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Abstract Homeostasis occurs in a biological or chemical system when some output
variable remains approximately constant as an input parameter λ varies over some
interval. We discuss two main aspects of homeostasis, both related to the effect of
coordinate changes on the input–output map. The first is a reformulation of homeosta-
sis in the context of singularity theory, achieved by replacing ‘approximately constant
over an interval’ by ‘zero derivative of the output with respect to the input at a point’.
Unfolding theory then classifies all small perturbations of the input–output function.
In particular, the ‘chair’ singularity, which is especially important in applications, is
discussed in detail. Its normal form and universal unfolding λ3+aλ is derived and the
region of approximate homeostasis is deduced. The results are motivated by data on
thermoregulation in two species of opossum and the spiny rat. We give a formula for
finding chair points inmathematical models by implicit differentiation and apply it to a
model of lateral inhibition. The second askswhenhomeostasis is invariant under appro-
priate coordinate changes. This is false in general, but for network dynamics there is a
natural class of coordinate changes: those that preserve the network structure.We char-
acterize those nodes of a given network for which homeostasis is invariant under such
changes. This characterization is determined combinatorially by the network topology.
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1 Introduction and outline

Homeostasis is an important concept, occurringwidely in biology, especially biochem-
istry, and in many other areas including control engineering. It refers to a regulatory
mechanism that keeps some specific variable close to a fixed value as other parameters
vary. In this paper we define and investigate a reformulation of homeostasis in terms of
singularity theory, centered on the input–output function of the system. This approach
makes it possible to calculate homeostasis points inmodels, classifies different types of
homeostasis point, and describes all small perturbations of the input–output function
near a homeostasis point.

Section 2 opens the discussion with a motivational example of homeostasis: regu-
lation of the output ‘body temperature’ in an opossum, when the input ‘environmental
temperature’ varies. The graph of body temperature against environmental tempera-
ture λ varies linearly, with nonzero slope, when λ is either small or large, while in
between is a broad flat region, where homeostasis occurs. This general shape is called
a ‘chair’ by Nijhout et al. (2004, 2014), and plays a central role in the paper. This
example is used in Sect. 3 to motivate a reformulation of homeostasis in terms of the
derivative of an output variable (with respect to an input) being zero at some point,
hence approximately constant near that point. We discuss this mathematical reformu-
lation in terms of singularities of input–output functions, which are functions from
parameter space to a selected variable. For network dynamics, this is usually the state
of a specific node.

Section 4 discusses how the input–output function transforms under certain coor-
dinate changes in the admissible system and how this leads to an unfolding theory
based on elementary catastrophe theory (Golubitsky 1978; Poston and Stewart 1978;
Zeeman 1977).

Section 5 explores the consequences of this result for homeostasis, with special
emphasis on the two simplest singularities: simple homeostasis and the chair. We
characterize these singularities and discuss their normal forms (the simplest form into
which the singularity can be transformed by suitable coordinate changes), and (uni-
versal) unfoldings, which classify all small perturbations as other system parameters
vary. We examine the unfolding of the chair to estimate the region over which home-
ostasis occurs, in the sense that the output varies by no more than a small amount δ as
the input changes. We relate the unfolding of the chair to observational data on two
species of opossum and the spiny rat.

Section 6 provides a brief discussion of how chair points can be calculated ana-
lytically by implicit differentiation, and considers a special case with extra structure,
common in biochemical applications, where the calculations simplify. This special
case is discussed for a specific example in Sect. 8.

The paper then turns to the second main idea: how network structure affects the
invariance of homeostasis under appropriate coordinate changes.

Section 7 recalls some of the ideas of network systems from Golubitsky et al.
(2005); Stewart et al. (2003), specifically the notion of an admissible ODE—one that
respects the network architecture—and provides simple examples to illustrate the idea.
In Sect. 8we apply themethod of Sect. 6 to amodel of lateral inhibition (corresponding
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to a three-node feed-forward network) introduced by Nijhout et al. (2014), and prove
that a chair point exists under very general assumptions.

We then turn to the question of invariance of homeostasis, for a given variable—
and in particular an observation of a given node in the network—under coordinate
changes that preserve network structure. Here out current methods require the net-
work to be fully inhomogeneous; that is, all couplings (arrows) are distinct. The key
idea is that network-preserving diffeomorphisms are defined to be those changes of
coordinates that preserve admissibility for all admissible maps: see Sect. 9. Finally,
we characterize right network-preserving coordinate changes in Sect. 10, proving that
whether homeostasis of a single node variable is an invariant of network-preserving
changes of coordinates can be determined by a combinatorial condition on the network
architecture. See Corollary 10.5.

2 Motivating example of homeostasis

Homeostasis occurs when some feature of a system remains essentially constant as an
input parameter varies over some range of values. For example, the body temperature
of an organism might remain roughly constant despite variations in its environment.
(See Fig. 1 for such data in the brown opossum where body temperature remains
approximately constant over a range of 18 ◦C in environmental temperature, Morrison
1946; Nijhout et al. 2014.) Or in a biochemical network the equilibrium concentration
of some important biochemical molecule might not change much when the organism
has ingested food.

