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1. ~troduction 

a. A synopsis. In this paper we use the theory of singularities to study 
bifurcation diagrams when subjected to small perturbations or imperfections. 
Our goal is to classify for a given problem all possible perturbed diagrams in 
some suitable qualitative way. We have achieved this goal in several impor- 
tant special cases including some bifurcations from a double eigenvalue and 
some bifurcations from a simple eigenvalue not satisfying the non-degeneracy 
condition of Crandall and Rabinowitz [7]. 

We are concerned with a non-linear equation 

(1.1) Gfx, A )  = 0 and G(0,O) = 0 ,  

where G(*, A )  : x1 + x2 is a one-parameter family of smooth maps between 
two Banach spaces. Let Go(x) = G(x, 0). The inverse function theorem states 
that no bifurcation is possible near the solution (x, A )  = (0,O) of (1.1) when 
the differential dG,, is invertible since for each A there is only one solution 
x(A), which depends smoothly on A. We consider only the case when dG,, is 
singular, although we assume that dGo is Fredholm. Because of this 
hypothesis, the Lyapunov-Schmidt reduction (cf. [20]) allows us to reduce 
(1.1) to a finite system of equations resulting from the reduced mapping 
G : ker &Go X R +  XJrange dGo. Indeed we suppose that this reduction has 
uiready been p e r ~ o r ~ e d  so that (1.1) is really only a finite system of equations. 
(See Section 6 for an explicit example of this reduction. The Lyapunov- 
Schmidt procedure extends to perturbations, as is also shown in Section 6 for 
this example. Thus the effect of an arbitrary small perturbation of the original 
problem is described completely by the resulting perturbation of the reduced 
equation. We lose no generality in restricting our attention to  the reduced 
equation.) We assume that G : R" X R-, R" is C" and maps the origin in 
R " x R  into the origin in the range. All of our statements concern the 
behavior of G in a small neighborhood of the origin-in other words, G is a 
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germ of a mapping. We shall call 

D ( G )  = {(x, A )  E R" X R : G(x, A )  = 0) 

the bifurcation diagram associated to (1.1). 
One should note that the reduction from G to G described above can be 

carried out in many possible ways since there is no canonical choice of 
coordinates for either ker dGo or Xz/range dGo. Thus we regard as equivalent 
two bifurcation problems which differ only by changes of coordinates. More 
specifically, we shall call two mappings G, H : R" X R + R" contact equivalent 
if there exists a (smoothly) parametrized family of invertible matrices rx,A on 
R" and a diffeomorphism on R" x R of the form (x, A )  + ( p ( x ,  A ) ,  A(A)) such 
that 

Here we assume that p ( - ,  A )  and A are orientation preserving and that 
( p ( 0 ,  0), A(0)) = 0. Although we write R" x R for the domain of T ~ , ~  and of 
(p ,  A), it is to be understood that these functions need be defined only for 
(x, A )  in some small neighborhood of the origin. The neighborhood of course 
depends on the functions G and H for which the contact equivalence is to be 
established. In other words, contact equivalence is a germ concept. 

It is clear that multiplication by the matrix rx,A has no effect on possible 
solutions of (1.1). (The reader may wonder why we do not allow non-linear 
changes of coordinates in the range in (1.2); Lemma 1.3 below shows that no 
generality would be gained by such a complication.) The diff eomorphism 
(p,A) can move the solution set of (l.l),  but it will not change its qualitative 
nature. Notice however that we do not mix x and A in the A-coordinate of 
the diff eomorphism. This restriction is motivated by the applications in which 
x characterizes the state of some physical system, while A is an external 
parameter. If the experimenter chooses a value of A, the system settles into 
an equilibrium state satisfying (1.1) with A equal to that chosen value. For 
this reason we insist that slices of constant A be preserved in (1.2). This 
restriction is one of the basic ways in which our approach differs from 
previous attempts to describe bifurcations through singularity theory. 

There are two principal questions raised in our analysis of perturbed 
bifurcation. The first is to describe in finite terms (up to contact equivalence) 
an arbitrary perturbation of a given bifurcation problem. Briefly our approach 
to this question is as follows. Given the bifurcation problem G(x, A ) ,  consider 
the set 6 of all mappings contact equivalent to G. In general, 0 will not 
contain all the C" maps in any neighborhood of G. In many important cases, 
however, the complement of 6 in a small neighborhood of G may be 
described by a finite number of parameters. When this is true an arbitrary 
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imperfection can be represented in terms of these parameters, at least up to 
contact equivalence. Singularity theory provides algebraic machinery to deter- 
mine the number of parameters needed and how these parameters should be 
inserted into rhe equations. In more technical language, we are led to the 
so-called universal unfolding F(x, A, a) of G(x, A), an t-parameter family of 
distinguished perturbations of G(x, A ) .  Here a E R' and F(x, A, 0) = G(x, A).  
An arbitrary small perturbation of G is equivalent to F(*, * , a )  for some 
a E R'. More precise definitions and results are given in Section 2. 

The second principal question in this paper is to enumerate a11 the 
possible, inequivalent bifurcation diagrams that may arise from perturbation 
of the given problem C(x, A). In view of the construction above, it suffices to 
consider the bifurcation diagrams 

when a ranges over a small neighborhood of the origin in R'. We show that if 
a perturbed problem F(*,  a,  a )  is not stable, then a must lie on one of three 
algebraic surfaces in R', described below. These surfaces divide the ball 
{a E R' : 1.1 < E }  into finitely many regions, and any two problems associated 
to two values of a! lying in the same region are equivalent. Thus enumeration 
of the open regions provides an enumeration of the possible stable perturbed 
diagrams. (Further analysis is required for the unstable problems associated to 
boundary points of the regions.) The separating hypersurfaces are only given 
implicitly, and in general this enumeration is quite difficult. Of course such an 
a l g o r i t h ~  is amenable to computer analysis; moreover, in Sections 4 and 5 we 
impleme~t  the algorithm explicitly for several of the more elementary 
examples. 

The following lemma, due to Mather [16], shows that no generality would 
be gained by allowing non-linear changes of coordinates on the range in (1.2). 

LEMMA 1.3. Let Tx,A be a parametrized family of difleomorphisms on R" 
such that Tu,A (0)  = 0 for all x, A. Let N(x,  A )  = Tx,A (G(x, A ) )  ; then G and H are 
contact equivalent. 

b. A simple example. In this section we illustrate the kind of information 
our theory can provide about a bifurcation problem by discussing a simple 
example. Specifically we consider the finite element analogue of the Euler 
beam problem illustrated in Figure 1.1. (In Section 6 we consider the 
continuous problem.) This system, consisting of two rigid rods of unit length 
connected by frictionless pins, is subjected to a compressive force A which is 
resisted by a torsional spring of unit strength. In terms of the angle x in the 
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Figure 1.1. Illustration of the finite element analogue of the Euler beam 
problem. 

figure, the potential energy of this system is 

V=4x2+2A cosx ,  

and the condition for equilibrium is 

3V 
- = ~ - 2 A s i n x = O .  
i3X 

A simple calculation shows that when A = $ this system undergoes a supercrit- 
ical bifurcation, this term being defined as follows. A bifurcation at  A = ho of 
the equation G(x, A ) =  0 from a trivial solution x ( A )  is called s ~ ~ e r c ~ ~ ~ ~ c ~ ~  
(respectively s ~ ~ c r i ~ ~ c u ~ )  if there is only one solution of the equation in some 
neighborhood of x ( A o )  for h < ho (respectively h > Ao). It is called transcritical 
otherwise. 

The bifurcation diagram of this problem is the familiar pitchfork, illus- 
trated in Figure 1.2(a). It is well known (cf. [25], [17]) that a small 
perturbation of this problem, either in the form of a central load or an initial 
curvature of the strut, will split the bifurcation diagram into two disconnected 
smooth components, as suggested in Figure 1.2(b). (In the figure dotted lines 
indicate an unstable solution.) Suppose, however, that both the above 
perturbations are present: let the system be subjected to a load p applied at 
the center pin, and let a be the angle at which the spring exerts no torque. In 
this case the energy of the system becomes 

V = 4 ( x - a ) * + 2 ~  cosx-t-p sin x 

Figure 1.2. Bifurcation diagram of the Euler beam problem. (a) Idealized 
problem; (b) perturbed problem. 
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and, modulo terms of order x4, the condition for equilibrium becomes 

dV 
dX 

0 =-=$Ax3 -;Px’+ (1 - 2A)x + ( p  -a)= F(x, A )  , (1.4) 

the latter equality being a definition. Our results below imply that the 
equation 

(1.5) F(x, A )  = 0 

is contact equivalent to the exact equation dV/dx=O, which justifies the 
neglect of the higher-order terms. (Note that the contact equivalence depends 
on a and p.) Provided a = p, (1.5) continues to possess a bifurcating solution 
at A =;, the non-trivial branch being given by 

It may be seen from (1.6) that if pic0 this bifurcation is transcritical, as 
indicated in Figure 1.3(a). Of course this diagram assumes the exact relation 
a = p .  A small perturbation of Figure 1.3 will in general lead to a discon- 
nected diagram, which may be either of the type indicated in Figure 1.2(b) or 
in Figure 1.3(b). The difference between these two diagrams is readily 
observable physically-a system governed by Figure 1.3(b) can be made to 
exhibit hysteresis if A is varied quasi-statically (i.e., slowly compared to the 
time for equilibrium to be obtained) back and forth across the interval 
containing the unstable solutions in the S part of the diagram. In particular 
this refines a suggestion of catastrophe theory (cf. [28]) that an arbitrary 
perturbation of the buckling beam problem may be described by one 
additional parameter. 

Our theory is relevant for this and other bifurcation problems in several 
ways. In the first place it provides a rigorous justification for the truncation of 
the Taylor series by which (1.4) was derived. This allows the choice of normal 
forms for mappings which can substantially simplify calculations. Secondly, it 
shows that any other (smooth) perturbation whatsoever that might be put into 
the problem would not lead to qualitative behavior different from that 

I (b) 
Figure 1.3. Diagram of bifurcation problem. (a) Transcritical bifurcation; 

(b) imperfect transcritical. 
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obtained by some choice of a and p in (1.4). This is true in the strict sense 
that the perturbed systems are contact equivalent to (1.4). Finally, the theory 
gives an algorithm for computing all the possible perturbed diagrams off of a 
given bifurcation problem. We shall describe the precise results of this 
algorithm for the above example in the next section. 

It follows from Theorem 2.4 below that dV(x, A, a, @)/ax is a universal 
unfolding of dV(x, A, 0,O)ldx. This means that any (smooth) perturbation 
whatsoever that might be added to the idealized problem would not lead to 
new qualitative behavior, to behavior not already present for the proposed 
two perturbations. The different stable diagrams that may result are enumer- 
ated by the regions in Figure 1.4. If (a, p )  belongs to regions 1 or 3, the 
bifurcation diagram has the form of Figure 1.3(b) or its mirror image, 
respectively; if (a, p )  belongs to regions 2 or 4, the diagram has the form of 
Figure 1.2fb) or its mirror image, respectively. Figure 1.3(a) illustrates 
diagrams that obtain when (a,P) lies on the ray separating regions 1 and 2, 
and Figure 1.5 corresponds to (a, p )  on the curve separating regions 1 and 4; 
again the mirror image diagrams correspond to negative (a ,  p ) .  Rules for 
performing these calculations are given in Section 2. 

It is clear that Figure 1.3(a) separates two regions of inequivalent 
diagrams-under perturbation the crossing at the center of this diagram can 
split in either of two ways. Figure 1.5 also represents a separating diagram 
because of the vertical tangent at P. A small perturbation of one sign yields a 
smooth solution branch x(h), while the opposite sign yields a hysteresis loop. 
We propose the name ~ys~eresis ~0~~~ for such points which demarcate the 
onset of possible hysteresis. 

Next consider a one-parameter family of perturbations G, of the idealized 
problem dV(x, A, 0 ,O) lax .  As will be shown, Theorem 2.4 also implies that, 
for each E, G, is contact equivalent to aV(x,~,ff(&),~(~))/ax for some 
( ~ ( E ) , @ ( E ) ) .  Moreover, this assignment is smooth in E and satisfies 
(a(O), p(0)) = (0,O). Thus a one-parameter perturbation may be represented 
by a curve through the origin in a, p-space. Since the two separating curves 
in Figure 1.4 are tangent to second order, almost all curves will enter only 
regions 2 and 4. In order to observe regions 1 and 3 one must consider two 

I 

Figure 1.4. I l l ~ s ~ r a ~ i o n  of the different stable diagrams that may result. 
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Figure 1.5. Illustration of diagrams that obtain when ( a , @ )  lies on the curve 
separating regions 1 and 4. 

parameter perturbations. This observation seems consistent with the engineer- 
ing literature and is substantiated in that both perturbations considered above 
(ie., initial curvature and a central load) yield diagrams from regions 2 and 4. 
The full picture is obtained only by ~oRsidering both perturbat~ons together. 

c. Comparisons and comments. The starting point of the present paper 
was Christopher Zeeman’s [28] attempt to relate the imperfect buckling of an 
Euler strut to catastrophe theory. Our results differ from Zeeman’s, as stated 
in subsection b, in that we find that two imperfection parameters are 
necessary to describe an arbitrary small perturbation of this problem, while 
Zeeman suggests that one is sufficient. The explanation of this difference lies 
in our attitudes toward the bifurcation parameter A. To be more specific, we 
consider an example, the bifurcation problem 

(1.7) X 3 - ~ x = ~ .  

Obviously we may write (1.7) in the form dV/ax = 0, where V,(x) =4x4-aAx2. 
For Zeeman, (1.7) represents a one-parameter unfolding of the potential $x4. 
By adding another parameter, 

he obtains a universal unfolding of (1.7), relative to a cerfain notion of 
equivalence which is determined by the permissible changes of coordinates. 
We maintain that the notion of equiualence implicit in the derivation of (1.8) is  
not a p p r ~ ~ ~ a ~ e  for ~ ~ f ~ ~ c a t i o n  t h e o ~ .  Indeed, let us take the perturbation of 
(1.7) 

suggested by our theory. On substituting y = x + $  in (1.9) we find 

(1.10) y3-(A +4p2)y+($Ap +$p3)=  0 .  
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We may write (1.10) in the form (1.8) if we change coordinates in A by 
h =  A +$pz and if we define 

(1.11) 

In other words, the perturbed equation (1.9) may be factored through the 
universal unfolding (1.8) provided we mix the bifurcation parameter A with 
the imperfection parameters. However, the mixing in (1.11) can change the 
nature of a bifurcation problem, which may be seen by observing that (1.8) 
for a f 0 is associated with a bifurcation diagram of the type in Figure 1.2(a), 
while (1.9) for p #  0 is associated with the type of Figure 1.3(a). In our theory 
the dependence of A is part of the data of the original problem; when 
imperfections are considered, we do not allow A to be mixed with them. 

Because of the attacks that have been directed at  catastrophe theory 
recently, it seems appropriate to say that, in spite of our criticism above of 
[28], we feel this paper represents a positive contribution towards the 
understanding of imperfect bifurcation. Certainly it was fundamental in our 
own thinking on this problem. 

