subgroup Pattern of solution

Trivial Dg x St X =(0,0,0,0,0,0)

Ex Zy(k) x St X = (X1, X2, X3, X4, X3, X2)

= Za(yk) x St X = (X1, X1, X3, X4, X4, X3)

swi Zo(k) x Z§ X(1) = (X1(), X2(), Xo(t + 3T), Xa(t + 3T, Xo(t + 37), X2(1))

SW2 Za(yi) x 25 X (1) = (X1(0), X1(1), X3(t), X1(t + 3T). X1(t + 3T), X3(1)), whereXs(r) = Xa(t + 37)

3.2. Consequences of normal form symmetries

We now interpret how symmetries of periodic solutions in the normal form equations (7) and (8) appear in
period 7 periodic solutionsX (r) of (19). LetX (1) = (X1(¢), ..., Xs(1)) € R%. Spatial symmetries iDg act
as permutations of the cells while symmetriesShact as phase shift symmetries [13]. The results are listed in
Table 8. There are two types of periodic solutions in our cycles: the standing waves SW1 and SW2. We illustrate
the restrictions forced by isotropy on SW2.

Standing wave SWZhe periodic solutiorX (¢) has spatial symmetryx = (12)(3 6)(45). Therefore,

X() = (X1(1), X1(2), X3(1), Xa(t), Xa(?), X3(1)).
Thezg action permutes the cells l§§ 4)(2 5)(3 6) and shifts time by half a period. Thus,
X(1) = (Xa(t + 37), Xa(t + 3T), X3(t + 3T), Xa(t + 3T), X1(t + 37T), X3(t + 37)).

Combining the restrictions aXi(¢) placed by both symmetries yieldg () = X1(t+%T) andXs3(t) = X3(r+%T).
Thus, cells 3 and 6 are forced to oscillate at twice the frequency of the other cells. Oscillation in the ring of cells
now has the pattern

X(t) = (X1(), X1(1), X3(t), Xa(t + 3T), X1(t + 37). X3(1)),

whereXs(r) = Xa(t + 37).
3.3. Example

We now perform a (Maple-assisted) center manifold reduction on a cell system of the form (19, wif)
a=-2,b=1,a=-1,w=1, and

b11dxi1 a11x3 + a12xi1x:3 + a13x%, + a1axi1x%
F(Xi, 1) = | baohxio +boghxiz | + | aox? + azoxiixiz + azaxiixia + agax? +agsxy | . (23)
b32Axi2 + b33hx;3 az1xinXiz + azx’ + azaxixiz + azaxdxiz + agsxy

After the reduction is completed, we need to find parameter values for the coefficients of the linear and nonlinear
terms in (23) so that the vector field restricted to the center manifold reduces, to third-order, to the Dgneral
St-equivariant map of Egs. (7) and (8). Term by term comparison leads to the following relations for the coefficients
of the linear terms:

w = q*(0), b1 = cj, 2 (b22 + b33) = pj, 2(b2s+ b32) = g}

The following proposition indicates how to find the coefficients of the nonlinear terms.
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Proposition 3.2. Setu13 = a1 = 1in(23).LetCx denote the space of coefficients of the remaining nonlinear terms,
i.e.Cx = {a11, ... , ass}. LetCy be the space of coefficients of nonlinear terms in the normal form equéfipasd

(8), truncated at third-order, i.eCy = {c}.c}. c? 3, pY.q%. p?. 4% p}. q3. p® ¢3). There exists a nonlinear
mapT : Cx — Cy that maps coefficients of the nonlinear term¢28) about(0, . .. , 0) onto coefficients of the
nonlinear terms in the normal forn{g) and (8).

Proof. Perform the center manifold reduction on (19) wkhas defined in (23) angh3s = ap1 = 1. Term by term
comparison between the reduced flow on the center manifold and the coefficients of the normal form equations (7)
and (8) yields explicitlyl’, where(dT)(o.... ) is full rank. The proposition then follows from the implicit function
theorem. O

Dividing a vector field by a scalar does not change its trajectories, it only changes the speed along which each
trajectory is traversed. Moreover, it is straightforward to verify that Theorem 2.3 still holds when all coefficients
exceptg1(0) are scaled. For instance, except §3(0), divide the parameters (18) used to construct the cycle of
Fig. 5 by 100, i.e. set

¢ =0.011 — 0.0150 — 0.04N, ¢ =0.013 3 =-0.09,
®=0.25, pt=0.012. — 0.030 — N, p° =0.04,
p?=0.04, p2=004  ¢'=0008+1  ¢°=0.08

Next we perform a center manifold reduction on the cell system (19) and then apply Proposition 3.2. Solving for
Cyx yields

a11=—0.132091 a2 = —0.130820 a14 = 0.750809 azp = —0.750346
azxz=—0.097380 azq = —0.084128 agss = —0.079626 a3 = —0.123358§
azp = —0.521642 azz = —0.257943 azs = 0.133102 azs = 0.159356 (24)

Numerical integration of (19) produces the cycle shown in Fig. 6. Simulating the trajectories for a longer time shows
that each periodic solution appears for an approximately constant length of time.

The symmetries of SW1 can be visualized by magnifying the regianf) (see Fig. 7). As predicted by
symmetry, two wave forms appear in the six cells. Cells 1 and 4 define the first wave form and oscillate with a
half-period phase shift. The remaining cells describe the second wave form with cells 2 and 6 synchronized and
cells 3 al 5 a half-period out-of-phase. Similarly, the second standing wave is visualized under magnification in
Fig. 7. SW2 also has two wave forms. Cells 2, 3, 5 and 6 describe one wave with two cells synchronized and two
cells a half-period out-of-phase. The synchronous cells 1 and 4 describe the second wave and, as predicted, they
oscillate at twice the frequency of the other cells.

The details of this pattern of oscillation can be further explained by considering a Fourier series expansion of
cell 3:

x3(1) =ao+a1€' +ar € +aze® 4 ageM ...

Since the cell oscillates at twice the frequency,igt) = x3(r + %T), it follows thata; = O for all odd integers.
Genericallyag # 0, which explains the nonzero meanxig(r). Near bifurcation the other even Fourier coefficients
are near zero, which explains the small amplitude of the double frequency oscillation.
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Fig. 10. Upper part of the lattice of isotropy subgroup®gpfx T2, up to conjugacy. The isotropy subgroups are listed in Table 9.

