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Abstract Homeostasis is a regulatory mechanism that keeps some specific vari-
able close to a set value as other variables fluctuate, and is of particular interest in
biochemical networks. We review and investigate a reformulation of homeostasis
in which the system is represented as an input-output network, with two distin-
guished nodes ‘input’ and ‘output’, and the dynamics of the network determines the
corresponding input-output function of the system. Interpreting homeostasis as an
infinitesimal notion — namely, the derivative of the input-output function is zero at
an isolated point — we apply methods from singularity theory to characterise home-
ostasis points in the input-output function. This approach, coupled to graph-theoretic
ideas from combinatorial matrix theory, provides a systematic framework for cal-
culating homeostasis points in models, classifying different types of homeostasis
in input-output networks, and describing all small perturbations of the input-output
function near a homeostasis point.
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1 Introduction

Homeostasis is an important concept, occurring widely in biology, especially bio-
chemical networks, and in many other areas including control engineering. A system
exhibits homeostasis if some output variable remains constant, or almost constant,
when an input variable or parameter changes by a relatively large amount. In the
control theory literature, mathematical models of homeostasis are often constructed
by requiring the output to be constant when the input lies in some range. That is, the
derivative of the input-output function is identically zero on that interval of input
values. Such models have perfect homeostasis or perfect adaptation [17, 41].

An alternative approach is introduced and studied in [22, 23, 25, 37, 42], using an
‘infinitesimal’ notion of homeostasis — namely, the derivative of the input-output
function is zero at an isolated point — to introduce singularity theory into the study of
homeostasis. From this point of view, perfect homeostasis is an infinite-codimension
phenomenon, hence highly non-generic. It is also unlikely to occur exactly in a
biological system. Nonetheless, perfect homeostasis can be a reasonable modeling
assumption for many purposes.

The singularity-theoretic analysis leads to conditions that are very similar to those
that occur in bifurcation theory when recognizing and unfolding bifurcations (see [20,
24]). These conditions have been used to organize the numerical computation of
bifurcations in nonlinear systems, for example in conjunction with continuation
methods. See for example Dellnitz [9, 10, 11], Dellnitz and Junge [12], Dellnitz
et al. [13], Jepson and Spence [27], Jepson et al. [28], and Moore et al. [31]. It
might be possible to adapt some of these methods to homeostasis. Donovan [15, 16]
has used the singularity-theoretic framework to adapt such numerical methods to
homeostasis. As well as organizing the numerical calculations, singularity theory
and homeostasis matrix techniques may help to simplify them.

Mathematically, homeostasis can be thought of as a network concept. One variable
(anetwork node) is held approximately constant as other variables (other nodes) vary
(perhaps wildly). Network systems are distinguished from large systems by the desire
to keep track of the output from each node individually. If we are permitted to mix
the output from several nodes, then homeostasis is destroyed, since the sum of a
constant variable with a wildly varying one is wildly variable. Placing homeostasis
in the general context of network dynamics leads naturally to the methods reviewed
here.

Summary of Contents

Section 2 opens the discussion with a motivational example of homeostasis: regula-
tion of the output ‘body temperature’ in an opossum, when the input ‘environmental
temperature’ varies. The graph of body temperature against environmental temper-
ature 7 is approximately linear, with nonzero slope, when 7 is either small or large,
while in between is a broad flat region, where homeostasis occurs. This general
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shape is called a ‘chair’ by Nijhout and Reed [34] (see also [33, 35]), and plays a
central role in the singularity theory discussion. This example is used in Section 4
to motivate a reformulation of homeostasis in terms of the derivative of an output
variable with respect to an input being zero at some point, hence approximately
constant near that point. We discuss this mathematical reformulation in terms of
singularities of input-output functions.

Section 5 introduces input-output networks — networks that have input and output
nodes. In such networks the observable is just the value of the output node as a
function of the input that is fed into the input node. This simplified form of the
observable and the input-output map allows us to use Cramer’s rule to simplify the
search for infinitesimal homeostasis points. See Lemma 5.2.

As ithappens, many nodes and arrows in input-output networks may have no effect
on the existence of homeostasis. The end result is that when looking for infinitesimal
homeostasis in the original network, we may first reduce that network to a ‘core’
network. The definition of and reduction to the core are given in Section 6. These
reductions allow us to discuss three different types of infinitesimal homeostasis in
three-node input-output networks. The first is that there are only three core networks
in three-node input-output networks (even though there are 78 possible input-output
three-node networks) and there are three types of infinitesimal homeostasis (Haldane,
null-degradation, and structural) distinguished by the mathematics. The mathemat-
ics of three-node input-output networks is presented in Section 8, and the relation to
the biochemical networks that motivated the mathematics is given in Section 3.

Section 9 discusses the relationship between infinitesimal homeostasis and sin-
gularity theory — specifically elementary catastrophe theory [19, 36, 43]. The two
simplest singularities are simple homeostasis and the chair. We characterize these
singularities, discuss their normal forms (the simplest form into which the singu-
larity can be transformed by suitable coordinate changes), and universal unfoldings,
which classify all small perturbations as other system parameters vary. We relate
the unfolding of the chair to observational data on two species of opossum and the
spiny rat, Figure 2. Section 9 also provides a brief discussion of how chair points can
be calculated analytically by implicit differentiation, and considers a special case
with extra structure, common in biochemical applications, where the calculations
simplify.

Catastrophe theory enables us to discuss how infinitesimal homeostasis can arise
in systems with an extra parameter. In Section 10 we see that the simplest such way
for homeostasis to evolve is through a chair singularity. This observation gives a
mathematical reason for why infinitesimal chairs are important and complements
the biological reasons given by Nijhout, Reed, and Best [33, 35].

Until this point the paper has dealt with input-output functions having one input
variable. This is the most important case; however multiple input systems are also
important. We follow [23] and discuss two input systems in Section 11. We argue
that the hyperbolic umbilic of elementary catastrophe theory plays the role of the
chair in systems with two inputs.

The paper ends with a discussion of a possible singularity theory description of
housekeeping genes in Section 12. Here we emphasize how both the homeostasis
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network theory and the network singularity theory intertwine. The details of this
application are given in Antoneli et al. [1].

2 Thermoregulation: A Motivation for Homeostasis

Homeostasis occurs when some feature of a system remains essentially constant as an
input parameter varies over some range of values. For example, in thermoregulation
the body temperature of an organism remains roughly constant despite variations
in its environment. (See Figure 1 for such data in the brown opossum where body
temperature remains approximately constant over a range of 18°C in environmental
temperature [32, 33].) Or in a biochemical network the equilibrium concentration of
some important biochemical molecule might not change much when the organism
ingests food.

[
40 :
38+ .o
00
36’ 8
o
345 . o - Zo ooo
o o o
00
32 of

5 10 15 20 25 30 35 40
Fig. 1: Experimental data indicating thermoregulatory homeostasis in the brown

opossum. The horizontal axis is environmental temperature (°C) and the vertical
axis is body temperature (°C). [32, 33]

Homeostasis is almost exactly opposite to bifurcation. At a bifurcation, the state
of the system undergoes a change so extensive that some qualitative property (such as
number of equilibria, or the topological type of an attractor) changes. In homeostasis,
the state concerned not only remains topologically the same: some feature of that
state does not even change quantitatively. For example, if a steady state does not
bifurcate as a parameter is varied, that state persists, but can change continuously
with the parameter. Homeostasis is stronger: the steady state persists, and in addition
some feature of that steady state remains almost constant.

Homeostasis is biologically important, because it protects organisms against
changes induced by the environment, shortage of some resource, excess of some
resource, the effect of ingesting food, and so on. The literature is extensive [44].
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However, homeostasis is not merely the existence (and persistence as parameters
vary) of a stable equilibrium of the system, for two reasons.

First, homeostasis is a stronger condition than ‘the equilibrium varies smoothly
with parameters’, which just states that there is no bifurcation. In the biological
context, approximately linear variation of the equilibrium with nonzero slope as
parameters change is not normally considered to be homeostasis, unless the slope
is very small. For example, in Figure 1, body temperature appears to be varying
linearly when the environmental temperature is either below 10°C or above 30°C
and is approximately constant in between. Nijhout ez al. [33] call this kind of variation
(linear, constant, linear) a chair.