Other authors, particularly Thompson and Hunt [26], have recognized that 
the dependence on A should be included as part of the data of a bifurcation 
problem. Indeed, the differences between their list of elementary bifurcation 
problems and Thorn's list of elementary catastrophes originate in precisely 
this point. In his theory of r-s unfoldings for a potential function, Wasser- 
mann [27] has considered a grouping of variables into a three-level hierarchy 
similar to ours. However, we believe Wassermann's theory is inappropriate 
for the discussion of imperfect bifurcation, in view of the following point. The 
simple bifurcation problem (1.7) has infinite codimension in his theory 
because for every A > 0 the associated potential function V, (x) = ax" - $Ax2 
assumes its minimum at two distinct points. Our theory avoids this pitfall by 
focusing on the equation dV/dx=O. Matkowsky and Reiss [17] have de- 
veloped a technique based on matched asymptotic expansions for analyzing 
the effect of specific perturbations on a bifurcation diagram. This theory and 
ours complement each other, as we attempt to classify and to list all the 
inequivalent perturbation which can occur in a problem. Chow, Hale and 
Mallet-Paret [6] have discussed the effect of certain perturbations of a double 
eigenvalue, and the same comment is appropriate. 

As the above discussion suggests, our work differs from previous applica- 
tions of catastrophe theory in that we do not restrict our considerations to 
problems in variational form and we do assume the existence of a distin- 
guished bifurcation parameter A. It turns out that perturbing the equation 
rather than the potential leads to a more natural theory even in the case of 
bifurcation from a simple eigenvalue where a potential function is readily 
available if desired. 
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The main theoretical results of this paper are presented in Section 2 and 
proved in Section 3. In Sections 4 and 5 we apply the theory to model 
mathematical problems, bifurcation from a simple eigenvalue being discussed 
in Section 4 and from a double eigenvalue in Section 5. In Section 6 we 
analyze the continuous version of the Euler beam problem, showing that 
central load and unstressed curvature provide a universal unfolding of this 
problem. We have collected a number of instances of bifurcation problems of 
various types in Section 7. Finally in Section 8 we briefly discuss the potential 
case. 

2. Statement of the Theorems 

In this section we formulate mathematically precise versions of our results. 
We have nonetheless tried to make the exposition accessible to as wide an 
audience as possible. We begin with a careful definition of a universal 
unfolding of a bifurcation problem G(x,A). We remind the reader that such 
concepts exist only on the germ level-although we may write R" for the 
domain of a function, this is a shorthand for an unspecified small neighbor- 
hood of zero in R". We use the notation G : (R" x R, 0) + (R", 0) for a germ 
defined near zero such that G(0,O) = 0. 

DEFINITION 2.la. An 1-parameter unfolding of G is a C" map F : (R" x 
RxR', O)-+(R", 0) such that F(x, A, 0) = G(x, A) for all x, A. 

An unfolding is the precise notion of imperfections we shall use in this 
paper. Usually we shall write F, for the map F(., -, a) with a ER' held fixed. 
Intuitively, a universal unfolding is an unfolding F, say l-parameter, with the 
following property: for any other unfolding H, say k-parameter, there is a 
smooth map Ji : Rk -3 R' such that, for every p E Rk, 23, is contact equivalent 
to F+(p) .  The parameters of the contact equivalence may depend on p- 
specifically we have the relation 

where we require that 7, p and A all reduce to the appropriate identity when 
p = O .  If (2.lb) holds, we say that H factors through F, and we call Ji the 
fac~or~ng ~ a p .  

DEFINITION 2 .1~ .  F is a u n ~ v e ~ a l  unfo~di~g of G if every unfolding of G 
factors through F. 

We shall call two I-parameter unfoldings F and H equivalent if (2.lb) 
holds with Ji a diffeomorphism on R', and isomorphic if (2.lb) holds with Ji 
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the identity on R’. Our definition of universal unfolding does not require that 
the number of unfolding parameters be minimal. 

Our goal is to determine when G has a universal unfolding and to 
compute a universal unfolding if it exists. This is a standard problem in 
singularity theory, whose solution we sketched in the introduction. That is, 
given a mapping G, let OG be the set of germs contact equivalent to G. G has 
a universal unfolding if and only if OG is a “manifold” of finite codimension 
in the space of all germs (even though both are infinite-dimensional man- 
ifolds!). In the case of finite codimension, only perturbations that tend to 
move G away from the orbit OG are relevant for a universal unfolding, and 
there are only finitely many such (linearly independent) directions. Somewhat 
surprisingly, there is a completely manageable computational algorithm, in 
terms of the tangent space to the orbit OG, to determine whether these 
properties obtain. 

On a naive level, the tangent space TG to the orbit OG at G consists of 
all mappings H such that G + EH is contact equivalent to G to first order in 
the small parameter E, and the calculations below could be based on this 
point of view. More formally, TG equals the totality of derivatives aG/dt I f = O  
of curves {f-. G,} contained in OG and passing through G at t = 0 ,  in 
complete analogy with the finite-dimensional situation. (Note that G, is 
simply a one-parameter unfolding of G.) Such a curve may be represented in 
the form 

where ~ , , p ,  and At  all equal the appropriate identity when t = 0 .  Here we 
have suppressed the dependence on (x, A);  restoring these variables would 
give a formula analogous to (2.lb). On differentiating with respect to t (using 
the dot notation) and setting t = 0 we obtain 

where i= d i / d t  is an arbitrary matrix-valued function of (n, A), 6 is an 
arbitrary vector-valued function of (x, A), and A is an arbitrary scalar-valued 
function of h only. Thus TG consists of all the mappings that may be 
obtained from (2.2) as +, 6 and A vary. 

The following algebraic interpretation of (2.2) is the basis for both the 
practical computation of TG and the theoretical analysis. Let $n+l be the ring 
of germs of real-valued functions on the n + 1 variables (x, A), and regard 

the space of rn-tuples, as a module over %n+l with component-wise 
multiplication. We shall sometimes write %x,A for %n+l. Now consider in (2.2) 
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the first component of the product of the matrix i times the vector G, namely 

Since +ij is an arbitrary function of (x, A), this term is an arbitrary element in 
the ideal ( G ) =  ( G , ,  * * * ,  G,) in generated by the m components of G. 
The same considerations apply to the other components of i * G, and we may 
write +.GE(G)", the set of m-tuples. The second term in (2.2), the product 
of the matrix d,G times the vector function b, may be written as 

It should be recalled here that dG/axj is an m-vector. Since pi is an arbitrary 
function of (x, A ) ,  we may say that the second term in (2.2) belongs to 
%,+,{aG/ax), the submodule of generated by aG/ax,, * * * , dG/dx,, over 
the ring %',,+,. For the third term in (2.2) we have only 

since, by hypothesis, A is independent of x. The third term is not associated 
with a submodule over the full ring %n+l ,  which is the reason for the 
distinction between TG and f G  in the following definition and the associated 
loss of elegance. In this definition and elsewhere dim refers to the real 
dimension of a vector space. 

DEFINITION 2.3. (i) Let i"G = (G)" + %',,+,(dG/dx} and let TG = 
f G  + gA{dG/aA}. 

(ii) C has finite codirnension if dim (%r+,/TG)<q 
(iii) The codimension of G equals dim(%:+*/TG) and is denoted by 

codim G .  

The first of our two principal theoretical results is the following. 

THEOREM 2.4. Suppose G has finite codimension, and let Fa be an 
1-parameter unfolding of G. Fa is a universal unfolding of G i f  and only i f  TG 
plus the 1-vectors aF/acu, - + , aFlacul togerher span (over the 
reab). The mini mu^ m umber of M n f o l ~ ~ ~ g  paramefers in any u~iversaZ Mn~o~- 
ding is the codimensio~ of G. 

This theorem plus the uniqueness result below will be proved in Section 3. 
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The following is a noteworthy consequence of this theorem: if 
p I ( x ,  A), - * * , p t ( x ,  A )  project onto a basis of the quotient ~ r + ~ / T G ,  then 

is a universal unfolding of G with the minimum number of parameters. Of 
course in Theorem 2.4 it is not required that the imperfection parameters 
enter linearly. 

PROPOSITION 2.5. If Fa and Ep are any two universal unfoldings of G with 
the same number of parameters, then Fa and ED are equivalent. 

EXAMPLE 2.6. Let us illustrate these concepts for a specific example, 
namely, G(x, A)  = x3- Ax. The bifurcation diagram associated with G is a 
pitchfork, and we show below that G is contact equivalent to the problem 
considered in the introduction. Since m = 1, the distinction between the ring 
&,+, and the module disappears. We have 

TG = (x3- AX, 3x2- A ) ,  

the ideal in &,+l generated by these two functions. Observe that 

x3 =$x(3x2- A)-$(x3- AX) E TG,  

AX = 3x3- x(3x2-A) E TG,  

A 2  =: 3Ax2- A(3x2- A) E TG . 
Thus TG contains the ideal (x3, Ax, A’). But ‘i4,/(x3, Ax,  A2) has dimension 4, a 
basis consisting of (the projections of) 1, x, x2, A. These four monomials are 
not independent in %JTG, since the generator ( 3 x 2 - A ) €  TG provides a 
relation between them. There are no other relations, however, so 
dim(g2/TG)=3.  One choice of basis is (the projections of) 1,x,x2. In 
particular, G has finite codimension. 

To form TG from TG we must c o n s ~ d e r ~ l f ~ c t i o n s i n  

If 4(0)= 0, then 4(A) = A&A) for some 6 E gA, and & A ) h x ~  TG. Thus 
gA{:,(aG/aA} only enlarges TG by one dimension, adding real multiples of x to 
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the space f'G. Therefore, 8JTG has dimension 2, a possible basis being (the 
projections of) 1 and x 2 .  This leads to the universal unfolding 

F(x, A, (w) = x 3  - A X  + a 1 x 2  + (w' . 

With the help of the following lemma one can easily show that Example 
2.6 is contact equivalent to the problem considered in the introduction. (See 
the example after Lemma 4.3 for a detailed description. The reader may omit 
the proof of this lemma without loss of continuity; we include it here for 
completeness.) 

LEMMA 2.7. Suppose G(x, A )  = X" - A x  and H(x,  A)  = x"q(x)- 
Ax+x2Aa(x,A)+A2b(x,A),  where m 2 2  andq(O)>O. Then G a n d H a r e c o n -  
tact equ iua 1 en t. 

Proof: First of all, by a simple change of coordinates in x we can put 
H into the same form with q = 1 .  Next, we claim that H ( x , A ) =  
( x  - c(A)) (xrn-' d ( x )  - A)e(x, A), where c(0) = 0, d ( 0 )  = 1 and e(0)  > 0. If this 
is true, then H is contact equivalent to x ( ( x  + ~(A))"-~f(x,  A )  - A), where 
f(0) > 0. (The contact equivalence is obtained by letting T = l f e ,  p A ( x )  = x + 
c(A) and h ( A ) = A . )  Using the fact that c(O)=O, we may write the second 
factor as x'"-'f(x, A ) - A g ( x ,  A), where g(O)= 1. Dividing by g, we see that H 
is contact equivalent to x(xm-"h(x, A ) -  A),  where h(O)>O. Letting p A ( x )  = 

h(x ,  * x yields that H is contact equivalent to x(xm-l - A )  = G(x, A). 
To prove the claim consider that H(x,  x"-'pj = x"'-lL(x, p ) ,  where 

L(0) = 0 and aL(O)lap = -1 .  By the implicit function theorem there exists a 
unique function p ( x )  with p ( 0 )  = 0 such that H(x,  x"-'p(x)) E 0 .  Letting 
p ( x )  = xd(x)  we see that H(x, xm-' d f x ) )  = 0 implies that d(0) = 1 .  Now we 
have H(x, A)  = (x"-' d ( x ) -  A)K(x,  A). Evaluating at A = 0 shows that K(0) = 0 
and ~ K ( O ~ / ~ x #  0. Again the implicit function theorem implies the existence of 
a unique function c(A) with K(c(A), A) = O  and c ( 0 )  = 0. Consequently, we have 
that H(x,  A)  = (xm-l d ( x )  - A ) ( x  -c(A))e(x,  A). Finally note that e(0)  = 1 since 

The next proposition gives a more theoretical criterion for when two 
bifurcation problems are contact equivalent. A bifurcation problem G : (R" X 
R, 0) -+ (R", 0) is called k-determined if any other problem whose Taylor 
expansion at the origin agrees with the expansion of G through terms of 
order k is contact equivalent to G. G is called finitely d e ~ e r ~ i ~ e d  if it is 
k-determined for some k. For any integer k let Ak c gn+, be the k-th power 
of maximal ideal in (i.e., A is the set of all functions vanishing at the 
origin); then Ak%y+l consists of the germs whose Taylor expansions vanish to 
order k at the origin. 

H(x,  0) = x m .  
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THEOREM 2.8. (i) If ,Bkk%:+l c AFG, then G i s  k - ~ e t e ~ i n e d .  (ii) If G has 
finite codimension, then G i s  finitely determined. 

Part (ii) of the theorem follows from (i) because if dim (%:+Jf'G)<m, 
then ,Bkk8z+:,1~ fG for some k ;  thus G will be ( k  + 1)-determined. Part (i) is 
proved in Section 3. Several applications of this result are made in Sections 4 
and 5 .  The following corollary is an immediate consequence of the theorem. 
This corollary is often useful in simplifying calculations. 

COROLLARY 2.9. A bif~rcation pro~ lem of fin it^ codimension is c o ~ ~ a c f  
equivalent to a map all of whose entries are polynomia~s. Such a map admits a 
universal unfolding that is also a polynomial mapping (in all variables). 

We turn now to the second principal theoretical issue of this paper, to 
determine all the possible inequivalent bifurcation diagrams that can occur in 
the universal unfoIding F(x, A, a) of a given problem. In this discussion we 
assume m = n. As mentioned in the introduction, there are three ways a 
diagram can fail to be stable, which are illustrated in Figure 2.1. The first of 
these, for which the name bifurcation has traditionally been reserved, is the 
most obviously unstable-a small perturbation will in general split the 
diagram into two smooth components. The second diagram, which was also 
encountered in the introduction, is unstable for the following reason: although 
in Figure 2.l(b) there is precisely one solution point for each A, an arbitrarily 
small perturbation of the right sign will produce an S shaped diagram for 
which there are three solution points for each A close to the origin. More 
generally, if the order of contact of a solution branch with the vertical slice 
{A = constant} is greater than or equal to 2, hysteresis loops can be established 
by a small perturbation. We use the term hysteresis point to refer to all of 
these possibilities. In Figure 2.l(c) the name limit point is Thompson and 
Hunt's term for a point on a smooth solution branch where A assumes a 
non-degenerate extremum value; that is, the order of contact with the vertical 
slice is 1. If, as in this diagram, two (or more) limit points occur in the same 
plane {A = constant}, an unstable diagram obtains. Specifically in Figure 2.l(c) 
there are two solutions for each A but in general after perturbation the two 
limit points will not lie in the same A-slice and the number of solutions as a 
function of A will be different. We include in this case the similar case of two 
limit points in the same plane {A =constant} whose solution branches both 
open in the same direction. 

Let us derive necessary conditions for unstable diagrams of each of the 
three kinds to occur. For Figure 2.l(a) this is trivial-since the zero set of F 
is not a manifold, we must have rank dF< n. Here dF is the differential of F 
with respect to x and A but not a. Thus a diagram with bifurcation can occur 



THEORY FOR IMPERFECT BIFURCATI~N 

! 

35 

i 
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3’ +------  __---- 

I 

( 4  

Figure 2.1. Illustration of the three ways in which a diagram can fail to be 
stable. (a) Bifurcation point; (b) hysteresis point; (c)  double limit point. 

only if a belongs to the set 

(2.10) B = {a I3(x, A )  with F(x, A, a) = 0 and rank dF< n} . 