Homeostasis is almost exactly opposite to bifurcation. At a bifurcation, the state of
the system undergoes a change so extensive that some qualitative property (such as

Fig. 1 Experimental data indicating thermoregulatory homeostasis in the brown opossum. The horizontal
axis is environmental temperature (◦C) and the vertical axis is body temperature (◦C) (Morrison 1946;
Nijhout et al. 2014)
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number of equilibria, or the topological type of an attractor) changes. In homeostasis,
the state concerned not only remains topologically the same: some feature of that state
does not even change quantitatively. For example, if a steady state does not bifurcate
as a parameter is varied, that state persists, but can change continuously with the
parameter. Homeostasis is stronger: the steady state persists, and in addition some
feature of that steady state remains almost constant.

Homeostasis is biologically important, because it protects organisms against
changes induced by the environment, shortage of some resource, excess of some
resource, the effect of ingesting food, as so on. The literature is extensive [http://www.
biology-online.org/4/1_physiological_homeostasis.html (updated 2000)]. However,
homeostasis is not merely the existence (and persistence as parameters vary) of a
stable equilibrium of the system, for two reasons.

First, homeostasis is a stronger condition than ‘the equilibriumvaries smoothlywith
parameters’, which just states that there is no bifurcation. In the biological context,
nonzero linear variation of the equilibrium as parameters change is not normally
considered to be homeostasis, unless the slope is very small. For example, in Fig. 1,
body temperature appears to be varying linearly when the environmental temperature
is either below 10 ◦Cor above 30 ◦Cand is approximately constant in between. Nijhout
et al. (2014) call this kind of variation (linear, constant, linear) a chair.

Second, some variable(s) of the system may be homeostatic while others undergo
larger changes. Indeed, other variables may have to change dramatically to keep some
specific variable roughly constant.

As noted, Nijhout et al. (2014) suggest that there is a chair in the body temperature
data of opossums (Morrison 1946). We take a singularity-theoretic point of view and
suggest that chairs are better described by a homogeneous cubic function (that is, like
λ3, where λ is the input parameter) rather than by the piecewise linear description
given previously. Figure 2a shows the least squares fit of a cubic function to data for
the brown opossum, which is a cubic with a maximum and a minimum. In contrast,
the least squares fit for the eten opossum, Fig. 2b, is monotone.

These results suggest that in ‘opossum space’ there should be a hypothetical type
of opossum that exhibits a chair in the system input–output function of environmental
temperature to body temperature. In singularity-theoretic terms, this higher singularity
acts as an organizing center, meaning that the other types of cubic can be obtained by
small perturbations of the homogeneous cubic. In fact, data for the spiny rat have a
best-fit cubic very close to the homogeneous cubic, Fig. 2c.We include this example as
a motivational metaphor, since we do not consider a specific model for the regulation
of opossum body temperature.

This example, especially Fig. 2, motives a reformulation of homeostasis in a form
that can be analysed using singularity theory. We discuss this in Sects. 3–6. Singu-
larity theory uses changes of coordinates to simplify functions near singular points,
converting them into polynomial ‘normal forms’. General coordinate changes can
mix up variables, which destroys homeostasis of a given variable, so in this part of the
paper we restrict the coordinate changes so that homeostasis of a chosen variable is
preserved.
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Fig. 2 The horizontal
coordinate is environmental
temperature; the vertical
coordinate is body temperature.
From Morrison (1946): a data
from the brown opossum; b data
from the eten opossum; c data
from the spiny rat. The curves
are the least squares best fit of
the data to a cubic polynomial
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This raises a more general issue: when is homeostasis of a given variable invariant
under a reasonable class of coordinate changes? In Sects. 7–10we answer this question
for network dynamics, assuming the network to be fully inhomogeneous.

3 Input–output functions

First we set up the basic notion of an input–output function. In applications, homeosta-
sis is a property of a distinguished variable in a many-variable system of ODEs. For
example in thermoregulation, the body temperature is homeostatic, but other system
variables may change—in fact, must change in order for body temperature to remain
roughly constant. (If not, the entire system would be independent of the environmen-
tal temperature, hence effectively decoupled from it. This condition is too strong, and
does not correspond to real examples of homeostasis.) So we consider a system of
ODEs in a vector of variablesX = (x1, . . . , xn) ∈ R

n , denote a distinguished variable
by Z, and let Y denote all the other variables. For later examples it is convenient to
renumber the variables if necessary, so that

Y = (x1, . . . , xn−1)

Z = xn

and

X = (Y,Z).

We can now reformulate homeostasis as the vanishing of the derivative of the input–
output function with respect to the input variable. Suppose that

Ẋ = F(X, λ) (3.1)

is a system of ODEs, where X ∈ R
n and the input parameter λ ∈ R. (More generally,

there could be multiple input parameters, in which case λ ∈ R
k .) Suppose that (3.1)

has a linearly stable equilibrium at (X0, λ0). By the implicit function theorem there
exists a family of linearly stable equilibria ˜X(λ) near λ0 such that ˜X(λ0) = X0 and

F(˜X(λ), λ) ≡ 0. (3.2)

With the above decomposition X = (Y,Z), we write the equilibria that depend on
λ as

˜X(λ) = (˜Y(λ),˜Z(λ)) (3.3)

and call ˜Z(λ) the system input–output function (for the variable Z). This path of
equilibria exhibits homeostasis in the Z-variable, in the usual sense of that term, if
˜Z(λ) remains roughly constant as λ is varied.

