
The structure of infinitesimal homeostasis in input-output
networks

Yangyang Wang1, Zhengyuan Huang2, Fernando Antoneli3, Martin Golubitsky4*

1 Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA
2 The Ohio State University, Columbus, OH 43210, USA
3 Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP
04039-032, Brazil
4 Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

* golubitsky.4@osu.edu

Abstract

Homeostasis occurs when an observable of a system (such as inner body temperature)
remains approximately constant over a range of an external parameter (such as ambient
temperature). More precisely, homeostasis refers to a phenomenon whereby the output
xo of a system is approximately constant on variation of an input I. Homeostatic
phenomena are ubiquitous in biochemical networks of differential equations and these
networks can be abstracted as digraphs G with a fixed input node ι and a different fixed
output node o. We assume that only the input node depends explicitly on I and that
the output is the output node value xo(I). We then study infinitesimal homeostasis:
points I0 where dxo

dI (I0) = 0 by showing that there is a square homeostasis matrix H
associated to G and that infinitesimal homeostasis points occur where det(H) = 0.
Applying combinatorial matrix theory and graph theory to H allows us to classify types
of homeostasis. We prove that the homeostasis types correspond to a set of irreducible
blocks in H each associated with a subnetwork and these subnetworks divide into two
classes: structural and appendage. For example, a feedforward loop motif is a structural
type whereas a negative feedback loop motif is an appendage type. We give two
algorithms for determining a menu of homeostasis types that are possible in G: one
algorithm enumerates the structural types and one enumerates the appendage types.
These subnetworks can be read directly from G without performing calculations on
model equations.

1 Introduction 1

A system exhibits homeostasis if on variation of an input I some observable xo(I) 2

remains approximately constant. Many researchers have emphasized that homeostasis is 3

an important phenomenon in biology. For example, the extensive work of Nijhout, Reed, 4

Best and collaborators [1–7] considers networks whose nodes represent the 5

concentrations of certain biochemical substrates. In their work the input-output 6

function xo(I) is derived from an asymptotically stable equilibrium X0 of a biochemical 7

system of differential equations (see Definition 1.1). 8

In related work under the name of perfect adaptation Ma et al. [8] identify, among all 9

three-node enzyme networks with Michelis-Menten chemical kinetics, two networks that 10

are able to adapt, that is, to reset themselves after responding to an external stimulus. 11
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Further examples include regulation of cell number and size [9], the control of sleep [10], 12

and the expression level regulation in housekeeping genes [11]. The literature is huge, 13

and these articles are a small sample. 14

This paper approaches the classification of homeostasis types that can occur in a 15

given input-output network G by using the notion of infinitesimal homeostasis [12] (see 16

Definition 1.2) and generalizes the methods used in [13] for three-node networks. This 17

approach is related to robust perfect adaptation [14, 15], where dxo
dI (I) is assumed to be 18

identically zero. Adaptation has been used widely, for example, in ecology, chemistry, 19

and control engineering (cf. [8, 14–20]). 20

Our classification is graph theoretic. The types of homeostasis that admissible 21

systems of differential equations of G can exhibit are characterized by the topology of 22

certain subnetworks. Given an input-output network G we make three key observations. 23

(i) There is a homeostasis matrix H(I) such that dxo
dI (I) = 0 if and only if det(H) = 0 24

(Lemma 1.4). (ii) det(H) factors ((11)) and each factor corresponds to a subnetwork of 25

G (Definition 1.13). (iii) There is an algorithm for determining both the subnetworks 26

and the homeostasis conditions (§1.61.7). 27

We begin by introducing input-output networks and their associated input-output 28

functions in §1.1. A straightforward application of Cramer’s rule (Lemma 1.4) gives a 29

useful method for computing infinitesimal homeostasis points. This result motivates the 30

introduction of the homeostasis matrix H in (5), whose entries are linearized coupling 31

strengths and linearized self-coupling strengths associated with the input-output 32

network. This matrix H is the central object in our theory. The homeostasis matrix has 33

appeared in the literature under different names and notations (cf. [8, 12,14–16,20]). 34

We introduce the notion of core network in §1.3, where every node is both 35

downstream from the input node and upstream from the output node. It allows one to 36

go from the original network to a ‘minimal network’ that retains all essential features of 37

homeostasis. We define core equivalence of core networks in such a way that the 38

determinant of a homeostasis matrix is determined by its core equivalence class. 39

Combinatorial matrix theory [21] lets us put H into block upper triangular form and 40

each diagonal block Bη is irreducible (no further triangularization is possible) and 41

corresponds to an infinitesimal homeostasis type (see §§1.4-1.5). The degree of the type 42

is the size of the square block k. In fact, each block Bη has either k or k − 1 43

self-couplings (Theorem 4.7). In the first case we call the type appendage class and in 44

the second structural class. In §§1.61.6.1-1.61.6.2, we characterize combinatorially both 45

homeostasis types. As noted, our main result is that we have an algorithm stated in 46

§1.61.7 that determines the blocks and their types, and the form of this algorithm 47

depends on the class. 48

The principle tools used to uncover the combinatorial properties of the subnetworks 49

Kη are determinant formulas (Theorem 3.2) and graph theory ideas adapted to 50

input-output networks. The formulas connect the summands of det(H) with the 51

collection of paths of the network G. These formulas are reminiscent of the connection 52

between a directed graph and its adjacency matrix [22]. The combinatorial properties 53

include simple paths from input to output nodes (that divide nodes into simple and 54

appendage) and path components of appendage nodes. These terms will be defined. 55

We end with a classification of low degree homeostasis types, the analysis of an 56

artificial 12-node network, and a short discussion of chair singularities. There are two 57

homeostasis types of degree 1 and two of degree 2. Golubitsky and Wang [13] showed 58

that three of these four types (and no others) can occur in three-node core networks. 59

1.1 Input-output networks and infinitesimal homeostasis 60

We now define the basic objects: input-output networks, network admissible systems of 61

differential equations, and input-output functions. 62
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An input-output network G has a distinguished input node ι, a distinguished output 63

node o (distinct from ι), and n regulatory nodes ρ = (ρ1, . . . , ρn). The network G also 64

has a specified set of arrows connecting nodes ` to nodes j. The associated network 65

systems of differential equations have the form 66

ẋι = fι(xι, xρ, xo, I)
ẋρ = fρ(xι, xρ, xo)
ẋo = fo(xι, xρ, xo)

(1)

where I ∈ R is an external input parameter and X = (xι, xρ, xo) ∈ R×Rn ×R is the 67

vector of state variables associated to the network nodes. 68

We write the network system (1) as 69

Ẋ = F (X, I) (2)

where F = (fι, fρ, fo). Let fj,x` denote the partial derivative of the jth node function fj 70

with respect to the `th node variable x`. We make the following assumptions about the 71

vector field F throughout: 72

(a) F is smooth and has an asymptotically stable equilibrium at (X0, I0). 73

(b) The partial derivative fj,x` can be nonzero only if the network G has an arrow 74

`→ j. 75

(c) Only the input node coordinate function fι depends on the external input 76

parameter I and the partial derivative of fι with respect to I at the equilibrium 77

point (X0, I0) satisfies 78

fι,I(X0, I0) 6= 0 (3)

It follows from (a) and the implicit function theorem applied to 79

F (X, I) = 0 (4)

that there exists a unique family of stable equilibria X(I) = (xι(I), xρ(I), xo(I)) such 80

that X(I0) = X0. 81

Definition 1.1. The mapping I 7→ xo(I) is called the input-output function. 82

Local homeostasis is defined near I0 when the input-output function xo is 83

approximately constant near I0. An important observation is that locally homeostasis 84

occurs when the derivative of xo with respect to I is zero at I0. More precisely: 85

Definition 1.2. Infinitesimal homeostasis occurs at I0 if x′o(I0) = 0 where ′ indicates 86

differentiation with respect to I. 87

It follows from Taylor’s theorem that infinitesimal homeostasis implies local 88

homeostasis, though the converse need not be valid in model equations (see [5]). 89

A notion similar to infinitesimal homeostasis, called perfect homeostasis or perfect 90

adaptation, requires the stronger condition that the derivative of the input-output 91

function be identically zero on an interval. This notion has been used by many authors 92

(cf: [8, 14–16]). 93

Terms that involve coupling in network systems are: 94

Definition 1.3. Let F = (fι, fρ, fo) be an admissible system for the network G. 95

(a) The partial derivative fj,x`(X0, I0) is the linearized coupling associated with the 96

arrow `→ j at the equilibrium (X0, I0). 97

(b) The partial derivative fj,xj (X0, I0) is the linearized self-coupling of node j at the 98

equilibrium (X0, I0). 99
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1.2 Infinitesimal homeostasis using Cramer’s rule 100

As noted previously [5, 12,13], a straightforward application of Cramer’s rule gives a 101

formula for determining infinitesimal homeostasis points. See Lemma 1.4. 102

We use the following notation. Let J be the (n+ 2)× (n+ 2) Jacobian matrix of (2) 103

and let H be the (n+ 1)× (n+ 1) homeostasis matrix given by dropping the first row 104

and the last column of J : 105

J =

 fι,xι fι,xρ fι,xo
fρ,xι fρ,xρ fρ,xo
fo,xι fo,xρ fo,xo

 H =

[
fρ,xι fρ,xρ
fo,xι fo,xρ

]
(5)

Here all partial derivatives f`,xj are evaluated at the equilibrium X0. 106

Lemma 1.4. Let (X0, I0) be an asymptotically stable equilibrium of (2). The 107

input-output function xo(I) satisfies 108

x′o = ± fι,I
det(J)

det(H) (6)

Hence, I0 is a point of infinitesimal homeostasis if and only if 109

det(H) = 0 (7)

at (X0, I0). 110

Proof. Implicit differentiation of (4) with respect to I yields the matrix system 111

J

 x′i
x′ρ
x′o

 = −

 fι,I
0
0

 (8)

Since X0 is assumed to be a stable equilibrium, it follows that det(J) 6= 0. On applying 112

Cramer’s rule to (8) we can solve for x′o obtaining 113

x′o(I0) =
1

det(J)
det

 fι,xι fι,xρ −fι,I
fρ,xι fρ,xρ 0
fo,xι fo,xρ 0

 (9)

which leads to (6). By assumption, fι,I 6= 0. Hence, the fact that infinitesimal 114

homeostasis for (2) is equivalent to (7) follows directly from (6). 115

1.3 Core networks 116

Homeostasis in a given network G can be determined by analyzing a simpler network 117

that is obtained by eliminating certain nodes and arrows from G. We call the network 118

formed by the remaining nodes and arrows the core subnetwork. 119

Definition 1.5. A node τ in a network G is downstream from a node ρ in G if there 120

exists a path in G from ρ to τ . Node ρ is upstream from node τ if τ is downstream from 121

ρ. 122

These relationships are important when trying to classify infinitesimal homeostasis. 123

For example, if the output node o is not downstream from the input node ι, then the 124

input-output function xo(I) is identically constant in I. Although technically this is a 125

form of infinitesimal homeostasis, it is an uninteresting form. 126
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Definition 1.6. The input-output network G is a core network if every node in G is 127

both upstream from the output node o and downstream from the input node ι. 128

Every input-output network G has a maximal core subnetwork; namely, Gc is the 129

core subnetwork whose nodes are the nodes in G that are both upstream from the 130

output and downstream from the input and whose arrows are the arrows in G whose 131

head and tail nodes are both nodes in Gc. 132

The next result concerning core networks follows from Theorem 2.4. 133

Theorem 1.7. Let G be an input-output network and let Gc be the associated core 134

subnetwork. The input-output function associated with Gc has a point of infinitesimal 135

homeostasis at I0 if and only if the input-output function associated with G has a point 136

of infinitesimal homeostasis at I0. 137

It follows from Theorem 1.7 that classifying infinitesimal homeostasis for networks G 138

is equivalent to classifying infinitesimal homeostasis for the core subnetwork Gc. 139