We may suppose without loss of generality that F is a polynomial mapping, 
so that the equations in (2.10) will be algebraic. The rank condition on a 
n x (n + 1) matrix is equivalent to two scalar equations; thus (2.10) is a system 
of n t . 2  equations in n + 13- 1 variables (x, A, a). On elimination of x and A 
we are left with a single semi-algebraic equation in the I variables a ER’. In 
summary, the diagram associated to Fa will not contain any bifurcation points 
unless a belongs to the algebraic surface (2.10). 

It may happen that a given diagram is singular in two or more of the 
above ways. Notice, however, that any diagram with bifurcation will appear in 
(2,10), regardless of other singularities that may be present. Since our goal is 
only to derive necessary conditions for a diagram to be unstable, in treating 
case (b) we may assume without loss of generality that no bifurcation is 
present, i.e., that rank d F =  n. This means that the bifurcation diagram is a 
smooth curve, say { (x (T ) ,  A ( T ) )  1 T E R ) .  It may be seen from Figure 2.l(b) that 
A‘(O)=A”(O)=O; of course we require that xr(0)fO,  calling this vector u. 
On differentiating the relation F(x(T) ,  A ( T ) ,  a) = 0 we obtain the relations 

(2.11) 
d,F* u = O ,  

d:F(v, u )  E range d,F. 

Here d,F and d:F are the first and second differentials of F with respect to x. 



36 M. GOLUBITSKY AND D. SCHAEFFER 

Thus a must belong to the set 

H = ( a  13(x, A )  with F(x, A, a )  = 0 ,  det &F=O , 
(2.12) 

d:F(u, v )  E range &F) , 

where u is any non-zero vector in ker d,F, necessarily nontrivial. The range 
condition is effectively one equation if ker dxF is one-dimensional. Thus 
(2.12) is effectively a system of n + 2  equations in n f  l +  1 unknowns. 
Elimination of x and A leaves a single semi-algebraic equation in a. 

It is clear that there can be two limit points in the same A-slice only if (Y 

belongs to 

DL={a f 3(x, y ,  A )  with x f  y ,  F(x, A, a)=O= Fly, A, a ) ,  and 
(2.13) 

det (d,F)(x, A, (Y) = 0 = det (dxF)(y,  A, LY)}  

An equation count shows that (2.13) is effectively a single equation in a. 
Suppose G is a bifurcation problem with finite codimension and F is a 

universal unfolding of G. Let C (for control set) be the union of the three 
algebraic surfaces (2 .10) ,  (2.12) and (2 .13) .  We show in Section 3 that R'- C 
is non-empty and therefore everywhere dense. On an intuitive level the 
theorem below states that F, is stable if (Y ER* - C. However, care must be 
exercised in formulating this result because so far we have been working with 
germs of mappings. Thus for example the bifurcation problem G is equivalent 
to its restriction to an arbitrarily small neighborhood of the origin. In this 
theorem we revoke this convention which is usually employed when dealing 
with germs. Instead, we consider F : U X  V +  R" to be defined on a fixed 
open neighborhood of the origin in R" X R X R', where U c R" X R and V c R'. 

DEFIN~TION 2.14. (a) Suppose G, H : U + R" are two bifurcation prob- 
lems. Given a neighborhood U ' c  U we shall say that G is  e ~ ~ i u a ~ e ~ f  to H on 
U' i f  (1.2) holds for all ( x , A )  in U', 

(b) If (Y E V, we say that F, : U -+ R" is (F, U')-stable if F, is equivalent 
to F, on U' for all /3 near a. 

Note that we use the unfolding itself to parametrize the perturbations of 
G-although every perturbation may be so parametrized, the parametrization 
is not uniform and technical complications are avoided by this ruse. 

THEOREM 2.15. In terms of the notation above, there exist open neighbor- 
hoods of zero U' and V' in R" X R and R', respectiuely, with U ' c  U and 
V ' c  V, such that Fa i s  (F, U')-stable for all a E V'- C. 
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COROLLARY 2.16. Let C and F be as in Theorem 2.15. For a and p in the 
same connected component of V'- C, F, is contact e ~ ~ i ~ a ~ e n ~  to Fp on U'. 
Thus all d ~ ~ g ~ a ~ ~  associ~~ed w ~ i ~  a given connec~ed & o ~ p o n e ~ ~  are e ~ ~ ~ v u ~ e n ~ .  

Proof: Theorem 2.15 states that the equivaience cIasses of the F, €or ty 
in a given connected component are open. Connectedness implies that there 
is but one equivalence class, 

This theorem is proved in Section 3. One may use it ta justify the 
interpretation of Figure 1.4 given in the introduction. Let us consider, 
however, the slightly simpler problem Gfx, A )  = x3- Ax, which by Lemma 2.7 
is contact equivaient to the earlier problem. We choose the universal 
unfolding 

The equations for (2.10) reduce ta the system 

when x and A are eliminated we are left with the equation 

The equations for (2.12) reduce to 

which on el~mination of x and A yield 

- 1 . 3  (2.18) a 2 - 2 7 a I  - 
The equations for (2.13) have no solutions in this case. In conclusion, the 
values of a for which F, is not stable are located on two smooth curves that 
intersect and are tangent to second order at the origin. These two curves 
divide the plane into four regions, and for a inside these regions F, is stabfe. 
To determine the qualitative type of diagrams in each region, it suffices to 
compute one representative explicitly. This completes the explanation of 
Figure 1.4 and its interpretation, apart from the remark that Figure 1.4 is 
rotated 45" and reflected as compared to the curves (2.17), (2.18) because of 
a different choice of unfolding parameters. 
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3. The Proofs 

In this section we adapt standard proofs of the unfolding theorem an 
finite de te r~ inacy  to prove the theorems stated in Section 2. For the proof ( 

the unfolding theorem we follow Martinet's excellent exposition [IS]. 
The idea of the proof is as follows. Given G and F as in the statement 6 

Theorem 2.4, let H,(x, A )  be a k-parameter unfolding of G. To show that 
is a universal unfolding of G we must show that H factors through F. To d 
this we form the sum unfolding S,, ,(x,  h )  = F,(x, h ) + H , ( x ,  A ) -  G(x, A). Tk 
object of the proof will be to show that S,,s factors through the unfolding ( 

G obtained by setting one of the s-variables in Sm,s equal to 0. Using th 
argument inductively we show that S,,s factors through Fa. Finally, restrictir 
the factoring map so constructed to a = 0 in Sa,s yields a factoring of tt. 
unfolding H, through F, as desired. Lemma 3.1 isolates the argumen 
necessary in the reduction step. The other preliminary results give the form I 

the Malgrange preparation theorem needed in the proof of the unfoldir 
theorem. First, some notation. 

Let F : (R" X RX R', 0)-+(R", 0) be an I-parameter unfolding of G. P 
usual set F,(x, A )  = F(x, A, a )  with al, * - , at denoting the a-coordinates. LI 
R'-' denote the space {a, = 0). Let E denote the ( E -  1)-parameter unfoldir 
of G obtained by restricting F to R" x R x  RI-'. Next let h : (Rk, O)+(R', I 
be a smooth germ. Denote by h*F the k-parameter unfolding of G define 
by (h*F)(x,  A, J3) = Fh&c, A). Finally, recall that the germ h is a submersion 
(dh)o is onto and that two 1-parameter unfoldings F and H of G ai 
isomorphic if H can be factored through F in such a way that the factorir 
map is the identity map. 

LEMMA 3.1, (The Reduction Lemma). 
(a) there exists a submersion h : (R', O)+(R'-', 0) such that F is isomorph 

(b) there exists a vector field X on R" X R x  R' of the form 

The f o ~ ~ o w ~ n g  are equivalent: 

to h*E if and only i f  

and a ~arameirized f a ~ i ~ y  of vector fields Yx,A,p on R" such ~ h a i  (* ) (dF) (X)  
Yr,h,u OF, where (dF) is the Jucobean matrix obtained by diflerentiation wi 
respect to x, h and a. 

Proof: (a)=$(b) is left to the reader since we shall only need (b)+(a 
Integrating the vector field X yields a one-parameter group of diffeomorpl 
isms (p , , (x ,  A, a), A,,(h),  h,,(a)). Note that the time parameter may be takt 
to be since the coefficient of X on d f a q  is identically one. This also implil 



THEORY FOR IMPERFECT BIFUR~ATION 39 

that the integral curves of X are transverse to {al = O}. Define a submersion 
of (R" X R x  R', O)+(R" X R x  R'-', 0) by projecting (x, A, a) along the integral 
curves of X until al=O. This map has the form (x, &a)+ 
(pA, , (x) ,  A,(A), h ( a ) ) ,  where, for each (a, A),  P , , ~  is a diffeomorphism on 
R", A, is a diffeomorphism on R and h : (R', O)+(R'-', 0) is a submersion. 

Next integrate the vector fields Yx,A,, to obtain a family of diffeomorphisms 
T ~ . ~ , ~ , ~  on R". As before identify the time parameter t with at and note that 
(*) implies that integral curves of X are mapped to integral curves of Y. 
Hence, ~ ~ ~ * ~ ( p A , ~ ( x ) ,  = T x , A . i ~ ( ~ a ( ~ t  Thus 

Finally, apply Lemma 1.3 to see that for contact equivalence the 
diffeomorphism rx,A,a may be replaced by linear maps. So that h*E is 
isomorphic to F. 

consisting of germs which 
vanish at 0 in R'. 

Recall that 4- denotes the maximal ideal in 

PROPOSITION 3.2. Let N be a finite~y generated m o d ~ ~ e  over %x,h,a. Let 
No = ~ l ~ a N .  For n in N denote by ii the ~rojection of n in No.  Then 

( 4  g a { n 1 ,  * * , nr}= N if and only i f  (b) R{iil, * * , i iJ= N o .  

Proof: This is just Proposition 2.1 of [15] with the submodule assumed 
to be 0. 

Note. (a) just states that TG f R{q,,, , * , qr,o} = 5%':'. 

Proof: Since G has finite codimension we can write TG= 
'fG + RIP,, * - , ps}. Let N be the %x,A,a module %$,,/((F)m + %x,,+,a{aF/d~}).  
Apply Proposition 3.2 with the generators ql, * - * , qr, pl ,  + + - , ps to obtain 
(a)+(b). (b)+(a) is clear. 

Proof of Theorem 2.4: Let F' = aF/aai / a = O .  It is easy to show that if F is 
a universal unfolding of G, then = TG+R(F1, * * - , F'}. We now prove 
the converse. Let F, G, H and S be as described above. As noted, S is a 
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( k  + 1)-parameter unfolding of G. To prove the theorem it is sufficient to find 
a submersion h : R' X Rk + R' so that S is isomorphic to h*F. We shall find k 
by induction on k. 

We assume that F satisfies %EA = TG +R{F', * * , F'}. Let rn i (x ,  A, a,s) = 
aS,,,(x, A ) / d a , .  Then = F' in the notation of Lemma 3.3. Applying Lemma 
3.3 to S we see that 

Hence we can write 

Let 

Then ( d S ) ( X ) =  Y o S  and we can apply the Reduction Lemma to find i 
submersion h : R' X Rk + R' X Rk-' with the desired property. Thus thc 
induction holds. 

We now prove the uniqueness result. 

Proof of Proposition 2.5: First we assume that k = 1, where 1 = codim G 
Since F, is a universal unfolding of G, Ep factors through F,. Hencc 
E,(x, A )  = T , , i , p  * F+(p)(pA(x), A(A)). We must show that the factoring ma1 
+(P) is the germ of a diffeomorphism. It is sufficient to show that (d+)(O) i 
invertible. Note that Ep(x, A )  is equivalent to the unfolding H,(x, A )  = 
F+(@,(x, A ) .  Thus H is a universal unfolding of G. Next one computes thc 
initial speed vectors H i  in terms of the initial speeds Fi yielding 

(3.4) 

Since the Fi and H i  both must span 1-dimensional spaces (using the fact tha 
1 = codim G and Theorem 2.4), the matrix (d+)(O) is invertible. 

Next assume that E is a k-parameter unfolding and let L be ai 
1-parameter universal unfolding. As before E factors through L with factor 
ing map +. So Hp = L,o, is a k-parameter universal unfolding of G when 
the factoring map + : (Rk, O)+(R', 0). Now (3.4) (with L replacing F )  implie 
that rank (d+)(O) = 1 so that I) is a submersion. Thus, E is equivalent to th 
k-parameter unfolding K+( , ) .  
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Finally, if Fa is another k-parameter universal unfolding of G, then F is 
also equivalent to an unfolding I&*), where # : (Rk, O)+(R', 0) is a submer- 
sion. The implicit function theorem gives the existence of a diffeomorphism 
u : (Rk, O)-.(Rk, 0) so that #(u(p))  = $(p) .  Hence, and are 
equivalent unfoldings and then Ep and Fa are also equivalent. 

To show finite determinacy one must analyse the following problem: let 
G(x, A )  be a bifurcation problem and P(x, A )  some small perturbation term. 
Given G, what conditions must be put on P to show that G + P  is contact 
equivalent to G? There is a standard method. Let Gt = GI- tP. Assume that 
G, is contact equivalent to G, differentiate this relationship with respect to t, 
solve the resulting linear problem, and finally integrate to obtain the contact 
equivalence. Thus we assume 

Differentiating (3.5) with respect to t (indicated by a )  we obtain 

(3.6) 

Evaluate (3.6) at (p;,:(x),  A;'(A)) and multiply by T, : , ,  to obtain 

-P(x, A)  = T(x, A, t )  Gt(x, A ) +  dXGt(x, A )  R(x,  A, t )  

(3.7) + L(A, t )  ec, (x, A )  , 
ah 

and 

Note that L is a scalar, R is a vector, and T is a matrix-valued function. 

LEMMA 3.8. Suppose that (3.7) can be solved for R, L, and T with 
L(0, t)= 0 and R(0, 0, #)= 0;  then P+ G is contact e ~ u ~ ~ a Z e n t  to G. 
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Proof: First solve dA, (A) /d t  = L(At(A),  f ) .  Since L(0, t )  = 0, we can solw 
this ordinary differential equation up to t = 1 on some small neighborhood 01 
0 in A. This defines the germ A,. 

Next solve dp,,,(x)/dt= R(p,, ,(x),  &(A),  t ) .  Again since R(O,O, t ) = O ,  wt 
can solve for p up to t = 1 on some fixed neighborhood of 0 in x, A-space 
This defines the germs pAVt. 

Finally solve the linear system of ordinary differential equations 

There are no impediments to solving this equation up to t = 1. Now havinl 
defined A, p and 7, we can transform (3.7) to (3.6) and integrate (3.6) wit1 
respect to t to obtain (3.5). 

We have now reduced the problem of determining whether G + P  i 
contact equivalent to G to solving the linear problem (3.7) subject to tht 
constraints in Lemma 3.8. For our purposes it will suffice to find conditions 01 
P to solve (3.7) with L = 0. Note that a necessary condition is obtained b: 
taking t = 0. Therefore we assume 

(3.9) P(x,  A ) =  T(x, A )  * G(x, A ) +  dxG(x, A)  * R(x,  A )  

with R(O)=O. 
Clearly if we can write G and d,G as linear combinations of G, and d,G, 

then (3.9) would imply (3.7). We now find such a condition on P to guarantel 
this. To do this we inspect (3.9) more closely. Let Gi,j denote the vector ii 

As before let TG be the g,,, submoduie of given by (G)"'- 
8x,A{aG/d~, , * + 9 , aG/dx,}. Then PG is finitely generated with generators G 
and aG/dxi. Equation (3.9) just states that P is in TG. 

whose j-th component is Gi.  