4. Hopf-Hopf mode interactions with D, -symmetry

In this section, we consider Hopf/Hopf mode interactions vidfisymmetry,n > 5. After a center manifold
reduction we arrive at the reduced system of ODEs (5) withC*. By an appropriate change of coordinates we
can further assume that (5) is in Poincaré—Birkhoff normal form to any finite-order spith@t, x T2-equivariant.
We can then choose coordinates: (z1, z2, z3, z4) such that thd®,, x T2 action onC* takes the following form.
Lety = 27/n € Z, andk be a fixed element iD, ~ Z,,, and let(61, 62) € T2, then

v (21,22, 23, 24) = (€721, €77 22, €723, €7 24), K (21, 22, 23, 24) = (22, 21, 24, 23),
(61, 62) (21, 22, 23, 24) = (€%21, €%25, €923, %27y).

4.1. TheD, x T2 lattice of isotropy subgroups

We look for heteroclinic cycles in the vector fiegdby inspection of the isotropy lattice. We consider the case
n # 0mod 4. Whem = 0 mod 4, the existence and stability theorems that we prove for th® mod 4 case also
hold. Define

7o _ ((r,,m)) if n is even
|1 if n is odd

LetZ,(k,1,m) = {(ky,ly,my) € Z3 . k,1,m € Z}, wherey is a generator oZ,, S*(1,0) = {(#,0) e T2 : 6 ¢
S}, andSL(0, 1) = {(0,6) € T2 : 6§ € Sl}. Part of the isotropy lattice of the action Bf, x T2 on C* is given in
Fig. 10, and the isotropy subgroups are listed in Table 9.
The isotropy lattice suggests the existence of three heteroclinic cycles.
1. A cycle connecting four types of standing wavéd: — (4) through (10),(4) — (3) through (11),3) — (5)
through (9), and back to (2) through (8).
2. A cycle connecting two rotating waves (1) and (6) through (12) and (13).
3. A cycle connecting the standing waves as in (1), but ins(ae> (6) through (14), thert6) — (1) through
(12) or (13), andl) — (2) through (7). This cycle connects standing waves and rotating waves.
In the following, we sketch the existence and asymptotic stability of the first two cycles. The existence of the third
cycle is more difficult to establish since the connecting fixed-point subspaces (7) and (14) are four-dimensional. It
is likely that generically these cycles do not exist.

4.2. D,-invariants andD,,-equivariants

In this section, we compute normal form equationsgrx T2-equivariant smooth germs @f. First, let
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Table 9
Isotropy subgroups of thB,, x T2-action onC* from the lattice in Fig. 10
Isotropy subgroup Fixed-point subspace

1) Z,(1,-1,0) xS0, 1) (z,0,0,0)

@ Zo(x) x Z§' x SL(0, 1) (z.2.0,0)

(3) Zo(k, w,0) x Z$" x S0, 1) (z,—z,0,0)

4) Z5(k, 0, ) x Z§" x S'(1, 0) 0,0,z,—z)

(5) Zo(k) x Z§" x SL(1,0) 0,0,z,2)

(6) Z,(1,0,1) x S'(1,0) (0,0,0,2)

) st©, 1) (z1.22,0,0)

(8) Zo(k) x 25! (21, 21, 23, 23)

C)] Z3(k, 7, 0) x 2§ (z1, —21, 23, 23)
(10) Za(k,0,m) x Z§" (21,21, 23, —23)
(11) Zok, 7, ) x 2§ (z1, —71, 23, —23)
(12) Z,(1,-1,1 (21, 0,0, z4)

(13) Z,(1,1,1) (0, z2, 0, z4)
(14) st(1,0) (0,0, 23, z4)

n if nis odd

in if n is even

m =

Proposition 4.1. Every smoottD,, x T2-invariant germf : C* — R is a function ofNy = |z1|2 + |z2|2, N2 =
2312 + 2412, A1 = 82, Ap = 82, A1z = 816, x = 21722374 + 71227324

Re(lp), Re(I1), ... , Re(l,,), 8; Im(Io), ... , 8; Im(I,),

wherej = 1,2, I = (2122)" ¥ (z3Za)* anddy = |z2]? — |z1/%, 82 = |24l — |z3]%.
The proof of Proposition 4.1 is similar to that of Proposition 2.10grx S'-invariants and is omitted for brevity.

Proposition 4.2. Let f : C* — C* commute with the action &, x T2. The generaD,, x T?-equivariant mapping
f = (f1, f2. f3, fa) is given by

21 21 22034
L] 22 3 5 —22 ; 9 1 21034
fz, A, m)=C + (C281 + C>82) + (C' 4+ C%81+ C*62)
3 73 24012
z4 —24 23012
- -m—1—i =i
71012034 Vip U522
_ 12 m—1—i i
72V12V34 a . Vip © Uzg2l
+cB + > > DAt 3 , (25)
_ J+ =m—1—i =j
23012034 i=0j=0 Vg~ V1224
= m—1—i_i
24V12V34 Ugg V123

wheredg = 1, vi2 = 7172, v3a = z37a4, C/ and Dz] are complex-value®,, x T2-invariant functions of two
parameters. and x, and
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Table 10
Expansion of the branching equations to lowest orderfior each maximal isotropy solution
Solution Orbit type Expansion
3_ 1
a- —a
1) RW,, (1,0,0,0) = 2
a
Za%, )
2 SW1,, (u,u,0,0) r=——7%
@
24t
3) SW2,, (u, —u, 0, 0) A=y
@
2by,
4) SW2,, (0,0, u, —u) — blz u
2bt
5) SWi,, ©0,0,u, 1) h=— gt
s
b —by, ,
(6) RW,,, (0,0, u, 0) A= 2
b;
. — j .1
a] + |Cl] ql + |ql
. al +iaitt - q/ +iqu+1
cl=1 . - D/ =|" 1
Jyipitl |’ Jo i
bl +1ib ri +iry
J 4 jpitl i, s+l
b/ +ib rl] + Irlj

A proof of Proposition 4.2 is similar to that of Proposition 2.2 By x St-equivariants and is omitted for brevity.
4.3. Branching equations

Consider a generd, x T2-equivariant vector fieldq on C* that depends on two parameterandu. Assume
that at the origin the vector field has a nonresonant Hopf—Hopf mode interactioniwken = 0 and that the
eigenvalues ofdf)g arew1i, woi, wherew; andw, are not rationally related. This implies th&t(0) = »(0) = 0,
a?(0) = w1, andb?(0) = wp.