Definition 1.8. (a) Two (n+ 2)-node core networks are core equivalent if the 140

determinants of their homeostasis matrices are identical polynomials of degree 141

n+ 1. 142

(b) A backward arrow is an arrow whose head is the input node ι or whose tail is the 143

output node o. 144

Corollary 1.9. If two core networks differ from each other by the presence or absence 145

of backward arrows, then the core networks are core equivalent. 146

Proof. The linearized couplings associated to backward arrows are of form fι,xk and 147

fk,xo , which do not appear in the homeostasis matrix (7). 148

Therefore, backward arrows can be ignored when computing infinitesimal 149

homeostasis with the homeostasis matrix H. However, backward arrows cannot be 150

totally ignored, since they are involved in the determination of both the equilibria of (2) 151

and their stability. 152

Corollary 1.9 can be generalized to a theorem giving necessary and sufficient graph 153

theoretic conditions for core equivalence. See Theorem 3.3. 154

1.4 Infinitesimal homeostasis blocks 155

The previous results imply that the computation of infinitesimal homeostasis reduces to 156

solving det(H) = 0, where H is the homeostasis matrix associated with a core network. 157

From now on we assume that the input-output network G is a core network. 158

It is important to observe that the nonzero entries of H are the linearized coupling 159

strengths fj,x` for the network connected nodes `→ j and the linearized self-coupling 160

strengths fj,xj . It follows that h = det(H) is a homogeneous polynomial of degree n+ 1 161

in the (n+ 1)2 entries of H. The assumption that the network is core implies that this 162

polynomial is nonzero. We use combinatorial matrix theory to show that in general h 163

can factor and that there is a different type of infinitesimal homeostasis associated with 164

each factor. 165

Frobenius-König theory (see [23] for an historical account) applied to the 166

homeostasis matrix H implies that there are two constant (n+ 1)× (n+ 1) permutation 167

matrices P and Q such that 168

PHQ =


B1 ∗ · · · ∗
0 B2 · · · ∗
...

...
0 0 · · · Bm

 (10)
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where the square matrices B1, . . . , Bm are unique up to permutation. More precisely, 169

each block Bη cannot be brought into the form (10) by permutation of its rows and 170

columns. Hence 171

det(H) = det(B1) · · · det(Bm) or h = h1 · · ·hm (11)

is a unique factorization since hη = det(Bη) cannot further factor for each η; that is, 172

each det(Bη) is an irreducible homogeneous polynomial. Specifically: 173

Theorem 1.10. The polynomial hη = det(Bη) is irreducible (in the sense that it 174

cannot be factored as a polynomial) if and only if the block submatrix Bη is irreducible 175

(in the sense that Bη cannot be brought to the form (10) by permutation of rows and 176

columns of Bη). 177

Proof. The decomposition (10) corresponds to the irreducible components in the 178

factorization (11) follows from [21, Theorem 4.2.6 (pp. 114–115) and Theorem 9.2.4 179

(p. 296)]. 180

A consequence of (11) and (7) is that for each η = 1, . . . ,m there is a defining 181

condition for infinitesimal homeostasis given by the polynomial equation det(Bη) = 0. 182

Recall that the input-output function is implicitly defined in terms of the external input 183

I and det(Bη) is a homogeneous polynomial in the linearized coupling strengths fj,x` 184

evaluated at X(I). Hence, there are m different defining conditions for infinitesimal 185

homeostasis, hη(I) = 0, where each one gives a nonlinear equation that can be solved 186

for some I = I0. In practice, for a given model, it is unlikely that these equations can 187

be solved in closed form; however, it is possible that each defining condition can be 188

solved numerically. So, the decomposition of the homeostasis matrix H into blocks Bη 189

simplifies the solution of det(H) = 0. 190

Definition 1.11. Given the homeostasis matrix H of an input-output network G, we 191

call the unique irreducible diagonal blocks Bη in the decomposition (10) irreducible 192

components. We say that homeostasis in G is of type Bη if det(Bη) = 0 and det(Bξ) 6= 0 193

for all ξ 6= η. 194

1.5 Infinitesimal homeostasis classes 195

The next results assert that the irreducible components Bη of H determine two distinct 196

homeostasis classes (appendage and structural) and that one can associate a subnetwork 197

Kη of G with each Bη (see §4). 198

Let Bη be an irreducible component in the decomposition (10), where Bη is a k × k 199

diagonal block, that is, Bη has degree k. Since the entries of Bη are entries of H, these 200

entries have the form fρ,xτ ; that is, the entries are either 0 (if τ → ρ is not an arrow in 201

G), self-coupling (if τ = ρ), or coupling (if τ → ρ is an arrow in G). 202

Since P and Q in (10) are constant permutation matrices, all entries in each row 203

(resp. column) of Bη must lie in a single row (resp. column) of H. Hence, Bη has the 204

form 205

Bη =

 fρ1,xτ1 · · · fρ1,xτk
...

. . .
...

fρk,xτ1 · · · fρk,xτk

 (12)

It follows that the number of self-coupling entries of Bη are the same no matter which 206

permutation matrices P and Q are used in (10) to determine Bη. In Theorem 4.4 we 207

show that a k × k submatrix Bη has either k or k − 1 self-coupling entries. 208

Definition 1.12. The homeostasis class of an irreducible component Bη of degree k is 209

appendage if Bη has k self-couplings and structural if Bη has k − 1 self-couplings. 210
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Definition 1.13. The subnetwork Kη of G associated with the homeostasis block Bη is 211

defined as follows. The nodes in Kη are the union of nodes p and q where fp,xq is a 212

nonzero entry in Bη and the arrows of Kη are the union of arrows q → p where p 6= q. 213

Theorem 4.7 implies that when Bη is appendage, the subnetwork Kη has k nodes 214

and Bη can be put in a standard Jacobian form without any distinguished nodes ((36)). 215

Also, when Bη is structural, the subnetwork Kη has k + 1 nodes and Bη can be put in a 216

standard homeostasis form with designated input node and output node ((37)). 217

Moreover, in this case, the subnetwork Kη has no backward arrows. That is, Kη has no 218

arrows whose head is the input node or whose tail is the output node. See Remark 4.8 219

for details. 220

1.6 Combinatorial characterization of homeostasis 221

Core input-output networks G have combinatorial properties that we now define and 222

exploit. The key ideas are the concepts of ιo-simple paths and super-simple nodes. 223

Definition 1.14. Let G be a core input-output network. 224

(a) A directed path connecting nodes ρ and τ is called a simple path if it visits each 225

node on the path at most once. 226

(b) An ιo-simple path is a simple path connecting the input node ι to the output node 227

o. 228

(c) A node in G is simple if the node lies on an ιo-simple path and appendage if the 229

node is not simple. 230

(d) A super-simple node is a simple node that lies on every ιo-simple path. 231

Nodes ι and o are super-simple since by definition these nodes are on every ιo-simple 232

path. Lemma 6.1 shows that super-simple nodes are well ordered (by downstream 233

ordering) and hence adjacent super-simple pairs of nodes can be identified. 234

1.6.1 Properties of appendage homeostasis 235

Characterization of appendage homeostasis networks requires the following definitions. 236

Definition 1.15. Let G be a core input-output network. 237

(a) The appendage subnetwork AG of G is the subnetwork consisting of all appendage 238

nodes and all arrows in G connecting appendage nodes. 239

(b) The complementary subnetwork of an ιo-simple path S is the subnetwork CS 240

consisting of all nodes not on S and all arrows in G connecting those nodes. 241

(c) Nodes ρi, ρj in AG are path equivalent if there exists paths in AG from ρi to ρj and 242

from ρj to ρi. An appendage path component is a path equivalence class in AG . 243

(d) A cycle is a path whose first and last nodes are identical. 244

(e) Let K ⊂ AG be a subnetwork. We say that K satisfies the no cycle condition if for 245

every ιo-simple path S, nodes in K do not form a cycle with nodes in CS \ K. 246

In §5 we prove that every subnetwork Kη of G associated with an irreducible 247

appendage homeostasis block Bη consists of appendage nodes (Theorem 5.2), is an 248

appendage path component of AG , and satisfies the no cycle condition (Theorem 5.4). 249

The converse is proved in Theorem 7.1. 250
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Remark 1.16. Nodes in the appendage subnetwork AG can be written uniquely as the 251

disjoint union 252

AG = (A1∪̇ · · · ∪̇As) ∪̇ (B1∪̇ · · · ∪̇Bt) (13)

where each Ai is an appendage path component that satisfies the no cycle condition and 253

each Bi is an appendage path component that violates the no cycle condition. Moreover, 254

each Ai (resp. Bi) can be viewed as a subnetwork of AG by including the arrows in AG 255

that connect nodes in Ai (resp. Bi). We call Ai a no cycle appendage path component 256

and Bi a cycle appendage path component. 257

1.6.2 Properties of structural homeostasis 258

Corollary 6.10 shows that if Bη corresponds to an irreducible structural block, then Kη 259

has two adjacent super-simple nodes (Theorem 6.9) and these super-simple nodes are 260

the input node ` and the output node j in Kη. In addition, it follows from the standard 261

homeostasis form (Theorem 4.7) that the network Kη contains no backward arrows. 262

That is, no arrows of Kη go into the input node ` nor out of the output node j. 263

We use the properties of structural homeostasis to construct all structural 264

homeostasis subnetworks Kη up to core equivalence. First, we introduce the following 265

terminology. 266

Definition 1.17. The structural subnetwork SG of G is the subnetwork whose nodes 267

are either simple or in a cycle appendage path component Bi (see Remark 1.16) and 268

whose arrows are arrows in G that connect nodes in SG . 269

Lemma 5.5 implies that all structural homeostasis subnetworks are contained in SG , 270

which is an input-output network. That is, G and SG have the same simple, 271

super-simple, input, and output nodes. Lemma 6.2 shows that every non-super-simple 272

simple node lies between two adjacent super-simple nodes. Using this fact, we can 273

define a subnetwork L of SG for every pair of adjacent super-simple nodes. 274

Definition 1.18. Let ρ1, ρ2 be adjacent super-simple nodes. 275

(a) A simple node ρ is between ρ1 and ρ2 if there exists an ιo-simple path that 276

includes ρ1 to ρ to ρ2 in that order. 277

(b) The super-simple subnetwork, denoted L(ρ1, ρ2), is the subnetwork whose nodes 278

are simple nodes between ρ1 and ρ2 and whose arrows are arrows of G connecting 279

nodes in L(ρ1, ρ2). 280

It follows that all L(ρ1, ρ2) are contained in SG . By Lemma 6.3 (d), each appendage 281

node in SG connects to exactly one L. This lets us expand a super-simple subnetwork 282

L ⊂ SG to a super-simple structural subnetwork L′ ⊂ SG as follows. 283

Definition 1.19. Let ρ1 and ρ2 be adjacent super-simple nodes in G. The super-simple 284

structural subnetwork L′(ρ1, ρ2) is the input-output subnetwork consisting of nodes in 285