LEMMA 3.10. (Nakayama) Let N be a finitely generated Ex module wit 
generators g,, 1 * , gk. Sup~ose n l ,  * * , nk are in N and m l ,  * , mk are i 
A,. Let i, = g, f m,n,. Then $jl , - * , $jk aEso form a set of generators for N. 

Proof: Let n, =C:=, a,g, for a, in Ax. Then we obtain 

where A is the matrix whose entries are miaij. Since A(0) = 0, we know ths 
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I,+A is invertible near x=O. Hence the gi may be written as linear 
combination of the gj and the gj generate N. 

PROPOSITION 3.11. Assume that P and aP/aq, i = 1, - * * , n, are all in 
J#, ,~'~'G. Then G + P  is  contact e q ~ i v a ~ e n t  to G. 

Proof: We claim that (Gt)i,i and aG,/dx, form a set of generators for 'f'G. 
Since G, = G + tP, this follows from Lemma 3.10 and the assumptions, mean- 
ing that G and d,G are linear combinations of G ,  and dxGt .  As noted 
before, this is enough for (3.9) to imply (3.7). Now apply Lemma 3.8. 

Note. The proof of Proposition 3.11 rests on the invertibility of the 
matrix Ik + A in Nakayama's lemma. This invertibility was guaranteed since 
our hypotheses implied that A(0) = 0. In certain applications we shall show 
the invertibility of & + A  directly. To do this we shall need to write explicitly 
the m 2 + n  equations relating the generators Gii and aG/& to Gi,j,t and 
aG,/ax,. When rn and n are small this is not so hard. For example, if 
n = m = 1, the equations are 

In this case we need only show that the matrix t(: fi>- I ,  is invertible a t  
(x, A )  = 0. We shall use this observation in Section 4. 

Proof of Theorem 2.8. (i): We assume that &'SE,cJt/'f'G. Let 6=  
G + P ,  where P is in A'+'%:'. Then dP/ax, is in A%'%$. Hence P, 
aP/ax, , * - , aP/ax~ are in J#fG and we may appiy ~ o p o s i t i o n  3.11. 

We now prove Theorem 2.15. Recall that we consider only the case 
m = n. Let G : U+R" be a bifurcation problem where U is a neighborhood 
of 0 in R" x R. We assume that the germ of G at  0 is of finite codimension 
and that F : U X  V-R", where V in a neighborhood of 0 in R' is an 
unfolding of G .  We also assume that the germ of F at 0 is a universal 
unfolding of the germ G. Let C be the control set of Fa in V. Our object is 
to show that there are neighborhoods V ' c  V and U ' c  U such that, for all a 
in V'- C, F, is (F, U') stable (recall Definition 2.14). We choose V' in 
Lemma 3.12, characterize limit points in the next two lemmas and then prove 
the theorem. We wish to thank John Mather for supplying us with the 
following proof. 



44 M. GOLUBITSKY AND D. SCHAEFFER 

LEMMA 3.12. Let G : U+R" be the bifurca~~on problem referred to aboue. 
Then there is an open neighborhood u" of 0 with U ' c  U such that, on U', G 
and det d,G vanish simultaneously only at 0. 

Note. We may assume that U'= S X  L, where S and L are open 
neighborhoods of 0 in R" and R, respectively. 

Proof: Let Q : (R" x R, O)-,(R" x R, 0) be defined by Q(x ,  A )  = 
(G, det d,G). The lemma is equivalent to stating that Q has an isolated zero 
at (x, A )  = 0. Since the germ G has finite codimension we may assume by 
Corollary 2.9 that G is a polynomial mapping, hence so is 0. By a standard 
theorem in algebraic geometry (cf. Ell]), Q has an isolated zero if 
%,,,/{GI, * * + , G,, det d,G) has finite dimension. Let A be the ring %J{G). 

Claim. dim Al{det d,G}A < m  if dim A"l{dGlax,, - * * , dG/ax,,IA (03. 
Using the remarks above this claim proves the lemma since 
A"/(aG/ax,, - - * , dG/dx,)A = %!&/PG. To prove the claim let K = 

where each a, is in K}. The assumption that G has finite codimension implies 
that ddk8T'c TG for some k. So d d k c K  and d d n k c ( K ) " .  Hence 
dim Al(K)" <a. Now suppose a,, * * - , a, E K. Then aidGIax, = 
Cia,, rijaG/dxi for rii in A. In matrix form these equations state that 

{a E A  I a - A"c{dG/dx,, * * * , aG/ax,}A} and (K)" = { ~ E A  1 a =a, - - * * * a, 

as A-linear m a p p ~ n ~  on A". Computing determiRan~ yields al * - - a, = 
det (rij) det ( 4 G )  in A. Hence (R)" c (det (d,G))A and dim Af(det d,G)A S 
dim A/(K>" <a. 

LEMMA 3.13. Let G(x,A) be a bifurcation problem. Suppose that 
rank (d,G)(O) = k. Then G is contact equivalent to 

a<zl,". ,x",h)=(x,,'.',2,,gk+l(y,A),...,g,(y,A)), 
where y = ( % k + l ,  * - ,  2"). 

that 
Proof: By linear changes of coordinates of R" and R" we may assume 

Writing G = (8, , - + , g,) in these coordinates, we may set fl  = g, , - * * , II;: = 
g k  and choose i&+l, * - * , f to give a coordinate system on R". Next write G 
in these coordinates as 

G ( ~ l , . . . , ~ n , h ) = " " , ~ ~ , g k + l ( ~ , h ) , " ' , g n ( ~ , h ) )  * 
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Expand gi for k + 1 S i S n by Taylor's theorem to get 

Let 

For each (Z? A), T ~ , ~  is invertible and = T ~ , ~ G  is the desired function. 
Next we give a normal form for limit points. 

LEMMA 3.14. Let G : (R" X R, O)+(R", 0)  have a limit point at 0. Then G 
is contact equivalent to H(x,,  - f - , x,, A )  = (A * x:, x2, - * * , x"). 

Recall from the discussion after Figure 2.1 that a limit point 
means that rank (dG)(O) = n and that G has a vertical tangent at 0. Thus 
rank (d,G)(O) = n -  1. By Lemma 3.13, G is contact equivalent to d(x, A )  = 
(g,(xl, A),  x2, - * , x,) with g,(O) = 0 and ag~(O)/ax~ # 0. The condition 
that G be a limit point also implies that d2g,(0)/ax: f 0. It is now easy to 
show that g,(x,, A )  = T ( x , ,  A)(A - h(x , ) ) ,  where ~ ( 0 )  f 0, ah(O)/ax,  = 0 and 
a"h(O)/ax: # 0. A simple contact equivalence gives the desired result. 

Proof: 

Note. This normal form shows that 
(i) limit points are isolated; 

(ii) limit points are stable, i.e., a small perturbation of G will yield an 
isolated limit point near 0. 

Proof of Theorem 2.15: By Lemma 3.12 there exists an open neighbor- 
hood U' of 0 with @ compact and contained in U such that G and det d,G 
vanish simultaneously in U' only at 0. Let Z be a neighborhood of 0 with 
gc U'. By continuity there exists a neighborhood V' of 0 in V such that F 
and det d,F do not vanish simultaneously on (0- Z ) x  V'. (To see this 
consider the function IIE;rl+ldet d,FI which is bounded away from 0 on 
(@ - Z)  x (01.) Now assume U' has the form S x L, where S c R" and L c R 
are open neighborhoods of 0 as noted after Lemma 3.12. 

Suppose a is in V'- C. Then the bifurcation diagram associated to F, on 
V' is a collection of non-singular, non-intersecting curves with only limit 
points as vertical tangents. Also the A values of the limit points are distinct. 
Let h l ,  * , A, be the distinct A values of the limit points for Fa. Choose 
disjoint open neighborhoods Li of hi in L and a neighborhood N of a such 
that for all 0 in N :  
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( a )  F, is non-singular on U', 
(b) F, has only limit points as vertical tangents, 
(c) Fb has no limit,points with A values in L - UIL;;l L,, 
(d) F, has precisely one limit point with A value A,(@) in L,. 

This is possible by Lemma 3.14 and the subsequent notes. (So V'- C is an 
open set.) We now show that, for every @ in N,F, is contact equivalent to 
Fa, First note that a change of coordinates on L will take h i ( @ )  to  hi. Hence 
we may assume that the A values of the limit points are the same for F, and 
Fa. Next by a linear change of coordinates pA on R" we can assume that the 
actual limit points of F, and Fa occur at  the same points. (This follows since 
the limit points in S x {A i }  for F, and Fa are unique.) Now apply Lemma 3.14 
to obtain neighborhoods L; of Ai on which F, =Fa. (The normal form implies 
that the functions defining any two limit points are contact equivalent.) Next 
observe that, on L - UIeI L; , the curves in the diagrams associated to F, and 
Fp are all parametrized by A since $,Fa and d,F, are non-singular. It is easy 
to see that Fa and Fp are now contact equivalent by applying a diffeomorph- 
ism pA : S-+ S. 

4. Computations with One Degree of Freedom 

In this section we analyze perturbed bifurcation diagrams when there is 
one state variable present ( n  = 1) and one equation ( m  = 1). As mentioned in 
Section 1 these results are equalty valid for both conservative as well as 
non-conservative systems. Now given a finite codimension bifurcation prob- 
lem G(x,A) we may assume without loss of generality that G(x,O)= 
xm f higher-order terms for some m. Hence by a change of coordinates in x, 
G(x, 0) = x"'. In our exposition we shall consider the following cases: 

(11, x m * A ,  m 1 2 ,  
(11), X* * A x ,  m 1 2 ,  

(111) x3*  h2XJ 
(IV) x 2 h ( x ,  A ) .  

Note. The bifurcation problem (II), is contact equivalent to x 2 - h 2 .  This 
equivalence is obtained by letting p A ( x )  = x - A and h(A) = *2A. 

The first two problems are obtained under the following conditions: 

PROPOSITION 4.1. Let H(x,  A )  be a bifurcation problem satisfying H(x ,  0) = 
xm + * * . Then H is contact equivalent to 

(I), i f  and o n ~ y  i f  a ~ ( O ) / a A  # 0, 
or to 

(TI), if and only if aH(O)/ah = 0, rank (d2H)(0)  = 2, and index (d2H)(0)  = 1. 
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Note. When m Z 3 ,  the conditions on rank and index are equivalent to 
a2H(0)/ax ah # 0, whereas, when m = 2 ,  x2 - A' satisfies the conditions of the 
proposition. 

When m = 2  and index ( d 2 ~ ( 0 ) #  1 ,  one obtains the problem x 2 + A 2 .  
Such problems appear in the chemical engineering literature under the name 
of isolas (cf. [21]). 

Proof: Whether or not (dH)(O) is zero is an invariant of contact 
equivalence. So the conditions defining (I), are necessary. If (dH)(O) = 0, 
then the bilinear form (d2H)(0 )  is an invariant of contact equivalence. Thus 
the conditions defining (11), are also necessary. 

The sufficiency of (11), for m 2- 3 is given by Lemma 2.7. The conditions 
on (11)2 allow one to normalize the Hessian matrix by a linear contact 
equivalence to obtain x2- Ax + higher-order terms. One can now apply 
Lemma 2.7 in this situation as well. For the su~c iency  of (I), note that 
changes of coordinates in x alone and A alone will put H in the form G+P, 
where G(x, A )  = xm * A and P = A2P1 + xAP2. Now f G  = (xm * A, mxm-*) = 
(A, xrn-l). Hence P is in &fG and so P =  a G +  b(aG/ax),  where a ( 0 )  = &(O) = 
0. Next note that 3P/ax=hQ for some Q. Thus we may write aP/ax= 
cG+ e(aG/ax),  where e (0 )  = 0. Now apply the note after Proposition 3.11. 
Since f(z :)-I2 is invertible at 0, G + P  is contact equivalent to G. 

' 

PROPOSITION 4.2. A universal unfolding with the minimum number of 
parameters for 

(I), is Fa(& A)  = Xrn + ff,-*xm-2+ * * * + CYlX f A ,  
(11), is (a) F , ( ~ , h ) = x ~ + c r ~ _ , x ~ - ' + ~ ~ ~ + t r , ~ ~ f A ~ + ( ~ ~ ,  

or fb) F,(x, A ) = X ~ + C Y ~ - ~ X " - ~ + *  - - + a 2 ~ 2 * A ~ + a l + ~ , ~ l h ,  
(111) is F,(x, A ) = x ~ ~ ~ ~ x + ( c Y ~ + c Y ~ x + c Y ~ x ~ ) + ( c Y ~ + ~ ~ x ~ ) ~ .  

(IV) has infinite codimension. 
The number of parameters are m - 2 ,  m - 1 and 5 ,  respectively. 

Note. One can generalize (111) to show that x3 - A %  has codimension 

Proof: (I) Let G(x, A)  = xm f A. Then FG = (A, xrn-'). Since dG/dA = *l, 
x, x , - - , xmP2 project onto a basis of g2/TG. Apply Theorem 2.4 and the 
subsequent discussion. 

(11) Let G(x, A )  = x" f Ax. Then 'fG = (xm, A - mxrn-l). Since aG/aA = +x 
and Ax E f G ,  1, x2, * - , xm-' projects onto a basis of g2/7'G. Notice that 
1, A, 2, * - - , Xm-2 also projects onto a basis. Applying Theorem 2.4 to these 
bases gives the desired normal forms. 

(111) Let G(x, A )  = x3f  A 2 x .  Then f G  = (x3, 3x2f A2) .  Note that A 4  is in 
fG. We use Taylor's theorem to compute the codimension of PG. Let f(x, A )  

3 k  - 1. 

2 
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be in g 2 ,  then 

f =  ao(x)+a,(x)A+a,(x)A2+a3(x)X3 mod ?G. 

Exchanging A2 for 3x2, we have f ( x ,  y) = b,(x) + b,(x)h 
multiples of x3 one obtains 

mod ?G. E l ~ i n a t i n g  

Finally note that aG/aA = +2Ax so that modulo TG the coefficient may be 
eliminated. We have thus shown that 1, x, x2, A, x 2 A  form a spanning set for 
8,ITG. We leave it to the reader to show that this set is actually a basis. 
Applying Theorem 2.4 gives the desired universal unfolding. 

(IV) f'G = (x2h(x ,  A), x[2h + xahlax]). Hence A, A2, X3, - * * are indepen- 
dent in g21TG. 

The example (111, occurs in many different contexts. It is thus useful to be 
able to determine when a 2-parameter unfolding Fff,@ of G is contact 
equivalent to the normal form for (II)3. For the following lemma we write 
F(x, A, a, p )  for Fff,@(x, A),  reserving subscripts to denote partial differentia- 
tion, and put a bar above a function to indicate evaluation at 0. For example, 
F, = aF(0, 0, 0,O)iax. Clearly we must assume that G is contact equivalent to 
x3- Ax. In view of Proposition 4.1 we assume that e = ex = GA = G,, = 0, 
and that ~ x x x ~ x A  <O.  (If ..*,,ex, > 0, we have subcritical bifurcation.) Let 
j ( L )  be the vector (E,z,, L,,, LA) viewed as a c o ~ ~ ~ ~  vector and let 
J ( F )  = det (@A j(FA), We), j (F@)).  

LEMMA 4.3. F is a universal ~ n ~ o ~ d i n g  for G if and only if J(F)fO. 