We now introduce a more formal mathematical definition of (one possible inter-
pretation of) homeostasis, which opens up a potential singularity-theoretic approach.
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The statement ‘the equilibrium value of some variable remains roughly constant as a
parameter varies near some point’ is roughly equivalent to the statement ‘the derivative
of the variable with respect to the parameter vanishes at that point’. This condition
leads to local quadratic or higher-order dependency on the parameters; this is ‘flatter’
than linear changes, and is guaranteed by the vanishing derivative.

From now on we use subscripts gλ, gλλ, and so on to denote the λ-derivatives of
any function g. We can now state:

Definition 3.1 (a) The path of equilibria (˜Y(λ),˜Z(λ)) of (3.2) exhibits Z-homeo-
stasis at λ0 if

˜Zλ(λ0) = 0 (3.4)

(b) If further ˜Zλλ(λ0) �= 0, this is a point of simple homeostasis.
(c) The path of equilibria (˜Y(λ),˜Z(λ)) of (3.2) has a Z-chair point at λ0 if

˜Zλ(λ0) = ˜Zλλ(λ0) = 0 and ˜Zλλλ(λ0) �= 0. (3.5)

Singularity theory has been widely used in a different but related context: bifur-
cations (Golubitsky and Schaeffer 1985; Golubitsky et al. 1988; Guckenheimer and
Holmes 1983). We take inspiration from this approach, but new issues arise in the
formulation of the set-up. Steady state (and to some extent Hopf) bifurcations can be
viewed as singularities,and classified using singularity theory and nonlinear dynamics.
Such classifications often employ changes of coordinates to put the system into some
kind of ‘normal form’ (Golubitsky and Schaeffer 1985; Golubitsky et al. 1988; Guck-
enheimer and Holmes 1983). The changes of coordinates employed in the literature
are of several kinds, depending on what structure is being preserved. The changes of
coordinates that are appropriate to the study of critical points of potential functions
(elementary catastrophe theory, Bröcker and Lander 1975; Gibson 1979; Martinet
1982; Poston and Stewart 1978; Zeeman 1977) is right equivalence; the changes of
coordinates that are appropriate to the study of zeros of a map are contact equiva-
lences (Golubitsky 1978; Golubitsky and Guillemin 1973; Golubitsky and Schaeffer
1985); and the changes of coordinates that are usually appropriate to the study of
dynamics of differential equations are vector field changes of coordinates (Gucken-
heimer and Holmes 1983).We do not require the precise definition of these terms here,
but we emphasise that there are several different ways for coordinate changes to act,
and each action preserves different features of the dynamics.

4 Singularity theory of input–output functions

In this section we use singularity theory to study how the input–output function˜Z(λ)

changes as the vector field F(X, λ) is perturbed. To do this we use a combination of
two types of coordinate changes in F , defined by

F̂(X, λ) = F(X − K ,�(λ)) (4.1)

where �(λ0) = λ0, �′(λ0) > 0, and K = (κ1, . . . , κn) ∈ R
n .
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Next we show that certain changes of coordinates in F as in (4.1) lead to changes
in coordinates of the input–output function ˜Z(λ). The input–output changes of coor-
dinates provide the basis for the application of singularity theory.

Theorem 4.1 Let F(X, λ) be admissible and let �(λ) be a reparametrization of λ.
Let K = (κ1, . . . , κn) ∈ R

n be a constant. Define the map F̂ by (4.1). Then

(a) The zero set mapping X(λ) transforms to

X̂(λ) = ˜X(�(λ)) + K (4.2)

(b) The input–output function Z(λ) transforms to

Ẑ(λ) = ˜Z(�(λ)) + κn (4.3)

(c) Simple homeostasis and chairs are preserved by the input–output transformation
(4.3).

Proof This is a straightforward calculation. For (a), substitute (4.2) into (4.1). Part (b)
is then immediate. For (c), use the chain rule:

Ẑλ(λ) = ˜Zλ(�(λ))�λ(λ) (4.4)

Since �λ is nowhere zero, Ẑλ(λ) is zero if and only if ˜Zλ(�(λ)) is zero. Hence,
homeostasis points are preserved in the sense that if λ0 is one for ˜Z, then �−1(λ0) is
one for Ẑ. Next observe that when ˜Zλ(λ0) = 0

Ẑλλ(λ0) = ˜Zλλ(�(λ0))�λ(λ0)
2. (4.5)

Hence Ẑλλ(λ0) �= 0 if and only if ˜Zλλ(�(λ0)) �= 0 and simple homeostasis is
preserved.

To see that chairs are preserved, assume that the defining conditions ˜Zλ(λ0) =
˜Zλλ(λ0) = 0 and the nondegeneracy condition ˜Zλλλ(λ0) �= 0 hold. As noted
Ẑλ(�

−1(λ0)) = 0 and by (4.5) Ẑλλ(�
−1(λ0)) = 0. Next, differentiate (4.4) with

respect to λ twice and evaluate at λ0 to obtain

Ẑλλλ(λ0) = ˜Zλλλ(�(λ0))�λ(λ0)
3.

Hence the nondegeneracy condition for a chair is also preserved. ��
The transformation (4.3) is the standard change of coordinates in elementary

catastrophe theory (Golubitsky 1978; Poston and Stewart 1978; Zeeman 1977). It
is a combination of right equivalence (�(λ)) in singularity theory and translation by
a constant (κn). We can therefore use standard results from elementary catastrophe
theory to find normal forms and universal unfoldings of input–output functions Z(λ),
as we now explain.