L(ρ1, ρ2) ∪ B where B consists of all appendage nodes that form cycles with nodes in 286

L(ρ1, ρ2); that is, all cycle appendage path components that connect to L(ρ1, ρ2). 287

Arrows of L′(ρ1, ρ2) are arrows of G that connect nodes in L′(ρ1, ρ2). Note that ρ1 is 288

the input node and ρ2 is the output node of L′(ρ1, ρ2). 289

In §6 we prove that every subnetwork Kη of G associated with an irreducible 290

structural homeostasis block Bη is a super-simple structural subnetwork (Theorem 6.11). 291

The converse is proved in Theorem 7.2. 292
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1.7 Algorithm for enumerating homeostasis subnetworks 293

Below is an algorithm for enumerating subnetworks corresponding to the m homeostasis 294

blocks. 295

Step 1: Determining the appendage homeostasis subnetworks from AG . Let 296

A1 , . . . , As (14)

be the no cycle appendage path components of AG (see Remark 1.16). Theorem 7.1 297

implies that these appendage path components are the subnetworks Kη that correspond 298

to appendage homeostasis blocks. In addition, there are s independent defining 299

conditions for appendage homeostasis given by the determinants of the Jacobian 300

matrices det(JAi) = 0 for i = 1, . . . , s. 301

Step 2: Determining the structural homeostasis subnetworks from SG . Let 302

ι = ρ1 > ρ2 > . . . > ρq+1 = o be the super-simple nodes in SG in downstream order. 303

Theorems 6.11 and 7.2 imply that up to core equivalence the q super-simple structural 304

subnetworks 305

L′(ι, ρ2), L′(ρ2, ρ3) , . . . , L′(ρq−1, ρq), L′(ρq, o) (15)

are the subnetworks Kη that correspond to structural homeostasis blocks. In addition, 306

there are q defining conditions for structural homeostasis blocks given by the 307

determinants of the homeostasis matrices of the input-output networks: 308

det
(
H(L′(ρi, ρi+1))

)
= 0 for i = 1, . . . , q. 309

Therefore, the m = s+ q subnetworks listed in (14) and (15) enumerate the 310

appendage and structural homeostasis subnetworks in G. 311

1.8 Low degree homeostasis types 312

Here we specialize our discussion to the low degree cases k = 1 and k = 2 where we 313

determine all such homeostasis types (see Figure 1). The first three types appear in 314

three node networks and are given in the classification in [13]. The fourth type has 315

degree k = 2, but can only appear in networks with at least four nodes (see 316

Figure 2(A)). We note that the lowest degree of a structural homeostasis block with an 317

appendage node (that is, L′ ) L) is k = 3 (see Figure 2(B)). 318

τ

ι ο

(a) Haldane (ι→ o); Null-degradation (τ)

ρι ο

(b) 2 Haldane (ι→ ρ; ρ→ o)

ρι ο

(c) Feedforward Loop

Fig 1. Homeostasis types in three-node networks. Classification of three-node
core networks up to core equivalence (see [13]).
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1.8.1 Degree 1 no cycle appendage homeostasis (null-degradation) 319

This corresponds to the vanishing of a degree 1 irreducible factor of the form (fτ,xτ ). 320

The single node τ is a no cycle appendage path component. Apply Step 1 in 321

Algorithm §1.61.7 to Figure 1(A). 322

1.8.2 Degree 1 structural homeostasis (Haldane) 323

This corresponds to the vanishing of a degree 1 irreducible factor of the form (fj,x`) 324

whose associated subnetwork is L′(`, j) of the form `→ j. Apply Step 2 in 325

Algorithm §1.61.7 to Figure 1(B). 326

1.8.3 Degree 2 structural homeostasis (feed-forward loop) 327

This corresponds to a three-node input-output subnetwork L′(`, j) with input node `, 328

output node j, and regulatory node ρ, where ` and j are adjacent super-simple and ρ is 329

a simple node between the two super-simple nodes. It follows that both paths 330

`→ ρ→ j and `→ j are in L′ = L. Hence, L′ is a feedforward loop motif. Homeostasis 331

occurs when 332

det
(
H(L′(`, j))

)
= fρ,x`fj,xρ − fj,x`fρ,xρ = 0

Apply Step 2 in Algorithm §1.61.7 to Figure 1(C). 333

1.8.4 Degree 2 no cycle appendage homeostasis 334

This is associated with a two-node appendage path component A = {τ1, τ2} with arrows 335

τ1 → τ2 and τ2 → τ1. Homeostasis occurs when 336

det
(
J(A)

)
= fτ1,xτ1 fτ2,xτ2 − fτ1,xτ2 fτ2,xτ1 = 0

Apply Step 1 in Algorithm §1.61.7 to Figure 2(A). 337

2

ι ο

τ
1

τ

(a) Haldane (ι→ o); Degree 2
Appendage (τ2 ⇔ τ1)

τ

ι ορ

(b) Structural with appendage

Fig 2. Homeostasis types in four-node networks. (A) is the smallest network
with degree 2 no cycle appendage homeostasis. (B) is the smallest network that has
appendage nodes in structural homeostasis.

1.9 12-Node artificial network example 338

We use an artificial example to illustrate the algorithm for enumerating homeostasis 339

blocks. The network shown in Figure 3 has input node (ι), output node (o), six 340

regulatory nodes (ρ1, . . . , ρ6), and four appendage nodes (τ1, τ2, τ3, τ4). The 341

input-output network G in Figure 3 has four ιo-simple paths (see Table 1) and six 342

homeostasis subnetworks that can be found in two steps using the algorithm in §1.7. 343

The input-output network G in Figure 3 has six homeostasis subnetworks, which can 344

be found in two steps: 345
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ρ5

I ι ορ1 ρ3 ρ4 ρ6

τ1 τ2 τ3 τ4

ρ2

Fig 3. The 12-node example. Input node ι, output node o, six regulatory nodes
ρ1, . . . , ρ6, and four appendage nodes τ1, . . . , τ4. The network has four ιo-simple paths
(see Table 1) and five super-simple nodes ι, ρ1, ρ3, ρ4, o. The six homeostasis blocks are
listed in Table 2.

Table 1. Four ιo-simple paths for network in Figure 3

Simple path (S) Complementary subnetwork (CS)

ι→ ρ1 → ρ2 → ρ3 → ρ4 → ρ5 → o {τ1, τ2, τ3, τ4, ρ6}
ι→ ρ1 → ρ2 → ρ3 → ρ4 → ρ6 → o {τ1, τ2, τ3, τ4, ρ5}
ι→ ρ1 → ρ3 → ρ4 → ρ5 → o {τ1, ρ2, τ2, τ3, τ4, ρ6}
ι→ ρ1 → ρ3 → ρ4 → ρ6 → o {τ1, τ2, τ3, τ4, ρ5, ρ2}

Step 1: G has three appendage path components (A1 = {τ1}, A2 = {τ2, τ3}, 346

B1 = {τ4}) in AG . Among these, A1 and A2 satisfy the no cycle condition, whereas B1 347

does not since τ4 forms a cycle with simple node ρ6. Hence, there are two appendage 348

homeostasis subnetworks given by A1 and A2. 349

Step 2: G has five super-simple nodes (in downstream order, they are ι, ρ1, ρ3, ρ4, o). 350

The five super-simple nodes lead to four structural homeostasis subnetworks given (up 351

to core equivalence) by L′(ι, ρ1), L′(ρ1, ρ3), L′(ρ3, ρ4), L′(ρ4, o). 352

Table 2 lists the six homeostasis subnetworks in G, which give the six irreducible 353

factors of det(H) where H is the 11× 11 homeostasis matrix of G. The factorization of 354

the degree 11 homogeneous polynomial det(H) is given by 355

det(H) = ±fτ1,xτ1 det(B2)fρ1,xι det(B4)fρ4,xρ3 det(B6)

where

B2 =

[
fτ2,xτ2 fτ2,xτ3
fτ3,xτ2 fτ3,xτ3

]
B4 =

[
fρ2,xρ1 fρ2,xρ2
fρ3,xρ1 fρ3,xρ2

]

B6 =


fρ5,xρ4 fρ5,xρ5 0 0
fρ6,xρ4 0 fρ6,xρ6 fρ6,xτ4

0 0 fτ4,xρ6 fτ4,xτ4
0 fo,xρ5 fo,xρ6 0



1.10 Remark on chairs 356

Nijhout, Best and Reed [24] observed that homeostasis often appears in models in the 357

form of a chair. That is, as I varies, the input-output function x0(I) has the piecewise 358

linear description: increases linearly, is approximately constant, and then increases 359

July 11, 2020 11/33



Table 2. Homeostasis subnetworks in Figure 3.

Class Homeostasis subnetworks Name

appendage A1 = {τ1} null-degradation
appendage A2 = {τ1 ⇔ τ2} no cycle appendage
structural L′(ι, ρ1) = {ι→ ρ1} Haldane
structural L′(ρ1, ρ3) = {ρ1, ρ2 ρ3} feedforward loop
structural L′(ρ3, ρ4) = {ρ3 → ρ4} Haldane
structural L′(ρ4, o) = {ρ4, ρ5, ρ6, τ4, o} degree 4 structural

linearly again. Golubitsky and Stewart [12] observed that it follows from elementary 360

catastrophe theory that smooth chair singularities have the normal form I3, defining 361

conditions 362

x′o(I0) = x′′o(I0) = 0

and nondegeneracy condition x′′′0 (I0) 6= 0. Moreover, [13] noted that if 363

x′0(I) = g(I)h(I), where g(I0) 6= 0, then the defining conditions for a chair singularity 364

are equivalent to 365

h(I0) = h′(I0) = 0 and h′′(I0) 6= 0 (16)

It follows from Lemma 1.4 and (11) that a chair singularity for infinitesimal homeostasis 366

is of type Bη if hη(I) satisfies (16) at I = I0. 367

1.11 Commentary 368

In this paper we propose a strategy for understanding the different ways that 369

infinitesimal homeostasis can occur in admissible network dynamical systems. We 370

consider input-output networks with a designated input node ι, a designated output 371

node o, and admissible network differential equations, where the 1-dimensional input 372

parameter I only affects the network through the input node. This setup allows us to 373

consider the level of output xo as a function of the input parameter I, called the 374

input-output function. Apart from these conditions, this class of networks includes 375

arbitrarily large and complex networks with no prior assumption as to how the nodes 376

are interconnected. The dynamics considered can also be arbitrary, as long as it is 377

compatible with the network, that is, the results do not depend on the functional form 378

of the associated model equations. This flexibility comes from the fact that our 379

approach is based on the notion of infinitesimal homeostasis – points where the 380

derivative of the input-output function is zero [12]. This makes the theory widely 381

applicable – and not restricted only to biochemical network model equations. In fact, 382

the theory is applicable to any class of model equations where the singularity theory 383

point of view of homeostasis advanced in [12] is applicable. 384

1.12 Structure of the paper. 385

In §2 we show that infinitesimal homeostasis in the original system (1) occurs in a 386

network if and only if infinitesimal homeostasis occurs in the core network for the 387

associated frozen system. See Theorem 2.4. We discuss when backward arrows can be 388

ignored when computing the determinant of the homeostasis matrix and the limitations 389

of this procedure (see Corollary 1.9). In §3 we relate the form of the summands of the 390

determinant of the homeostasis matrix H with the form of ιo-simple paths of the 391

input-output network. See Theorem 3.2. In Theorem 3.3 we also discuss ‘core 392

equivalence’. In §4 we prove the theorems about the appendage and structural classes of 393

homeostasis. See Definition 4.3, Theorem 4.4, and the normal form Theorem 4.7. In §5 394
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we prove the necessary conditions that appendage homeostasis must satisfy. See 395