Second, some variable(s) of the system may be homeostatic while others undergo
larger changes. Indeed, other variables may have to change dramatically to keep
some specific variable roughly constant.

We assume that there is an input-output function, which we consider to be the
product of a system black box. Specifically, we assume that for each input I there is
an output x,(I). For opossums, 7 is the environmental temperature from which the
opossum body produces an internal body temperature x, (7).

Nijhout er al. [33] suggest that there is a chair in the body temperature data
of opossums [32]. We take a singularity-theoretic point of view and suggest that
chairs are better described locally by a homogeneous cubic function (that is, like
xo(I) ~ I?) rather than by the previous piecewise linear description. Figure 2(a)
shows the least-squares fit of a cubic function to data for the brown opossum, which
is a cubic with a maximum and a minimum. In contrast, the least squares fit for the
eten opossum, Figure 2(b), is monotone.

10 20 30 40 5 10 15 20 25 30 35 10 20 30 40
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Fig. 2: The horizontal coordinate is environmental temperature; the vertical coordi-
nate is body temperature. From [32] and [22]: (a) data from the brown opossum; (b)
data from the eten opossum; (c) data from the spiny rat. The smooth curves are the
least squares best fit of the data to a cubic polynomial.

These results suggest that in ‘opossum space’ there should be a hypothetical type
of opossum that exhibits a chair in the system input-output function of environ-
mental temperature to body temperature. In singularity-theoretic terms, this higher
singularity acts as an organizing center, meaning that the other types of cubic can
be obtained by small perturbations of the homogeneous cubic. In fact, data for the
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spiny rat have a best-fit cubic very close to the homogeneous cubic, Figure 2(c). We
include this example as a motivational metaphor, since we do not consider a specific
model for the regulation of opossum body temperature.

This example, especially Figure 2, motives a formulation of homeostasis in a
way that can be analyzed using singularity theory. The first step in any discussion of
homeostasis must be the formulation of a model that defines, perhaps only implicitly,
the input-output function x,,. Our singularity theory point of view suggests defining
infinitesimal homeostasis as an input J, where the derivative of output x, with
respect to the input vanishes at p; that is, x/(Zp) = 0.

3 Biochemical Input-Output Networks

We provide context for our results by first introducing some of the biochemical
models discussed by Reed in [37]. In doing so we show that input-output networks
form a natural category in which homeostasis may be explored.

There are many examples of biochemical networks in the literature. In particular
examples, modelers decide which substrates are important and how the various
substrates interact. Figure 3 shows a network resulting from the detailed modeling
of the production of extracellular dopamine (eDA) by Best et al. [3] and Nijhout
et al. [33]. These authors derive a differential equation model for this biochemical
network and use the results to study homeostasis of eDA with respect to variation of
the enzyme tyrosine hydroxylase (TH) and the dopamine transporters (DAT).

In another direction, relatively small biochemical network models are often de-
rived to help analyse a particular biochemical phenomenon. We present four exam-
ples; three are discussed in Reed et al. [37] and one in Ma et al. [29]. These examples
belong to a class that we call biochemical input-output networks (Section 5) and will
help to interpret the mathematical results.

3.1 Feedforward Excitation

The input-output network corresponding to feedforward excitation is in Figure 4.
This motif occurs in a biochemical network when a substrate activates the enzyme
that removes a product. The standard biochemical network diagram for this process
is shown in Figure 4a. Here X, Y, Z are the names of chemical substrates and their
concentrations are denoted by lower case x, y, z. Each straight arrow represents a
flux coming into or going away from a substrate. The differential equations for each
substrate simply state that the rate of change of the concentration is the sum of the
arrows going towards the substrate minus the arrows going away (conservation of
mass). The curved line indicates that substrate is activating an enzyme.

Both diagrams in Figure 4 represent the same information, but in different ways.
The framework employed in this paper for the mathematics focuses on the structure
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NADP" NADPH

Fig. 3: Biochemical network for dopamine synthesis, release, and reuptake in Nijhout
et al. [33] and Golubitsky and Stewart [23].

Fig. 4: Feedforward excitation: (a) Motif from [37]; (b) Input-output network with
two paths from ¢ to o corresponding to the motif in (a).

of the model ODEs. Figure 4b uses nodes to represent variables, and arrows to
represent couplings. In other areas, conventions can differ, so it is necessary to
translate between the two representations. The simplest method is to write down the
model ODE:s.

In this motif, one path consists of two excitatory couplings: g;(x) > 0 from X to
Y and g>(y) > O from Y to Z. The other path is an excitatory coupling f(x) > 0
from X to the synthesis or degradation g3(z) of Z and hence is an inhibitory path
from X to Z having a negative sign.

The equations are the first column of’:
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X =1 —gi(x) - ga(x) X = fulx, 1)
y=g1(x) — 820y) - g5(y) Xp = folx, xp) 1)
Z= gZ(_Y) - f(x)g’j(Z) Xo = fo(xu Xp» xo)

It is shown in [37] (and reproduced using this theory in [25]) that the model system
(1) (left) for feedforward excitation leads to infinitesimal homeostasis at Xj if

g1 (x0)g5(vo)
23(20)(g5(y0) + g5(¥0))

Si(xo) =

where Xy = (xo, yo, 20) is a stable equilibrium.

Figure 4b redraws the diagram in Figure 4a using the math network conventions
of this paper, together with some extra features that are crucial to this particular
application. We consider x to be a distinguished input variable, with z as a distin-
guished output variable, while y is an intermediate regulatory variable. Accordingly
we change notation and write

X, =X Xp =y Xo =2

The second column in (1) shows which variables occur in the components of the
model ODE for each of x,, x,, X,. In Figure 4b these variables are associated with
three nodes ¢, p, 0. Each node has its own symbol, here a square for ¢, circle for p,
and triangle for 0. Here these symbols are convenient ways to show which type of
variable (input, regulatory, output) the node corresponds to. Arrows indicate that
the variables corresponding to the tail node occur in the component of the ODE
corresponding to the head node. For example, the component for %, is a function
of x,, xp, and x,,. We therefore draw an arrow from ¢ to o and an arrow from p to
0. We do not draw an arrow from o to itself, however: by convention, every node
variable can appear in the component for that node. In a sense, the node symbol
(circle) represents this ‘internal’ arrow.

The mathematics described here shows that infinitesimal homeostasis occurs in
the system in the second column of (1) if and only if

fp,xl ﬁ),x,J - f}),xpfo,xl =0

at the stable equilibrium Xj.

Here Figure 4b incorporates some additional information. The arrow from I to
node ¢ shows that 7 occurs in the equation for x, as a parameter. Similarly the
arrow from node o to O shows that node o is the output node. Finally, the + signs
indicate which arrows are excitatory or inhibitory. This extra information is special
to biochemical networks and does not appear as such in the general theory.
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3.2 Product inhibition

Here substrate X influences Y, which influences Z, and Z inhibits the flux g; from
X to Y. The biochemical network for this process is shown in Figure Sa.

f

I X 94 Y 92 z 93 /\
[ ] @5 -0
()

Fig. 5: Product inhibition: (a) Motif from [37]; (b) Input-output network with one
path from ¢ to o corresponding to the motif in (a).

This time the model equations for Figure 5a are in the first column of (2)

x =1 - ga(x) - f(2)g1(x) X, = filxy, X0, 1)
y = f(2g1(x) — g(y) — gs5(y) Xp = fo(Xi Xp, X0) (2)
= gZ(y) - gS(Z) Xo = fu(xpv xn)

and the input-output equations in the second column of (2) can be read directly from
the first column. The input-output network in Figure 5b then follows.
Reed et al. [37] discuss why the model equations for product inhibition also satisfy

f>0 g/ <0 g;<0 3)

Our general mathematical results show that the system in the second column of (2)
exhibits infinitesimal homeostasis at a stable equilibrium X if and only if either

fp,xl = f(ZO)gi (X()) =0 or ﬁ),xp = gé(y()) =0 4)

It follows from (3) and (4) that the model equations cannot satisfy infinitesimal
homeostasis. Nevertheless, Reed et al. [37] show that these bichemical network
equations do exhibit homeostasis; that is, the output z is almost constant for a broad
range of input values 7.