Because Z = xn is 1-dimensional we consider singularity types near the origin of
a 1-variable function g(x), where g : R → R. Such singularities are determined by
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the first nonvanishing λ-derivative g(k)(0) (unless all derivatives vanish, which is an
‘infinite codimension’ phenomenon that we do not discuss further.) Informally, the
codimension of a singularity is the number of conditions on derivatives that determine
it. This is also the minimum number of extra variables required to specify all small
perturbations of the singularity, up to suitable changes of coordinates. These pertur-
bations can be organized into a family of maps called the universal unfolding, which
has that number of extra variables.

Definition 4.2 G(λ, a) is an unfolding of g(λ) if G(λ, 0) = g(λ). G is a universal
unfolding of g if every unfolding of H(λ, b) factors through G. That is,

H(λ, b) = G(�(λ, b), A(b)) + κ(b). (4.6)

It follows that every small perturbation H(·, b) is equivalent to a perturbationG(·, a)

of g in the G family.
If such k exists, the normal form is ±λk . Simple homeostasis occurs when k = 2,

and a chair when k = 3. When k ≥ 3 the universal unfolding for catastrophe theory
equivalence is

±λk + ak−2λ
k−2 + ak−3λ

k−3 + · · · + a1λ

for parameters a j and when k = 2 the universal unfolding is ±λ2. The codimension
in this setting is therefore k − 2. See (Bröcker and Lander 1975) Example 14.9 and
Theorem 15.1; (Gibson 1979) Chapter IV (4.6) and Chapter VI (6.3); and (Martinet
1982) Chapter XI Sect. 1.1 and Chapter XII Sects. 3.1, 7.2.

To summarize: the normal form of the input–output function for simple homeostasis
is

˜Z(λ) = ±λ2 (4.7)

and no unfolding parameter is required. Similarly,

˜Z(λ) = ±λ3 (4.8)

is the normal form of the input–output function for a chair, and

˜Za(λ) = ±λ3 + aλ (4.9)

is a universal unfolding.

5 Discussion of chair normal form

We determine some quantitative geometric features of the chair normal form, which
control the interval of input parameters over which the output varies by no more than a
specified amount. The calculations are elementary but the results are of interest because
they relate the singularity-theoretic version of homeostasis (vanishing of derivate of
input–output function) to the usual one (output is roughly constant as input varies).
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Fig. 3 Geometry of the normal form (4.9). Plot c corresponds to a > 0, plot b to a = 0, plot a to
0 > a > −3( δ

2 )2/3, and plot d to −3( δ
2 )2/3 > a

Here we consider only the normal form, but the results can in principle be transferred
to the original input–output function by inverting the coordinate changes used to put it
into normal form.We do not pursue this procedure here, except to note that the power-
law dependence on δ in the asymptotic analysis is preserved by diffeomorphisms,
hence applies more generally.

For comparison, we briefly discuss the normal form (4.7) for simple homeostasis.
Here it is clear that in order for λ2 to differ from 0 by at most δ, we must have λ in the
homeostasis interval (−δ1/2, δ1/2).

Next, we discuss the analogous question for the chair normal form (4.8) whose
universal unfolding is (4.9). Changing the signs of λ and a if necessary, wemay assume
the normal form has a plus sign and the unfolding is λ3+aλ. Define the δ-homeostasis
region for a given unfolding parameter a to be the set of inputs λ such that

|˜Za(λ)| < δ

The value of a in (4.9) affects this region. The calculations are routine but the results
are of interest. Figure 3 illustrates the possibilities. In this figure, δ � 1 is fixed and
the gray rectangle indicates the region where |Za(λ)| < δ.

There are four plots in Fig. 3. In (a–c) the interval on which Za(λ) = λ3 + aλ < δ

is given by (λ1, λ2). Here λ2 is defined by

λ32 + aλ2 = δ, (5.1)
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and since Za(λ) is odd, λ1 = −λ2. The transition to plot (d) in Fig. 3 occurs when δ

is a critical value of Za . At that point (which occurs at a = −3( δ
2 )

2/3) the region on
which Za is δ close to 0 splits into two intervals. We now assume

a > −3

(

δ

2

)2/3

(5.2)

Equation (5.1) implicitly defines λ2 ≡ λ2(a). We claim that when a satisfies (5.2),
the length of the δ-homeostasis region is 2λ2(a), and

λ2(a) = δ1/3 − 1

3δ1/3
a + O(a2). (5.3)

We consider only values of a for which the δ-homeostasis region is a connected
interval of λ-values. For such a we discuss how this region varies as δ tends to zero,
which is oneway tomeasure how robust homeostasis is to small changes in parameters,
or indeed to the model equations.

When a < 0 its effect is to push ˜Za into the region with two critical points [plot
(a)], so the length of the δ-homeostasis interval increases. When a > 0 it pushes
˜Za into the monotone region [plot (c)] and the length of this interval decreases. It is
straightforward to calculate λ2(0) = δ1/3 and to use implicit differention of (5.1) to
verify that

dλ2

da
(0) = − 1

3δ1/3
.