Theorem 5.4. §6 and §§6.5 introduce an ordering of super-simple nodes that leads to a 396

combinatorial definition of structural blocks. See Definitions 1.18 and 1.19. The 397

connection of these blocks with the subnetworks Kη obtained from the homeostasis 398

matrix is given in Corollary 6.7 and Theorem 6.11. §7 summarizes our algorithm for 399

finding infinitesimal homeostasis directly from the input-output network G. It also gives 400

a topological classification of the different types of infinitesimal homeostasis that the 401

network G can support. 402

2 Core networks 403

Let G be an input-output network with input node ι, output node o, and regulatory 404

nodes ρj . We use the notions of upstream and downstream nodes to construct a core 405

subnetwork Gc of G. 406

The stable equilibrium (X0, I0) of the system of differential equations (1) satisfy a 407

system of nonlinear equations (4), that can be explicitly written as 408

fι(xι, xρ, xo, I) = 0
fρ(xι, xρ, xo) = 0
fι(xι, xρ, xo) = 0

(17)

We start by partitioning the regulatory nodes ρ into three types: 409

• those nodes σ that are both upstream from o and downstream from ι, 410

• those nodes d that are not downstream from ι, 411

• those nodes u that are downstream from ι and not upstream from o. 412

Based on this partition, the system (17) has the form 413

fι(xι, xσ, xu, xd, xo, I) = 0
fσ(xι, xσ, xu, xd, xo) = 0
fu(xι, xσ, xu, xd, xo) = 0
fd(xι, xσ, xu, xd, xo) = 0
fo(xι, xσ, xu, xd, xo) = 0

(18)

In Lemma 2.1 we make this form more explicit. 414

Lemma 2.1. The definitions of σ, u, and d nodes imply the admissible system (18) 415

has the form 416

ẋι = fι(xι, xσ, xd, xo, I)
ẋσ = fσ(xι, xσ, xd, xo)
ẋu = fu(xι, xσ, xu, xd, xo)
ẋd = fd(xd)
ẋo = fo(xι, xσ, xd, xo)

(19)

Specifically, arrows of type σ → d, ι→ d, u→ d, o→ d, u→ σ, u→ o, u→ ι do not 417

exist. 418

Proof. We list the restrictions on (18) given first by the definition of d and then by the 419

definition of u. 420

σ 6→ d If a node in σ connects to a node in d, then there would be a path from ι to a 421

node in d and that node in d would be downstream from ι, a contradiction. 422

Therefore, fd is independent of xσ. 423
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ι 6→ d Similarly, the node ι cannot connect to a node in d, because that node would 424

then be downtream from ι, a contradiction. Therefore, fd is independent of xι. 425

o 6→ d If there is an arrow o→ d, then there is a path ι→ σ → o→ d. Hence there is a 426

path ι→ d and that is not allowed. Therefore, fd is independent of xo. 427

u 6→ d Note that nodes in u must be downstream from ι. Hence, there cannot be a 428

connection from u to d or else there would be a connection from ι to d. Therefore, 429

fd is independent of xu. 430

u 6→ σ if a node in u connects to a node in σ, then there would be a path from u to o 431

and u would be upstream from o, a contradiction. Therefore, fσ is independent of 432

xu. 433

u 6→ o Suppose a node in u connects to o. Then that node is upstream from o, a 434

contradiction. Therefore, fo is independent of xu. 435

u 6→ ι Finally, if u connects to ι, then u connects to o, a contradiction. Therefore, fι is 436

independent of xu. 437

The remaining types of connections can exist in Gc. Arrows that can exist in Gc are 438

shown in Figure 4. 439

d

ι
οσ

u

Fig 4. Core networks. Arrows indicating paths connecting nodes in partitioned
input-output network.

Lemma 2.2. Suppose X0 = (x∗ι , x
∗
σ, x
∗
u, x
∗
d, x
∗
o) is a stable equilibrium of (19). Then 440

the core admissible system (obtained by freezing xd at x∗d) 441

ẋι = fι(xι, xσ, x
∗
d, xo, I)

ẋσ = fσ(xι, xσ, x
∗
d, xo)

ẋo = fo(xι, xσ, x
∗
d, xo)

(20)

has a stable equilibrium at Y0 = (x∗ι , x
∗
σ, x
∗
o). 442

Proof. It is straightforward that Y0 is an equilibrium of (20). Reorder coordinates 443

(ι, σ, u, d, o) to (ι, σ, o, d, u). Then Lemma 2.1 implies that the Jacobian J of (19) has 444

the form 445

J =


fι,xι fι,xσ 0 fι,xd fι,xo
fσ,xι fσ,xσ 0 fσ,xd fσ,xo
fu,xι fu,xσ fu,xu fu,xd fu,xo

0 0 0 fd,xd 0
fo,xι fo,xσ 0 fo,xd fo,xo

 (21)
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and on swapping the u and o coordinates we see that J is similar to 446

J1 =


fι,xι fι,xσ fι,xo fι,xd 0
fσ,xι fσ,xσ fσ,xo fσ,xd 0
fo,xι fo,xσ fo,xo fo,xd 0

0 0 0 fd,xd 0
fu,xι fu,xσ fu,xo fu,xd fu,xu

 (22)

It follows that the eigenvalues of J at X0 are the eigenvalues of fd,xd , fu,xu , and the 447

eigenvalues of the Jacobian of (20) at Y0. Since the eigenvalues of J1 have negative real 448

part, the equilibrium Y0 is stable. 449

Lemma 2.3. Suppose that G is an input-output network with core network Gc. Suppose 450

that the core admissible system 451

ẋι = fι(xι, xσ, xo, I)
ẋσ = fσ(xι, xσ, xo)
ẋo = fo(xι, xσ, xo)

(23)

has a stable equilibrium at Y0 = (x∗ι , x
∗
σ, x
∗
o) and a point of infinitesimal homeostasis at 452

I0. Then the admissible system for the original network G (obtained by lifting xu and 453

xd) 454

ẋι = fι(xι, xσ, xo, I)
ẋσ = fσ(xι, xσ, xo)
ẋd = −xd
ẋu = −xu
ẋo = fo(xι, xσ, xo)

(24)

has a stable equilibrium at X0 = (x∗ι , x
∗
σ, 0, 0, x

∗
o) and infinitesimal homeostasis at I0. 455

Theorem 2.4. Let xo(I) be the input-output function of the admissible system (19) 456

and let xco(I) be the input-output function of the associated core admissible system (20). 457

Then the input-output function xco(I) associated with the core subnetwork has a point of 458

infinitesimal homeostasis at I0 if and only if the input-output function xo(I) associated 459

with the original network has a point of infinitesimal homeostasis at I0. More precisely, 460

x′o(I) = k(I)xc ′o (I) (25)

where k(I0) 6= 0. 461

Proof. It follows from Lemma 1.4 that x′o(I0) = 0 if and only if 462

det


fσ,xι fσ,xσ 0 fσ,xd
fu,xι fu,xσ fu,xu fu,xd

0 0 0 fd,xd
fo,xι fo,xσ 0 fo,xd

 = 0

if and only if 463

det(fu,xu) det

 fσ,xι fσ,xσ fσ,xd
0 0 fd,xd

fo,xι fo,xσ fo,xd

 = 0

if and only if 464

det(fu,xu) det(fd,xd) det

[
fσ,xι fσ,xσ
fo,xι fo,xσ

]
= 0
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Both matrices fu,xu and fd,xd are triangular with negative diagonal entries and thus 465

have nonzero determinants. It then follows from Lemma 1.4 that xc ′o (I0) = 0 if and 466

only if 467

det

[
fσ,xι fσ,xσ
fo,xι fo,xσ

]
= 0 (26)

is satisfied. 468

It follows from Theorem 2.4 and Lemma 2.3 that classifying infinitesimal 469

homeostasis for networks G is identical to classifying infinitesimal homeostasis for the 470

core subnetwork Gc. Specifically, an admissible system with infinitesimal homeostasis 471

for the core subnetwork yields, by Lemma 2.3, an admissible system with infinitesimal 472

homeostasis for the original network which in turn yields the original system for the 473

core subnetwork with infinitesimal homeostasis by Theorem 2.4. 474

Remark 2.5. Corollary 1.9 implies that backward arrows can be eliminated when 475

computing zeros of det(H). These arrows cannot be eliminated when computing 476

equilibria of the network equations or their stability. See (29) in Example 2.6. 477

Example 2.6. Consider the network in Figure 5. Assume WLOG that an admissible 478

vector field for this network 479

ẋι = fι(xι, xρ, I)
ẋρ = fρ(xι, xρ)
ẋo = fo(xρ, xo)

(27)

has an equilibrium at the origin (X0, I0) = (0, 0); that is 480

fι(0, 0, 0) = fρ(0, 0) = fo(0, 0) = 0.

Begin by noting that the Jacobian of (27) is 481

J =

 fι,xι fι,xρ 0
fρ,xι fρ,xρ 0

0 fo,xρ fo,xo

 (28)

οι ρ

Fig 5. Network with a (dashed) backward arrow.

The origin is a linearly stable equilibrium if and only if 482

fo,x0 < 0 fι,xι + fρ,xρ < 0 fι,xιfρ,xρ − fι,xρfρ,xι > 0 (29)

Whether the third inequality in (29) holds depends on the value of the backward 483

coupling fι,xρ = 0. However, whether infinitesimal homeostasis (x′o(0) = 0) occurs is 484

independent of the backward coupling since 485

det

[
fρ,xι fρ,xρ
fo,xι fo,xρ

]
= det

[
fρ,xι fρ,xρ

0 fo,xρ

]
= fρ,xιfo,xρ = 0
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3 Determinant lemmas 486

Let H be the (n+ 1)× (n+ 1) homeostasis matrix (5) of the input-output network G 487

with input node ι, n regulatory nodes ρj , and output node o, and admissible system (1). 488

Lemma 3.1. Every nonzero summand of det(H) corresponds to a unique ιo-simple 489

path and has all coupling strengths within this ιo-simple path as its factors. 490

Proof. Each nonzero summand in det(H) has n+ 1 factors and each factor is the 491

strength of a coupling arrow or of the linearized internal dynamics of a node. We can 492

write H as 493

H =



ι
↓

ρ1
↓

ρn−1
↓

ρn
↓

f1,ι f1,1 · · · f1,n−1 f1,n
f2,ι f2,1 · · · f2,n−1 f2,n

...
...

...
...