3.3 Substrate Inhibition

The biochemical network model for substrate inhibition is given in Figure 6a, and
the associated model system is given in the first column of (5). This biochemical
network and the model system are discussed in Reed et al. [37]. In particular, this
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paper provides justification for taking g{(x) > O for all relevant x, whereas the
coupling (or kinetics term) g/(y) can change sign.

! X Yg(y)Z % L)
2 + 92\y
[ s [ ] () N0
(b)

(@)

Fig. 6: Substrate inhibition: (a) Motif from [37]; (b) Input-output network corre-
sponding to the motif in (a).

The equations are the first column of:

X =1 —gi(x)— ga(x) X o= filx, 1)
y = g1(x) — gs5(y) — &2(») Xp = fo(xi, xp) (5)
z=g(y) - g3(2) %o = fol(Xp, Xo)

That model system of ODEs is easily translated to the input-output system in the
second column of (5). Our theory shows that the equations for infinitesimal home-
ostasis are identical to those given in (4) for product inhibition. Given the assumption
on g; infinitesimal homeostasis is possible only if the coupling is neutral (that is, if
Jo.x, = & = 0 at the equilibrium point). This observation agrees with the observa-
tion in [37] that Z can exhibit infinitesimal homeostasis in the substrate inhibition
motif if the infinitesimal homeostasis is built into the kinetics term g, between Y
and Z.

Reed et al. [37] note that neutral coupling can arise from substrate inhibition
of enzymes, enzymes that are inhibited by their own substrates. See the discussion
in [38]. This inhibition leads to reaction velocity curves that rise to a maximum
(the coupling is excitatory) and then descend (the coupling is inhibitory) as the
substrate concentration increases. Infinitesimal homeostasis with neutral couplings
arising from substrate inhibition often has important biological functions and has
been estimated to occur in about 20% of enzymes [38].

3.4 Negative Feedback Loop

The input-output network in Figure 7b corresponding to the negative feedback loop
motif in Figure 7a has only one simple path ¢ — o. Our results imply that infinitesimal
homeostasis is possible in the negative feedback loop if and only if the couplingt — o
is neutral (Haldane) or the linearized internal dynamics of the regulatory node p is
zero (null-degradation).

The equations are:



Input-Output Networks, Singularity Theory, and Homeostasis 11

| =X—~Z—> T-[t]—/\—~0
I i
v ®

(a)
(b)

Fig. 7: Negative feedback loop: (a) Motif adapted from [29]. Unlike the arrows
in Figures 4, 6 and 5 that represent mass transfer between substrates, positive or
negative arrows between enzymes in this negative feedback motif indicate the acti-
vation or inactivation of an enzyme by a different enzyme. (b) Input-output network
corresponding to the motif in (a).

x = Ik]x(l x)+K] - Fx klle x+K’ X, = fi(x, 1)
y= kzy Fyk;:y Xp = fp(xp9 Xo) (6)

;= D e S A A Xo = Xy, Xy X
= kaz(l—z)+sz ykyzz#—lgZ o = folx. P o)

where k7, K7y, Fy, k;,x, K;,x, kzy, Fy, kl’p s kyzy Kxzy kyz, K . are 12 constants.

Each enzyme X, Y, Z in the feedback loop motif (Flgure 7a) can have active and
inactive forms. In the kinetic equations (6, left) the coupling from X to Z is non-
neutral according to [29]. Hence, in this model only null-degradation homeostasis
is possible. In addition, in the model the y equation does not depend on y and
homeostasis can only be perfect homeostasis. However, this model is a simplification
based on saturation in y [29]. In the original system y does depend on y and we
expect standard null-degradation homeostasis to be possible in that system.

Stability of the equilibrium in this motif implies negative feedback. The Jacobian
of (6, right) is

fox. O 0
J = 0 fp,xp Joxo
fo,xl fo,xp fo,x,7

At null-degradation homeostasis ( fp,xp = 0) it follows from linear stability that

fL,x, <0, fo,xo <0, fp,xofo,xp <0 @)

Conditions (7) imply that both the input node and the output node need to degrade
and the couplings p — o and 0 — p must have opposite signs. This observation
agrees with [29] that homeostasis is possible in the network motif Figure 7a if there
is a negative loop between Y and Z and when the linearized internal dynamics of Y
is zero.

Another biochemical example of null-degradation homeostasis can be found in
[17, Fig 2].
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4 Infinitesimal Homeostasis

In applications, homeostasis is often a property of an observable on a many-variable
system of ODEs. Specifically, consider a system of ODEs

X =F(X,T) 3

in a vector of variables X = (xy,. .., x;;) € R™ that depends on an input parameter
I € R. Although not always valid in applications we assume that F is infinitely
differentiable. Suppose that (8) has a linearly stable equilibrium at (X, Zp). By the
implicit function theorem there exists a family of linearly stable equilibria X(I') =
(x1(Z), ..., x,(2)) near Iy such that X(Zy) = Xy and

F(X(I)I)=0. ©)]

By assumption, we are interested in homeostasis of a chosen observable ¢ : R — R.
The input-output function is

Xo(I) = @(X(1)) (10)

This system exhibits homeostasis if the input-output function x, () remains roughly
constant as 7 is varied.

Often times the observable is just one coordinate of the ODE system; that is,
@¢(X) = xj, which we denote as the output variable x,. This formulation of home-
ostasis is often a network formulation. The output variable is just a choice of output
node and the input parameter can be assumed to affect only one node — the input
node x,.

We now introduce a formal mathematical definition of infinitesimal homeostasis,
one which opens up a potential singularity-theoretic approach that we discuss later.

Definition 4.1 The equilibrium Xy is infinitesimally homeostatic at 1 if
x,(Zo) =0
where ’ indicates differentiation with respect to 7.

By Taylor’s theorem, infinitesimal homeostasis implies homeostasis, but the con-
verse need not be true. See [37] and the discussion of product inhibition in Section 3.

5 Input-Output Networks

We now apply the notion of infinitesimal homeostasis to input-output networks — a
natural formulation in biochemical networks that we discussed in detail in Section 3.
We assume that one node ¢ is the input node, a second node o is the output node,
and the remaining nodes p = (p1, .. ., p,) are the regulatory nodes. Our discussion
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of network infinitesimal homeostasis follows [25]. Input-output networks equations
have the form F = (f,, f,., f,) where each coordinate function f; depends on the state
variables of the nodes coupled to node ¢ in the network graph. We assume that only
the input node coordinate function f; depends on the external input variable 7 .

As shown in [25] there are 13 distinct three-node fully inhomogeneous networks
and six choices of input and and output nodes for each network. Thus, in principle,
there are 78 possible ways to find homeostasis in three-node input-output networks.
The number of input-output four-node networks increases dramatically: there are 199
fully inhomogeneous networks and more than 2000 four-node input-output networks.

Further motivated by biochemical networks, we assume:

(a) The state space for each node is 1-dimensional and hence the state space for an
input-output network system of differential equations is R"*2.
(b) The coordinate functions f, are usually distinct functions, so the network is
assumed to be fully inhomogeneous.
(c) Generically
fir #0 (1

is valid everywhere, where the notation f;,, denotes the partial derivative of the
coordinate function f, with respect to y.