Thus the δ-homeostasis interval for the chair is asymptotically (as δ → 0) wider
than that for simple homeostasis, even when a = 0. When a < 0 it becomes wider
still.

Remark 5.1 This suggests that a chair is a more robust form of homeostasis than
simple homeostasis, which may lead to it being more common in the natural world.
We suspect this fact is significant.

We relate Fig. 3 to the data for opossum thermoregulation.

a > 0 There are no critical points. This is in fact the case for the best-fit cubic
curve to the data for the eten opossum, Fig. 2b. The slope is slightly positive at the
inflection point.
a = 0 The degenerate singularity that acts as an organizing center for the unfold-
ing, there is a unique critical point.
a < 0 There are two critical points. This is the case for the best-fit cubic curve
to the data for the brown opossum, Fig. 2a. Now the slope is slightly negative at
the inflection point.

The transition between these two curves in ‘opossum space’ is organized by the
chair point a = 0 at which ˜Z0(λ) = λ3. In fact, data for the spiny rat give a best-fit
cubic very close to this form, Fig. 2c.
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6 Computation of homeostasis points

In this section we apply the singularity-theoretic formalism to obtain a method for
finding homeostasis points (such as chairs) analytically (sometimes with numerical
assistance) in specific models.

Suppose that F is a vector field on Rn and (X0, λ0) is a stable equilibrium of (3.1).
Let Z = xn , and as usual let ˜X(λ) = (˜Y(λ),˜Z(λ)) be the family of equilibria

satisfying (˜Y(λ0),˜Z(λ0)) = X0. By (3.5) the input–output function ˜Z(λ) has a Z-
chair at λ0 if

˜Zλ(λ0) = ˜Zλλ(λ0) = 0 and ˜Zλλλ(λ0) �= 0 (6.1)

The derivatives in (6.1) can be computed from F using implicit differentiation, as is
standard in bifurcation theory.

Let J = (DF)(X0, λ0). Differentiate F(˜Y(λ),˜Z(λ), λ) ≡ 0 with respect to λ to
get

J

[

˜Yλ

˜Zλ

]

= −Fλ (6.2)

A second implicit differentiation at a point where ˜Zλ = 0 then yields

J

[

˜Yλλ

˜Zλλ

]

= −
(

(D2F)

([

˜Yλ

0

]

,

[

˜Yλ

0

])

+ (DFλ)

[

˜Yλ

0

]

+ Fλλ

)

(6.3)

evaluated at (Y0,Z0, λ0). The third derivative ˜Zλλλ(λ0) is generally nonzero. We do
not derive the formula, but in any particular application this derivative can in principle
be computed using implicit differentiation.

For an important special class of equations occurring in biological applications, the
formulas for (6.2) and (6.3) simplify. Suppose that the first component of the equation
is

f1(X, λ) = f1(X) + λ (6.4)

and that all other components of the equation are independent of λ. Suppose also that
the output variable is the last variable xn . Assumption (6.4) implies that Fλ = e1
where e1 = (1, 0, . . . , 0)T, Fλλ = 0, and DFλ = 0. Hence

J

[

˜Yλ

˜Zλ

]

= −e1 (6.5)

and

J

[

˜Yλλ

˜Zλλ

]

= −(D2F)

([

˜Yλ

0

]

,

[

˜Yλ

0

])

(6.6)

Lemma 6.1 Let B be the (n − 1) × (n − 1) minor of J obtained by deleting its first
row and last column. Then λ0 is a homeostasis point if and only if det B = 0.

Proof We can use Cramer’s rule to solve (6.5) for Yλ(λ0). Specifically,

˜Zλ(λ0) = (−1)n det(B)/det(J ).
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1 2 1 2 3

Fig. 4 Examples of regular networks

Hence, λ0 is a homeostasis point if and only if ˜Zλ(λ0) = 0, which occurs if and only
if det(B) = 0. ��
Remark 6.2 Suppose that a system of ODEs, depending on an auxiliary parameter
μ (in addition to the input parameter λ), leads to a chair point at μ = μ0. Then the
input–output function ˜Z(λ;μ) depends on μ, and that function factors through, as
in (4.6), the universal unfolding ±λ3 + aλ for a chair point. A standard question in
singularity theory is: When is˜Z(λ, μ) a universal unfolding of˜Z(λ, μ0)? The answer
in this case is straightforward (and expected); namely,

˜Zλμ(λ0) �= 0. (6.7)

We apply Lemma 6.1 to a biological example, with network dynamics, in Sect. 8.

7 Admissible vector fields

We now examine the above ideas in a specialized context, networks of dynamical
systems. Networks are common in applications, especially to biochemistry, and the
interplay between network topology and homeostasis is of some interest. We begin
by clarifying what we mean by a network of dynamical systems, using the formalism
of Golubitsky and Stewart (2006); Golubitsky et al. (2005) and Stewart et al. (2003).

A central concept of network theory, in this approach, is that of an admissible
vector field, or more simply an admissible map. Informally, this is a vector field whose
structure encodes the network topology, by associating a variable with each cell and
associating coupling terms between these cell variables with the arrows (directed
edges) of the network. The corresponding class of ODEs, which we call admissible,
determines the possible dynamical properties of the network.