On solving the amplitude equations corresponding|teix(X), we find branches of periodic solutions bifurcating
from the trivial equilibrium for each maximal isotropy subgronf D, x T2. For each Hopf bifurcation, there is
one rotating wave with isotropy subgroidp x Z, x S' denoted RW and two standing waves, one with isotropy
subgrouZz(x) x Z§" x St denoted SW1 and one with isotropy subgrdisx, ) x Z5 x St denoted SW2 where
St = S0, 1) for thew; Hopf bifurcation ands! = S!(1, 0) for thew, Hopf bifurcation (see Table 10).

Using the isotypic decompositid®* = V1 @ V> @ V3 @ V4, given by each maximal isotropy subgrobip the
stability of the bifurcating periodic solution is determined by tr@égV; for all j (see Table 11). Since dil = 1
at maximal isotropy solutions, the action@f x T2/ on the tangent space forcedf) to have a zero eigenvalue
in V1 = Fix(¥). The action on the other irreducible representations is by a rotation so generically the eigenvalues
are complex.

Since f1 = f> o k, we can writedf at the origin in complex coordinates as

4

4
_ o - Bfi i 9
df(W)_|:Z|:3Z1WI+321wli|’“.’Z|: wit wH

dza ' 9z
izl izl 24 24
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Table 11
Irreducible representations of the tangent space at maximal isotropy solutions
Solution Vi Vo V3 Va
(1) RW,,, (w,0,0,0) O, w,0,0) (0,0, w, 0) (0,0,0, w)
2 SWi,, (w, w, 0,0) (w, —w, 0,0) (0,0, w, w) (0,0, w, —w)
3 SW2,, (w, —w, 0, 0) (w, w, 0,0) (0,0, w, —w) (0,0, w, w)
(4) SW2,, (0,0, w, —w) (0,0, w, w) (w, —w, 0, 0) (w, w, 0,0)
(%) SWi,, 0,0, w, w) 0,0, w, —w) (w, w, 0,0) (w, —w, 0,0)
(6) RW,, 0,0, w,0) 0,0,0, w) (w,0,0,0) 0, w,0,0)
aNote that(df)| V1 has one null vector.
Table 12
Real part of trace ofdf)|V; for each maximal isotropy solution up to a positive constant
Solution Vi1 Vo V3 Va
d d Gl Gl
1 RW, — — — —
(1) o 571 A 5% f2 578 f3 s fa
. ) . ) . ) .
2 SWi,, —(fi+ f2) —(fi—f2) —(f3+ fa) —(f3— fa)
021 021 023 023
9 9 9 9
(3) SW2,, — (11— f2) — 1+ /f2) —(fa—fa) —(fz+ fa)
9z1 0z1 0z3 0z3
d d d d
(4) SW2,, —(fa—fa) —(f3+ fa) —(1—f2) —(fi+ f2)
073 023 0z1 021
d 9 d d
(%) SW1,, —(fa+ fa) —(fa— fa) —((fi+ f2) —(fi—f2)
0z3 0z3 0z1 071
d Gl Gl Gl
6 RW, — — — —
(6) oo 57 f3 2 fa P f 5% f2
Table 13
Explicit computation of trac@lf)| V1 at each maximal isotropy solution
b4 Vi
(1) (1,0,0,0) a® + (ay, — 2a®u? + 2a) | — af u* —2a3 u®
@) (u,u,0,0) a' + 2aj, u® + mepu "V 4 2m(qPRecro) ™2 + 201Ny — 43 + Make o) u®"
(3) (u, —u, 0, 0) (11 + 2[1%]1142 + (_l)mmq'llu2(m—1) + Zm(q%)Re(lo) u4m—2 4 2(_1)m—1[(_1)m—1mq‘£e(,0> _ (‘J%)Nl +q%]u2m
(@) ©,0, u, —u) p 4+ 21711\,2u2 + (=" mru?m=D 4 2m (rHre,) 4?2 + 2(=D)" [ LN, + 15+ mt%ae(lm)]uzm
(5) (0,0, u, u) b+ 2b11\,2u2 + mrku2m=D 4 2m(rHre,) 4?2 + 2[(rD) N, — 1 + ml:%e(,m)]uz’"
(6) (0,0, u, 0) b+ (by, — 2b%)u? + (2b, — b,u)* — 23 u®

whereW = (w1, wa, ws, wa) € C*. The relevant traces are listed in Table 12 for each maximal isotropy solution.
Their signs appear in Tables 13-15 for each maximal isotropy solution and each irreducible representation in the
isotypic decomposition.

The real part of the eigenvalues on the irreduclihlat each maximal isotropy solutid) is given byeijl/l2+' e
Theg;; are listed in (26).
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Table 14
Explicit computation of tracglf)| V, at each maximal isotropy solution
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b4 Vo
® (u,0,0,0) at + a3u?
2) (u,u,0,0) at — 2a3u?% — mq}u2<'"‘1)
?) (u, —u,0,0) at — 2a%u? + (=" mqtu 2D
@) (0,0, u, —u) bt — 2b%2 + (=1 mrly2m=b
(5) (0,0, u, u) bt — 2652 — mriy2em=b
(6) (0,0,u,0) bt + b%u?

