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Introduction

The Hopf Bifurcation Theorem provides the simplest criterion for a family of
periodic solutions to bifurcate from a known family of equilibrium solutions of an
evolution equation. A second theorem gives information about the stability or
instability of the bifurcating branch of solutions. We do not know exactly what
motivated Hopf to study these questions. When asked about it many years later,
he could not recall how he come to them. However in his paper, he mentions
that the qualitative phenomena they describe are well known in hydrodynamics,
for example, periodic vortex shedding in flow past an obstacle when the velocity is
large enough. Thus we might speculate that such problems were the origin of his
interest in bifurcation.

The paper appeared in 1942 and in the introduction Hopf writes about the
first theorem: “I scarcely think that there is anything new in the above theorem.
The methods have been developed by Poincaré perhaps 50 years ago and belong
today to the classical conceptual structure of the theory of periodic solutions in the
small”. In fact using such methods, Andronov obtained the bifurcation and stability
results for two dimensional systems as can be seen already in his book, Andronov-
Vitt-Khaikin (1937). Even earlier work of Andronov which was not available to us
was cited by Arnold (1983). These points not withstanding, the Hopf Bifurcation
Theorem has become a paradigm of a useful and elementary result that has been
extremely influential. New proofs have been given and extensions have been made
in many directions. There are now degenerate and equivariant and Hamiltonian and
global and infinite dimensional versions of the theorem. Unexpected connections
have been found to the much older Liapunov Center Theorem. Several numerical
codes have been written to implement the theorem. And of course there are many
physical applications. In what follows, we will discuss the two theorems, illustrating
them in a simple setting and giving a sketch of a modern proof of the first. There
will also be a brief discussion of the extensions and some applications.

1. The Hopf Theorem

Hopf considered the system of ordinary differential equations:

(1.1) ẋ = F (x, λ), x ∈ Rn

where λ belongs to an interval I ⊂ R and (1.1) possesses a known family of equi-
librium solutions (x(λ), λ), λ ∈ I. Making a change of variables, it can be assumed
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that x(λ) ≡ 0 and 0 ∈ I. Let

J(λ) = dxF |(0,λ) ,

the Jacobian matrix or Fréchet derivative of F evaluated at (0, λ). Suppose that

(H1) J(λ) has a pair of simple complex conjugate eigenvalues
a(λ), a(λ) with a(0) purely imaginary and a′(0) 6= 0.

The condition a′(0) 6= 0 is called the eigenvalue crossing condition. Assume also
that

(H2) ± a(0) are the only eigenvalues of J(0) on the imaginary axis.

Under assumptions (H1) and (H2), the first Hopf theorem asserts the existence
of a one parameter family of solutions of (1.1) that are periodic in t (with period
near 2π/|a′(0)|) and bifurcate from the equilibrium solution (0, 0). The theorem
also contains some information about the form of the bifurcating solutions. In
particular, roughly speaking, the solution is parametrized by its amplitude.

The simplest example of the result occurs in the planar linear system

(1.2)
ẋ1 = λx1 − x2

ẋ2 = x1 + λx2.

It is easy to check that the origin is a spiral sink when λ < 0 and a spiral source
when λ > 0. When λ = 0, the origin is a center, and there is a continuous family
of periodic solutions surrounding this center. See Figure 1.

λ = −0.1 λ = 0 λ = +0.1

Figure 1. Phase planes for (1.2).

The second Hopf theorem which is sometimes referred to as the exchange of
stability theorem provides information about the stability of the bifurcating branch.
To simplify the discussion, suppose that the equilibria (0, λ) with λ < 0, are asymp-
totically stable. Then the theorem states that if a certain number µ2 (which can be
computed explicitly from the linear, quadratic, and cubic terms of F ) is nonzero, the
bifurcating solutions are either supercritical (occur when λ > 0) and asymptotically
stable or are subcritical (occur when λ < 0) and unstable.

A simple example of exchange of stability is given by adding a nonlinear term
to the linear system (1.2).

(1.3)
ẋ1 = λx1 − x2 − (x2

1 + x2
2)x1

ẋ2 = x1 + λx2 − (x2
1 + x2

2)x2.



COMMENTARY 3

Note that when λ < 0 the origin is still a spiral sink and that the nonlinear terms
(x2

1 + x2
2)(x1, x2)t point toward the origin, so that it is not surprising that globally

solutions spiral toward the origin. However, when λ > 0, the origin is a spiral source
but the nonlinear terms still point toward the origin. This interaction between the
linear and nonlinear effects is resolved by the existence of a stable limit cycle.