...
fn,ι fn,1 · · · fn,n−1 fn,n
fo,ι fo,1 · · · fo,n−1 fo,n


| ← ρ1
| ← ρ2

| ← ρn
| ← o

(30)

The columns of H correspond to n+ 1 nodes in the order ι, ρ1, . . . , ρn and the rows of 494

H correspond to n+ 1 nodes in the order ρ1, . . . , ρn, o. The entry fj,ι = fρj ,xι in 495

column ι is the linearized coupling strength of an arrow ι→ ρj . The entry fo,k = fo,xρk 496

in row o is the linearized coupling strength of an arrow ρk → o. The entry fj,k = fρj ,xρk 497

is the linearized coupling strength of an arrow ρk → ρj . If j = k, the entry 498

fk,k = fρk,xρk is the linearized internal dynamics of node k. Note that each summand in 499

the expansion of det(H) has one factor associated with each column of H and one 500

factor associated with each row of H. 501

Fix a summand. By assumption there is a unique factor associated with the first 502

column. If this factor is fo,ι, we are done and the simple path is ι→ o. So assume the 503

factor in the first column is fk,ι, where 1 ≤ k ≤ n. This factor is associated with the 504

arrow ι→ ρk. 505

Next there is a unique factor in the column called ρk and that factor corresponds to 506

an arrow ρk → ρj for some node ρj . If node ρj is o, the summand includes (fk,ιfo,k) 507

and the associated simple path is ι→ ρk → o. Hence we are done. If not, we assume 508

1 ≤ j ≤ n. Since there is only one summand factor in each row of H, it follows that 509

k 6= j. This summand is then associated with the path ι→ ρk → ρj and contains the 510

factors (fk,ιfj,k). 511

Proceed inductively. By the pigeon hole principle we eventually reach a node that 512

connects to o. The simple path that is associated to the given summand is unique 513

because we start with the unique factor in the summand that has an arrow whose tail is 514

ι and the choice of ρi is unique at each step. Moreover, every coupling within this 515

simple path is a factor of the given summand. 516

The determinant formula (31) for det(H) in Theorem 3.2 is obtained by indexing 517

the sum by the ιo-simple paths of G as described in Lemma 3.1. 518

Theorem 3.2. Suppose G has k ιo-simple paths S1, . . . , Sk with corresponding 519

complementary subnetworks C1, . . . , Ck. Then 520

(a) The determinant formula holds: 521

det(H) =

k∑
i=1

FSi GCi (31)

where FSi is the product of the coupling strengths within the ιo-simple path Si and 522

GCi is a function of coupling strengths (including self-coupling strengths) from Ci. 523
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(b) Specifically, 524

GCi = ±det(JCi) (32)

where JCi is the Jacobian matrix of the admissible system corresponding to the 525

complementary subnetwork Ci. Generically, a coupling strength in G cannot be a 526

factor of GCi . 527

Proof. (a) Let Si be the r + 2 node ιo-simple path ι→ j1 → · · · → jr → o and let 528

FSi = fi1,xιfi2,xi1 · · · fir,xir−1
fo,xir

be the product of all coupling strengths in Si. By Lemma 3.1, det(H) has the 529

form (31). We claim that GCi is a function depending only on the coupling 530

strengths (including self-coupling strengths) from the complementary subnetwork 531

Ci. Since each summand in the expansion of det(H) has only one factor in each 532

column of H and one factor in each row of H, the couplings in GCi must have 533

different tails and heads from the ones that appear in the simple path. Hence, 534

GCi is a function of couplings (including self-couplings) between nodes that are 535

not in the simple path Si, as claimed. 536

(b) Next we show that up to sign GCi is the determinant of the Jacobian matrix of 537

the admissible system for the subnetwork Ci (see (32)). To this end, relabel the 538

nodes so that the ιo-simple path Si is 539

ι→ 1→ · · · → r → o

and the nodes in the complementary subnetwork Ci are labeled r+ 1, . . . , n. Then 540

FSi = (−1)χf1,xιf2,x1
· · · fr,xr−1

fo,xr

where χ permutes the nodes of the ιo-simple path Si to 1, . . . , r. The summands 541

of det(H) associated with Si are FSiGCi , where 542

GCi =
∑
σ

(−1)σfr+1,xσ(r+1)
· · · fn,xσ(n)

(33)

and σ is a permutation of the indices r + 1, . . . , n. Observe that the right hand 543

side of (33) is just det(JCi) up to sign. 544

Lastly, we show that no coupling strength in G can be a factor of det(JCi). The 545

coupling strengths correspond to the arrows and the self-coupling strengths 546

correspond to the nodes. The self-coupling strengths are the diagonal entries of 547

JCi , which are generically nonzero. If we set all coupling strengths to 0 (that is, 548

assume they are neutral), then the off-diagonal entries of det(JCi) are 0 and 549

det(JCi) 6= 0. Now suppose that one coupling strength is a factor of det(JCi), 550

then det(JCi) = 0 if that coupling is neutral and we have a contradiction. It 551

follows that no coupling strength can be a factor of det(JCi). 552

553

Theorem 3.3. Two core networks are core equivalent if and only if they have the same 554

set of ιo-simple paths and the Jacobian matrices of the complementary subnetworks to 555

any simple path have the same determinant up to sign. 556

Proof. ⇒ Let G1 and G2 be core networks and assume they are core equivalent. 557

Therefore, det(B1) = det(B2) and by Theorem 3.2 558

det(B1) ≡
k∑
i=1

FSi GCi =
∑̀
j=1

FTj GDj ≡ det(B2)
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If a simple path of G1 were not a simple path of G2, the equality would fail; that is, the 559

polynomials would be unequal. Therefore, we may assume ` = k and (by renumbering if 560

needed) that Ti = Si for all i. It follows that 561

k∑
i=1

FSi (GCi −GDi) = 0

Since the FSi are linearly independent it follows that GCi = GDi for all i; that is, 562

det(JCi) = ±det(JDi) where JCi and JDi are the Jacobian matrices associated with G1 563

and G2. Hence the Jacobian matrices of the two complementary subnetworks have the 564

same determinant up to sign. 565

⇐ The converse follows directly from Theorem 3.2. 566

Corollary 3.4. Two core networks are core equivalent if they have the same set of 567

ιo-simple paths and the same complementary subnetworks to these simple paths. 568

Proof. Follows directly from Theorem 3.3. 569

4 Infinitesimal homeostasis classes 570

In this section we prove that there are two classes of infinitesimal homeostasis: 571

appendage and structural. See Definition 4.3 and Theorem 4.4. The section ends with a 572

description of a ‘normal form’ for appendage and structural homeostasis blocks. These 573

‘normal forms’ are given in Theorem 4.7. 574

§5 discusses graph theoretic attributes of appendage homeostasis and §§6.5 discusses 575

graph theoretic attributes of structural homeostasis. This material leads to the 576

conclusions in §7 where it is shown that each structural block is generated by two 577

adjacent super-simple nodes and each appendage block is generated by a path 578

component of the subnetwork of appendage nodes. 579

Recall from (10) that we can associate with each homeostasis matrix H a set of m 580

irreducible square blocks B1, . . . , Bm where 581

PHQ =


B1 ∗ · · · ∗
0 B2 · · · ∗
...

...
0 0 · · · Bm

 (34)

and P and Q are (n+ 1)× (n+ 1) permutation matrices. 582

Lemma 4.1. Let H be an (n+ 1)× (n+ 1) homeostasis matrix and let P and Q be 583

(n+ 1)× (n+ 1) permutation matrices. Then the rows (and columns) of PHQ are the 584

same as the rows (and columns) of H up to reordering. Moreover, the set of entries of 585

H are identical with the set of entries of PHQ. 586

Proof. The set of rows of PH are identical to the set of rows of H. A row of HQ 587

contains the same entries as the corresponding row of H—but with entries permuted. 588

The second statement follows from the first. 589

Recall that the entries of the homeostasis matrix H, defined in (5) for an admissible 590

system of a given input-output network G, appear in three types: 0, coupling, and 591

self-coupling. The following lemma is important in our discussion of homeostasis types. 592

Lemma 4.2. The number of self-coupling entries in each diagonal block Bη is an 593

invariant of the homeostasis matrix H. 594
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Proof. Suppose H is transformed in two different ways to upper triangular form (34). 595

Then one obtains two sets of diagonal blocks B1, . . . , Bm and B̃1, . . . B̃m̃. Since one set 596

of blocks is transformed into the other by a permutation, it follows that the number of 597

blocks in each set is the same. Moreover, the blocks are related by 598

B̃M(ν) = PνBνQν

where M is a permutation of the index sets and for each ν, Pν and Qν are permutation 599

matrices. It follows from Lemma 4.1 that the size and the number of self-coupling 600

entries of the square matrices B̃M(ν) and Bν are identical. 601

We can now define the two homeostasis classes. 602

Definition 4.3. Let Bη be an irreducible k × k square block associated with the 603

(n+ 1)× (n+ 1) homeostasis matrix H in (34). The homeostasis class associated with 604

Bη is appendage if Bη has k self-coupling entries and structural if Bη has k − 1 605

self-coupling entries. 606

Theorem 4.4 shows that each square block is either appendage or structural. 607

Theorem 4.4. Let H be an (n+ 1)× (n+ 1) homeostasis matrix and let Bη be a k× k 608

square diagonal block of the matrix PHQ given in (34), where P and Q are permutation 609

matrices and k ≥ 1. Then Bη has either k − 1 self-couplings or k self-couplings. 610

Proof. Note that either 611

PHQ =

[
Bη D
0 E

]
or PHQ =

 A B C
0 Bη D
0 0 E

 (35)

where A is an nonempty square matrix. In the first case in (35) Bη has single 612

self-coupling entries in each of either k − 1 or k columns. 613

We assume the second case in (35). From Lemma 4.1 it follows that PHQ has 614

exactly one row and exactly one column without a self-coupling entry. Hence, if Bη has 615

more than k self-couplings, then Bη and hence H have a row with at least two 616

self-couplings, which is not allowed. 617

We show by contradiction that Bη has at least k − 1 self-couplings. Suppose Bη has 618

` ≤ k − 2 self-coupling entries. Note that there are ` self-couplings in Bη by assumption, 619

and there are no self-couplings in the 0 block. Let b be the number of self-couplings in 620

B. Then b+ ` is the number of self-couplings in [B Bη 0]t. Now, either every column or 621

every column but one in [B Bη 0]t has a self-coupling. Therefore, 622

k − 1 ≤ b+ ` ≤ k or k − `− 1 ≤ b ≤ k − `

We consider the two cases: 623

• Assume b = k − `− 1. Then there exists one column in [B Bη 0]t that has no 624

self-couplings. Therefore, every column in A has a self-coupling. Since B has a 625

self-coupling, it follows that one row in [A B C] has two self-couplings – a 626

contradiction. 627

• Assume b = k − `. Since [B Bη 0]t has self-couplings in every column, it follows 628

that A has a self-coupling in every column save at most one. It then follows that 629

A has a self-coupling in every row save at most one. Since k − ` ≥ 2, at east one 630

row in [A B C] has two self-couplings – also a contradiction. 631

Therefore, ` = k − 1 or ` = k. 632
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We build on Theorem 4.4 by putting Bη into a standard form of type (39). Its proof 633

uses the next two lemmas about shapes and summands. A shape E is a subspace of 634

m× n matrices E = (eij), where eij = 0 for some fixed subset of indices i, j. A square 635

shape D is nonsingular if det(D) 6= 0 for some D ∈ D. A summand of a nonsingular 636

shape D is a nonzero product in det(D) for some D ∈ D. 637

Lemma 4.5. The nonzero summands of det(PHQ) and det(H) are identical. 638

Proof. Since det(P ) = det(Q) = ±1, it follows that det(PHQ) = ±det(H). Hence, the 639

nonzero summands must be identical. 640

Lemma 4.6. Suppose B and C are nonsingular shapes. Let E be the shape whose size is 641

chosen so that D is the shape consisting of matrices 642

D =

[
B E
0 C

]
where B ∈ B, C ∈ C, E ∈ E. Then each summand of D is the product of a summand of 643

B with a summand of C. 644

Proof. Suppose d is a summand of D. The product d cannot have any entries in the 0 645

block of D. Hence, d = bc. Moreover, there is a matrix B ∈ B such that det(B) = b and 646

a matrix C ∈ C such that det(C) = c. In fact, we can assume that the nonzero entries of 647

B are precisely the entries in the nonzero product b. Similarly for c. Since det(D) 6= 0 648

and det(D) = det(B) det(C), it follows that det(B) = b 6= 0 and det(C) = c 6= 0. 649

Therefore, b and c are summands of B and C, respectively. Conversely, assume that b 650

and c are summands and conclude that d is also a summand. 651

It follows from Lemma 4.1 that the number of each type of entry in PHQ is the 652

same as the number in H. Moreover, generically, the coupling and self-coupling entries 653

are nonzero. It follows from (5) that the n superdiagonal entries of H are self-coupling 654

entries and these are the only self-coupling entries in H. In addition, H has one 655

self-coupling entry in each row except the last row, and one self-coupling in each column 656

except the first column. By Lemma 4.1 there are exactly n self-coupling entries in PHQ 657

with one in each row but one, and one in each column but one. We use these 658

observations in the proof of Theorem 4.7. 659

Theorem 4.7. Let H be an (n+ 1)× (n+ 1) homeostasis matrix. Suppose det(H) has 660

a degree k ≥ 1 irreducible factor det(Bη), where Bη be a k × k block diagonal submatrix 661

of the matrix PHQ given in (34) and P and Q are permutation matrices. If Bη has 662

k − 1 self-coupling entries, then we can assume that Bη has the form 663 fρ1,xρ1 · · · fρ1,xρk
...