1 3 1
€11=(ay, —a°), €12 = €13 = 2ay,,

e16= (by, — b°),

1
€14 = €15 = 2by,,

3
€21 = —€xp = —€23=2a°,

5
€26 = —€24 = —€25 = 2b°,

[(b}, — ba)a} — bi(ah, — a)] [(2by, +b"a} — 2bjay,]
€31= al s €32 = al s €33 = €32,
A A
[(2a}, +a")b} — 2a}b}, ] [(b, — b®)a; + (ay, — a®)b}]
€34= 1 ; €35 = €34, €36 = — T ,
by b
(b, +bDal — blah, —a¥)] (@b}, —b")a} — 2bia}, ]
€41= I , €42 = 1 , €43 = €42,
A A
[(24}, — a")b! — 2a1bY, ] [(ay, +a®)b} — (b, — b*)a;]
€44 = Bl s €45 = €44, €46 = pl : (26)
2 A

4.4. Existence and stability of cycles

We show the existence of a heteroclinic cycle by verifying that trajectories in the two-dimensional fixed-point
subspaces are bounded and that no other equilibria exist. In order to do this, we need the following definitions:

1.1 1 1
aszx leax

1 7\l
- B (ZaN2 —a")by
1 1 1.1
sza)\ aNle

(2by, —b")a}
€y =
2 2b%, ol

1,1
2aNle

€

’

_ (ay, —a"b;  (2by, —b)a; _ (2ay, +a")b;

(b, +b"a}

€3 - ’ 64 -
1 1 1,1 1 1 1,1
Zszax ZaNle Zszak 2aNle

Table 15
Explicit computation of trac@f)| V3 and tracéd )|y, at each maximal isotropy solution

Z V3 V4
@) (1, 0,0,0) bt — b3u? b+ b3u?
(2) (u, u, 0, O) bl + b7M2 + rfm—1u2(m—1) bl _ b7u2 + rfm—llAZ(m—l)
@) (u, —u.0,0) bt bTu? 4 (=12 Tty 2m=h bt — bTu? 4 (=L 2m =D
(4) (O, 0,u, —u) al _ Ll7M2 + (_1)mqu—1u2())171) Lll _ a7u2 + (—1)mq12_m_1142(m71)
(5) (0,0, u, u) at+a’u? + qu_luz(m’l) al+a’u? — qu_luz”"’l)
(6) (0,0, u,0) at — a®u? at + a®u?
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Table 16
Sign of the real part of the eigenvalues at each standing wave solution
Solution FiXZ2(x)) Fix(Z2(k, 7, 0)) Fix(Z2(k, 0, 7)) Fix(Za(k, , )
2 SW1,, sgn(es2) Sgn(es2)
3 SW2,, Sgn(e3s) SgN(e4s)
4) SW2,, Sgn(€43) Sgn(es3)
(5) SW1, Sgn(ezs) Sgn(es4)

Theorem 4.3. Letu = 0. For A > O, there exists a branch of robust heteroclinic cycleg2b) consisting of
trajectories that connec3W1,, to SW2,,,, SW2,, to SW2,,,, SW2,,, to SW1,,, andSW1,, to SW1,,.

at@© >0, bY0)>0, €; <0, i=2345
and
SgNe32 = SgNeys, Sgnez2 = —Sgneas, SgNez3 = —SQgNezy, SgNeg4 = —SgNego,
SgNegs = —SgNeys, ¢ >-2, i=1,...,4 27)

Proof. Sinceai, bi > 0 whena is positive, branches of solutions with maximal isotropy subgroup bifurcate from

the origin. Table 16 shows the sign of the real part of the eigenvalues of the Jacobian at the standing waves periodic
solutions. In order to obtain a cycle, the sign of adjacent eigenvalues must be alternately positive and negative so that
saddle—sink connections can be established in each two-dimensional fixed-point subspace. This is satisfied by (27).
The boundedness of solutions and the nonexistence of other equilibria in the fixed-point subspaces is guaranteed
byer > —2 (k = 1, 2, 3, 4) and Proposition 2.4. O

Theorem 4.4. The branch of heteroclinic cycles between the different types of standing waves found in Theorem
4.3 generically consists of asymptotically stable cycles if the following conditions are satisfied

€22 <0, €25 < 0, MiN(—e€32, €42 — €22)MIN(—€4s5, €35 — €25) > €42€35,

MIN(—€42, €32 — €22)MIN(—€35, €45 — €25) > €32€45. (28)
Proof. Follows from Theorem 2.7 of Krupa and Melbourne [19]. O
Define

(ay, +ab} by, +b3a; (ay, —a”b}  (by, —b3a;
€5 = €6 =

by, —b%a}  (ay, —adb} by, —b%a}  (af, —adb}

Theorem 4.5. Letu = 0. For » > 0, there exists a branch of robust heteroclinic cycleg2B) connecting rotating
wave(1) with rotating wavg6) through the fixed-point subspacd®) and (13)iif

at@ >0, b0 >0, €;,<0, i=186,
Sgn(e31) = SQn(ezg) = —SQN(€a1) = —SQN(egp), €5 > —2, € > —2. (29)

Proof. Similar to the proof of Theorem 4.1 of Melbourne et al. [22]. |
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Theorem 4.6. The branch of heteroclinic cycles between rotating waves found in ThebBsronsists of asymp-
totically stable cycles if

€21 <0, €26 < 0, MiN(—e31, €41 — €21)MIN(—€3p, €46 — €26) > €41€46.

MiN(—e41, €31 — €21)MIN(—€46, €36 — €26) > €31€36.

Proof. Similar to the proof of Theorem 4.3 of Melbourne et al. [22]. O

A heteroclinic cycle involving standing and rotating waves is more difficult to establish. For instance, consider
tentatively a cycle connecting rotating wave (1) with standing wave (2) or (3) through the fixed-point subspace (7).
In this case, when the system is transformed to polar coordinates, the equations of motion do not decouple into
amplitude/phase equations. Instead, we obtain

2
pr=a'pr+as1p1+ ) 8;p1' 05 (g} 41 COSm — 2§ — r} g Sin(m — 2)¢],
j=0

2
pr=a'py —a®1p2+ ) 8;03 (4] 1 COSm — 2)¢ + rj g Sin(m — 2)¢], (30)
j=0

whereg = 01 — 62, andp1 andp, are amplitude variables. The dynamics in the four-dimensional space, 0, 0)
is given by(o1, p2, ). Therefore, the existence of a connection between (1) and either (2) or (3) cannot be determined
by the previous methods. The existence of a saddle—sink connection in this context is unlikely.