λ = −0.1 λ = +0.1

Figure 2. Phase planes for (1.3).

Both Hopf theorems can be proved by two very different methods: (i) Liapunov-
Schmidt reduction, or (ii) center manifold reduction coupled with Poincaré-Birkhoff
normal form theory. It is noteworthy that the existence proof using Liapunov-
Schmidt reduction is relatively straightforward, whereas the stability result is straight-
forward when the center manifold approach is invoked. In this review we sketch
the existence proof by Liapunov-Schmidt reduction. This approach is due to Cesari
and Hale (1969).

The Liapunov-Schmidt proof of the existence of periodic solutions proceeds in
three steps. First, the ordinary differential equations in n dimensions are posed as
an operator on infinite-dimensional loop space whose zeros are the desired periodic
solutions. Second, the implicit function theorem is used to reduce the space from
infinite dimensions back to two dimensions (the real eigenspace corresponding to the
complex conjugate eigenvalues of J(0)). Finally, phase-shift S1 symmetry is used
to simplify the search for zeros in two dimensions. Hopf’s approach to the problem
is related to the Liapunov-Schmidt reduction but, in line with the techniques of his
day, uses a Poincaré map and the implicit function theorem in Rn.

Step 1: Loop Space. To simplify the discussion, assume that the complex con-
jugate eigenvalues of J(0) are ±i. (Rescaling time in (1.1) will accomplish this
task.) The linearized system

(1.4) ẋ = J(0)x

then has periodic solutions of period 2π. The important observation that follows is
that the bifurcating periodic solutions in the nonlinear system are parametrized by
the periodic solutions for the linear system and that the period of the new periodic
solutions of the nonlinear system are approximately 2π. Rescaling time allows us
to search only for periodic solutions that have period exactly 2π. This clever trick
is what makes the approach work.



4 MARTIN GOLUBITSKY AND PAUL H. RABINOWITZ

Introduce the loop space C0
2π consisting of C0 maps S1 → Rn and let C1

2π be the
corresponding subspace of C1 maps. Observe that zeros of the operator equation

F : C1
2π × R× R→ C0

2π

where

F(u, λ, τ) = (1 + τ)
du

ds
− f(u, λ),

correspond to 2π/(1+τ) periodic solutions to the original system (1.1); so we think
of τ as the perturbed period parameter.

Step 2: Reduction to Two Dimensions. The linearization of F at the origin is
just the linear system of differential equations

L(u) =
du

ds
− J(0)u.

The eigenvalue assumptions on J(0) imply that K = kerL is the two-dimensional
space of 2π periodic solutions to the linear differential equation (1.4). Let R denote
the range of L and let P : C0

2π → R be a projection. The Fredholm alternative can
be used to show that kerP is also two-dimensional.

It follows that solving the nonlinear operator equation F = 0 can be divided
into two parts

PF = 0
(I − P )F = 0

The first equation can be solved near the origin using the implicit function theorem.
Let W be a complement to the kernel K in the domain space C1

2π and observe that
L|W :W → R is invertible. Thus, there exists an implicit function W : K×R×R→
W such that

PF(k,W (k, λ, τ), λ, τ) ≡ 0.

It now follows that periodic solutions to (1.1) near the origin and with period
near 2π are parametrized by zeros of the equation

G(k, λ, τ) = (I − P )F(k,W (k, λ, τ), λ, τ)

where G : K × R × R → kerP . We can identify the two-dimensional subspaces K
and kerP with C and the proof then reduces to finding zeros of a map

g : C× R× R→ C

near the origin. Since g is defined only implicitly and since simultaneously solving
two nonlinear equations in two variables that depend on two parameters is not
straightforward, what remains is still a difficult problem. However, phase-shift
symmetry comes to the rescue.

Step 3: The Use of S1 Phase Shift Symmetry. The circle group S1 acts natu-
rally on a periodic function u(t) by

θu(t) = u(t− θ).