Proof: Suppose that L(x, A, a, 6 )  = T(x, A )  * F(X(x,  A), A(A), a, p) ;  then a 
tedious but straight-forward calculation shows that J(L)  = F4K2z3(F). Since 
G is contact equivalent to x3- Ax, there exists T, X and A with T# 0, zX# 0 
and h#O such that 

T * F(X,  A ) =  x3- A X  + (YU(X, A, a, P ) +  @(x, A, a, p )  

Hence J ( F )  = -6(& + 6&) + IT(&., + 6b;). By Theorem 2.4, F is a universal 
unfolding of x3- Ax if and only if a(x, A, 0,O) and b(x ,  A, 0,O) project onto a 
basis in N =  %J(x3- Ax,  3x2- A ) +  R{x}]. Now a = 6 + (+axx + 3 4 ) ~ '  and 
b = 6+ ($= + 3&)x2 in N .  We proved in Example 2.6 that 1 and x2 project 



THEORY FOR IMPERFECT B I ~ R C A ~ O N  49 

onto a basis in N. Consequently, F is a universal unfolding if 

We shall use this lemma in Section 6. 

EXAMPLE. Consider F(x, A, a, 8) = x - a - (2A + 1) sin x + 8 cos x as an un- 
folding of G(x, A )  = x - (2A + 1) sin x. This is the actual bifurcation problem 
obtained from the finite-element analogue to the Euler beam problem 
considered in the introduction. It is easy to check that the conditions on G 
listed above are satisfied and that J ( F )  = 4 # 0. This reconfirms our statement 
that F is a universal unfold~ng of G contact equivalent to x3 + ax2 - Ax + 8. 

We now analyze the bifurcation diagrams associated with the examples 
(Qm, where G(x, A )  = x m  -A.  The reader may wish to review the discussion in 
Section 2 concerning stability of diagrams; in particular, (2.10), (2.12) and 
(2.13) and Corollary 2.16. Proposition 4.2 states that a universal unfolding for 
(I), is F , ( x , A ) = x " +  a m _ 2 ~ m - 2 + . . . + a Y 1 ~ - A .  Since L3Fa/~A=-l#0, there 
are no type B control points; i.e., no traditional bifurcation points. The 
bifurcation diagram D(F,) is given by A = A, (x )  = xm -t & , - Z ~ m - 2  + - . + a l x .  
Vertical tangents correspond to criticai points of A,. Hence type H control 
points (hysteresis points) correspond to degenerate critical points for A,. This is 
just the standard bifurcation surface from elementary catastrophe theory (cf. 
[lo]). In that language the type DL control points (double limit points) 
correspond to the Maxwell set of critical points with equal critical values. 

rn =2: G is a limit point and is thus stable by Lemma 3.14. 
m = 3: Fa (x) = x3 - A + ax is the universal unfolding. The universal im- 

perfections diagram is a line, Figure 4.1. The associated diagrams are given in 
Figure 4.2. We suggest the term ~ ~ ~ - ~ e g e ~ e ~ ~ ~ e  ~ys~eres~s point for this 
bifurcation problem and give an example of its occurrence in Section 7. 

m = 4: Fa,@ (x, A )  = x4 + a x 2  + fix - A is the universal unfolding. The univ- 
ersal imperfections diagram is given in Figure 4.3. The control set is a cusp 
(type H points) and a ray (type DL points or Maxwell set). The corresponding 
diagrams are shown in Figure 4.4. 

m = 5: Fp.q,r(~, A )  = x5 - p x 3  + qx2+  rx - A .  The type H points form the 
swallow's tail shown in Figure 4.5. The diagrams in region 1 have no limit 
points. In region 2 these are two limit points and in region 3 there are four 
limit points. The diagrams in each of regions 1 and 2 are equivalent. There 
are type DL points in region 3 which are somewhat difficult to identify. On 

Figure 4.1. Universal imperfections diagram, for rn = 3 : F,(x) = x3- A +ax. 
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Figure 4.2. Associated diagrams of Figure 4.1 

the other hand, the actual stable diagrams are easy to find. Let (xi, Ai), i = 
1, ,4, be the four limit points of a diagram in region 3. Without loss of 
generality assume that xI < x2 < x3 < x4. Note that there are some restrictions 
on the ordering of the A:. (Since a stable point is not a control point we 
assume that the A $  are distinct.) The restrictions are: 

There are five possibilities; 

The associated diagrams are given in Figure 4.6. 
One can now see a method for determining the stable diagrams near a 

type (I) bifurcation problem. Determine the possible number of limit points 
and the possible orderings of the A values of the limit points. Each such 

Figure 4.3. Universal imperfections diagram for m = 4 : Fo,p(x, A )  = 
x~+cYx’+Px-A. 
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X I  X i  X I  X I  
I 

I 

6 I 

0 

- A  

Figure 4.4. Associated diagrams of Figure 4.3. 

allowable configuration will occur, thus yielding the desired classification. 
We now analyze the case (II), examples for small rn. 

m = 2: Fa (x, A )  = x2 -Ax  +a. The universal imperfections diagram is a 
line, Figure 4.1. There is one type B point (the origin) and no type H ar  DL 
points. The associated diagrams are given in Figure 4.7. 

Note. The similar problem x2 + A' also has codimension one, a universal 
unfoIding being xz+ h2+ a. The associated diagrams are empty for a > 0 and 
circles for a<0. 

m = 3: Fb,(x, A )  = x3 + q x 2  - Ax I- p. This case was analyzed in the intro- 
duction. At this point it may be instructive to show how this example relates 
to the catastrophe theory cusp. For this purpose it is easier to use the 

Figure 4 3 ,  Swallow's tail. 
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Figure 4.6. Associated diagrams for Figure 4.5. 

alternate unfolding listed for (11), in Proposition 4.2; namely, F,,,(x, A )  = 
x3 - Ax + p + qX. Now consider the surface S = {x3 - px + a = 0) given in Figure 
4.8. Let ?-r be the projection of S into a, &space. The cusp curve is just the 
set of critical values of T. Next write F,,,(x, A )  = x3- & , ( A ) x  + a,,(A), where 
@ ( A ) ,  a @ ) )  = (A,  p +  qA) .  Thus we have equated the unfolding F with lines 
(parametrized by A )  in a, @-space. Given such a line one finds the associated 
bifurcation diagram by intersecting S with the plane which includes the line 
and is perpendicular to the a, P-plane. For example, if one lets p = q = 0, 
then the line is the p-axis and the intersection is the pitchfork. The lines 
pictured in Figure 4.9 yield the diagrams associated with the open regions in 
Figure 1.4. 

We have found considerations such as this extremely useful in interpreting 
and guessing results about the 
this technique when analyzing 

perturbed bifurcation diagrams. We shall use 
examples (111) and (IV). The formalization of 

Figure 4.7. Diagrams associated to F,(x, A) = x 2 - k  +a. 
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- a  

P 

Figure 4.8. Illustration of the surface S = {x3 - flx + (Y = Of. 

this method yields one description for imperfect bifurcation in the conserva- 
tive case. We shall discuss this approach in more detail in Section 8. 

m = 4: F,,q,(x, A )  = x4- Ax - p x 2  + q + rA. A simple calculation shows that 
the type B points satisfy the equation 

(4.4) q = p r 2 -  r 4 .  

The type H points satisfy the equation 

1 2 2 - 8  3 2  (4.5) ( q + z p )  - 3 p  r for p Z 0 .  

The computation for type DL points is slightly more delicate. We must 

Figure 4.9. Lines which generate the diagrams associated to Figure 1.4. 
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determine for which p, q, r there exist x, y and A with x f  y satisfying: 

(4.6) x4- px’- Ax + q + rh = 0 ,  

(4.7) y4- py2- Ay + q + rh = 0 ,  

(4.9) 4y3-2py-A=0. 

Subtracting (4.9) from (4.8) and dividing by x - y yields 

(4.10) p = 2(x’+xy+ y’) . 

Subtracting (4.7) from (4.6), dividing by x - y, and substituting (4.10) 
yields 

A = -(x + y)’ . (4.11) 

Now substitute (4.10) and (4.11) in (4.8) and divide by ( x - Y ) ~  to  obtain 

(4.12) y = - x .  

Thus A = 0 by (4.1 1) and one sees that type DL points satisfy 

(4.13) q = $ p 2  for p > O .  

To find the universal imperfections diagram, we graph (4.4), (4.5) and 
(4.13) for p > O ,  p = O  and p > O .  For p < O  and p = O  this is easy. The 
resulting diagrams are shown in Figure 4.10. For p > O  we can scale p out of 

I 
q t  

I 0 1  

I 

q l  
0 ‘  

I 

Figure 4.10. Graph of (4.4), (4.5) and (4.13) for pC0 and p = O .  
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Figure 4.11. Graph of (4.4), (4.5) and (4.13) for p>O. 

the problem by letting p2ij  = q and & F =  r to obtain 

(4.13’) q = $ .  

The imperfections diagram is shown in Figure 4.11 and the diagrams 
associated with each region are given in Figure 4.12. 

Using example (111) we shall be able to add a new complication to our 
description of bifurcation diagrams. Corollary 2.16 shows that in each 
component of the complement to the control set the associated bifurcation 
diagrams are stable in the technical sense that they all lead to contact 
equivalent bifurcation problems. We have also shown by Corollary 2.9 that 
we may assume that the control set is an algebraic variety. A reasonable 
question then is whether the b~furcation problems associated with each 
component (in the algebraic sense) of the control set are contact equivalent. 
This statement is true for the previous example but as we shall now see is 
false in general. To see this we shall use the cross-ratio. 

Recall that, given four intersecting lines in the plane with slopes 
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Figure 4.12. Diagrams associated with each region given in Figure 4.11, 

m , ; . .  , m4, the cross-ratio is defined by 

Also note that if m, = 0 and m4 = CQ, then CR = rn,/rn,. The salient feature of 
CR is: Given two sets of four intersecting lines in the plane and a linear 
mapping which maps one set of lines onto the second, then the cross-ratios of 
these two sets of lines are equal. 

We now return to (111), which is G(x, A )  = x3- A*x. The diagram G = 0 is 
easily seen to be three lines crossing at the origin. Included in the universal 
unfolding of G is one parameter which preserves this property. Let 
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Hp(x,  A )  = x3 - A2x - 2px2A. The diagram H, = 0 consists of three lines with 
slopes 0 and p f (p’+ l)*”. Now suppose that Hp is contact equivalent to G. 
Then there would be a diffeomorphism u(x, A )  = (p (x ,  A), h ( A ) )  mapping 
{H,  =0> onto {G=O}. Sin.ce these sets consist of lines, the same would be 
true for the Jacobean matrix (da) (O) .  Moreover the form of (T dictates that 
the line {A = 0) is also preserved by ( d a ) o .  Thus the linear mapping (da,,) 
maps four lines onto four other lines and the cross-ratio must be preserved. 
The slopes for the lines associated with Hp are 0,w, p&((P’+ 1)”’. Hence 
CR= - (p  +(pz+ l)1’2)’. These numbers are all different for p near 0; thus we 
have proved the following: 

i n e q u i ~ a ~ e n ~  bi~urc~?ion prob~ems. 
PROPOSITION 4.14. The unfolding H p  is a one-parameter family of contact 

This is the first example of moduli in the bifurcation diagrams; we shall 
give another in Section 5. Although we have no physical interpretation of the 
moduli we should point out that this bifurcation problem does occur in 
physical situations; see Section 7. Also the existence of moduli makes 
Theorem 2.15 even more important since we know that the stable diagrams 
are finite in number. 

The moduli parameter seems to serve another role. One feels that the 
codimension of a bifurcation problem (that is, the number of unfolding 
parameters) should measure the number of defining conditions minus the 
number of degrees of freedom. For example G(x, A ) = x 3 - - h x  is defined by 
the four conditions G= aG/ah = aGlax = a2G/ax2 = 0 at the origin along with 
some non-degeneracy conditions on higher derivatives. Since the number of 
degrees of freedom for G is two (one each for x and A )  we have the precise 
relationship codim G = 4 - 2. This relationship is also valid for the previous 
examples of this section. However, for the present example G(x, A )  = x3 - A’x, 
codim G = 5 while the number of defining conditions is 6 since G must vanish 
through order 2 in x and A at the origin. The seeming excess of codimension 
(5 > 4) is accounted for by the moduli parameter. Let the modality of G be 
the number of moduli parameters in the universal unfold~ng of G. The 
following relation seems to hold though we have no proof: codimG= 
number of defining conditions minus n plus modality. 

This relationship is obtained for some examples of bifurcation when 
m = n = 2 in Section 5. The next discussion shows that even on the diagram 
level all the unfolding parameters for G(x, A )  = x3- A’x are necessary. 

To analyze the stable diagrams near x3- h’x = 0, we return to the cusp 
picture Figure 4.8 used in analysing (11)3, The universal unfolding that is 
convenient is 
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Figure 4.13. Path associated to x 3 - A 2 x  = O .  

Consequently, a ( h )  = qo+qlX +q,h2+q3A3 and P ( h )  = p + A 2  in the equation 
x3-  P x  + CY = 0. For p = q = 0 this curve is just a double covering of the ray 
splitting the cusp shown in Figure 4.13. The stable diagrams are 
associated with the curves y(A) = (a(A), @(A)) which are nowhere tangent to 
the cusp. Since a(A)  is cubic in A and P(A) is quadratic, the maximum 
number of intersections of y with the cusp is six. Since we analyze only small 
perturbations, we may assume that qi is near 0; hence y(A) for /A1 large is 
inside the cusp and the number of intersections is even. Next observe that the 
qualitative nature of the bifurcation diagram associated with y is determined 
by the number of intersections and whether the intersections occur on the left 
or right nappes of the cusp. For example, the paths LLRR,  L R R R L L  and 
R R L R R ~  are shown in Figure 4.14 along with the associated bifurcation 
diagrams. Here L and R stand for an intersection of y with the left and right 
nappes, respectively. The degrees of a(/\) and P(A) imply that the curve y 
has at most one horizontal and two vertical tangents. Thus sequences like 
LRRL are not possible. If one enumerates all the possibilities subject to the 
above constraints one finds at most 53 possible distinct stable diagrams. 

We now consider our last example of this section, case (IV). As was 
shown in Proposition 4.2 the problem G(x, A )  = x2h(x, A )  has infinite 
codimension. For this example (and we suspect in general) there is a good 
reason why this problem has infinite codimension. 

PROPOSITION 4.15. The bifurcation diagram associated with the bifurcation 
problem G(x, A )  = x2h(x, A )  can be perturbed by arbitrarily small perturbations 
into an infinite number of inequivalent bifurcation diagrams. 

Proof: Let #(A) be a smooth germ and let G,(x, A )  = (x2- gb(A))h(x, A).  
The bifurcation diagram of G consists of two sets h = O  and x = O ,  while the 
bifurcation diagram of G consists of the two sets h = 0 and xz = gb(A). Thus if 
the graph of # has the form indicated in Figure 4.15, then the perturbed 
diagrams will include Figure 4.16. By choosing # appropriately (and small) 
we can create as many circles as desired. 

It seems to us that this example provides a good test of our theory. Here 
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P B R 
LLRR LRRRLL RRLRRR 

Figure 4.14. Paths LLRR, LRRRLL and RRLRRR together with their as- 
sociated bifurcation diagrams. 

infinite codimension of the bifurcation problem indicates a diagram that 
disintegrates in an infinite number of different ways. Geometrically one can 
see why this is true. Let k ( x ,  A)=x-3A.  Then G is equivalent via the 
coordinate change m(x) = x + A to x3- 3h2x -2A3. The curve (a@), @(A)) is 
the cusp curve itself in the a, @-plane. It is clear geometrically that small 
perturbations of this curve can change the associated diagram in an infinity of 
different ways. 