. . .
...

fρk,xρ1 · · · fρk,xρk

 (36)

and if Bη has k self-coupling entries, then we can assume that Bη has the form 664
fρ1,xρ1 · · · fρ1,xρk−1

fρ1,x`
...

. . .
...

...
fρk−1,xρ1

· · · fρk−1,xρk−1
fρk−1,x`

fj,xρ1 · · · fj,xρk−1
fj,x`

 (37)
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Proof. Theorem 4.4 implies that Bη has either k − 1 or k self-couplings. Since Bη is a 665

k × k submatrix of PHQ (a matrix that has the same set of rows and the same set of 666

columns as H), Bη must consists of k2 entries of the form 667

Bη =

 fρ1,xτ1 · · · fρ1,xτk
...

. . .
...

fρk,xτ1 · · · fρk,xτk

 (38)

Since self-couplings must be in different rows and different columns we can use 668

permutation matrices of the form 669 Ip 0 0
0 S 0
0 0 Iq


where S is a k × k permutation matrix to put Bη in the form: 670

∗ sc · · · ∗

∗ ∗
. . .

...
...

...
... sc

∗ · · · · · · ∗

 or

 sc ∗ ∗

∗
. . . ∗

∗ ∗ sc

 (39)

where sc denotes a self-coupling entry and ∗ denotes either a 0 entry or a coupling entry. 671

Note that we could just as well have put the self-coupling entries along the diagonal in 672

(39) (left). 673

If Bη has k − 1 self-couplings, as in (39) (left), then ρk 6= τk and ρj = τj for 674

1 ≤ j ≤ k − 1. If Bη has k self-couplings, as in (39) (right), then we may assume 675

ρj = τj for all j. It follows that the matrices in (39) have the form (37) or (36). 676

Remark 4.8. We use Theorem 4.7 to associate a subnetwork Kη with each 677

homeostasis k× k block Bη. This construction implements the one in Definition 1.13 for 678

appendage and structural homeostasis blocks. The network Kη will be an input-output 679

subnetwork with k + 1 nodes when Bη is structural and the network Kη will be a 680

standard subnetwork with k nodes when Bη is appendage. 681

If Bη is appendage, then the k nodes in Kη will correspond to the k self-couplings in 682

Bη and the arrows in Kη will be τi → τj if hτj ,xτj is a coupling entry in (36). 683

If Bη is structural, then the k − 1 regulatory nodes of Kη will correspond to the 684

self-couplings in Bη and the input node ` and the output node j of Kη will be given by 685

the coupling entry in (37). The arrows in Kη are given by the coupling entries of Bη. 686

Note that the constructions of K from H do not require that H is a homeostasis 687

block; the constructions only require that H has the form given in either (37) or (36). 688

5 Appendage homeostasis blocks 689

An appendage block Bη has k self-couplings and the form of a k× k matrix (36), that is 690

rewritten here as: 691

Bη =

 fτ1,xτ1 · · · fτ1,xτk
...

. . .
...

fτk,xτ1 · · · fτk,xτk

 (40)

As discussed in Remark 4.8 this homeostasis block is associated with a subnetwork Kη 692

consisting of distinct nodes τ1, . . . , τk and arrows specified by Bη that connect these 693

nodes. In this section we show that Kη satisfies three additional conditions: 694
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(a) Each node τj ∈ Kη is an appendage node (Theorem 5.2). 695

(b) For every ιo-simple path S, nodes in Kη do not form a cycle with nodes in CS \Kη 696

(Theorem 5.4(a)). 697

(c) Kη is a path component of the subnetwork of appendage nodes of G 698

(Theorem 5.4(b)). 699

Lemma 5.1. Suppose a nonzero summand β of det(Bη) in (40) has fτj ,xτi as a factor, 700

where τj 6= τi. Then the arrow τi → τj is contained in a cycle in Kη. 701

Proof. To simplify notation we drop the subscript η below on H̃, K, and K̃. Let H̃ be 702

the (k − 1)× (k − 1) submatrix obtained by eliminating the jth row and the ith column 703

of Bη in (40). Since τi 6= τj , H̃ has k − 2 self-coupling entries. Specifically, the two 704

self-couplings fτi,xτi and fτj ,xτj have been removed when creating H̃ from Bη. 705

It follows from Remark 4.8 that since H̃ has the form (37), we can associate an 706

input-output network K̃ with H̃, where the input node is τj since it does not receive any 707

input and the output node is τi since it does not output to any node in K̃. By 708

Lemma 3.1, every nonzero summand in det(H̃) corresponds to a simple path from 709

τj → τi. Hence, the nonzero summand β is given by fτj ,xτi times a nonzero summand 710

corresponding to a simple path from τj → τi. Therefore, the arrow τi → τj coupled with 711

the path τj → τi forms a cycle in K. 712

Theorem 5.2. Let Kη be a subnetwork of G associated with an appendage homeostasis 713

block Bη that consists of a subset of nodes τ1, · · · , τk of G. Then Bη equals the Jacobian 714

JKη of the network Kη and each node τj is an appendage node. 715

Proof. Admissible systems associated with the network Kη have the form 716

ẋτ1 = fτ1(xτ1 , . . . , xτk)
...

ẋτk = fτk(xτ1 , . . . , xτk)

where the variables that appear on the RHS of each equation correspond to the 717

couplings in (40). It follows that the matrix Bη in (40) equals the Jacobian JKη , as 718

claimed. 719

We show that τj ∈ Kη is an appendage node for each j. More specifically, we show 720

that τj is in the complementary subnetwork CS of each ιo-simple path S. We now fix τj 721

and S. 722

We make two claims. First, every nonzero summand α of det(H) either contains the 723

self-coupling fτj ,xτj as a factor or a coupling fτj ,xτi for some i 6= j as a factor. Second, 724

this dichotomy is sufficient to prove the theorem. 725

First claim. It follows from Lemma 4.6 that each summand of det(PHQ) has a 726

summand of det(Bη) as a factor. Therefore, each summand α of det(H) has a summand 727

β of det(Bη) as a factor. The claim follows from two facts. The first is that Bη is the 728

Jacobian JKη and hence either the self-coupling is in β or the off diagonal entry is in β; 729

and the second is that once these entries are in β, they are also in α. 730

Second claim. Recall that Theorem 3.2 (the determinant theorem) implies that the 731

summand α has the form FSgCS where S is an ιo-simple path, CS is the complementary 732

subnetwork to S, FS is the product of the coupling strengths within S, JCS is the 733

Jacobian matrix of the admissible system corresponding to CS , and gCS is a summand 734

in det(JCS ). 735

If the summand α has fτj ,xτj as a factor, it follows that fτj ,xτj is a factor of gCS 736

since it is a self-coupling and cannot be a factor of FS . Hence, node τj is a node in CS . 737

July 11, 2020 23/33



If the summand α has fτj ,xτi as a factor, then fτj ,xτi is either not a factor of FS or 738

is a factor of FS . In the first case, fτj ,xτi is a factor of gCS . It follows that τj is a node 739

in CS . In the second case, the arrow τi → τj is on the simple path S. Recall that fτj ,xτi 740

is also a factor of the summand β. It follows from Lemma 5.1 applied to β that τi → τj 741

is contained in a cycle in Kη. This is a contradiction since we show that τi → τj cannot 742

be contained in both the simple path S and a cycle in Kη. 743

Since τi → τj is contained in a cycle in Kη, there exists an arrow τk → τi where τk is 744

a node in Kη (τk can be τj). Since every nonzero summand of det(H) has a summand 745

of det(Bη) as a factor, there exists a summand FSgCS having both fτj ,xτi and fτi,xτk as 746

factors. Note that fτj ,xτi is a factor of FS and gCS is a summand in det(JCS ). Since 747

τk → τi cannot be contained in S it must be a factor of gCS . However, CS is the 748

complementary subnetwork to S that does not contain any arrow connecting to τi in the 749

simple path S. 750

Lemma 5.3. Let K be a proper subnetwork of a subnetwork C of G. If nodes in K do 751

not form a cycle with nodes in C \ K, then upon relabelling nodes JC is block lower 752

triangular. 753

Proof. The no cycle condition implies that we can partition nodes in C into three 754

classes: 755

(i) nodes in C \ K that are strictly upstream from K, 756

(ii) nodes in K, 757

(iii) nodes in C \ K that are not upstream from K. 758

By definition nodes in sets (i) and (iii) are disjoint from nodes in (ii). Also, nodes in 759

sets (i) and (iii) are disjoint because nodes in K do not form a cycle with nodes in C \K. 760

Finally, it is straightforward to see that C = (i) ∪ (ii) ∪ (iii). Using this partition of C, 761

we claim that the Jacobian matrix of C has the desired block lower triangular form: 762

JC =



∗ · · · ∗ 0 0 · · · 0
...

...
...

...
...

...
...

∗ · · · ∗ 0 0 · · · 0
∗ · · · ∗ JK 0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
...