It is easy to check that the operator F commutes with this action of S1. It is also
possible to set up the implicit function theorem (correct choices for W and kerP )
so that the S1 action survives reduction. That is, we may assume that

g(eiθz, λ, τ) = eiθg(z, λ, τ).
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It follows from invariant theory that g has the form

g(z, λ, τ) = p(|z|2, λ, τ)z + q(|z|2, λ, τ)iz

where p and q are real-valued functions.
It is now possible to solve for the zeros of g. Since we are looking only for

trajectories of periodic solutions, we can apply S1 symmetry to assume that z ∈ R.
Observe that solving g = 0 is equivalent to solving p = q = 0. Finally some
calculations (based on implicit differentiation) are needed. These calculations do
require substantial work to complete. In particular pλ(0, 0, 0) = a′(0), pτ (0, 0, 0) =
0, and qτ (0, 0, 0) = −1 where a′(0) is the speed with which the critical eigenvalues
of J(λ) cross the imaginary axis.

We can now apply the implicit function theorem to obtain a function τ(|z|2, λ)
such that

q(|z|2, λ, τ(|z|2, λ)) ≡ 0.
So our desired periodic solutions are obtained by solving

A(|z|2, λ) ≡ p(|z|2, λ, τ(|z|2, λ)) = 0.

Second Aλ(0) = a′(0), so we can now apply the implicit function theorem (for
the third time) to obtain a branch of solutions to A = 0 parametrized by |z|2.
These calculations complete the proof of the first Hopf theorem.

Finally, turning to the second theorem, let µ2 = A|z|2(0). Recall that µ2 was
the number alluded to above that determined whether the branch of new periodic
solutions were supercritical or subcritical. To lowest order

A(|z|2, λ) = µ2|z|2 + a′(0)λ+ · · · .
When µ2 6= 0 we see that the branch has the form

λ = − µ2

a′(0)
|z|2 + · · · .

which decides super- or subcriticality. This is roughly the computation Hopf made.
The discussion of stability of solutions requires Floquet theory and careful

control of Floquet exponents in the reduction process. To be a bit more precise,
returning to F(u, λ, τ) = 0 or equivalently

(1.5)
du

ds
=

1
1 + τ

f(u, λ),

the stability of the solution u(s, z) depends on the Floquet exponents of the lin-
earization of (1.5) about u(s, z). In a physical problem where (x(λ), λ) is actually
observed e.g. for λ < 0, it is implicit that this equilibrium solution is stable. Hence
at (x(0), 0) = (0, 0), we expect that n− 2 Floquet exponents of

(1.6)
dv

ds
= fu(0, 0)v

have negative real parts and 0 is a Floquet exponent of multiplicity 2. The Floquet
exponents of (1.6) are the values −κ for which

(1.7)
dw

ds
− fu(0, 0)w = κw, w(0) = w(2π)

has a nontrivial solution. Differentiating (1.5) with respect to s shows that w =
du
ds satisfies (1.6) with κ = 0, i.e. 0 continues as a Floquet exponent along the
bifurcating branch, B, of solutions. Since the n−2 Floquet exponents with negative
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real parts will also continue to be negative on B near the bifurcation point, the
stability of the solutions on B is governed by how the second zero exponent of
(1.7) continues along B. It turns out that κ(z) and λ′(z) have the same zeroes and
whenever λ′(z) 6= 0, κ(z) and — a′(0)zλ′(z) have the same sign. In particular, if
a′(0) < 0 and zλ′(z) > 0 if z 6= 0 (i.e. bifurcation is supercritical), then the solutions
on B near the bifurcation point are stable. This generalizes the remarks made about
µ2 above. Such results can be found in Joseph-Nield (1975), Weinberger (1977),
and Crandall-Rabinowitz (1977).

2. Some Extensions

The Hopf Bifurcation Theorem is a local theorem; it describes the structure of
the branch of periodic solutions of (1.1) near the bifurcation point (x, λ) = (0, 0).
Using topological methods, Alexander and Yorke (1978) have given a global version
of the theorem. While they pose their result for an n-manifold, in the setting
of the Hopf theorem, they allow more general spectral conditions than (H1) −
(H2). In particular (H2) is dropped and (H1) is replaced by a milder condition
that will not be made explicit here. To describe the conclusions, let G(λ, t, x0)
denote the solution of (1.1) with G(λ, 0, x0) = x0. Thus equilibrium solutions have
G(λ, t, x0) = x0 for all t ∈ R. If x(t) = G(λ, t, x0) is not an equilibrium solution
and there is a T > 0 such that x(0) = x(T ), then x(t) is a nontrivial T-periodic
solution of (1.1). Set