4.5. Visualization of heteroclinic cycles in coupled cell system

We now visualize the heteroclinic cycles from the Hopf/Hopf interaction Dsasymmetric coupled cell sys-
tem without computing the center manifold reduction. We illustrate the method using the heteroclinic cycles in
Ds x T2-equivariant Poincaré—Birkhoff normal form. Fobg-symmetric cell system to have a Hopf/Hopf mode
interaction with eight-dimensional real center eigenspace, the cells must be at least of dindensitwo di-
mensions for each Hopf bifurcation. If the dimension of the cell is lower than 4, the interaction of Hopf modes is
impossible since the linearization can have at most one pair of complex eigenvalues with eigenspace invariant under
the standard action @,,. We set the size tb = 4, so the ring of five cells is 20-dimensional. We use the fact that the
smooth mapping frords-symmetric cell systems with Hopf/Hopf mode interactioox T2-equivariant normal
form is onto. This map is given by the composition of the center manifold reduction with the Poincaré—Birkhoff
normal form transformations. Here we assume that all possible couplings (both linear and nonlinear) are allowed
between the cells.

Let z = (z1(1), z2(¢), z3(¢), za(t)) denote the evolution of the heteroclinic cycle found in the normal form
equations (25). Define vectols (1) = z and V2 (¢) to be the solution of a system of ODEs of the form

dvo

= —rl12V>,
dr

wherer is a positive, real-valued scaling factor, ahd a 12 x 12 identity matrix. Observe that; € R® and
V2 € R12, Next, embed the cycle iR%° by defining

V() =[V1, Val.
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Table 17

Symmetries of solutions in a coupled cell system with five cells

Solution Isotropy subgroup Pattern of solution

Trivial Ds x T2 X =(0,0,0,0,0)

RW Z,(1,-1,0) x St0, 1) X(t) = (X1(2), X2(2), X3(1), Xa(2), Xs5(2)), whereX; 11(t) = X; (¢t + _%), i is taken mod 5
Swi Zo(k) x Z§' x SO, 1) X(1) = (X1(0), X2(1), X3(1), X3(t), X2(t))

Sw2 Za(k, 7,0) x Z§' x SH0, 1) X (1) = (Xa(0), X2(0), X3(1), X3(t + 3). X2(t + 3)), whereX1(1) = X1(t + 3)

It follows that V; is asymptotically stable insid@2° and the flow restricted to the center eigenspace is exactly

V1. We then mapV to a vector solutionX of a coupled cell system by applying a transformation= PQV

similar to the one of Section 3. However, before doing the transformation, we need to br@dksyrametry of the

normal form usings-equivariant terms sincé? is not a symmetry of the coupled cell system. The choice of the
Ds-equivariant term is arbitrary — some choices are better than others. Consequently, some quantitative features
of the cell dynamics may not be exact. However, the numerical simulations describe well the predicted qualitative
aspects of the dynamics.

Table 17 shows the restrictions that the symmetries impose on the periodic solutions of the cell system. We now
perform the transformation withi (r) as defined above and with= 1. The results are shown in Figs. 11-13. Fig. 11
shows the heteroclinic cycle joining standing waves SW1 and SW2 as in Theorem 4.3. The left time series shows
the evolution of the cells in the variables of one mode and the right time series shows the evolution of the other
mode. Fig. 12 depicts the enlarged region [1200 1400] of Fig. 11. The time series shows the double frequency
oscillation of cell 1 when the cycle approaches the standing wave SW2. Fig. 13 shows a cycle connecting rotating
waves. The time series on the left and right depict the first and second mode of oscillation in the cycle. Observe the
phase shift of one-fifth period between consecutive cells.

Finally, Fig. 14 shows cycling behavior between SW1, SW2, and RW in a coupled cell systeBsv@jimmetry.

The trajectory approaches RW when all five cells show the same amplitude, it is near SW2 when one cell has
oscillation amplitude close to zero and it is near SW1 otherwise.
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Fig. 11. Heteroclinic cycle connecting standing waves in the two modes of a Hopf/Hopf mode interaction. (Left) Cycle shown in a coordinate
of the first mode. (Right) Cycle shown in a coordinate of the second mode.
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Fig. 12. Enlargement of Fig. 11 showing double frequency oscillation observed in cell 1 of a second mode coordinate.

The numerical simulations are performed with

f@) = (1), f2(2). f3(2), fa(2))
((a* +ia®) + (@® +ia%81 + (@ +1a%)82)z1 + (72374 + (¢} +igD) (G1z2)N 22 + pL(2)
(@ +ia?) — (@® +ia%81 — (a® +1a®)82)z2 + (a"zaZ3 + (qF + ig?) (Zoz1)Hz1 + pl(kz)
(B +1b%) + (% +ibM61 + (B° +1b8)82)z3 + (b721Z2 + (1 + ird) (Z3za)Hza + p3(2)
(bt +ib%) — (% +ibM61 — (% + 1b®)62)za + (bT2271 + (r} + irP)(Zaza)Hza + p3(k2),
where
alzp%)mLa,l\,lvaLa,l\,ZNz, bt = p%)»—l—b]llel—i-b]l\,zNz,

pr=pizt+ plas, 2= p3g+ piad.

The parameter values of the simulations are listed in Table 18.

- o T T T T T - T T
.~ 02 4 . o2}
30 30
-02f E 02t g
04 f Fy A ' L 04 N L " L L
1.08 1.1 112 114 1.16 118 12 1.08 1.1 112 114 1.16 1.18 1.2
T T T T T T T T + T
o 02P 1 o o2f
I ]
-02 E -02
04 N N s R . 04 L N N N N
1.08 1.1 1.12 114 1.16 1.18 12 1.08 1.1 112 114 1.16 1.18 12
- 02t 4 o 02}
3.0 i
-02} 4 °-02}
-04 L 1 1 1 A 04 1 " -t 1 1
1.08 1.1 112 1.14 1.16 1.18 12 1.08 1.1 112 114 1.16 1.18 12
< 02f 1 < 02} H
I t
-02 L -02}
~0.4 n L 1 1 1 =04 1 1 A 1 1
1.08 1.1 112 114 1.16 1.18 12 1.08 1.1 1.12 114 1.16 1.18 1.2
- n T r T T r T T T
- 02f 4 o 02}
L § 0
-0.2 B -0.2}+
04 h R : N N —04 N L L N L
1.08 1.1 112 1.14 1.16 1.18 1.2 1.08 1.1 112 114 1.16 1.18 12
x10' x10°

Fig. 13. Heteroclinic cycle connecting rotating waves in Hopf/Hopf mode interaction. (Left) Cycle viewed from a coordinate in the first mode.
(Right) Cycle viewed from a coordinate in the second mode.
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Fig. 14. Intermittency between six states in a Hopf/Hopf mode interaction: SW1, SW2, and RW in each mode. (Left) Time series from a
coordinate in the first mode. (Right) Time series from a coordinate in the second mode. The trajectory approaches SW2 around 1000, 1650,

1800 and 1950 in the first mode, and around 1050, 1700, 1850, and 2000 in the second mode.