∗ · · · ∗ ∗ ∗ · · · ∗


(41)

Specifically, observe that there are no connections from (i) to (iii) because then a node 763

in (iii) would be strictly upstream from K. By definition there are no connections from 764

(ii) to (iii). Finally, the cycle condition implies that there are no connections from (i) to 765

(ii). 766

Theorem 5.4. Let Kη be a subnetwork of G associated with an appendage homeostasis 767

block Bη. Then: 768

(a) For every ιo-simple path S, nodes in Kη do not form a cycle with nodes in 769

CS \ Kη. 770

(b) Kη is a path component of AG. 771

Proof. By Theorem 5.2, Kη ⊂ AG is an appendage subnetwork that is contained in each 772

complementary subnetwork CS , Bη = JKη and det(JKη ) is a factor of det(H). To 773

simplify notation in the rest of the proof, we drop the subscript η and use K to denote 774

the appendage subnetwork. 775
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Proof of (a) We proceed by contradiction and assume there is a cycle. Let S be an 776

ιo-simple path. Let B ⊂ CS \K be the nonempty subset of nodes that are on some cycle 777

connecting nodes in K with nodes in CS \ K. It follows that nodes in K do not form any 778

cycle with nodes in (CS \ K) \ B = CS \ (K ∪ B). Since K ∪ B ⊂ CS and nodes in K ∪ B 779

do not form a cycle with nodes in CS \ (K ∪ B), by Lemma 5.3 we see that the Jacobian 780

matrix of CS has the form 781

JCS =

 U 0 0
∗ JK∪B 0
∗ ∗ D

 (42)

where 782

JK∪B =

[
JK fK,xB
fB,xK JB

]
Note that fK,xB 6= 0 and fB,xK 6= 0, since there is a cycle containing nodes in K and B. 783

We claim that the polynomial det(JK) does not factor the polynomial det(JK∪B). It is 784

sufficient to verify this statement for one admissible vector field. 785

Relabel the nodes so that there is a cycle of nodes 1→ 2→ · · · → p→ 1 where the 786

first q nodeas are in K. We can choose the cycle so that the remaining nodes are in B. 787

An admissible system for this cycle has the form 788

(f1, f2, . . . , fp)(x) = (f1(x1, xp), f2(x2, x1), · · · , fp(xp, xp−1))

and all other coordinate functions fr(x) = xr. Hence the associated Jacobian matrix is 789

JK∪B =



f1,x1
0 · · · 0 0 · · · f1,xp · · · · · · 0

f2,x1
f2,x2

· · · 0 0 · · · · · · · · · · · · 0
...

. . .
. . .

...
...

...
...

...
...

...
∗ · · · fq,xq−1

fq,xq 0 · · · · · · · · · · · · 0
0 · · · 0 fq+1,xq fq+1,xq+1

· · · · · · · · · · · · 0
...

...
...

...
. . .

. . .
...

...
...

...
0 · · · 0 0 0 fp,xp−1

fp,xp · · · · · · · · ·
0 · · · 0 0 0 · · · 0 1 · · · 0
...

...
...

...
...

...
...

...
. . . 0

0 · · · 0 0 0 · · · · · · 0 · · · 1


(43)

where the upper left block is JK. It follows from direct calculation that the determinant 790

of the JK∪B is 791

det(JK∪B) = f1,x1
f2,x2

· · · fp,xp
+ (−1)(p−1)f1,x2

f2,x3
· · · fp,x1

(44)

Hence 792

det(JK) = f1,x1
f2,x2

· · · fq,xq
is not a factor of det(JK∪B), given in (44). We claim that det(JK) is also not a factor of 793

det(JCS ) because by (42), det(JCS ) = det(U) det(JK∪B) det(D). Suppose det(JK) is a 794

factor of det(JCS ), then it must be a factor of det(JK∪B), which is a contradiction. Thus 795

det(JK) is not a factor of det(JCS ), which contradicts the fact that Kη is an appendage 796

homeostasis block. Hence, nodes in K cannot form a cycle with nodes in CS \ K. 797
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Proof of (b) We begin by showing that K is path connected; that is, there is a path 798

from τi to τj for every pair of nodes τi, τj ∈ K. Suppose not, then the path components 799

of K give K a feedforward structure. It follows that we can partition the set of nodes in 800

K into two disjoint classes: A and B where nodes in B are strictly downstream from 801

nodes in A. Thus, there exist permutation matrices Pη and Qη such that 802

PηBηQη =

[
JA 0
∗ JB

]
which contradicts the fact that Bη is irreducible. Therefore, K is path connected. 803

Next, we show that K is a path component of AG . Suppose that the path component 804

W ⊂ CS of AG that contains K is larger than K. Then there would be a cycle in 805

W ⊂ CS that starts and ends in K, and contains nodes not in K. This contradicts (a) 806

and W = K. 807

Recall from Definition 1.17 that SG is a subnetwork of G that can be obtained by 808

removing all appendage path components that satisfy the no cycle condition. 809

Lemma 5.5. Let G be an input-output network with homeostasis matrix H. Then the 810

structural subnetwork SG is an input-output network with homeostasis matrix H ′ and 811

det(H ′) is a factor of det(H). 812

Proof. By Theorem 5.2, if Bη is an appendage homeostasis block, then the associated 813

subnetwork Kη consists of appendage nodes, and Bη = JKη . Relabel the blocks so that 814

B1, · · · , Bp are appendage homeostasis blocks. We can write 815

PHQ =


JK1

∗ · · · ∗

0
. . . ∗

...
... 0 JKp ∗
0 · · · 0 H ′


Hence det(H ′) is a factor of det(H). 816

Recall H is an (n+ 1)× (n+ 1) matrix with n self-couplings. Since the main 817

diagonal entries of JKi are all self-couplings, H ′ is a (n+ 1− γ)× (n+ 1− γ) matrix 818

where γ is the total number of self-couplings in K1, · · · ,Kp. It follows that H ′ has n− γ 819

self-couplings. By Theorem 4.7 we can assume H ′ has the homeostasis matrix form and 820

is associated with an input-output subnetwork SG of G. 821

It follows from the upper triangular form of PHQ that SG does not contain any 822

node in appendage blocks or any coupling whose head or tail is a node in an appendage 823

block. Moreover, a node that is not associated with any appendage block must be 824

contained in SG . Otherwise, the self-coupling of this node will appear in some JKi , 825

which is a contradiction. 826

Hence, SG is an input-output network that consists of all nodes not associated with 827

any appendage block and all arrows that connect nodes in SG . 828

Remark 5.6. Suppose Kη is an input-output subnetwork of G associated with an 829

irreducible matrix Bη in (37). Then, it follows from Lemma 5.5 that Bη is a structural 830

block of G if and only if Bη is a structural block of SG . 831

6 Structural homeostasis blocks 832

In this section we give a combinatorial description of SG in terms of input-output 833

subnetworks defined by super-simple nodes. We do this in four stages. 834
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§6.1 shows that the super-simple nodes in G can be ordered by ι > ρ1 > · · · > ρq > o 835

where a > b if b is downstream from a. See Lemma 6.1. 836

§6.2 defines the sets L of simple nodes that lie between adjacent super-simple nodes. 837

See Definition 1.18 and Lemma 6.2. 838

§6.3 shows how to assign each appendage node in SG to a unique L, thus forming 839

combinatorially the subnetwork L′. See Definition 1.19. 840

§6.4 shows that the homeostasis matrix of SG can be put in block upper trimngular 841

form with blocks given by the homeostasis matrices of the L′. See Corollary 6.7. 842

6.1 Ordering of super-simple nodes 843

Lemma 6.1. Super-simple nodes in G are ordered by ιo-simple paths. 844

Proof. Let ρ1 and ρ2 be distinct super-simple nodes and let S and T be two ιo-simple 845

paths. Suppose ρ2 is downstream from ρ1 along S and ρ1 is downstream from ρ2 along 846

T . It follows that there is a simple path from ι to ρ2 along T that does not contain ρ1 847

and a simple path from ρ2 to o along S that does not contain ρ1. Hence, there is an 848

ιo-simple path that does not contain ρ1 contradicting the fact that ρ1 is 849

super-simple. 850

6.2 Simple nodes between adjacent super-simple nodes 851

A super-simple subnetwork L(ρ1, ρ2) is a subnetwork consisting of all simple nodes 852

between adjacent super-simple nodes ρ1 and ρ2 (see Definition 1.18). The following 853

Lemma shows that each non-super-simple simple node belongs to a unique L. 854

Lemma 6.2. Every non-super-simple simple node lies uniquely between two adjacent 855

super-simple nodes. 856

Proof. Let ρ be a simple node that is not super-simple. By definition ρ is on an 857

ιo-simple path S and ρ lies between two adjacent super-simple nodes ρ1 and ρ2 on S. 858

Suppose ρ is also on an ιo-simple path T . Then, by Lemma 6.1 ρ1 and ρ2 must be 859

ordered in the same way along T and ρ1 and ρ2 must be adjacent super-simple nodes 860

along T . If ρ is downstream from ρ2 along T , then there would be an ιo-simple path 861

that does not contain ρ2, which is a contradiction. A similar comment holds if ρ is 862

upstream from ρ1 along T . Therefore, ρ is also between ρ1 and ρ2 on T . 863

Definition 1.18 implies that if ρ3 is downstream from ρ2 then 864

L(ρ1, ρ2) ∩ L(ρ3, ρ4) =

{
∅ if ρ3 6= ρ2
{ρ2} otherwise

(45)

Lemma 6.3 identifies several properties of the subnetworks L. 865

Lemma 6.3. Let the pairs of super-simple nodes ρ1, ρ2 and ρ3, ρ4 be adjacent. 866

(a) No arrow connects an upstream node ρ in the subnetwork L(ρ1, ρ2) to a 867

downstream node τ in the subnetwork L(ρ3, ρ4) unless ρ = ρ2, τ = ρ3 and ρ2 and 868

ρ3 are adjacent super-simple nodes. 869

(b) No arrow connects an upstream node ρ in the subnetwork L(ρ1, ρ2) to a 870

downstream node τ in the subnetwork L(ρ2, ρ4) unless ρ = ρ2 or τ = ρ2. 871

(c) Suppose that a path of appendage nodes connects L(ρ1, ρ2) to L(ρ3, ρ4). Then ρ4 872

is upstream from ρ1. 873
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(d) Suppose that the appendage path component B fails the no cycle condition and 874

there is a cycle that connects nodes in B with nodes in CS \ B, where CS is a 875

complementary subnetwork. Then the nodes in CS \ B that are in the cycle are 876

non-super-simple simple nodes that are contained in a unique super-simple 877

subnetwork. 878

Proof. (a) Suppose an arrow connects a node ρ 6= ρ2 in L(ρ1, ρ2) to a node τ in 879

L(ρ3, ρ4) where ρ3 is downstream from ρ2. Then there would be an ιo-simple path 880

that connects ρ1 to ρ to τ to ρ4 in that order. That ιo-simple path would miss ρ2, 881

contradicting the fact that ρ2 is super-simple. A similar statement holds if τ 6= ρ3 882

or ρ2 and ρ3 are not adjacent. This proves (a). 883

(b) Suppose an arrow connects a node ρ 6= ρ2 in L(ρ1, ρ2) to a node τ 6= ρ2 in 884

L(ρ2, ρ4). Then there would be an ιo-simple path that connects ρ1 to ρ to τ to ρ4 885

in that order. That ιo-simple path would miss ρ2, contradicting the fact that ρ2 is 886

super-simple. 887

(c) Suppose ρ4 is strictly downstream from ρ1. Then there is an ιo-simple path from ι 888

to ρ1 to some nodes in AG to ρ4 to o. Therefore, at least one node in AG is not an 889

appendage node. A contradiction. 890

(d) If the cycle contains a super-simple node, then the cycle cannot be in CS . Since 891

the cycle must contain simple nodes that simple node cannot be super-simple. 892

Suppose the cycle contains a simple node τ1 in L(ρ1, ρ2) and another simple node 893

τ2 in L(ρ3, ρ4) where ρ3 is downstream from ρ1, then there would be a path 894

connecting τ1 to τ2 that does not contain any super-simple node. This would lead 895

to an ιo-simple path from ρ1 to τ1 to τ2 to ρ4 that misses ρ2 and ρ3. Hence, the 896

simple nodes contained in the cycle must come from a single super-simple 897

subnetwork. 898

899

Remark 6.4. Lemma 6.3 (a,b) implies that two different super-simple subnetworks 900

L(ρ1, ρ2) and L(ρ3, ρ4) where ρ2 is upstream from ρ3 can only be connected by either 901

having a common super-simple node (ρ2 = ρ3) or by having an arrow ρ2 → ρ3 where ρ2 902

and ρ3 are adjacent super-simple nodes. 903

6.3 Assignment of appendage nodes to L 904

By Lemma 6.3 (d) any appendage path component that fails the cycle condition forms 905

cycles with non-super-simple simple nodes in a unique super-simple subnetwork. We can 906

therefore expand a super-simple subnetwork L to a super-simple structural subnetwork 907

L′ by recruiting all appendage nodes that form cycles with nodes in L (see Definition 908

1.19). 909

It follows that if ρ3 is downstream from ρ2, then 910

L′(ρ1, ρ2) ∩ L′(ρ3, ρ4) =

{
∅ if ρ3 6= ρ2
{ρ2} otherwise

(46)

In particular, each appendage node in G is attached to at most one L. 911

Remark 6.5. Suppose ρ3 is downstream from ρ2. By Lemma 6.3 (c) and Remark 6.4, 912

no arrow connects a node ρ in L′(ρ1, ρ2) \ {ρ2} to a node τ in L′(ρ3, ρ4) unless ρ2 = ρ3 913

and τ = ρ2. 914
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6.4 Relating SG with L′
915

Theorem 6.6. Let K be an input-output core subnetwork of SG with q + 1 super-simple 916

nodes ρ1, . . . , ρq+1 in downstream order in G. Then the homeostasis matrix HK of K 917

can be written in an upper block triangular form 918

HK =


HL′1 ∗ · · · ∗

0 HL′2 · · · ∗
...

. . .
...