N = {(λ, T, x0) ∈ R× (0,∞)× Rn|G(λ, T, x0) = x0

and x(t) is a nontrivial T-periodic solution of (1.1) },

i.e. N corresponds to the set of nonequilibrium periodic solutions of (1.1). The main
result of Alexander and Yorke (1978) is that N ∪{(0, 2πi

a(0) , 0)} contains a connected
subset N0 which is either unbounded in R× [0,∞)×Rn or meets (λ, T , x) ∈ N 0\N0

with G(λ, T , x) an equilibrium solution of (1.1). Stated more informally, there is a
global branch of periodic solutions of (1.1) which is either unbounded in the triple
(λ, T, x0) or meets an equilibrium solution other than (0, 2πi

a(0) , 0). Thus bifurcation
here, like bifurcation from equilibrium to equilibrium solutions as described by the
so-called Global Bifurcation Theorem (Rabinowitz (1971)) is not a local but a global
phenomenon.

The Liapunov Center Theorem (Liapunov (1907)) is an early bifurcation theo-
rem that predates the Hopf Theorem. It considers the n dimensional autonomous
system:

(2.1) ẋ = Ax+ g(x)

where A is an n matrix having eigenvalues ±iβ, λ3, . . . , λn, with β 6= 0 and g(x) =
o(|x|) as x → 0. Assume (2.1) has an integral I, (that is, I(z(t)) ≡ constant for
any solution z(t) of (2.1)) with

I(x) =
1
2
x · Sx+ o(|x|2)

as x → 0, S being symmetric and nonsingular. Suppose further that λj/iβ 6∈ Z
for j = 3, . . . , n. Then the Liapunov Theorem states that (2.1) possesses a 1-
parameter family of solutions x(t, s) of period T (s) for s near 0 with x(t, 0) = 0
and T (0) = 2π/β.
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Being autonomous, (2.1) looks rather different from (1.1), but as was observed
by Schmidt (1976) – see also Alexander-Yorke (1978) – by a nice trick one can prove
the Liapunov Theorem by a simple application of the Hopf theorem. To see how,
consider

(2.2) ẋ = F (λ, x) ≡ Ax+ g(x) + λ grad I(x)

For this choice of F , it is not difficult to verify that J(λ) = A + λS and satisfies
(H1)− (H2) so by (a small generalization of) the Hopf theorem, there is a branch
of solutions of (2.2) (x(t, s), λ(s)), with x(·, s) periodic in t, bifurcating from (0, 0)
in R× Rn. Therefore

(2.3)
dI(x)
dt

= grad I(x) · (Ax+ g(x) + λ grad I(x))

with x = x(t, s). Since I is an integral for (2.1), for all z ∈ Rn,

(2.4) grad I(z) · (Az + g(z)) = 0.

Hence

(2.5)
dI(x)
dt

= λ|grad I(x)|2

Since I(x(t, s)) is periodic in t for s 6= 0, the right hand side of (2.5) must equal
0 for all t. The form of I shows grad I(x(t, s)) 6≡ 0 so λ(s) ≡ 0, i.e. x(t, s) is a
solution of (2.1).

There have been many infinite dimensional versions of the Hopf theorem. The
first that we know of appeared in the 1970’s motivated by attempts to establish
the bifurcation of periodic solutions of the Navier-Stokes equations. See Iudovich
(1971), Sattinger (1971), Iooss (1972), Joseph and Sattinger (1972), Crandall-
Rabinowitz (1977), . . . . Subsequently there have been applications in many other
directions such as reaction-diffusion problems (Henry (1981)), vortex shedding
(Provansal, Mathis, and Boyer (1987)), convection in binary fluids (Knobloch (1986))
and in double-diffusion systems (Knobloch and Proctor (1981)), panel flutter (Holmes-
Marsden (1978)), predator prey problems, . . ., and much more. Considerably dif-
ferent technical settings and tools are required to treat these problems. Often,
however, after a nontrivial Liapunov-Schmidt or center manifold reduction, they
play back to the two basic approaches to the Hopf setting.

The finite-dimensional Hopf bifurcation theorems can be generalized to include
degenerate cases (a′(0) = 0 or µ2 = 0 or both). These degeneracies appear in
systems with several parameters and can lead to the existence of multiple peri-
odic solutions for a given λ. See Kielhofer (1979) and Golubitsky-Langford (1981).
Symmetry, which is often present in fluid mechanics problems, can force the crit-
ical eigenvalues to be multiple and can lead to multiple branches of periodic so-
lutions with intriguing spatio-temporal symmetry. See Chossat-Iooss (1985) and
Golubitsky-Stewart (1985).
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