Table 18
Parameter values of tHgs x T2 normal form equations and tfs-equivariant perturbation terms of the numerical simulations of Figs. 11,13
and 14

SW RW SW-RW
ay, -15 -15 -0.3
ay, -22 0.1 —-3.55
by, -2.0 -1.05 -1.75
by, -2.0 -1.2 -1.667
a® 0.1 0.1 0.9
b? 0.14142 0.14142 1.4
a® 25 -0.3 0.625
b3 0 1.2 0.25
a* 0.5 0.5 0
bt 0 0.7 0
a® 0 -1.2 —3.45
b® 1.5 —0.4 —0.583
ab 0 0.9 0
b® —0.25 —-0.25 0
a’ 2.0 0 0.125
b’ -3.0 0 3.0
a® 0 0 7.0
bB 0 0 6.0
gt -0.9 0.9 0.003
7 -1.2 -0.8 0.002
ri -1.45 -1.45 0.008
r? 1.15 0.95 0.004
p} 5.2 0 -0.56
p3 438 0 -0.72
p3 5.3 0 -0.21
3 4.9 0 0.43
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5. Remarks on cycles im-cell rings

We now discuss the existence of heteroclinic cycles in ring systemsDyitsymmetry. In the case of cycles
connecting steady states and periodic solutions, there are similarities and differences between the casiss when
even and: is odd, as we now discuss.

Heteroclinic cycles do not exist in thi; x St steady-state/Hopf mode interaction normal form equations because
the isotropy lattice oDs x St acting onC? lacks the structure of Fig. 2 [3]. This lack of structure, however, does not
preventthe existence of intermittent behavior in cell systemsb¢teymmetry. In fact, we showed this intermittency
in [3] using numerical integration of the genef$ x S'-equivariant vector field on the six-dimensional center
subspace of a steady-state/Hopf mode interaction (see Fig. 15).

The basis for this intermittency can be understood as follows. To lowest ordeDstieS!-equivariants are
0(2) x St-equivariant. Since cycles exist®(2) mode interactions [13] (see Fig. 3), we may think of Becase
as a (small) perturbation (or discretization) of h€?) case. When th®(2) cycle is asymptotically stable, then
normal hyperbolicity arguments prove the existence of intermittency iDtghease, even though no heteroclinic
cycle is present. In fact the situation is not too different fromBERecase. Here there is a heteroclinic cycle in the
Dg x S! normal form — but not one when the normal fo®hsymmetry is broken. Nevertheless, intermittency
persists. These assertions have already been confirmed by the results of Section 3, where a cycle in a ring of six
cells with Dg-symmetry was studied. Specifically, recall Fig. 6 where periodic solutions appear for approximately
constant lengths of time. The same conclusions follow for large values-efdepending on whether is odd or
even.

In Section 4, we sketched the proof of existence of asymptotically stable cyclesy th@?2 Hopf/Hopf mode
interaction normal form equations for all> 5. As in the steady-state/Hopf case, normal hyperbolicity guarantees
that cycling behavior persists in ti, ring system.

In O(2) Hopf/Hopf mode interactions a cycle between standing waves and rotating wave exists. This is due to the
fact that amplitudes and phases decouple in the fixed-point subspaces that connect standing waves and rotating wave
solutions (see [22]). In Section 4.4, we showed that a heteroclinic cycle between standing waves and rotating waves
does not exist generically in the Hopf/Hopf, x T2 normal form. In [3], however, simulations of t@&(2) x T?2
normal forms with smalDs-symmetry-breaking terms show intermittent behavior connecting two types of standing
waves and rotating waves in each mode. Again, normal hyperbolicity of the asymptotically stable €y@gsirT2
is used to find intermittent behavior in ti®;-symmetric system. Fig. 14 is a numerical simulation showing the
realization of cycling behavior of [3] in a ring of five cells.

0.5

o 50 100 150 200 250 300 3so 400 450 500

x2

o S0 100 150 200 250 3c0 350 a00 a50 500
1

Fig. 15. Trajectory visiting intermittently a steady-state and a standing wave in a system of differential equati@nsswgh-symmetry.
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Appendix A. Dg-invariants and-equivariants: proofs

Proof of Proposition 2.1. We derive théDg x S-invariants by starting with thg!-invariants. The complex-valued
Sl-invariants are generated by

20, 20, Ul = 71721, up = 22722, vV = 2122, v
with the relatioruiu = vo. Letting N = u1 + up ands = up — u1, we find an alternate basis
20, zo, N, 8, v, ]
with the relation 49 = N2 — §2. In this basis thé&!-invariant can be written uniquely as
Z Aupz8vP 4 bapZ&vP + copzd P + dypz8iP,
whereagg, bag, cap, dop are complex-valued functions pf N, ands$. The reality of these invariants implies that
dup = Gop aNdcgp = Ba,g. Therefore, the general real-valusttinvariant is
Z Aap VP + agpZE 0P + bapZivP + bapziiP.
Next, theZg C Dg-action on(zg, N, §, v) is generated by
(20, N, 8,v) = (&0, N, 8, €10).
This action leavep, N, ands invariant. It also implies that,s = byg = 0 unless
a+28=0mod6g —a + 28 = 0mod 6

These cases lead to generatogls_zﬂvﬂ @Bl =8 =0 andzgl+2ﬂvﬁ (B = 0,8 = —3I) plus their complex
conjugates.
We now find a minimal set of generators. Using the identities

Zgleﬂ P = (U3 + l—)S)Zg(lfl)*2(/3*3)vﬁ—3 )3Zg(172)72(ﬂ76)v,5—6’

— (vv
zgl+2ﬁ of — (v3 + ﬁs)zg(l+1)+2(ﬂ—3)vﬁ—3 _ (vﬁ)3zg(l+2)+2(576)vﬁ—6’

the fact thatw® + ©3 and v are invariant functions, and the induction gnwe see thag > 6 yield redundant
generators. Observe that

— -3, _6(-1)—-4 -2 _6(I-2)+2-
Zgl lOUS — (1)3 + U3)Z0( ) UZ _ (UU)ZZO( )+ v,

- - 6(/-1)—-2 -\ _6(—-2)+4-
Zgl 81)4 = (1)3 =+ vs)ZO( ) v — (UU)ZO( ) vz,
_ -3,-6(/+1)+4 —2-6(1+2)—-2-
Zgl lOUS = (U3 + U3)Z0( ) U2 — (UU)ZZO( ) v,
-6l+ -6(/+1)+2 -6(/+2)—4 -
Zgl 81)4 3)20( ) v 0( ) UZ.