This formalism defines a network to be a directed graph, whose nodes represent
state variables and whose arrows represent couplings. Two nodes have the same node
symbol if their associated state spaces are identical, and two arrows have the same
arrow symbol if the coupling formulas are identical, once corresponding variables are
substituted. Simple examples make the idea clear; formal definitions are in Golubitsky
et al. (2005) and Stewart et al. (2003).

Examples of regular networks, where all nodes are the same and all arrows are the
same, are shown in Fig. 4.We describe the corresponding classes of admissible ODEs.

The admissible ODEs associated with the networks in Fig. 4 have, respectively, the
forms:

ẋ1 = f (x1, x2) ẋ1 = f (x1, x1)
ẋ2 = f (x2, x1) and ẋ2 = f (x2, x1)

ẋ3 = f (x3, x2)
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Fig. 5 Left Three-node network
with two node types and three
arrow types. Right A four-node
example with distinct node and
arrow types

1 2

3

2

4

1

3

where x j ∈ R
k and f : R

k × R
k → R

k is any smooth (infinitely differentiable)
function. Of course networks need not be regular. Figure 5 (left) is an an example
of a three-node network with two node types and three arrow types. The associated
admissible ODEs have the form:

ẋ1 = f (x1, x2, x3) x1 ∈ R
k

ẋ2 = f (x2, x1, x3) x2 ∈ R
k

ẋ3 = g(x3, x1) x3 ∈ R
� (7.1)

for appropriate smooth functions f, g.
In previous work Golubitsky and Stewart (2006); Golubitsky et al. (2005) and

Stewart et al. (2003), we used identical nodes and arrows to classify robust synchrony,
phase-shift synchrony, and bifurcations in admissible ODEs for networks. This theory
was generally aimed at applications in mathematical neuroscience, where identical
nodes and arrows often makes sense, as did higher dimensional phase-spaces k > 1.
However, most biochemical networks are special in this context, since node types are
usually different (they correspond to different chemical compounds, which implies
distinct nodal equations), node phase spaces are one-dimensional (since nodes rep-
resent the concentration of a chemical compound), and different arrows usually have
different types (they correspond to different reaction rates).

Figure 5 (right) is an example of a four-node network in which all nodes are distinct
and all arrows are different. The associated admissible maps are:

F(x) =

⎡

⎢

⎢

⎣

f1(x1, x4)
f2(x1, x2, x3)
f3(x1, x2, x3)
f4(x1, x2, x3, x4)

⎤

⎥

⎥

⎦

. (7.2)

In fact, it is easy to specify the class of admissible maps on fully inhomogeneous
networks. It consists of maps F = ( f1, . . . , fn) where fi depends only on those x j

for which an arrow connects node j to node i . The only special assumption we make
about the admissible systems in this paper is to assume that the internal phase spaces
are one-dimensional (k = 1). Beginning in Sect. 9, we assume that the networks are
fully inhomogeneous.

If j is a node, we call ẋ j = f j (X, λ), or just f j (X, λ), the nodal equation for j .
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Fig. 6 Feed-forward three-node
network

1

2

3

8 Homeostasis caused by feed-forward inhibition

Wenow apply our reformulation of homeostasis in terms of singularities to a biological
model. Ourmethodsmake it possible to carry out a systematic search of a givenmodel,
to find parameter values at which homeostasis points or chair points occur.

Feed-forward inhibition (often called lateral inhibition) is an important concept in
a variety of physiological systems Nijhout et al. (2014) and Savageau and Jacknow
(1979). We explain it briefly in a moment. (Nijhout et al. 2014, Sect. 2.3) give an
example of an admissible system of ODEs for a three-node feed-forward network that
models feed-forward inhibition and that exhibits homeostasis. In their paper, the nodes
of Fig. 6 represent neurons. Connections 1 → 2 and 1 → 3 are excitatory, but 2 → 3
is inhibitory. Therefore, when node 1 fires, it sends an excitatory signal to node 3,
but this is in competition with an inhibitory signal from node 2. Nijhout et al. (2014)
mention three applications of this model, to simultaneity detection (Kremkow et al.
2010), synchrony decoding (Patel and Reed 2013), and to explain homeostasis and
plasticity in the developing nervous system (Turrigiano and Nelson 2004).

We show how our techniques make finding homeostasis points and chair points in
this network straightforward. Admissible ODEs for Fig. 6 have the form

ẋ = f (x) + λ

ẏ = g(x, y)

ż = h(x, y, z) (8.1)

for arbitrary functions f, g, h defined on the appropriate spaces. (The only special
feature at this stage is that we also introduce λ as an input parameter, adding it to the
first nodal equation.) Suppose that X0 = (x0, y0, z0) is a linearly stable equilibrium.
The Jacobian of (8.1) at any X ∈ R

n is

J =
⎡

⎣

fx 0 0
gx gy 0
hx hy hz

⎤

⎦

so the equilibrium X0 is linearly stable if and only if

fx < 0 gy < 0 hz < 0 (8.2)

at X0. The implicit function theorem then implies that for λ near 0 there is a unique
family of equibria ˜X(λ) = (x(λ), y(λ), z(λ)) with ˜X(λ0) = (x̃0.ỹ0, z̃0).

If, more strongly, we assume that the inequalities (8.2) hold everywhere, (x̃0.ỹ0, z̃0)
is the unique equilibrium of (8.1). Since fx < 0, f is monotone decreasing and x̃0 is
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unique. Since gy < 0 it follows that g(x̃0, y) is monotone decreasing in y and hence
ỹ0 is unique. Finally, since hz < 0, it follows that h(x̃0, ỹ0, z) is monotone decreasing
in z and z̃0 is unique.