0 0 0 HL′q

 (47)

where for ` = 1, . . . , q, HL′` is the homeostasis matrix of the super-simple structural 919

subnetwork L′` = L′(ρ`, ρ(`+1)). 920

Proof. Since K is an input-output core subnetwork of SG , it follows that K consists of 921

all simple nodes between adjacent super-simple nodes of K and appendage nodes that 922

form cycles with non-super-simple simple nodes in K. Hence, K consists of nodes and 923

arrows in L′(ρ1, ρ2) ∪ · · · ∪ L′(ρq, ρq+1) plus backward arrows between different 924

super-simple structural subnetworks. Hence, for ` = 1, . . . , q, nodes in K can be 925

partitioned into disjoint classes: (`) = L′` \ {ρ`+1}. We claim that the homeostasis 926

matrix HK of K is given by (47). 927

It follows from Remark 6.5 that an arrow from a node in one class (`) to a node in 928

another class (j) where j > ` can exist only when the two classes are adjacent (that is, 929

j = `+ 1) and the head of this arrow is the input node ρ`+1 of the downstream class 930

(`+ 1). Since entries below HK` denote the arrows from nodes in class (`) to nodes in 931

classes (`+ 1) through (q) except the input node ρ`+1 in class (`+ 1). It follows that all 932

entries below HK` are zero and hence HK has the upper block triangular form shown in 933

(47). 934

Corollary 6.7. Suppose that τ1, . . . , τp+1 are the super-simple nodes of G in 935

downstream order. Then the homeostasis matrix H ′ of SG can be written in upper block 936

triangular form 937

H ′ =


B′1 ∗ · · · ∗
0 B′2 · · · ∗
...

...
. . .

...
0 0 0 B′p

 (48)

where B′` is the homeostasis matrix of the super-simple structural subnetwork L′(τ`, τ`+1) 938

for 1 ≤ ` ≤ p. In addition, p is less than or equal to the number m of structural blocks 939

Kη. 940

Proof. It follows from Definition 1.17 that SG has the same super-simple nodes as G 941

and SG is a core subnetwork. By Theorem 6.6, the homeostasis matrix H ′ of SG is given 942

by (48). The number of irreducible blocks is the number of Kη and that is m. Since m 943

is the maximum number of blocks in H ′, it follows that m ≥ p by (48). 944

If we can show that the number of super-simple nodes in Kη is two, then we will 945

show that Kη is core equivalent to one of the L′. 946

6.5 Relation between structural homeostasis and L′
947

This section shows that each structural subnetwork Kη is core equivalent to the L′ 948

having the same input node. Specifically, we show that the input and output nodes in 949

Kη are adjacent super-simple and that no other nodes in Kη are super-simple. 950
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Theorem 6.8. Let Kη be an input-output subnetwork of G associated with an 951

irreducible structural homeostasis matrix Bη in (37). Then the input and output nodes 952

of Kη are super-simple nodes. 953

Proof. We prove this theorem by proving that both the input and output nodes ` and j 954

of Kη are on the ιo-simple path associated with α for all summands α of det(H). 955

Theorem 3.2 (the determinant theorem) implies that α has the form FSgCS where S is 956

an ιo-simple path, CS is the complementary subnetwork to S, FS is the product of the 957

coupling strengths within S, JCS is the Jacobian matrix of the admissible system 958

corresponding to CS , and gCS is a summand in det(JCS ). 959

It follows from Lemma 4.6 that the summands of form (35) are the summands of A 960

times the summands of Bη times the summands of E. Hence, every nonzero summand of 961

det(H) contains a nonzero summand of det(Bη) as a factor. Since ` and j are the input 962

output nodes for the homeostasis matrix Bη, it follows that every nonzero summand of 963

det(Bη), and hence det(H), has both fm,x` (where m is one of ρ1, . . . , ρk−1, j) and fj,xn 964

(where n is one of ρ1, . . . , ρk−1, `) as factors. 965

From the form of PHQ (and hence H) we see that f`,x` and fj,xj are not factors of 966

nonzero summands of det(H). Suppose the summand α has fm,x` as a factor, then 967

fm,x` is either a factor of FS or not a factor of FS . In the first case, it follows that the 968

arrow `→ m is on the simple path S. Hence, the node ` is contained in S. In the 969

second case, suppose fm,x` is not a factor of FS , then it must be a factor of gCS . That 970

implies that ` is a node in CS . It follows that there exists another nonzero summand α′ 971

of det(H) which contains f`,x` as a factor, which is is a contradiction. Therefore, we 972

conclude every ιo-simple path contains node `. By the same type of argument we can 973

also conclude that every ιo-simple path contains node j. 974

Theorem 6.9. If a structural block Bη of G is irreducible, then Kη is an input-output 975

subnetwork that has exactly two super-simple nodes. 976

Proof. By Remark 5.6, Kη is an input-output subnetwork of SG and Kη is a core 977

subnetwork because it is irreducible. Suppose in addition to the input and output nodes 978

there are other q > 1 super-simple nodes in Kη, then by Theorem 6.6, the homeostasis 979

matrix Bη of Kη can be written in an upper block triangular form with q + 1 > 2 980

diagonal blocks and hence Kη is reducible, a contradiction. 981

Corollary 6.10. The input and output nodes of a structural homeostasis block are 982

adjacent super-simple nodes. 983

Proof. Super-simple nodes can be well-ordered. The proof then follows from 984

Theorem 6.9. 985

Theorem 6.11. In G, there is a 1:1 correspondence between structural homeostasis 986

blocks Kη and super-simple structural subnetworks L′ and that correspondence is given by 987

having the same input node. Moreover, the corresponding Kη and L′ are core equivalent. 988

Proof. By Corollary 6.10, the input and output nodes of each Kη are adjacent 989

super-simple nodes and hence each Kη leads to a unique L′ that has the same input 990

node. Therefore, the number of Kη (equal to m) is less than or equal to the number p of 991

L′. Corollary 6.7 states that p ≤ m; hence, p = m. That is, there is a 1:1 992

correspondence between Kη and L′. 993

Let ` and j be the input and output nodes of the structural block Kη. Then the 994

corresponding super-simple structural subnetwork is L′(`, j). By Definition 1.13, Kη 995

consists of simple nodes between the two adjacent super-simple nodes ` and j and 996

appendage nodes that form cycles with non-super-simple simple nodes in Kη. Arrows in 997

Kη are non-backward arrows that connect nodes in Kη. It follows from Definition 1.19 998
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that L′(`, j) is the union of Kη and arrows whose head is ` or whose tail is j. By 999

Proposition 1.9, Kη is core equivalent to L′(`, j). 1000

7 Classification and construction 1001

In the Introduction we showed how Cramer’s rule coupled with basic combinatorial 1002

matrix theory can be applied to the homeostasis matrix H to determine the different 1003

types of infinitesimal homeostasis that an input-output network G can support. 1004

Specifically the zeros of det(H), a homogeneous polynomial in the linearized couplings 1005

and self-couplings, can be factored into det(B1) · · · det(Bm). In this paper we show that 1006

there are two types of factors that depend on the number of self-couplings: one we call 1007

appendage and the other we call structural. Each factor corresponds to a type of 1008

homeostasis in subnetworks Kη for η = 1, . . . ,m that can be read directly from G. 1009

Appendage blocks Theorem 5.4 shows that an appendage block Bη leads to a 1010

subnetwork Kη that is a path component of the appendage network AG ⊂ G. Moreover, 1011

the nodes in Kη do not form a cycle with other nodes in the complementary subnetwork 1012

CS for every ιo-simple path S. The factors of det(H) that stem from appendage nodes 1013

are det(JA), the determinant of the Jacobian of the appendage path components A. 1014

The converse is also valid as shown in Theorem 7.1. 1015

Theorem 7.1. Suppose Kη is an appendage path component. If Kη satisfies the no 1016

cycle condition, then det(JKη ) is an irreducible factor of det(H). 1017

Proof. Let CS be the complementary subnetwork of an ιo-simple path S. By Definition 1018

1.14(c), Kη ⊂ CS . Since nodes in Kη do not form a cycle with other nodes in CS , by 1019

Lemma 5.3, JCS has the following block lower triangular form: 1020

JCS =



∗ · · · ∗ 0 0 · · · 0
...

...
...

...
...

...
...

∗ · · · ∗ 0 0 · · · 0
∗ · · · ∗ JKη 0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
...

∗ · · · ∗ ∗ ∗ · · · ∗


(49)

Hence det(JKη ) is a factor of det(JCS ), and so a factor of det(H). Since Kη is a path 1021

component and hence is path connected, it follows that JKη is irreducible. 1022

It follows that we can construct appendage blocks as follows. First we determine the 1023

path components of the appendage subnetwork of G and second we determine which of 1024

these components Kη satisfy the cycle condition in Theorem 5.4. 1025

Structural blocks Next, we form the subnetwork SG that is obtained from G by 1026

deleting the appendage path components identified above. The last result that is needed 1027

is: 1028

Theorem 7.2. Let ` and j be adjacent super-simple nodes in SG, then det(L′(`, j)) is 1029

an irreducible factor of det(H). 1030

Proof. It follows from Corollary 6.7 that det(L′(`, j)) is a factor of det(H ′) and hence a 1031

factor of det(H) by Lemma 5.5. Theorem 6.11 states that L′(`, j) is core equivalent to a 1032

unique Kη that is irreducible. Hence, det(L′(`, j)) is an irreducible factor of det(H). 1033
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Next, we compute the super-simple nodes in SG in downstream order, namely, 1034

ι = ρ1 > ρ2 > · · · > ρq > ρq+1 = o

It follows that the subnetworks L′(ρi, ρi+1) are core equivalent to the structural 1035

networks Kη. Let Bi be the homeostasis matrix associated with the input-output 1036

networks L′(ρi, ρi+1) and det(Bi) is a factor of det(H). 1037
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