Cramer’s Rule and Infinitesimal Homeostasis

The equilibria of an input-output system satisfy the system

ACH Xp> Xo5 I)=0
Jfo(xi, Xp, x0) =0 (12)
Jo(xs, Xps X) =0

The assumption of a stable equilibrium Xy at Iy implies that the Jacobian

Jox, Jox, Juxo
J = fp,xl fp,xp fp,x,, (13)
fo,xl fo,xp fo,x(7

has eigenvalues with negative real part at (Xo, Zp), so J is invertible.
To state the next result we first need:

Definition 5.1 The homeostasis matrix is:

]70 X fp X
H= e e 14
fo,x, fo,xp (14
Lemma 5.2 The input-output function for the input-output network (12) satisfies

, fo1

=+

Yo = Fhe()

det(H)
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Infinitesimal homeostasis occurs at a stable equilibrium Xy = X(1p) if and only if
det(H)(Xp) =0 (15)

Proof Implicit differentiation of (12) with respect to Z yields the matrix system

x] Jor
J x;) =—10
x! 0

o

Cramer’s rule implies that

ﬁ,xl ft,xp _fL,I

, 1
.XO = mdet fp,XL fp’xp O

fo,xL fo,xp 0
Since f, r # 0 by genericity assumption (11), X is a point of infinitesimal home-
ostasis if and only if x = 0, if and only if (15), as claimed. O

6 Core Networks

The results in Sections 6-8 will appear in Wang et al. [42].

Definition 6.1 A node p is downstream from a node 7 if there is a path from 7 to
p and upstream if there is a path from p to 7. An input-output network is a core
network if every node is downstream from ¢ and upstream from o.

A core network G, can be associated to any given input-output network G as
follows. The nodes in G, are the nodes in G that lie on a path from ¢ to o. The arrows
in G, are the arrows in G that connect nodes in G...

Reduction to the Core

In this section we discuss why every network that exhibits infinitesimal homeostasis
can be reduced to a core network in such a way that the core has essentially the same
input-output function as the original network. This reduction is performed in two
stages.

(a) Homeostasis implies that the output node o is downstream from the input node «.
(b) Nodes that are not upstream from the output node, and nodes that are not down-
stream from the input node, may be deleted.

We show that if infinitesimal homeostasis occurs in the original network, then
that infinitesimal homeostasis can be computed in the smaller core network.
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Lemma 6.2 In an input-output network, the existence of (generic) infinitesimal
homeostasis implies that the output node o is downstream from the input node
L

Heuristically, if the input node is not upstream from the output node, then changes
in the input node cannot affect the dynamics of the output node. So the input-output
map must satistfy x,,(Z) = 0 and the set value x,(J) is constant (and not generic).

We assume that there is a path from the input node to the output node and show
that nodes that are not upstream from o and nodes that are not downstream from ¢
can be deleted without changing the existence of homeostasis.

Proposition 6.3 Let G be a connected input-output network where there is a path
from the input node ( to the output node o. Divide the regulatory nodes p into three
classes p = (u, o, d), where

® nodes in u are not upstream from o,
® nodes in d are not downstream from ¢, and
e regulatory nodes o are both upstream from o and downstream from t.

Then all nodes u,d and all arrows into nodes in u and out of nodes in d can be
deleted to form a core network G. without affecting the existence of infinitesimal
homeostasis.

Again, heuristically the proof is straightforward. If a node is not upstream from
the output node, than its value cannot affect the output node and if a node is not
downstream from the input node than its value cannot be affected by the value of the
input node. So deleting these nodes should not affect the input-output map.

Core Equivalence

Definition 6.4 Two core networks are core equivalent if the determinants of their
homeostasis matrices are identical.

The general result concerning core equivalence is given in Theorem 7.2. Here we
give an example of arrows that do not affect the homeostasis matrix and therefore
the input-output function.

Definition 6.5 A backward arrow is an arrow whose head is the input node ¢ or
whose tail is the output node o.

Proposition 6.6 If two core networks differ from each other by the presence or
absence of backward arrows, then the core networks are core equivalent.

Proof Backward arrows are not present in the homeostasis matrix (14). m]

Therefore, backward arrows can be ignored when computing infinitesimal home-
ostasis from the homeostasis matrix H. However, backward arrows cannot be com-
pletely ignored, since they can be involved in the existence of both equilibria of (12)
and their stability.
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7 Types of Infinitesimal Homeostasis

Infinitesimal homeostasis is found in an input-output network G by simultaneously
solving two equations: Find a stable equilibrium of an admissible system X =
F(X,7) and find a zero of the determinant of the homeostasis matrix H. In this
section, we discuss the different types of zeros det(H) can have and (for the most
part) ignore the question of finding an equilibrium and its stability.

The homeostasis matrix H of an admissible system has three types of entries:
linearized coupling strengths f x, where node ¢ is connected to node k, linearized
internal dynamics f , of node k, and 0. We emphasize that the entries that are
forced to be 0 depend specifically on network architecture.

Assume that the input-output network has n + 2 nodes: the input ¢, the output o,
and the n regulatory nodes p = (py, . . ., pn). It follows that det(H) is a homogeneous
polynomial of degree n + 1 in the variables f; x,. It is discussed in [42], based
on Frobenius-Konig theory (see [40] for a historical account), that the homeostasis
matrix H can be put in block upper triangular form. Specifically, there exist two
constant (n + 1) X (n + 1) permutation matrices P and Q such that

Hl * “ .. *
0 H2 cee %
PHQO = . ) (16)
0 0 - Hy
where the square matrices Hj, . . ., H, are unique up to permutation, that is, individ-

ually the blocks cannot be brought into the form (16) by permutation of their rows
and columns.

Moreover, when det(H) is viewed as a homogeneous polynomial in the entries of
the matrix H there is a factorization

det(H) = det(H;) - - - det(H,,) a7

into irreducible homogeneous polynomials det(H,), . . ., det(H,,). That is, the irre-
ducible blocks of the decomposition (16) correspond to the irreducible components
in the factorization (17) (this follows from Theorem 4.2.6 (pp. 114-115) and Theo-
rem 9.2.4 (p. 296) of [5]). We note that the main nontrivial result that allows us to
write equation (17) — proved in [5, Theorem 9.2.4 (p. 296)] — is that det(H;) is
irreducible as a polynomial if and only if the matrix H; is irreducible in the sense
that H; cannot be brought to the form (16) by permutation of H;’s rows and columns.

Low Degree Irreducible Factors of det(H)

Wang et al. [42] show that there can be two types of degree 1 factors (Haldane and
null-degradation) and two types of degree 2 factors (structural and appendage). The
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principal result in [42] is the assertion that these four irreducible factors of det(H)
can be associated with topological characteristics of the network G that in turn
defines a type of homeostasis. The connection between the form of a factor det(H,)
and the topology of the network is given by certain determinant formulas that are
reminiscent of the connection between a directed graph and its adjacency matrix and
has been rediscovered by many authors [7, 14, 8, 26] (see [6] for a modern account).
Before stating the classification we introduce some graph theoretic terminology.

Definition 7.1 Let G be an input-output network.

(a) A directed path between two nodes is called a simple path if it visits each node
on the path at most once. An to-simple path is a simple path connecting the input
node ¢ to the output node o.

(b) A node in an input-output network G is simple if the node is on an to-simple path
and appendage if the node is not simple.

(c) The appendage subnetwork Ag of G is the subnetwork consisting of appendage
nodes and arrows in G that connect appendage nodes.

(d) The complementary subnetwork corresponding to an to-simple path S is the
network Cs consisting of all nodes not in S and all arrows in G between nodes in
Cs.

Given these definitions we can state necessary and sufficient conditions for core
equivalence:

Theorem 7.2 Two core networks are core equivalent if and only if they have the same
set of Lo-simple paths and the Jacobian matrices of the complementary subnetworks
to any simple path have the same determinant up to sign.

We isolate four types of homeostasis.

(A) Haldane homeostasis is associated with the arrow ¢ — k, where k # ¢, if
homeostasis is caused by the vanishing of the degree 1 irreducible factor fi x, of
det(H).

Theorem 7.3 Haldane homeostasis associated with an arrow € — k can occur
if and only if the arrow € — k is contained in every to-simple path.

(B) Null-degradation homeostasis is associated with a node 7 if homeostasis is caused
by the vanishing of the degree 1 irreducible factor f; ., of det(H).