=i+ — (VD)2

Therefore, we can reduce the set of generatorstod0< 3.
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Similarly, we use the identities

6/—2 _

70 Pof = S +29)zg — (2020

122 6— = \6-28=2

% Pof = (5 —i—zo)z PP — (2070)° Zﬂzoﬁvﬂ,

6(-1)-28 p )628(1—2)—2%/3

_6l+2ﬂ Wb — 6)-6(1 D+2B p )628(172)+2ﬂv'5

(z +z (zozo

to arrive at a set of generators witke 1. Possible generators of the fozﬁﬁ_zﬁvf’ areC = v3,D = 7502, E = z{v,
andB = zg. When! = 1, we have the following identity for generators of the fQ‘rgfnJ’zﬁvﬂ

2ot = (2§ + 27 P — (2020025 PP
Thus, we can assume that 0 and we have possible generatdrs- Z zov zov andzg 613, Since
Zgv? = A2, z8v® = (5 + z8)C — DE,

we have shown thdt, ... , E} is a set oZg x St generators.
Finally, we can decompose eaglp andb,g into an even and an odd functiondnobtaining

dop = Agg(p. N, A) + Abg(p, N. NS, bap = Byg(o, N, A) + BZg(p, N, A3,

WhereA({lﬂ and Béﬂ are complex-value®g x Sl-invariant functions. Thus, we can write the general real-valued
Sl-invariant function as

Z(A g+ 8ALZEVP + (AL, + 8A5)ZE0P + (Byg + 8BL)7gv” + (Buy + 8BZ) 230" .
Now observe that the action efe Dg on(zg, N, 8, v) is

K(Z05 N’ 87 U) = (ZO’ N7 _85 l_))a

which implies thatAaﬁ, B1 eR andAgﬁ, s € R{i}. Thus, redeflnlng4aﬂ, s € R, we can write the general
invariant function as
ZA ﬂ(zov’g + z8oP) + AwﬂlrS(zovl3 —z80P) + Baﬂ(zovﬁ + z8oP) + Baﬁlé(zov - z8vP). (A1)

Substitution in (A.1) of the minimal set & x S! generators computed above yields a complete set of generators
for theDg x St-invariants. O

Proof of Proposition 2.2. Let g(z) = (go, g1, g2) be aDg x St-equivariant mappin@2 — C3. Commutativity
of g with St implies that we can writg in the form

g = (a,bz1 + cn,dz + ez),

whereqa, b, ¢, andd are complex-value8!-invariant functions ofo, N, §, andv. Commutativity withx additionally
requires that

a(z) =akz), (A.2)

b(2)z1+ c(2)z2 = e(kz)z1 + d(k2)z2, (A.3)
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wherez = (zo, N, 8, v) andkz = (Zo, N, —8, 9). Using the relationsz, = (N + 8)z1 andizy = 2(N — 8)z2,
we can write the coefficients in (A.3) as functions of the form

b =b(z0,v, N, 9), c=c(z0,v, N, ), d =d(zo,v, N, ), e =e(z0,v, N, §). (A.4)

This shows thab(z) — e(kz) andc(z) — d(kz) are linearly independent so thétz) = c(kz) ande(z) = b(kz).
Theng takes the form

g = (a(z), b(z)z1 + ¢(2)z2, c(k2)z1 + b(k2)z2).
Now commutativity ofg with y imposes the following conditions:
az) =e"a(yz), b(2)z1 + c(2)z2 = b(y2)z1 + € ¥ e(y2)z2.

Let R(z) = (b(z) — b(yz))z1 andS(z) = (c(z) — € %'c(yz))z2. Again we need to show th& andS are linearly
independent, thus verifying thatz) = b(yz) ande(z) = e ?'¢(y z). We do this as follows. Using (A.4), we write
R and S as polynomials of the fornkR(z) = r(zo, v, N, §)z1 andS(z) = s(zo, v, N, 8)z2. Typical terms in their
Taylor expansion arej v N*§'z1 andzll " N*§'z, respectively, wheren, n, k, 1, m, 7, k, [ are all nonnegative
integers. Term by term comparison yields= —(n 4+ 1) which is a contradiction té being a nonnegative integer.
Thus,R andS are linearly independent. Summarizing, commutativity witrequires

a=e"a(yz), (A.5)
b=>b(yz), (A.6)
c= e_zyic(yz). (A7)

Next we calculate the generators forAs in the derivation of th®g x Sl-invariants, we can write
a(zo, N,8,v) = Zaaﬁzgvﬂ + bapZEvP + capzBtP + dupZiiP,

whereagg, bag, cap, andd,g are complex-value®g x Sl-invariant functions ofp, N, ands. The commutativity
condition (A.2) impliesagg = bap = cap = cap = dap = 0, Unless

a+28—1=0mod6g a—28—-—1=0mod§
—a+28—-1=0modg —a—28—-1=0mod6

These cases lead to generategs 2 *1vf (3 > g > 0), 231 (B > 0,8 > —31 + 1), T8
(8=0,8>—3),andzy ¥ @ —1>p=>0).
We now find a minimal set of generators. Using the identities

Zgl—zﬂ-i-lvﬂ — (v3 + ﬁs)zg(l_l)_2<ﬁ_3)+1vﬂ_3 _ (vl—))318(1—2)—2(5—6)+1v/3—6’

—6l+28-1 -3,=6(+D)+2(B—-3)+1_p— —3-6(l+2)+2(—6)+1 p—
Zo+ B vﬂz(v3+v3)z0(+ +2(8-3)+1 B 3_(vv)3zo(+ )+28-6)+1 8 6’

Zgl+2ﬁ+1l-)/3 _ 6(1+l)+2(ﬁf3)+1l_)/3_3

(U3 + l—}3)zo )328(1+2)+2(ﬁ76)+11—)ﬂ—6’