We use Lemma 6.1 to determine whether homeostasis is possible. Note that

B =
[

gx gy

hx hy

]

(8.3)

and

det(B) = gx hy − gyhx .

By Lemma 6.1, homeostasis is possible in the third coordinate of X0 if and only if
det(B) = 0.

Nijhout et al. (2014) consider model equations for lateral inhibition that are admis-
sible for this network. Their models have the specific form

ẋ = λ − x

ẏ = σ(x) − y

ż = τ(x − y) − z (8.4)

whereσ and τ are given functions. InNijhout et al. (2014) these functions are piecewise
smooth; here we assume that they are smooth sigmoidal-like functions. In particular
they are positive and have positive derivative everywhere. The equilibrium X(λ) is
given by

x(λ) = λ

y(λ) = σ(λ)

z(λ) = τ(λ − σ(λ)) (8.5)

which is linearly stable.

Lemma 8.1 Assume that τ(λ) in (8.4) is monotone. Then

(a) There is a homeostasis point in the z-variable at λ0 if σλ(λ0) = 1.
(b) There is a chair point in the z-variable if in addition σλλ(λ0) = 0 and σλλλ(λ0) �=

0.
(c) Suppose σ depends on an additional parameter μ. Then (8.4) is a universal

unfolding of the chair if σλμ(λ0) �= 0.

Proof By (8.5),

zλ(λ) = τλ(x − y)(1 − σλ(λ)).

Since τλ is nowhere zero, homeostasis occurs if and only if σλ(λ0) = 1. Next,

zλλ(λ) = τλλ(x − y)(1 − σλ(λ))2 − τλ(x − y)σλλ(λ).
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Since σλ(λ0) = 1, it follows that

zλλ(λ0) = −τ(x̃0 − ỹ0)σλλ(λ0).

Again, since τλ �= is non-zero, zλλ(λ0) = 0 if and only if σλλ(λ0) = 0. Next,

zλλλ(λ0) = −τλ(x̃0 − ỹ0)σλλλ(λ0)

and λ0 is a chair point when σλλλ(λ0) �= 0. Finally, if σ depends on a parameterμ, then
μ is a universal unfolding parameter for the chair if (6.7) is valid; that is zλμ(λ0) �= 0.
This happens precisely when σλμ(λ0) �= 0. ��

We return to this example at the end of Sect. 10, after discussing invariance of
homeostasis under coordinate changes.

9 Changes of coordinates revisited

One of the starting points for this paper was the realization that in certain networks,
but not all networks, Z-homeostasis is an invariant of network-preserving changes of
coordinates.

In Sect. 4 we discussed how certain changes of coordinates in the admissible map
F (4.1) changed the input–output function˜Z(λ). Specifically, we considered changes
of coordinates �(λ) in the input parameter and the constant shift F(X, λ) �→ F(X −
K , λ).

These coordinate changes preserve network structure, in the sense that they map
admissible maps to admissible maps, provided κi = κ j if admissibility demands
that fi = f j . Regardless of the network, κi ∈ R can be chosen arbitrarily for any
specific node i . However, other types of coordinate change can also preserve network
structure. The main new ingredient is to consider, in addition, right equivalence by a
diffeomorphism 	 : Rn → R

n , namely,

F → G(X, λ) ≡ F(	−1(X), λ) (9.1)

Proposition 9.1 The right equivalence (9.1) transforms X(λ) to the left equivalence

X̂(λ) = 	(˜X(λ)) (9.2)

on input–output functions.

Proof The right equivalence G = 0 reduces to

G(X, λ) ≡ F(	−1(X), λ) = 0.

Now compute

G(X̂(λ), λ) = F
(

	−1(X̂(λ)), λ
)

= F(˜X(λ), λ) ≡ 0

where the last equality follows from (3.2). ��
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In general, the equivalence (9.1) does not preserve homeostasis for ˜Z(λ), because
	 need not preserve the Z variable. For example, if n = 2,Y = x1,Z = x2, and

˜X(λ) = (˜Y(λ),˜Z(λ)) = (λ, λ2)

then Z has a simple homeostasis point at λ0 = 0. However, under the coordinate
change (x1, x2) �→ (x1 + x2, x1 − x2) this map becomes (λ + λ2, λ − λ2) which
has derivative (1, 1) at λ0 = 0; in particular the second coordinate does not exhibit
homeostasis locally near 0. More generally, suppose some coordinate i in ˜Y(λ) has a
nonzero λ derivative at the origin. Then setting 	(Y,Z) = (Y, xi − xn) will destroy
Z homeostasis at λ0 = 0.

However, homeostasis of Z is preserved if 	 has a special form:

Theorem 9.2 Suppose that 	 preserves the variable Z, in the sense that there are
maps 
,� such that

	(Y,Z) = (
(Y,Z),�(Z)). (9.3)

Then homeostasis for ˜Z(λ) is preserved.