Theorem 7.4 Null-degradation homeostasis associated with a node T can occur
if and only if for every to-simple path S

(a) T belongs to the complementary subnetwork Cs and
(b) 7 is not contained in a cycle of Cs.

(C) Structural homeostasis of degree 2 is caused by the vanishing of a degree 2
irreducible factor of det(H) that has the form
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foz,xp] fﬂs,xpz - fﬂs,xpl fp2,xp2

that is, the determinant of the homeostasis matrix of a feedforward loop motif
defined by two to-simple path snippets: one snippet is p; — p» — p3 and the
other snippet is p; — p3. A snippet of a path is a connected subpath.

Theorem 7.5 Structural homeostasis of degree 2 can occur if and only if

(a) two to-simple path snippets form a feedforward loop motif and
(b) all to-simple paths contain one of the two snippets of the feedforward loop
motif.

Structural homeostasis of degree 2 is exactly the structural homeostasis consid-
ered in [25] for 3-node core networks; it often arises in biochemical networks
associated with the mechanism of feedforward excitation.

(D) Appendage homeostasis of degree 2 is caused by the vanishing of a degree 2
irreducible factor of det(H) that has the form

f‘rl,xrl fT2,X72 - f;-st‘r] le,xrz
where the two node cycle A = {7151} consists of appendage nodes.

Theorem 7.6 Appendage homeostasis of degree 2 associated with a two-node
cycle A € Ag can occur if and only if for every 1o-simple path S

(a) A belongs to the complementary subnetwork Cs and
(b) nodes in A do not form a cycle with other nodes in Cs.

The four types of infinitesimal homeostasis (A)-(D) correspond to the only pos-
sible factors of degree < 2. More precisely:

Theorem 7.7 Any factor of degree 1 is of type (A) or (B) and any irreducible factor
of degree 2 is of type (C) or (D).

Homeostasis can also occur in blocks of degree 3 or higher. There are three types
of such blocks: structural (all couplings are between simple nodes), appendage (all
couplings are between appendage nodes), and mixed (both simple and appendage
nodes appear in the block). Theorem 7.6 generalizes to higher degree appendage
homeostasis. Specifically:

Theorem 7.8 Let G be a network with appendage subnetwork A C Ag. Appendage
homeostasis associated with ‘A can occur if and only if for every to-simple path S

(a) A belongs to the complementary subnetwork Cs and
(b) nodes in A do not form a cycle with other nodes in Cs.
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8 Low Degree Homeostasis Types

The homeostasis matrix H of a three-node input-output network is a 2 X 2 matrix.
It follows that a homeostasis block is either 1 X 1 or 2 x 2. If the block is 2 X 2, it
must be structural. For if it were appendage, the network would need to have two
appendage nodes and one simple node. If the network had only one simple node,
then the input node and the output node would be identical and that is not permitted.

Examples of Haldane, Structural of Degree 2, and Null Degradation

I» . A» o
\@/

(c) Null-degradation

Sl @—Ae [ @ o

(a) Haldane (b) Structural of degree 2

Fig. 8: Homeostasis types in three-node networks.

The admissible systems of differential equations for the three-node networks in
Figure 8§ are:

X o= filx) X o= filx) X = fulxe, x7)
xp = ﬂ)(xu xp) xp = fp(xu xp) Xr = fr(xe, Xo) (18)
Xo = fo(xp, Xo) Yo = folx, Xps Xo) Xo = fo(xi, Xx0)

(a) (b) (c)

The determinants of the 2 X 2 homeostasis matrices are:

(a)fp,xl fo,xp (b)f,;),x, fo,xp - fp,xp fo,xl (C)fo,xt f‘r,x, (19)

A vanishing determinant in (19)(a) leads to two possible instances of Haldane home-
ostasis. A vanishing determinant in (19)(b) leads to balancing of two simple paths
and structural homeostasis. Finally, a vanishing determinant in (19)(c) leads to null-
degradation or Haldane homeostasis. These types of homeostasis were classified in
[25] where it was also noted that Haldane occurs in product inhibition, structural
occurs in feedforward excitation, and null-degradation occurs in a negative feedback
loop.
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Appendage Homeostasis of Degree 2

The admissible systems of differential equations for the four-node network in Figure 9
have the form:

X = fulx, x‘rz)

Xy = fr (x‘rp X135 Xo)

Xy = fro (X Xoy)

o = fo(xu Xo)

The homeostasis matrix is

0 f:rlsxT] f:rl’x'rz
H = 0 f:l'stT] sz,sz
Jox, 0 0

and

det(H) = fo,x, (f‘rl,le f‘rz,xT2 - f-r],)cf2 f‘rz,xrl )

It follows that det(H) = O can lead either to Haldane homeostasis or appendage

homeostasis of degree 2.

\

Fig. 9 Appendage homeosta-
sis of degree 2.

9 Singularity Theory of Input-Output Functions

As discussed in Section 2, Nijhout et al. [35, 33] observe that homeostasis appears
in many applications through the notion of a chair. Golubitsky and Stewart [23]
observed that a chair can be thought of as a singularity of the input-output function,
one where x, (') ‘looks like’ a homogeneous cubic x,(I) ~ 7>. More precisely, the
mathematics of singularity theory [36, 19] replaces ‘looks like’ by ‘up to a change
of coordinates.’

Definition 9.1 Two functions p, ¢ : R — R are right equivalent on a neighborhood
of Iy e Rif
q(I) = p(A(1)) + K

where A : R — R is an invertible change of coordinates on a neighborhood of 7
and K € Ris a constant.
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The simplest singularity theory theorem states that g : R — R is right equivalent

to p(I) = I3 on a neighborhood of the origin if and only if ¢’(Z) = ¢”' (L) = 0

and ¢""’(Jy) # 0. Hence we call a point J an infinitesimal chair for an input-output
function x,, if

x,(Zo) =x) (L) =0 and x.'(ZH)+#0 (20)

A simple result is:

Lemma 9.2 An input-output map x, has an infinitesimal chair at 1y if and only if
h(Iy)=h'(Ty) =0 and h"(1,)+0

where h(I) = det(H).

Proof Suppose that x/ (1) = k(I )h(I) where k(I') is nowhere zero. Then h(Jy) =
h'(Zp) = 0if and only if x((Zo) = x//(Z) = O because x;’ = k"h + kh’. Moreover, if
h=h"=0,then x/ = kh"”. Finally, it follows from the Cramer’s rule calculation in
Lemma 5.2 that
k=<« Jur
det(J)

Hence, k(1) is nowhere zero. O

A simpler result states the following. The input-output function defines simple
infinitesimal homeostasis if

r 7
x,=0 and x, #0,

which is equivalent to 4 = 0 and 4" # 0. The graph of x,, ‘looks like’ a parabola near
a point of simple infinitesimal homeostasis.

9.1 Chair Points for Blocks of Degree 1 and 2

Lemma 9.2 gives necessary and sufficient conditions for the existence of infinitesimal
homeostasis using the function & = det(H). In general, the homeostasis function can
be simplified by recalling from (16) that the homeostasis matrix PHQ is block upper
triangular. It follows that if homeostasis stems from block j, then det(H) is a nonzero
multiple of det(H;). The results in Section 7 imply

Jrxe Haldane

Jexe null-degradation
Jorxo, Josxpy = Josxp, finsxy, Structural of degree 2
frioxe, fesxe, = Frixe, Jrox,, appendage of degree 2

h; = det(H;) = (21)

Theorem 9.3 Given an input-output network. Then, the defining conditions for in-
finitesimal chair homeostasis are given by h; = hj’ = 0 where h; is defined by
(21).
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We now calculate chair equations for the two degree 1 three-node examples.

Lemma 9.4 (a) If the arrow p — o has Haldane homeostasis in the network 1 —
p — o, then
h=h=0 fo,xp = fo,xpxp =0

(b) If the node v has null-degradation homeostasis in the network t — 0, 0 — T,
T — (, then
h=h"=0 < Jroxe = froxexe =0

Proof Suppose h(I) = h;j(I)k(I), where k(Iy) is nonzero at I, then h(Zy) =
h’(1p) = 0 if and only if /;(1y) = h]’.(Zb) = 0. The proof proceeds in two parts.