— (vv

Zgl_zﬂ_lﬁﬂ — (U3 + 63)28(1_1)_2(ﬁ_3)_16ﬂ73 _ (vl_))3zg(l_2)_z(ﬁ_e)_lﬁﬁfs,

the fact thatv® + ©° and vd are invariant functions, and induction gh we see thag > 6 yields redundant
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generators. Observe that

6179 5__ (U + 3)Z6(1 -3 2 )2Z8(1_2)+31_),

— (vv

81 7 4 3)Z6(1 - l (vl—))ZG(l—Z)—&-S—z

(v +v

=3+ %7,
—61+7 4 (v + —3) 6(l+l)+l (vl—))fg(HZ)fSl—)z

—61+9 5 6(l+1)+3 2 2= 6(l+2) 3-
29 — (vv)°z

61 1)4+5- - 6(14+2)—1
ZglJrll 5__ ('U + U3) (+D+ 2 (vv)zzo( +2) v,
81+9 4 _ (v + 3)Z5(1+1)+3 (vﬁ)zg(l+2)_3v2,
_ 6(l—1)—5- -\2-6(1-2 1
gl ll 5 (U +U3)Z ¢ )— 2 (vv)Z ( )+ v,
—61 9 4

(v ~|—U3)Z6([ - 3 — (vb )26(1 2)+3 2

Therefore, we can reduce the set of generatorstof< 3.
Similarly, we use the identities

6[ 1,8 _ (8 4 26):8 6(-1-26+1 p (ZOZO)6Z8(172)72;3+1U/3’
(1)2—2,3+1 P (42 0)26 L _ (030)5- 2+ L8,
FOHILYB (8 | 26 0U-DI2-Lyp (oo 6802421 p,
Egl_zﬁ_lﬁﬂ—(z +26) 6(1 D-2h-156 (zozo)6 Si-2=2h1gh,
Z(l)z_zﬁ_l_ﬂ=(zo+ o)z6 2k~ (zozo)6_2ﬂ_1z(2)ﬁ+lﬁﬂ,
(SHEPLGE _ ([6 | 26y SU-IN42HLg _ ( a06 BU-D42p+ 158

to arrive at a set of generators withk 1. Possible generators fogl 218 and'el 26=156 are as follows:

26172ﬂ+1vﬂ © 2o, 2302, B, 20, 2L, 26172/3*11—)/3 L Zov?, 230, 75
When! = 1, we have the following identity for generators of the ergﬁrz’S 108 andz 61+2’3+1 P
'g+2ﬁ Lof = (z +z6)z Lop — (zoZo)zﬂ_lzg_zﬁHvﬂ,
g+2ﬁ+1 B _ (Zo + ZO)Z2;3+ - (zoZo)zﬂHZg_zﬂ_lﬁﬂ.
Thus, we can assume that 0 and we have possible generators
CASARVERIE SO ol TN S R T TR
Since
zov (z v+ Z%f)z)zo — (z020)Z00°, ngg = (z%ﬁ + Z%v)ngz — (z0z0)(vv)zov,
Zov = (zov + Zgl_))zo — (ZQZO)ZSE, zg’f) = (z%l_) + Z%v)zo — (z0Z0)Zov, Zg = (z0)',
230° = (250 + Z5v)750 — (2020)°(vd)z0,  Zgv® = (2§D + Z5v)Zov — (2020 (v1)z0,

250° = (230 + Z30)2592 — (2020)2(vD)Z3D,

we have shown thdtg, zoz1Z2, zg, Zo%, zgv zov%} is a set 0Zg x St-equivariant generators far.
Finally, we can decompose eagfy, b o8 Cap, aNddyg iNto an even and an odd functiondnobtaining

aaﬂ = Aaﬂ(ps N? A) + Aaﬁ(ps N? A)(Sv b()[ﬁ = Baﬂ(p’ N! A) + BaIB(pv N5 A)S’
cap = Cag(p. N, A) + Chg(p. N, NS, dup = Dyg(p. N, A) + DZs(p. N, A)S,
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whereAaﬁ, up aﬂ, andD’ are complex-value®g x St-invariant functions. Thus, we can writeas
a(zo, N, §,v) = Z(A +8AZ)28vP + (Bhg + 8BZp) 74P
+ > (Cag +8C2) g0 + (DY + 8D2) 78",
Now observe that the action efe Dg on (zg, N, 6, v) is

K(ZOv Nv 87 U) = (ZOa Na _8a l_))a

1 2 2 ; iningi2. B2
which implies thatA’ ap aﬁ, aﬁ, andD;; € R andA g Caﬁ, andBg; € R{i}. Thus, redefiningi? ;, B,
CZ andDZ,; € R, we can write
a(zo. N, 8,v) =Y (Ass +i8A5)250F + (Bg +i8B5s)Z60”
+ ) (Chg +18C2)2G0P + (Do +18D%)75 0" . (A.8)

Substitution in (A.8) of the minimal set & x St generators fas yields, modulo th®g x Sl-invariants, a complete
set ofDg x St-equivariant generators f@p : V1, ..., veand Vi, ... | isVE.

Next we consideg; andg». Recall thab is aZg x St-invariant function. Its generators are fhgx S-invariants
over the complex numbers. Decompasiato an even and an odd function in theoordinate» = 5° + b1. Then
g1 takes the form

g1= (P + Qd)z1,

whereP andQ are complex-valueBg x S'-invariant functions. The equivariance conditiairz) = b(z), specifies
g2 in terms ofgy,

g2= (P — Qd)zo.
Letting P = p +gi and Q = r + si, we find generator& 7, iv7’, §V8, and s V2.
We now compute the generators tolWrite
c(zo, N, 8,v) = Zaaﬂzgvﬂ + bapZEvP + copzl P + dypzi?,

whereagg, bag, cap, anddyg are complex-value®g x Sl-invariant functions ofp, N, ands. The commutativity
condition (A.7) implies thati,s = bag = cap = dop = 0, Unless
a+28—-2=0modg a—28—2=0mod§g
—a+28—-2=0modg —o—28—2=0mod6

A similar set of calculations yields, modulo thBg x Sl-invariants, the remaining equivariant maps
Vo, ..., isV1s O
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