Proof By (9.2) the input–output map Z(λ) transforms to

Ẑ(λ) = �(˜Z(λ))

By the chain rule, homeostasis for ˜Z(λ) is preserved. ��
Theorems 4.1c and 9.2 show that homeostasis is an invariant of general network-

preserving contact equivalences if network-preserving right equivalences 	 always
satisfy (9.3). We show in Sect. 10 that the special form of 	 in (9.3) often arises
naturally on a fully inhomogeneous network. Therefore in the network context there
are special circumstances in which the variables in Z are preserved. More precisely,
we restrict the form of 	 so that the corresponding coordinate change preserves the
network structure. This topic is investigated at length inGolubitsky andStewart (2015),
for several different types of coordinate change.

10 Right network preserving diffeomorphisms

Let F : Rn → R
n be a smooth map, and let 	 : Rn → R

n be a diffeomorphism. The
right action of 	 transforms F into

G(X) = F	−1(X)

Definition 10.1 Wesay that	 is right network-preserving ifG is admissiblewhenever
F is admissible.

Theorem 10.4 classifies all network-preserving right diffeomorphisms in combina-
torial terms of the network architecture. From now on we assume that the network is
fully inhomogeneous.
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Definition 10.2 The extended input set J (i) of node i is the set of all j such that either
j = i or there exists an arrow connecting node j to node i . The extended output set
O(i) is the set of all j such that either j = i or there exists an arrow connecting node
i to node j .

Define
R(i) ≡ { j ∈ J (i) : O( j) ⊇ O(i)} (10.1)

and
R̄(i) =

⋂

m∈O(i)

J (m) (10.2)

Lemma 10.3 R̄(i) = R(i).

Proof If j ∈ R̄(i) then j ∈ J (m) for every m ∈ O(i), so in particular j ∈ J (i).
That is, m ∈ O( j) for every m ∈ O(i), which implies O(i) ⊆ O( j) and j ∈ R(i).
Conversely, suppose j ∈ R(i). Then j ∈ J (i) and O(i) ⊆ O( j). It follows that if
m ∈ O(i), then m ∈ O( j). Or, if m ∈ O(i), then j ∈ J (m). So j ∈ R̄(i). ��
Theorem 10.4 Assume the network is fully inhomogeneous. A diffeomorphism 	 =
(φ1, . . . , φn) is right network-preserving if and only if

φi (x) = φi (xR(i)) ∀i. (10.3)

Proof Suppose 	 is right network-preserving. We capture the restrictions on 	 =
(φ1, . . . , φn) as follows. First, let V (k) be the indices that the function φk depends on.
Fix j and let i ∈ O( j). We claim that V ( j) ⊂ J (i). It follows that

V ( j) ⊂
⋂

i∈O( j)

J (i) = R̄( j).

Let F = [ f1, . . . , fn] where fk(x) = 0 when k �= i and fi (x) = x j . Since
j ∈ J (i), F is admissible; so G = F	 is also admissible. Writing G = [g1, . . . , gn],
it follows that gi (x) = φ j (x) = φ j (xV ( j)) and gk(x) = 0 when k �= i . In order for G
to be admissible we must have V ( j) ⊂ J (i).

Conversely, let 	 be a diffeomorphism satisfying (10.3) and let F = [ f1, . . . , fn]
be admissible. Then let

G(x) ≡ F	(x) = [ f1(φJ (1)(x)), . . . , fn(φJ (n)(x)))].

We need to show that G is admissible; that is, we need to show that gi (x) depends
only on variables in J (i).

We see that gi (x) = fi (φJ (i)(x)). This function can depend on a variable xk only
if k ∈ R̄( j) for some j ∈ J (i) (or i ∈ O( j)). Since i ∈ O( j), it follows that
R̄( j) ⊂ J (i). Therefore, j ∈ J (i) and G = F	 is admissible. ��
Corollary 10.5 Let i be a node and choose Z = xi . Then Z-homeostasis is an invari-
ant of right network-preserving diffeomorphisms if and only if R(i) = {i}.
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Example 10.6 Consider the network in Fig. 5. A short computation shows

J (1) = {1, 4} O(1) = {1, 2, 3, 4} R(1) = {1}
J (2) = {1, 2, 3} O(2) = {2, 3, 4} R(2) = {1, 2, 3}
J (3) = {1, 2, 3} O(3) = {2, 3, 4} R(3) = {1, 2, 3}
J (4) = {1, 2, 3, 4} O(4) = {1, 4} R(4) = {1, 4}

Hence, for this network right network preserving diffeomorphisms have the form

	(x) = [φ1(x1), φ2(x1, x2, x3), φ3(x1, x2, x3), φ4(x1, x4)]. (10.4)

By Corollary 10.5 only x1-homeostasis is an invariant of network-preserving changes
of coordinates in this example.

Example 10.7 Consider the 3-cell network in Sect. 8. It is easy to verify that

R(1) = {1}
R(2) = {1, 2}
R(3) = {1, 2, 3}

By Corollary 10.5, homeostasis is an invariant for x but not for y or z.
Nevertheless, the calculation in Sect. 8 shows that homeostasis does occur in the

z-variable for the class of models in (8.5). Here, homeostasis in the z-variable can
be destroyed by right network-preserving coordinate changes, but the choice of coor-
dinates has a specific biological meaning, so homeostasis in this variable is still a
significant phenomenon.

This example shows that the interplay between specific models and the coordi-
nate changes employed in singularity theory is delicate. This issue will be examined
in Golubitsky and Stewart (2016) where we develop the theory in greater generality.
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