(a) Observe that
hj = fo,xp(xp; Xo) =0

is one equation for a Haldane chair and the second equation is
’ _ ’ ’
hj = Joxpx,Xp + Joxpx,Xo =0

Since h’ is evaluated at a point of homeostasis, x, = 0. It follows that either
fo,x,,x,, =0or x,’g = 0. We can use Cramer’s rule to solve for x/’); it is a nonzero
multiple of f, x, fo,x,- If fo.x, = 0, then we would have a second Handane in
the ¢« — p arrow - a codimension 2 homeostasis. So, generically, we can assume
Jo.x, # 0. By computing the Jacobian at the assumed Haldane point we see that
Jo.x, is an eigenvalue and therefore negative by the assumed stabilty.

(b) We use the admissible system equilibrium equations from (18) (c) to see that
null-degradation is defined by i; = f; »_(x7, x,) = 0 and a chair by

’ ’ ’
b = froxexe Xe + froxeexoXo =0

Since x/, = O and x, # 0 at the generic homeostasis point, it follows that f; x », =
0 is the chair equation, as claimed. |

9.2 Elementary Catastrophe Theory and Homeostasis

The transformations of the input-output map x,(Z) given in Definition 9.1 are just
the standard change of coordinates in elementary catastrophe theory [19, 36, 43].
We can therefore use standard results from elementary catastrophe theory to find
normal forms and universal unfoldings of x,(J), as we now explain.

Because x, () is 1-dimensional, we consider singularity types near the origin of a
1-variable function g(Z'). Such singularities are determined by the first nonvanishing
T -derivative g®)(0) (unless all derivatives vanish, which is an ‘infinite codimension’
phenomenon that we do not discuss further). Informally, the codimension of a sin-
gularity is the number of conditions on derivatives that determine it. This is also the
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minimum number of extra variables required to specify all small perturbations of
the singularity, up to changes of coordinates. These perturbations can be organized
into a family of maps called the universal unfolding, which has that number of extra
variables.

Definition 9.5 G(7, a) is an unfolding of g(I') if G(Z,0) = g(I). G is a universal
unfolding of g if every unfolding of H(Z, b) factors through G. That is,

H(Z,b) = G(A(Z, b), A(b)) + K(b) (22)

It follows that every small perturbation H(-, b) is equivalent to a perturbation
G(-, A(b)) of g in the G family.

If such k exists, the normal form is +7%. Simple infintesimal homeostasis occurs
when k = 2, and an infinitesimal chair when k = 3. When k > 3 the universal
unfolding for catastrophe theory equivalence is

+7% + ak_ZIk‘z + ak_3Ik_3 +--+ar

for parameters a; and when k = 2 the universal unfolding is +7 2. The codimension
in this setting is therefore k — 2. See [4] Example 14.9 and Theorem 15.1; [18]
chapter IV (4.6) and chapter VI (6.3); and [30] chapter XI section 1.1 and chapter
XII sections 3.1, 7.2.
To summarize: the normal form of the input-output function for simple infinites-
imal homeostasis is
xo(I)=+I1? (23)

and no unfolding parameter is required. Similarly,
xo(I) = +13 (24)
is the normal form of the input-output function for a chair, and
xo(I;a)=+I°+al (25)

is a universal unfolding.

10 Evolving Towards Homeostasis

Control-theoretic models of homeostasis often build in an explicit ‘target’ value
for the output, and construct the equations to ensure that the input-output function
is exactly flat over some interval. Such models are common, and provide useful
information for many purposes. In singularity theory an exactly flat input-output
function has ‘infinite codimension’, so our approach is not appropriate for models of
this type.
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However, in biology, homeostasis is an emergent property of biochemical net-
works, not a preset target value, and the input-output function is only approximately
flat, for example as in Figure 2 (left). Many of the more recent models of homeostasis
do not assume a preset target value; instead, this emerges from the dynamics of a
biochemical network. Here we expect typical singularities to have finite codimen-
sion, and our approach is then potentially useful. For example, in [21, Section 8] we
proved that for one such model, of feedforward inhibition [33, 39], the input-output
map has a ‘chair’ singularity, with normal form x3 + Ax. Other examples of chair
singularities are given in [37].

A key question is: In a mathematical sense, how does a biological system evolve
towards homeostasis? Imagine a system of differential equations depending on pa-
rameters. Suppose that initially the parameters are set so that the associated input-
output function has no regions of homeostasis. Now vary the parameters so that a
small region of homeostasis appears in the input-output function. Since this region
of homeostasis is small, we can assume that it is spawned by a singularity associated
with infinitesimal homeostasis. How can that happen?

Singularities Organizing Evolution Towards Homeostasis

A plausible answer follows from the classification of elementary catastrophes. If there
is one input and one output, the assumption of no initial homeostasis implies that
the input-output function x, : R — R is strictly increasing (or strictly decreasing).
Generically, evolving towards infinitesimal homeostasis can occur in only one way.
As a parameter B is varied, at some point Jy the function x,(Z) approaches a
singularity, so there is a point Zy where x,,(Zp) = 0. This process can happen only if
x)/(Zp) = 0 is also satisfied. That is, from a singularity-theoretic point of view, the
simplest way that homeostasis can evolve is through an infinitesimal chair.

This process can be explained in the following way. The system can evolve
towards infinitesimal homeostasis only if the universal unfolding of the singularity
has a parameter region where the associated function is nonsingular. For example,
simple homeostasis (x,(J) = I 2, which is structurally stable) does not have this
property. All small perturbations of 72 have a Morse singularity. The simplest (lowest
codimension) singularity that has nonsingular perturbations is the fold singularity
xoI)=1 3. that is, the infinitesimal chair.

At least two assumptions underlie this discussion. First, we have assumed that
all perturbations of the input-output function can be realized by perturbations in
the system of ODEs. This is true; see Lemma 10.1. Second, we assume that when
evolving towards homeostasis the small region of homeostasis that forms is one that
could have grown from a point of infinitesimal homeostasis.

When x, depends on one parameter, generically the infinitesimal chair is the only
possible singularity that can underlie the formation of homeostasis.

Lemma 10.1 Given a system of ODEs x = F(x, I) whose zero set is defined by
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F(X(Z),I)=0

and a perturbation X(I') = X(I) + P(I') of that zero set. Then X is the zero set of
the perturbation
F(x,7)=F(x-P),I)

Therefore any perturbation of the input-output function x,(I) can be realized by
perturbation of F.

Proof Clearly
F(X(I),I)=FXI)+PU)I)
=FX(I)+PI)-PI)T)
=F(X(1), 1)
=0

If we write P(I) = (0, P,(I)) where P,(J) is a small perturbation of x,(I), then
we can obtain the perturbation x,, + P, of x, by the associated perturbation of F. O

Theorem 10.2 Consider input-output functions with one input and one output. Then
the only singularities of codimension < 3 that have perturbations with no infinitesi-
mal homeostasis are the fold (chair) and the swallowtail.

Proof Tt is easy to see that perturbations of 7% always have a local minimum when
k is even. So the only normal forms with perturbations that have no infinitesimal
homeostasis occur when k is odd. Those that have codimension at most 3 are the
fold (k = 3) and the swallowtail (k = 5). O

We remark that folds occur in the unfoldings of swallowtails and that the generic
non-homeostatic approach to a swallowtail would also give a non-homeostatic ap-
proach to a fold (or chair).

11 Input-Output Maps with Two Inputs

Suppose now that the input J consists of several variables. In general terms, consider
a parametrized family of ODEs

X=F(X,1I) (26)

where X = (x,...,x,) € R™", T e R* and F is infinitely differentiable. We assume
that (26) stems from an input-output network where one of the nodes (or coordinates
of X) is the output node that is denoted, as before, by 0. We also assume that (26)
has a stable equilibrium at Xy when 7 = 1.