5. Computations at a Double Eigenvalue 

For most of this section we shall concentrate on bifurcation problems 
G : (R2xR,  0)+(R2, 0) of the form 

where z = (x? y )  E R2, Q ( z )  = (p(z) ,  q(z))  and p,  q are homogeneous polyno- 
mials of degree two. Equation (5.1) can be obtained by reduction from the 
general quadratic bifurcation problem H(z,  A) = Q(z) - ALz + A2c, where L is 
a 2 x 2  constant matrix and CER', under the following hypotheses. First we 

Figure 4.15. Graph of x = 4 ( h ) .  
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“t, o o c  
Figure 4.16. Diagram associated to 6, in Figure 4.15. 

suppose that H(z ,  A )  = 0 has a “trivial” solution z(A) which depends smoothly 
on A. By introducing new coordinates f = z - z(A) we may eliminate the term 
A2c from H. Moreover, the resulting problem, which has the form Q(z)- 
ALz, is contact equivalent to (5.1) provided Id is invertible, and we make this 
assumption. These are the restrictions placed on G by assuming it has the 
form (5.1). 

of the form (5.1) s ~ r o ~ g l y  
e ~ ~ i ~ u ~ e ~ ~  if there exists an invertible 2 x 2  matrix 7 such that 

We shall call two bifurcation problems G and 

G(z ,A)= T-’G(Tz,A)=~-’Q(Tz)--z. 

This restricted form of contact equivalence will be sufficient to prove our 
results. 

DEFIN~ION 5.2 The bifurcation problem (5.1) is ~ o ~ d e g e ~ e r u ~ e  if 
(i) p and q have no common factors, 

(ii) the quadratic surfaces p ( x ,  y)  = A x  and q ( x ,  y )  = Ay are nowhere 
and 

tangent (except at the origin). 

Notes. (a) Nondegeneracy is an invariant of strong equivalence. 
(b) Condition (ii) fails to be satisfied if and only if the rank of the 2 X 3 

Jacobian matrix &G is less than 2 at some nonzero point of intersection of 
the two surfaces. 

(c) These conditions were introduced by McLeod and Sattinger in [18]. 

The following lemma provides a convenient method for checking whether 
condition (i) above is satisfied, For this lemma let (dQ), be the 2 x 2 Jacobian 
of the mapping Q : R2-+R2 evaluated at  the point z, Note that the entries of 
d Q  depend linearly on z, so that det dQ depends q~adratically on z. In other 
words, det d Q  is a quadratic form in R2. Thus there exists a symmetric 2 x 2  
matrix BQ such that det (dQ), = (Bz ,  z),  where ( , ) represents the usual 
inner product on R2. Suppose Q = T-’ * 0 0 7 ;  of course, 

(5.3) do, = 7 - l -  dQT,,O~ 

so that det daz = det dQ,. ,. A short computation shows that Ba = ~‘€3~7; in 
other words, under strong equivalence, Bo transforms as a symmetric bilinear 
form. 
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LEMMA 5.4. Let Q = (p, 4). Then p and q have a common factor if and 
only i f  rank BQ 5 1. 

If p and q have a common linear factor, then after a linear 
change in coordinates we may assume p = x(ax + by) and q = x(cx + d y ) .  One 
then computes 

Proof: 

- ( 2(ado- bc) O) and rank BQ d 1 . B -  
0 

If rank BQ = 0 (i.e., if det dQ=O), then p is a multiple of q and hence 
they certainly have a common factor. Thus we suppose rank B, = 1. We may 
perform a linear change of coordinate to reduce BQ to the form (*: 9. With 
the notation p = ax2 + bxy + cy’, q = ax2 + p x y  + yy’, we find the relations 
ap - ba = *2 ,  a y  - ca = 0, by - cp = 0, from which it follows that c = y = 0. 
Thus x is a common factor of p and q. 

Our principal goal in this section is to enumerate all the equivalence 
classes of 2-determined bifurcation problems of the form (5.1). The following 
three propositions provide a complete solution to this problem, modulo the 
remarks made after Corollary 5.7. The canonical forms in Proposition 5.5 
provide a useful tool for computations with such bifurcation problems. In 
these formulas f(z) denotes a linear functional in two variables, 

l ( z )  = l (x ,  y )  = ax + by. 

equ~ua~enr to one of rhe fol~ow~ng for some choice of the linear func~ional 1: 
PROPOSITION 5.5. Every nonzero bifurcation problem (5.1) is strongly 

(5.61, (x2- y’, - 2 ~ y )  + ( l ( z )  - h ) ~  , 

( 5 4 ,  (x2, -2xy)+(I(z)-h)~, 

Moreouer, no two members of different families are contact equivalent. 

COROLLARY 5.7. A nondegenerate bifurcation problem is strongly 
e ~ ~ i v a l e n ~  to either (5.6), or (5.6)’. Moreouer, for a ~ondegenera&e problem the 
coefficients a and b in the linear functional 1 satisfy 

(5.7a) ( a  + l)[(a - 2)2 F 3b2] # 0 . 



62 M. GOLUBITSKY AND D. SCHAEFFER 

For future reference we write out (5.6), and (5.6), in coordinates: 

(5.8) 1-  a + 1)x*+ bxy f y2- Ax 
{a-2)xy+by2-hy G"x, y, A )  = (( 

Formula (5.8) represents an overenumeration of equivalence classes of 
bifurcation problems, in that some of the canonical forms G' with different 
a, 6 are strongly equivalent. Specifically, for G+ rotation by 120" in the 
a, 6-plane or reflection across the a-axis yield a new canonical form strongly 
equivalent to the original one. Thus one need only consider a, 6 in a sector of 
opening angle 60" to get a complete enumeration of strong equivalence 
classes obtainable from G'. This is illustrated in Figure 5.1, along with the 
three lines on which (5.7a) fails in this case. For G-, only the reflection 
(a, 6)-(a, -b )  is a symmetry of the canonical form. For a complete enumera- 
tion of strong equivalence claims, it suffices to restrict (a, b )  to the closed 
upper half-plane. The reader may easily supply the figure analogous to Figure 
5.1 for this case, though we call attention to the fact that in this case (5.7a) 
only fails along the line a = -1 and at  the point a = 2, b = 0. 

Further collapsing of the fundamental domain occurs when we pass from 
strong equivalence to contact equivalence because there are new changes of 
coordinates available of the form z H z - ch, where c E R2, which map canoni- 
cal forms with different values of (a, b )  into one another. Such transforma- 
tions can move the "trivial" soiution away from the h-axis and substitute 
another line of solutions in its place. As a consequence, two points in the 

l~ 
G+ STRONG EQUIVALENCE 

Figure 5.1. Fundamental domain for G+ under strong equivalence. 
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a, b-plane that are mapped into another by the projective transformation 

give rise to contact equivalent canonical forms. (Of course, this operation may 
be composed with the other symmetries of the problem.) The fundamental 
domains are illustrated in Figures 5.2 and 5.3. We do not prove these 
remarks, since we do not feel it is important in applications to know the 
minimal fundamental domain. 

PROPOSITION 5.9. A nondegenerate ~ i f u r c a t ~ o ~  ~roblem of type (5.1) is 
2- determined. 

PROPOSITION 5.10. A nondegenerate bifurcation problem of type (5.1) has 
codimension 7. A universal unfolding for the normal form (5.8) is given by 

F(x, y,h, r , s ,  t)=G*(x, y , h ) + ( r , + s 1 y + s , x + t , x 2  

+ t ,xy,  r2 + s, x - s3 y + t ,  xy + t ,  y2) . 

In fact, the three results, Corollary 5.7, and Propositions 5.9 and 5.10 follow 
from the classification Theorem 5.5. Thus our strategy will be first to assume 
Proposition 5.5, prove the other results, and then prove Proposition 5.5. 

We shall describe an application of these results in Section 7. We also 
note that the McLeod-Sattinger results [ 181 follow directly from Proposition 
5.9. 

I f2,O) 
I 
I 
I 
I 
I 
I 
I 
I 

G' CONTACY EQUIVALENCE 

Figure 5.2. Illustration of fundamental domains, G+ contact equivalence. 
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_ _ _ _ _  ------ 
f-4,0) t (2.0) 

I 
I 
I 
I 
I 

G- CONTACT EOUIVALENCE 

Figure 5.3. Illustration of fundamental domains, G-  contact equivalence. 

Proof of Corollary 5.7: We first show that the normal forms (5.6), for 
i = 3 , 4 , 5  are degenerate. It is clear that (5.6)5 consists of problems with 
common linear factors. It is also clear that condition (ii) of Definition 5.2 is 
invariant under all linear coordinate changes, even those which mix the A and 
z coordinates. Now notice that Q(z)  + ( l ( z )  - A)z = Q ( z )  - Xz, where h = 
A - a x -  by. Thus the tangency of the quadratic surfaces for the problem 
Q ( z ) t  1(z)z is equivalent to that same question for the problem Q ( z ) -  Az. It 
is now an easy task (using note (b)) to check that the pairs of quadratic 
surfaces -Ax = 0, x2- Ay = 0 and x2- Ax = 0, -2xy - Ay = 0 are tangent. 
Consequently, the problems (5.6), and (5.6), are degenerate. 

Finally we show that (5.6), ,  i = 1,2 ,  are degenerate only when a = 1 or 
(a-2)2f3b2=0.  A computation similar to the one above shows that no 
tangency for the quadratic surfaces occurs. To check for common factors we 
compute B, for Q = ((a + l )x2+ bxy f y2, (a - 2)xy + by2) and apply Lemma 
5.4. In fact, 

a - 2 ) ( a + l )  b(a+1) ) 
BQ=2j(  b(a+1) b2T(a-2)  

Hence det B, = 4(a + 1)(3b2* (a - 2)2). 
Both Proposit io~ 5.5 and 5.10 rely on the following: 

LEMMA 5.11. For the b i f ~ ~ c u t i o ~  problems (5.8) we have J ~ X ~ , ~ % ~ , ~ C  
.M~,~FG*.  

Proof: We sketch the needed calculations. Writing G' = (8, h) ,  we see 
that the submodule f G  of %:,A is generated by the six elements aGldx, aG/ay, 
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(g,O), (0 ,  g), (h ,  0) and (0 ,  h ) .  Note that aG/ax in f G  implies that (A, O ) =  
(2(a + l ) x  +by, (a -2)y)  mod f G  and aG/ay in f G  implies that (0, A )  = 
(bx f 2 y ,  (a - 2)x + 2by) mod TG. Using these relations we may eliminate A 
from the problem. The four remaining generators are congruent (modulo f G )  
to e ,  = ( ( a + 1 ) x 2 f y 2 ,  (a-2)xy) ,  e2=(-bx2+2xy, 3x2-bxyfy2) ,  e 3 =  
((a+4)xy, (a-2)y2) ,  and e,=(bxy*2y2, by2) .  

Next write the eight generators of A,fG-xe,,  x e , ,  ye2, ye , ,  x e 3 ,  x e 4 ,  
ye3, ye,-in terms of the standard basis for Az8:-(x3,0), (0, x 3 ) ,  ( x ’ y ,  0 ) ,  
(0 ,  x ’ y ) ,  (xy’,  0) ,  (0, x y 2 ) ,  ( y 3 ,  0) ,  (0, y 3 ) .  This expansion yields an 8 X 8 matrix 
A. It is clear that the lemma is proved if and only if det A #  0. It turns out 
that the determinant is not hard to compute using row and column expan- 
sions. The result is det A = K(a + 1)(3b2* (a - 2)’) for some nonzero constant 
K. The nondegeneracy assumption is exactly what is needed to prove that 
det A # 0. 

Proof of Proposition 5.9: The strategy of this proof is simple. The 
property of being 2-determined is an invariant of contact equivalence; so we 
may work with the model problem (5.8). Let H ( z , A )  be a bifurcation 
problem whose second-order terms are given by (5.8)-for some a and b. We 
claim that H is contact equivalent to G +  terms of degree 4 in ( x ,  y, A). Since 
Lemma 5.11 and Theorem 2.8 imply that G is 3-determined, the above claim 
shows that G is, in fact, 2-determined. 

To prove the claim, consider the contact change of coordinates c= 
( I +  T ( z ) ) G ( z  + p(z) ,  A), where T ( Z )  is a matrix with linear entries in x and y, 
and p ( z )  is homogeneous of degree two in x and y .  Then G =  
G +  T G +  (d,G) p + - * * , where the dots indicate terms of degree 4 or 
higher. By varying T and p one obtains all of the terms homogeneous of 
degree 3 in A f G .  (Here we use the homogeneity of the generators of f G . )  
Now, Lemma 5.11 guarantees that an appropriate choice of T and p will 
produce - H 3 ,  where H3 is the homogeneous term of order 3 in the Taylor 
expansion of H. This choice of p and T proves the claim and the proposition. 

Proof of Proposition 5.10: Since the codimension of a bifurcation prob- 
lem is an invariant of contact equivalence, we need only analyze the model 
problem (5.8). Lemma 5.11 shows that G has finite codimension. NCxt we 
compute a basis for %:,JfG. As noted in the proof of Lemma 5.11 this 
vector space is isomorphic to V = %:/{el ,  . - * , e,}. Since each ei is homogene- 
ous of degree 2, the constant terms (1,O) and (0 , l )  and the linear terms 
( x ,  0), ( y ,  0 ) ,  (0 ,  x ) ,  (0 ,  y )  are independent in V. Since the eight terms xei, yei 
were shown to be independent (over R), it follows that e l ,  - + * ,  e4 are 
independent over R. Since there are six independent quadratic terms, two are 
independent in V. A calculation shows that (x’,  x y ) ,  ( x y ,  y’) and e l ,  - - . , e4 
are always independent. Thus dim V =  8. 

Finally we show that %:,,/TG has dimension 7 .  Observe that aG/aA is 
linear and therefore does not belong to f G .  We claim, however, that 
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haG/ah E PG. Recalling the generators of TG defined in the proof of Lemma 
5.11, we see that (modulo fG) 

(5.12) 

the last equality being Euler's relation for homogeneous functions. Now 
(p - Ax, q - h y )  E f G ,  and it follows from (5.12) that (p - Ax, q - A y )  = - ( p ,  q). 
In conclusion, hdG/ah = -2(p, q )  E f G ,  and the result is proved. 

It remains only to prove the classification theorem, Proposition 5 . 5 ,  for 
which we shall need techniques from group theory. Let S$ denote the vector 
space of pairs of homogeneous polynomials of degree two. Clearly, dim S: = 
6. Next note that strong equivalence induces a representation p of Gl(2,R)- 
the group of invertible 2 x 2  matrices-on 9; as follows: 

p(7)Q= 7 - l -  0 0 7 .  

In this language one observes that finding a set of normal forms for the 
bifurcation problems (5.1) under strong equivalence is the same as finding an 
enumeration for the orbits of the repr~sentation p. 

'The first step in such an enumeration is the determination of the 
irreducible subspaces of the representation p. Let us define the linear 
subspaces V and W of P$ as follows: 

V = ( O E P $ :  t rdQ=O),  

W = {(ax + by)(:) : a, b E R) . 
In explanation of the notation, we recall that dQ, the differential of 
Q : R2-+R2, is a linear mapping from R2 into the space of 2 x 2 matrices, so 
that composition with the trace defines a linear functional on R2. By the 
equation tr dQ = 0 we mean of course that this linear functional vanishes 
identically. This is equivalent to two scalar conditions, so dim V =  4. Equation 
(5.3) shows that V is an invariant subspace, and a short calculation shows that 
p restricted to V is irreducible. 

The action of Gl(2,R) on W admits an alternative description. Given an 
element Q(z) = E(z)z, where 1 is a linear functional on R2, p ( ~ ) Q ( z )  = l (7 t ) z .  
It is easily seen that p acts irreducibly on W. Indeed, p acts transitively on 
W--(0). That is, for any two nonzero elements Q, Q E  W, there exists a 7 

such that p ( 7 ) Q  = 6. 
It follows from the above remarks that 9; = VB W is the decomposition 

into irreducible subspaces. 
The second step in the enumeration of orbits in 9; is to analyze the orbit 

structure of p acting on V and W separately. As noted above, p acts 
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transitively on W-{0), so that there is only one nontrivial orbit. To simplify 
the discussion of the orbits in V we invoke certain parts of the theory of 
group representations, as summarized in the following paragraph. For refer- 
ences see f22], 

For any dimension 1, there is a certain distinguished representation p of 
Gl(2, R) on R', the so-called standard representation. This representation acts 
by composition on 91-1, the space of homogeneous polynomials of degree 
E - 1 in two variables; specifically, p ( ~ ) p  = POT. Any other algebraic represen- 
tation p of G1(2, R) on R' differs from p by at most a power of the 
determinant. That is, for any such p there is an invertible linear transforma- 
tion S : R'-+9t-l and an integer p such that 

(5.13) p ( ~ )  = (det T ) ~ S - ~ P ( T ) S  

The exponent of det T may be determined by comparing p(c1) and P(c1) for 
C E R .  When l = 4 ,  under the action of p the cubic polynomials split into a 
union of five distinct orbits, described by the structure of their zeros in 
(A)-(E) below. More properly, with a cubic polynomial p(x, y )  = 
ax3+ bx2y + cxy2+ d y 3 ,  we associate the cubic polynomial in one variable 
p ( [ ) =  ~ / , ' ~ + b [ ~ + c [ + d ,  and we classify orbits by the zeros of p ( [ ) .  In this 
classification we use the convention that a polynomial whose leading coeffi- 
cient vanishes has a real root at infinity: 

(A) p has three real zeros; 
(B) p has one real, two complex zeros; 
(C)  p has two zeros, both real, one double; 
(D) p has one real zero of multip~icity three; 
(E) p vanishes identically. 

For the standard represent~t~on~ p(c1) acts as c3 times the identity on gtg, 
while in our case p(c1) acts on V as c times the identity. Thus we must take 
p=-1 in (5.13). However, in spite of this minor difference, V will also 
decompose as a union of five orbits, which we may identify by the fotlowing 
ruse, Recall the bilinear form BQ that we associated to any Q E @ ~ ,  as 
described preceding Lemma 5.4. We showed there that p ( 7 ) Q  is associated 
with T ' B ~ T ,  a conjugacy transformation. Thus if Q1 and Q2 have mnconju- 
gate associated bilinear forms, then they must belong to different orbits, Of 
course a bilinear farm is  determined up to conjugacy by two invariants, rank 
and signature. These invariants may assume six possible values: 

(i) (ii) (iii) (iv) (v) (vi) 

2 2 2 1 1 0  
signature rank I 2 1 0 1 0 0 
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For four of these possibilities, (ii), (iii), (v) and (vi), there are nonzero 
mappings QE V c  9': such that B, has the appropriate rank and signature. 
Indeed, 

0 1  = (x2- y2, -2xy), 

u3 = (2, -2xy),  

uz= (xZ+ y*, -2xy), 

u4 = ( 0 , X Z )  
(5.14) 

are possible choices. It follows from the above remarks that these four 
mappings belong to four different orbits of V. Of course, the zero function u5 
belongs to a fifth. Since there are only five orbits, we have identified a 
representative from each. (Remark: It may be shown by a simple independent 
argument that, for a mapping Q with trdQ = 0, B, cannot be of types (i) or 
(iv) above.) 

The following lemma shows how to extract the orbit structure of p on 9'; 
from the orbit structures on V and W. 

LEMMA 5.15. Let u l ,  - . , u5 be representatiues of the distinct orbits of p in 
V, and let 

Oi.w = {p(7) (ui  + w) : 7 E Gl(2, R)) , 

where i = 1, * * , 5 and w E W. Then for any orbit 0 there exist i and w such 
that 0 = Moreover, for i f j,i9i,w is ~~~~0~~~ from Oj,*. 

Remark. As noted after Corollary 5.7, it may happen that Qi,, = Oi,, 
even though w #  G. For the two nondegenerate cases, u1 and v2 as defined by 
(5.14), this happens only for finitely many w. Figure 5.1 indicates a domain in 
the a, b-plane where the enumeration is unique for the case of i = 1. 

Proof: Suppose 0 E 9:. We may decompose Q = v -t w, where u E V and 
w E W. Now u = p ( 7 ) u i  for some i and for some 7~ Gl(2, R); let 6j = p ( 7 - l ) ~ .  
Then p(7 ) (v i  + i?) = u + w = Q. In other words, Q E Q,. 

Any two orbits in 9'; are either disjoint or coincide. Thus given an orbit 
0, let us choose Q E 0. The above construction shows that Q E (Ti,, for some i 
and w. Therefore, 0 = Oi,w. 

Finally suppose Q E Oi,, rl Oj,*. In other words, Q = p ( 7 ) ( u t  f w )  = 
p(F)(ui f i?) for some T,  7 E Gl(2, R). Hence p(7-'4(uj + @) = vi + w. In par- 
ticular, ~ ( T - ' ? ) U ~  = ui, and it follows that i = j .  Therefore, Oi,w and q,$ are 
disjoint. 

We may now complete the proof of Proposition 5.5. Let G(z, A)= 
Q(z)-Az be a bifurcatjon problem of the form (5.1). As noted above, G is 
strongly equivalent to another such prdblem, say Q(z)-Az, if and only if Q 
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and Q belong to the same orbit of p in 9:. The preceding lemma shows that 
Q E Oi,, for some i and w. Of course we also have ui + w E: Q W  ; hence it 
follows that G is strongly equivalent to c(z, A )  = ui(z)+ w ( z ) -  Az. Formulas 
(5.6) represent the bifurcation problems zli + w - Az written out in coordi- 
nates, where ui is given by (5.14). The proof is complete, apart from the 
remark that the disjointness statement in Proposition 5.5 follows from the 
corresponding disjointness statement in Lemma 5.12. 

Remark. Proposition 5.10 verifies in a special case the conjecture in 
Section 4 that codim G = number of defining conditions - n - 1 +modality. 
Here, n = 2, modality = 2, and the number of defining conditions is 8. These 
conditions are: G(0) = 0, aG(O)/ax = 0, dG(O)/ay = 0 and aG(O)/dA = 0. 

We have not yet succeeded in classifying the effects of possible imperfec- 
tions on a bifurcation problem (5.1) with the same completeness as we 
achieved for the simpler problems in Section 4. Some idea of the difficulties 
involved may be gleaned from the following example which is just the 
negative of (5.6), with f ( x )  = -2x. Let 

(5.16) G(z,  A ) = ( x 2 + y 2 + A x , 4 x y + A y )  

and consider the following perturbations of G: 

P l ( z )  = E ( X +  y ) ( l ,  -2) and P2(z)  = ( E X  --&E*, 0)  , 

where E is a small parameter. The bifurcation diagram for the unperturbed 
problem consists of the four lines x =  y = O ;  x = - A ,  y = O ;  and x = - : A ,  
y = *:&A. The salient points about these perturbations are that G + PI 
displays a singularity of type (11), of Section 4 at x = y = A = 0 and G + Pz 
displays one of type (111) at x = i s ,  y = 0,  A = - $ E .  In other words, two of the 
more complicated singu~arities analyzed in Section 4 are embedded in the 
unfoldings of problems of type (5.1). Work is in progress to complete the 
analysis of imperfections in this case and will be reported elsewhere. 

It is possible, however, to describe how the un~er~urbed diagram depends 
on the modal parameters, a and b. The regions in the a, b-plane in which 
(5.7a) holds are shown in Figures 5.4 and 5.5 for the minus case (formula 
(5.61,) and plus case (formula (5.6)& respectively. The labels in these regions 
should be interpreted as follows. The numerical prefix k indicates that the 
bifurcation diagram is a union of k lines, one of them being the trivial 
solution. The letters e and h refer to elliptic and hyperbolic. This label, 
assigned according to whether det d Q  is an elliptic or a hyperbolic quadratic 
form, is part of the standard terminology of singularity theory (cf. Ell]). The 
subscript 0 or w serves to distinguish the bounded and unbounded compo- 
nents of the 4e region. 
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4h I 

I 

Figure 5.4. Region in the a, b-plane in which (5.7a) holds is shown for the minus 
case (formula (5.6)J. 

The properties of the diagrams we are going to describe are constant 
throughout each of these regions in the a, b-plane, as we prove in the 
paragraph following. Since in all nondegenerate cases the diagram consists of 
a union of straight lines through the origin and not contained in the plane 
{A = 0}, we may simplify the graphics by only representing the intersection of 
the diagram with the plane {A = 1). In the 4-solution case this intersection 
consists of 4 points, one of them being the trivial solution at the origin. In the 
4e cases one of the 4 points lies in the convex hull of the other three; the 4e0 

2e 

a = - I  

Figure 5.5. Region in the a,b-plane in which (5.7a) holds is shown for the plus 
case (formula (5.6)J. 
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case is distinguished from the 4e, case by the fact that the origin lies in the 
convex hull of the other 3. This information is represented pictorially in 
Figure 5.6. In this figure the boldface dots represent the solution at  the 
origin. Although it is not possible to make stability assignments for the 
various branches, it is possible to assign a degree. The degree of a solution is 
negative if there is precisely one negative eigenvalue in d,G and positive 
otherwise. Note that the trivial solution always has positive degree since d,G 
equals - A 1  there. This is an appropriate normalization for a physical problem 
in which one considers bifurcation from the trivial solution as a parameter h 
is varied-the trivial soIution must be stable for some range of the parameter 
and therefore has positive degree. In Figure 5.6 we also include the analogous 
but simpler information for the 2-solution case. 

Figure 5.6 was made by choosing a convenient representative point (a, b )  
from each of the regions and computing explicitly the various degrees and 
positions of the solutions. The only issue requiring comment is why these 
properties remain constant as (a, b )  vary over a given region. Of course, in 
the case of degree, it is well known that degree is a homotopy invariant. The 
appropriate proof for the relative positions is based on the following trivial 
observation: 

If G(z, A )  is a bifurcation problem of the form (5.1) such that G(zi, 1) = 0 
for three distinct points zi lying on some line A, then G(z, 1) = 0 for all z E A. 

To prove this, let G = (8, h )  be such a bifurcation problem. Then g and h 
restricted to A are both quadratic polynomials of one real variable that vanish 
at three distinct points. A quadratic polynomial, however, can only vanish a t  
three points by being identically zero. This proves the claim. Note that such a 
G is degenerate according to Definition 5.2, in that condition (ii) is violated. 

4h 
0 - * 0 

.t + 
0 - 

0 + 
* o  + -  4% 

0 + 

* o  + -  2h 

2e * o  + +  

Figure 5.6. Intersection of {G* = 0) with the plane {A = 1). 
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Suppose now that for some choice of (a, b )  one of the four points lies in 
the convex hull of the other three. As a and b vary, this will continue to be 
true unless the central point moves across the line joining two of the other 
three points. But by the above claim, three points can only lie on the same 
line if the problem is degenerate, which does not occur when a, b is restricted 
to a fixed region. The argument is complete. 

We next consider the computation of codimension for the double cusp. By 
the double cusp we mean a bifurcation problem of the form 

(5.17) G(z, A )  =: C(Z) - A Z  , 

where Z E R ~  and C is a homogeneous cubic polynomial, possibly with 
higher-order terms present. The smallest codimension that such problems can 
have is 16. The computation is analogous to the proof of Lemma 5.11 and we 
are correspondingly brief. The submodule TG is generated by 6 elements, 

(5.18) 

where (g, h )  are the components of G. We may use aG/ax, aG/ay to  eliminate 
A from the problem. This leaves us with a submodule of %': generated by 4 
cubic elements. Let us consider the decomposition 

where consists of pairs of polynomials in x and y homogeneous of degree 
k.  The dimension of P; and the maximum possible dimension of s;fl TG are 
listed in the following table. 

k dim S: dim (Sin f'G) Difference 

0 2  0 2 
1 4  0 4 
2 6  0 6 
3 8  4 4 
4 10 8 2 
5 12 12 0 

The maximum dimensions for 9;f-l FG come from considering all homogene- 
ous po~ynomials of degree k - 3  times the 4 generators and assuming no 
dependencies occur. This calculation shows that codim TG 2 18, and simple 
examples show that 18 is attainable. 

The codimension of TG may be reduced by two from the codimension of 
TG under the following circumstances. Of course, aG/aA = -(x, y)  always 
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eliminates one of the linear elements of %:/FG. If (5.37) is modified by the 
addition of an appropriate quartic term, then AaG/aA will eliminate one of 
the quartic elements of %:, thereby reducing the codimension a second time. 
(It may be shown using Nakayama’s lemma, Lemma 3.10 of the present 
paper, that the addition of quartic terms would not affect the codimension of 
FG.) Further reduction of the codimension is not possible. 

We close this section with a brief description of the hilltop bifurcation 

considered by Thompson and Hunt [24]. Problems equivalent to (5.19) occur 
in the unfoldings of (5.8). Observe that at the origin, (5.19) satisfies 

(5.19a) G = O ,  dxG=O, 

a total of 6 equations in 3 unknowns. This observation suggests that the 
codimension of (5.19) is 3; indeed, this is correct, a universal unfolding being 

(5.20) F(x, y, A, a, p, y)=(x2-A - & + &  y2-A - Y X - & ) .  

We do not classify here problems satisfying (5.19a); there are in fact three 
such 2-determined cases. We do, however, analyze imperfections, this being 
the only two-dimensional problem for which a complete analysis seems 
possible. 

A short calculation shows that bifurcation occurs when 

(5.21) a = y 2 - p .  

Recall that the equations for hysteresis points are 

(5.22) F =  0 , det d,F= 0 and d,,F(v, u )  E range d,F, 

for some nonzero D E ker dxF. For our example (5.20), (5.22) yields 

(5.23) 

(a) x2 - A - p y + 4. = 0 , 
(b) y 2 -  A - YX -$a = 0 ,  

(c) 4 x Y - ~ Y = o ,  
(d) ( u t ,  v$)Erange d,F, 

where u = ( u , ,  u2). Now assume p # 0 # y. Then we may take u = (2y, y) and 
note that w E range d,F if and only if w - (y, 2x) = 0. Equation (5.23d) implies 
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that 

(5.24) 2yz+ yx  = 0 . 

Next multiply (5.24) by y and substitute (5.23~) to obtain 

1 1/3 2/3  (5.25) y = - &  Y 

Using (5.23~) and (5.25) one obtains 

= -1 213 113 . (5.26) Z P  Y * 

Finally, subtract (5.23b) from (5.23a) and substitute (5.25) and (5.26) to 
obtain 

A short computation shows that (5.27) holds even when a or P is zero. 
A more involved calculation implies that double limit points occur for 

(5.28) p = O ,  a>O and y = O ,  a<O.  