The equilibria of (26) are given by:

F(X,I)=0 27
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By the implicit function theorem, we can solve (27) near (X, Zy) to obtain a map
X : R - R™ such that
FX(I),I)=0 (28)

where X(1y) = Xp. Let
X(I)=¥(T), x(1))

Definition 11.1 The input-output map of (27) near (Xo, Iy) is x, : R* = R.

Definition 11.2 The point 1, is an infinitesimal homeostasis point of x,, if the deriva-
tive
Drxo(Zp) =0 (29)

In particular, 1y is a singularity — that is, the derivative of x, is singular there
— but the vanishing of all first derivatives selects a special subclass of singularities,
said to have ‘full corank’.

The interpretation of an infinitesimal homeostasis point is that x, (1) differs from
Xo(Zp) in a manner that depends quadratically (or to higher order) on |7 — Zj|. This
makes the graph of x,(Z) flatter than any growth rate with a nonzero linear term.
This condition motivates for the condition (29) rather than merely Dz x,(Z) being
singular.

Definition 11.2 places the study of homeostasis in the context of singularity theory,
and we follow the standard line of development in that subject. A detailed discussion
of singularity theory would be too extensive for this paper. A brief summary is given
in [21] in the context of homeostasis, accessible descriptions can be found in [36, 43],
and full technical details are in [18, 30] and many other sources.

Following Nijhout ez al. [33] we define:

Definition 11.3 A plateau is a region of I over which X(7') is approximately con-
stant.

Remark 11.4 Universal unfolding theory implies that small perturbations of x,, (that
is, variation of the suppressed parameters) change the plateau region only slightly.
This point was explored for the chair singularity in [21]. It follows that for sufficiently
small perturbations plateaus of singularities depend mainly on the singularity itself
and not on its universal unfolding.

Remark 11.5 In this section we focus on how singularities in the input-output map
shape plateaus, and we use the normal form and unfolding theorems of elementary
catastrophe theory to do this. We remark that typically the variables other than x,,
the manipulated variables Y, can vary substantially while the output variable is held
approximately constant. See, for example, Figure 3 in [1].

11.1 Catastrophe Theory Classification

The results of [21] reduce the classification of homeostasis points for a single node
to that of singularities of input-output maps R — R. As mentioned in Section 9.2,



Input-Output Networks, Singularity Theory, and Homeostasis 27

this is precisely the abstract set-up for elementary catastrophe theory [4, 18, 36, 43].
The case k = 1 is discussed there.

We now consider the next case k = 2. Table 1 summarizes the classification
when k = 2,501 = (1}, 1) € R2. Here the list is restricted to codimension < 3.
The associated geometry, especially for universal unfoldings, is described in [4,
18, 36] up to codimension 4. Singularities of much higher codimension have also
been classified, but the complexities increase considerably. For example Arnold [2]
provides an extensive classification up to codimension 10 (for the complex analog).

Table 1: Classification of singularities of input-output maps R> — R of codimension
<3

|name |n0rmal forrn|c0dim|universal unfolding |
Morse (simple homeostasis)|+.7, 12 + [22 0 illz + I22

fold (chair) 1’13 + _2'22 1 |71 13 +ali + IZZ

cusp +I}+ I 2 |+It+al?+bl + I}

swallowtail I’ + I} 3 |IP+all+bI?+cl + I}
hyperbolic umbilic I+ 1 3 |P+L+alh+bli+ch

elliptic umbilic I}-3nI1}| 3 |IP-3LI}+al}+I)+bhi+ch

Remark 11.6 Because k = 2, the normal forms for k = 1 appear again, but now there
is an extra quadratic term ifzz. This term is a consequence of the splitting lemma in
singularity theory, arising here when the second derivative D?x,, has rank 1 rather
than rank O (corank 1 rather than corank 2). See [4, 36, 43]. The presence of the J_rfzz
term affects the range over which x,(J) changes when 7, varies, but not when 7;
varies.

11.2 Normal Forms and Plateaus

The standard geometric features considered in catastrophe theory focus on the gra-
dient of the function x,(Z) in normal form. In contrast, what matters here is the
function itself. Specifically, we are interested in the region in the 7 -plane where the
function x,, is approximately constant.
More specifically, for each normal form x,(Z ) we choose a small § > 0 and form
the set
Ps ={I e R*: [x,(I)| < 6}. (30)

This is the plateau region on which x,(Z) is approximately constant, where &
specifies how good the approximation is. If x,(J) is perturbed slightly, Ps varies
continuously. Therefore we can compute the approximate plateau by focusing on the
singularity, rather than on its universal unfolding.



28 M. Golubitsky, I. Stewart, F. Antoneli, Z. Huang and Y. Wang

This observation is important because the universal unfolding has many zeros
of the gradient of x,(J), hence ‘homeostasis points’ near which the value of x,(Z)
varies more slowly than linear. However, this structure seems less important when
considering the relationship of infinitesimal homeostasis with homeostasis. See the
discussion of the unfolding of the chair summarized in [21, Figure 3].

The ‘qualitative’ geometry of the plateau—that is, its differential topology and
associated invariants— is characteristic of the singularity. This offers one way to infer
the probable type of singularity from numerical data; it also provides information
about the region in which the system concerned is behaving homeostatically. We do
not develop a formal list of invariants here, but we indicate a few possibilities.

The main features of the plateaus associated with the six normal forms are illus-
trated in Table 1. Figure 10 plots, for each normal form, a sequence of contours from
—0 to ¢; the union is a picture of the plateaus. By unfolding theory, these features
are preserved by small perturbations of the model, and by the choice of ¢ in (30)
provided it is sufficiently small. Graphical plots of such perturbations (not shown)
confirm this assertion. Again, we do not attempt to make these statements precise in
this paper.
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Fig. 10: Plateaus shown by contour plots for each singularity in Table 1. Reproduced
from [23, Fig. 4]. 200 equally spaced contours for ¢ from —0.2 to 0.2.

11.3 The Hyperbolic Umbilic

As we have discussed, homeostasis can occur when one variable is held approxi-
mately constant on variation of two or more input parameters. For example, body
temperature can be homeostatic with respect to both external temperature and amount
of exercise. A biological network example is Figure 3, where there is homeostasis of
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extracellular dopamine (eDA) in response to variation in the activities of the enzyme
tyrosine hydroxylase (TH) and the dopamine transporters (DAT), Best et al. [3].
These authors derive a differential equation model for this biochemical network.
They fix reasonable values for all parameters in the model with the exception of the
concentrations of TH and DAT. Figure 11 (left) shows the equilibrium value of eDA
as a function of TH and DAT in their model. The white dots indicate the predicted
eDA values for the observationally determined values of TH and DAT in the wild
type genotype (large white disk) and the polymorphisms observed in human pop-

ulations (small white disks). Their result is scientifically important because almost

all of the white disks lie on the plateau (the region where the surface is almost hor-
izontal) that indicates homeostasis of eDA. Note that the flat region contains a line

from left to right at about eDA = 0.9. In this respect the surface graph in Figure 11

(left) appears to resemble that of a nonsingular perturbed hyperbolic umbilic (see

Table 1) in Figure 11 (right). See also the level contours of the hyperbolic umbilic in

Figure 10. This figure shows that the hyperbolic umbilic is the only low codimension
singularity that contains a single line in its zero set.
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Fig. 11: (Left): Nijhout et al. [33, Fig.8] and Reed et al. [37, Fig. 14]. At equilibrium
there is homeostasis of eDA as a function of TH and DAT. There is a plateau
around the wild-type genotype (large white disk). Smaller disks indicate positions
of polymorphisms of TH and DAT found in human populations. (Right): Graph of

surface of perturbed hyperbolic umbilic without singularities: Z(1, 1) = I13 + I23 +
I+ .[2/ 2.

The number of curves (‘whiskers’) forming the zero-level contour of the plateau
is a characteristic of the plateau. For example, Figure 11 appears to have one line in
the plateau. This leads us to conjecture that the hyperbolic umbilic is the singularity
that organizes the homeostatic region of eDA in the example discussed in [3]. It
may be the case however, that there is no infinitesimal homeostasis in this example,
and the cause is more global. We have discussed in Section 10 why the chair and

the hyperbolic umbilic are the singularities that might be expected to organize two
output homeostasis.
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Theorem 11.7 Consider input-output functions with two inputs and one output.
Then the only singularities of codimension < 3 that have perturbations with no
infinitesimal homeostasis are the fold (chair), swallowtail, and hyperbolic umbilic.

The proof of this theorem is in [23].

Remark 11.8 In Section 10 we note that a system of equations that evolves toward
infinitesimal homeostasis does so by transitioning through a singularity that has un-
folding parameters with no infinitesimal homeostasis. It follows from Theorems 10.2
and 11.7 that the most likely ways to transition to homeostasis in systems with one
input variable is through the chair and in systems with two input variables the
hyperbolic umbilic and the two variable chair.

12 Gene Regulatory Networks and Housekeeping Genes

Antoneli et al. [1] use infinitesimal homeostasis to find regions of homeostasis
in a differential equation model for the gene regulatory network (GRN) that is
believed to regulate the production of the protein PGA2 in Escherichia coli and
yeast. Specifically, in this model the input parameter is an external parameter J that
represents the collective influence of other gene proteins on this specific GRN. We
find regions of homeostasis that gives a plausible explanation of how the level of the
PGAZ2 protein might be held approximately constant while other reactions are taking
place.

Gene expression is a general name for a number of sequential processes, the
most well known and best understood being transcription and translation. These
processes control the level of gene expression and ultimately result in the production
of a specific quantity of a target protein.

The genes, regulators, and the regulatory connections between them forms a gene
regulatory network (GRN). A gene regulatory network can be represented pictorially
by a directed graph where the genes correspond to network nodes, incoming arrows
to transcription factors, and outgoing arrows to levels of gene expression (protein
concentration).

12.1 Gene Regulatory Networks and Homeostasis

Numerous terms are used to describe types of genes according to how they are
regulated. A constitutive gene is a gene that is transcribed continually as opposed
to a facultative gene that is transcribed only when needed. A housekeeping gene
is a gene that is required to maintain basic cellular function and so is typically
expressed in all cell types of an organism. Some housekeeping genes are transcribed
at a ‘relatively constant rate’ in most non-pathological situations and are often used
as reference points in experiments to measure the expression rates of other genes.
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Even though this scheme is more or less universal among all life forms, from uni-
cellular to multi-cellular organisms, there are some important differences according
to whether the cell possesses a nucleus (eukaryote) or not (prokaryote). In single-cell
organisms, gene regulatory networks respond to changes in the external environment
adapting the cell at a given time for survival in this environment. For example, a
yeast cell, finding itself in a sugar solution, will turn on genes to make enzymes that
process the sugar to alcohol.

Recently, there has been an ongoing effort to map out the GRNs of some the most
intensively studied single-cell model organisms: the prokaryote E. coli and the eu-
karyote Saccharomyces cerevisiae, a species of yeast. A hypothesis that has emerged
from these efforts is that the GRN has evolved into a modular structure in terms of
small sub-networks appearing as recurrent patterns in the GRN, called network mo-
tifs. Moreover, experiments on the dynamics generated by network motifs in living
cells indicate that they have characteristic dynamical functions. This suggests that
network motifs may serve as building blocks in modeling gene regulatory networks.

Much experimental work has been devoted to understanding network motifs in
gene regulatory networks of single-cell model organisms. The GRNs of E. coli and
yeast, for example, contain three main motif families that make up almost the entire
network. Some well-established network motifs and their corresponding functions in
the GRN of E. coli and yeast include negative (or inhibitory) self-regulation, positive
(or excitatory) self-regulation and several types of feedforward loops. Nevertheless,
most analyses of motif function are carried out looking at the motif operating in
isolation. There is, however, mounting evidence that network context, that is, the
connections of the motif with the rest of the network, are important when drawing
inferences on characteristic dynamical functions of the motif.

In this context, an interesting question is how the GRN of a single-cell organism
is able to sustain the production rates of the housekeeping genes and at same time
be able to quickly respond to environmental changes, by turning on and off the
appropriate facultative genes. If we assume that the dynamics of gene expression
is modeled by coupled systems of differential equations then this question can be
formulated as the existence of a homeostatic mechanism associated to some types of
network motifs imbedded in the GRN.

Latest estimates on the number of feedforward loops in the GRN of S. cerevisiae
assert that there are least 50 feedforward loops (not all of the same type) potentially
controlling 240 genes. One example of such a feedforward loop is shown in Figure 12.
The three genes in this network are considered constitutive.

12.2 Basic Structural Elements of GRNs

The fundamental building block or node in a gene regulatory network is a gene
that is composed of two parts: transcription and translation. The transcription part
produces messenger RNA (mRNA) and the translation part produces the protein.
The system of ODEs associated to one gene has the form
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Fig. 12 An example of feed-

forward regulation network

from the GRN of S. cere-

visiae, involving the genes ’
SFP1, CINS and PGA2. The

PGA2 gene produces an es-

sential protein involved in

protein trafficking (null mu-

tants have a cell separation

defect). The CINS gene is a

basic leucine zipper (bZIP)
transcription factor. The SPF1
gene regulates transcription
of ribosomal protein and
biogenesis genes.

X = f(x,t5,71) x=(R ) eR?

where xR is the mRNA concentration, x* is the protein concentration and the t; are
the coupling protein concentrations of transcription factors that regulate the gene
and are produced by other genes in the network. The parameter 7 represents the
effect of upstream transcription factors that regulate the gene but are not part of the
network. The vector field f has the form

f=UR+ 1,7 e R

where f® models the dynamics of mMRNA concentration and f* models the dynamics
of the protein concentration.
When the gene is not self-regulated the system has the form

i = fROR )+ 1
XP — fP()CR,XP)
and when the gene is self-regulated the system of two scalar equations has the form
iR = fRGR P i)+ 1
fCP — fP(xR, XP)

In both cases the gene output is the scalar variable xp.

12.3 The Gene Regulatory Network for PGA2

Consider the network consisting of three genes (and six nodes) shown in Figure 13,
where the dashed lines represent inhibitory coupling (repression or negative control)
and the solid lines represent excitatory coupling (activation or positive control).
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Fig. 13 Example of a 3-

gene six-cell network. All I

arrows are different, but

for simplicity this is not

made explicit in the figure.

Circles stand for mRNA @
v

concentration and squares

for protein concentration. A

Solid lines indicate excitatory E

coupling and dashed lines ‘ g

indicate inhibitory coupling.

Observe that the six-node network in Figure 13 has two simple paths:

)CR — XP N ZR — ZP and .XR N xP N yR N yP N ZR N ZP

There are two possible Haldane homeostasis arrows xR — x” and zR — z”,and one
structural homeostasis of degree three consisting of two paths x* — yR — yF — 7R
and x¥ — zR. To verify this we compute the homeostasis matrix.

The steady-state equations associated with the network in Figure 13 have the
form:

fRER DY+ T =0

PR xPy=0
gR(Fy® =0 1)
"Ry =0
R (P, yP,28%) =0
PR, zF)=0

where the input parameter J represents the action of all upstream transcription
factors that affect the x-gene and do not come from the y- and z-genes. Our goal
is to find regions of homeostasis in the steady-state protein concentration z¥ as a
function of the input parameter 7. To do this we compute det(H), where H is the
5 X 5 homeostasis matrix.
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xP oy
H=|0 0 glgl O (32)
0 nR, 0 KR, nR,
X y Z
0 0 0 0 Ah

A short calculation shows that

det(H) = fo; hPR (ngg)}:P hfp + h)Ing)I,)Rng)

z

Therefore structural homeostasis is found by solving & = 4’ = 0, where

hI) = gleg i +hipginsir (33)
This equation is analysed in Antoneli et al. [1], who show that standard ODE models
for gene regulation, when inserted into a feedforward loop motif, do indeed lead to
chair structural homeostasis in the output protein housekeeping genes. In [1] this
cubic expression was obtained by direct calculation and its appearance was somewhat
mysterious; here it emerges from the general theory of homeostasis matrices in
Section 7.
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