The control set C consisting of (5.21), (5.27) and (5 .28)  is shown in Figure 
5.7 along with an enumeration of the 12 connected components in R3-C. 
Finally, we claim that there are only two really distinct stable diagrams 
associated with these 12 components. To see this, note that if (x, y, A, a, P, y )  
is a solution to F =  0, then so are (-x, y, A, a, p, - y), (x, -y, A, a, -& y )  and 
(y, x, A, -a, y, P ) .  Using the first two symmetries, we may assume that 0 and 

u<o 
(Di) 

I 

a=O 

(I 

a,O 
( D L f  

Figure 5.7. Control set C, along with an enumeration of the 12 connected 
components i n  R3 - C. 
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y are positive. Thus we must analyze only the diagrams associated with 
regions 2, 4, 8 and 12. Points in these regions are given by (a, p, y )  = 
(4,2,0), (0,4,2), (0,2,4) and (-4,0,2), respectively. Now using the third 
symmetry we need only inspect regions 2 and 8. These stable diagrams are 
drawn in Figures 5.8 and are analyzed by considering them as intersections of 
the parabolic cylinders (5.23a) and (5.23b). These cylinders are also shown in 
Figure 5.8. 

6. The Euler Beam Problem 

Recall the finite element analogue of the Euler beam problem considered 
in the introduction. There we exhibited two distinct perturbations of this 
problem which led to different behavior when applied jointly. Moreover, 

Figure 5.8. Diagrams associated with small perturbations of hilltop bifurcation. 
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Proposition 4.2 shows that the qualitative effects of any small perturbation 
whatsoever can be achieved by an appropriate choice of these two parame- 
ters. In the present section we derive analogous results for the continuous 
problem. 

We consider a model which neglects the compressibility of the beam and 
retains only its bending rigidity, the potential energy being proportional to the 
integral of the square of the curvature. If the length of the rod is a, these 
hypotheses lead to a variational problem posed in the Sobolev space 

x = { u  E H,(O, a) : ~ ( 0 )  = u ( a )  = 0) * 

Here H2(0, ST)  consists of those functions in L2(0, a) whose second-order 
distributional derivatives also belong to L2(0, a). A function u(s)  prescribes 
the deflection of the beam perpendicular to a reference line as a function of 
arc length along the beam. We consider the perturbed energy functional 

1 ”  UII 2 

E ( u ,  A, a) =: 5 I, [ (1 - uf2)1,2 - al l  ds + ( A  + 1) (1  - uf2)’/’ ds + a Z u ( ~ a )  . 

For a* = -az= 0 we have the idealized problem in which the rod is perfectly 
straight in its unstressed position and not subjected to any external force 
other than the compressive force (A + 1) appearing in the second term in 
(6.1). (We have shifted the origin so that A = O  will be the bifurcation point.) 
The two parameters a1 and -a2 represent perturbations of this idealized 
problem--al represents a (constant) initial curvature of the beam and -az 
represents a central load. 

It is well known that the idealized problem of minimizing (6.1) for a = 0 
exhibits a supercritical bifurcation at X = 0 from the trivial solution u = 0. We 
shall give a self-contained derivation of this fact while establishing the 
background needed to prove that the two parameters a1 and a2 provide a 
universal unfolding of the idealized problem. 

Consider the variation of E(u,  A, a) with respect to u, 

Now dE is a c~n t~nuous  linear functional on x,  that is to say, an dement of 
x*. We shall identify L2(0, a) with a subspace of x* in the standard way uia 
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the Lz inner product for f~ L2(0, T) ,  

Thus x* may be identified with a subspace of distributions on [0, T] that are 
continuous with respect to the Hz norm. Define @ : xxRxR2--, x* so that 
@(u, A,a) is the linear functional on the right in (6.2). Then the Euler- 
Lagrange equations for the variational problem associated with (6.1) may be 
written symbolically as 

(6.3) @( u, A, a) = 0 . 
Of course one may integrate by parts in (6.2) to obtain the Euler-Lagrange 
equations in the more standard form of a two point boundary problem, 

where a,,, is a point measure concentrated at s = $713 However, (6.4) is less 
convenient for our purposes, and we shall work instead with the symbolic 
form (6.3) of a mapping between the Hilbert spaces x and x*. It is 
noteworthy, nonetheless, that a1 appears only in the boundary conditions of 
(6.4); this is a consequence of the fact that a1 multiplies an exact differential 
in (6.2). 

Observe that Q(0, A, 0)  = 0; that is, u = 0 is a soIution of the unperturbed 
problem for all A. Let L =  z, the differential of Q with respect to u 
evaluated at  u = 0, h = 0, a = 0. (Here and below we indicate by a bar various 
derivatives that are to be evaluated for all arguments set to zero.) Thus L is a 
linear map from x into x". We remark that L is singular. Indeed we have the 
explicit formula 

(4, Lu)= r ( u f ' + u ) 4 ' ' d s  

for any 4, UEX. Note that L is a fourth-order operator, as an integration by 
parts, when permitted, shows. L has a one-dimensional kernel spanned by 
uo(s) = sin s and a range of codimension one consisting of linear functionab 
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which annihilate uo. We may therefore use the Lyapunov-Schmidt reduction 
in discussing bifurcation from the trivial solution of (6.3). Let P be the 
orthogonal projection onto range L. Let W(x, A, a) be the function from 
RxRxR'  into 

defined by the equation 

(6.5) P@(xuo+ W(x, A, a), A, a )  = 0 .  

Let F :  RXRXR2-+R be given by 

Then every solution of (6.3) has the form xu,+ W(x, A, a), where 

(6.7) F(x, A, a) = 0 ,  

and conversely every solution of (6.7) yields a solution of (6.3). We shall 
show below that 

This proves that the bifurcation of (6.3) at the origin is a pitchfork, with the 
canonical form (11), of Section 4. We shall also prove that the determinant 

where, for any function F, jF is defined before Lemma 4.3. This will complete 
the proof that a1 and a2 are non-degenerate unfolding parameters for the 
idealized problem @( u, A, 0) = 0. 

It remains to compute a number of derivatives of F at the origin. We use 
the subscript notation for derivations except that we abbreviate Fa; by Fi, 
i = 1,2. The three parameters A, a1 and a2 enter into the derivatives on a 
more or less equal footing and we write F, for a derivation with respect to 
one of these three parameters when it is convenient not to specify which. By 
dk@ we mean the multi-linear functionals that arise from higher-order 
differentiation (with respect to u). Let L-' be the generalized inverse of L, 
defined to be zero on the orthogonal complement of range L. Thus K I P =  
L-I. 
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Let us write @(u, A, a) = Lu +*(a, A, a), where *(*, 0,O) vanishes to third 
order in u. More explicitly we have 

(6.10) Y ( u, A, a )  = C( u) + hMu + a A ( u )  + a2871,2 + h .o . t . , 
where 

(6.13) (4, A(u))=  [l- ~‘(0)~]”’~4’(0) -[1- u ’ ( T ) ~ ] - ” ~ ~ ’ ( T ) .  

The higher-order terms in (6.10) do not contribute to the derivatives needed 
below. We collect here a number of relations which follow from (6.10)- 
(6.13): 

- - - 
(6.14) d W = O ,  d 2 9 = 0 ,  d 3 9 = d 3 C ,  

(6.16) 

- - 
(6.17) q2 = S I 2  , d(W2)  = 0 ,  d2(T2) = 0 . 

We begin by computing some of the derivatives of W(x,A, a) ,  the 
non-singular part of the bifurcation problem, defined in (6.5). 

- LEMMA 6.18. Fx = FX, = 0, w, = -L-’Fc. In particular, %,, = 0, since 
YA= 0. 

Proof: We may rewrite (6.5) in our present notation as 
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Differentiating (6.19) with respect to x we obtain 

(6.20) LW, + P d* (u,+ W,) = 0 

We deduce that LW, = 0 from (6.20) by setting all arguments equal to zero 
and appealing to the first relation in (6.14) to discard the second term in 
(6.20). Since WE(ker L)', it follows that W x = O .  The second and third 
relations of the lemma may be obtained similarly by differentiation of (6.20) 
and (6.19) with respect to x and c, respectively. The proof is complete. 

The next Iemma shows that the u n ~ ~ r ~ y ~ n g  b~furcation diagram is a 
pitchfork. 

LEMMA 6.21. The relations (6.8) are satisfied. 

Proof: Note that (6.6) may be rewritten as 

since ( u o ,  L,) = 0 for any u. Differentiation of (6.22) with respect to x yields 

F;=(u, ,d iL' (uo+ W,N. 

Evaluation at the origin shows that sx = 0, when an appeal to (6.14) is made. 
Continued differentiation yields Fxx= 0 and 

(6.23) 

In deriving (6.23) we have used (6.14) and Lemma 6.18 to discard a number 
of terms which vanish. We see from (6.11) that 

( u o , d 3 C ( u o ,  u,, u o ) ) = 6 ~ ( 2 s i n 2 s c o s Z s - ~ c o s 4 s ) d s = ~ s ,  

which is non-zero as claimed. In a similar fashion, differentiation with respect 
to A leads to the conclusion that FA = 0 and 

It follows from (6.15) and (6.12) that 
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This completes the proof. 

Our strategy in evaluating the determinant (6.9) is to show that the last 
row contains only one non-zero element and that the second column contains 
only one non-zero element. Expansion in minors will then reduce to a 2 x 2 
determinant. 

LEMMA 6.25. F A A  = FiA = F Z A  = 0 , 

Proof: By differentiating (6.22) we may obtain the formula 

(6.26) 

for any second-order derivative with respect to the parameters A, al, az. It  
follows immediately from Lemma 6.18 that F A A  = 0. On substituting (6.15), 
(6.16) and Lemma 6.18 into (6.26) we find 

s l * = - { v O , M * L - l  *fs:,-s;)>. 

Integration by parts allows us to shift M to operate on the first factor in the 
inner product; since Mvo = -vo we see that 

which vanishes by the definition of the generalized inverse L-l. A similar 
argument shows that F,, = 0. The proof is complete. 

LEMMA 6.27. F A  = FAu = F A ,  = 0. 

Proof: Only the middle equality is new. We may differentiate as above to 
obtain 

But @A = 0 by Lemma 6.18 and dZ(WA)= 0 by (6.15), so the lemma is 
proved. 

Because of the numerous zero elements exhibited in the preceding two 
lemmas, the determinant in (6.9) equals 
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It is straightforward that 

P, = ( u o ,  (uo,  &-6l,)= 2 ,  

and 

Pz=(uo,~z)=(uo,sW,2)= 1.  

Proceeding to the second row, we have 

a formula analogous to (6.28). By (6.16) the second term in (6.29) equals 

- 
By (6.14) we may replace d3V by d3C in the first term of (6.29). It follows 
from (6.11) that, for any u EX, 

On s ~ ~ t i t u t i n g  +(s)= uo(s)=sin s and integrating by parts we find that 

(6.30) (uo, d3C(u, uo, uo)) = 3 (7 sin s cosz s - 2 sin3 s)u(s) ds . P 
We recall that 1 - cos2 s = sin2 s and that 

sin3 s = 4(3 sin s - sin 3s) . 

Using these relations we can show that the left-hand side of (6.30) equals 

(6.31) 

We want to evaluate (6.31) with 

u = w, = -L-y&- 6;). 

The second integral in (6.31) vanishes, since the range of L-' is orthogonal to 
uo. In the first integral, LI i  may be shifted to operate on sin 3s. But sin 3s is 
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an eigenfunction of L, hence of L-l,  and 

L-' sin 3 s  =&(sin 3s). 

Combining we find 

Taking both terms in (6.31) we have FIX, =%. 
The computation of F,,, is similar but slightly simpler in that *= 0 so 

that the analogue of (6.23) will contain only one term. One finds F,, =& and 
the determinant (6.9) equals -$Rx. This completes the proof that a, and a2 
provide a universal unfolding for the idealized beam problem. 

7. Examples 

In this section we collect a number of physical problems in which a 
bifurcation equivalent to one of the canonical forms of Sections 4 and 5 
occurs. The section is divided into two parts, which illustrate systems with 
one or with several essential degrees of freedom. Our choice of examples is 
only intended to be illustrative, and we make no pretense of being exhaustive. 

sI One essential degree of freedom. Some of the simpler one- 
dimensional singularities are amply documented in the literature. Thompson 
and Hunt [25] is a good reference here. For example, a bifurcation equivalent 
to the canonical form (I) with m = 2 {notation of Section 4) is callled a h i l t  
point by these authors. The shallow arch is a simple physical system which 
exhibits this kind of behavior. In its finite element analogue the shaHow arch 
consists of two springs pinned as shown in Figure 7.1 and subjected to a 
transverse force A, which is the  furca cation parameter. Suppose that the 
distance lAB1 between the two external supports is less than the combined 
uncompressed length of the two springs. Then far h = 0 the system will have 
three equilibrium configurations, two stable ones with the center gin C located 
either above or below the line AB and one unstable one with C lacated on 
AB. For general A the diagram of equilibrium states will have the form 
illustrated in Figure 7.2, where the dashed portions indicate unstable states. 
This system has a bifurcation diagram of the limit point type at either of the 
points P or Q in the figure. Such diagrams are stable, and no unfolding 
parameters are required, (Moreover, Theorem 2.15 indicates that limit paints 
will occur in the stable diagrams perturbed off any bifurcation problem 
whatsoever.) 

Thompson and Hunt [26] use the term asymmetric paint of # j ~ ~ ~ ~ ~ ~ ~ a ~  for 
a b i f~~ca t ion  equivalent to the canonical form (11) with m = 2. This type of 
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I" 

Figure 7.1. Illustration of pinning of two springs. 

bifurcation is exhibited, for example, in the buckling of a curved plate, or 
more simply, in the buckling of a column supported by a nonlinear spring, the 
model introduced by von Kirmin to explain the former problem. (See the 
discussion in Chapter VIII of [23].) The simplest finite element analogue of 
this model is illustrated in Figure 7.3. This model differs from the beam 
problem, considered in the introduction, by the presence of the horizontal 
supporting spring. The spring is supposed to be unstressed when the beam is 
perfectly straight. Let F ( x )  = -(k,x + k,x2f k3x3) be the force exerted by the 
spring as a function of the displacement from equilibrium x. It is essential that 
kz be nonzero in order to have an asymmetric point of bifurcation. A more 
quantitative discussion is given in El31 or [23]. The bifurcation diagram for 
this problem (near the bifurcation point) is illustrated in Figure 7.4. 

The asymmetric point of bifurcat~on was observed by Benjamin [5] in his 
study of the Taylor problem in an annulus of finite length. Benjamin 
considered a one-parameter family of bifurcation problems, the parameter 
being the length of the annulus containing the fluid. He advanced the 
hypothesis that diagrams with bifurcation (i.e., a crossing of two solution 
branches) should only occur for a discrete set of parameter values, and that, 
in the absence of symmetry, the asymmetric point of bifurcation should be 
expected when bifurcation does occur. Our results support this hypothesis, in 
the following points. We have shown that any diagram in which bifurcation 
occurs has codimension at least one and therefore cannot be stable. Also, we 
proved that the asymmetric point of bifurcation has codimension exactly one 

Figure 7.2. Diagram of equilibrium states for general A. 
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Figure 7.3. Illustration of the simplest finite-element analogue of the model 
introduced by von Khrmhn. 

with respect to arbitrary perturbations. Thus an asymmetric point of bifurca- 
tion can occur stably within a one-parameter family of problems. The 
pitchfork ( symme~ic  point of bifurcation in the terminology of [26]) has 
codimension 2, and other singularities still higher codimension. It seems 
unlikely, therefore, that a pitchfork bif~rcation will be seen in an experiment 
where only one parameter is varied, at least in the absence of some symmetry 
that limits the perturbations which are appropriate. Further supporting 
evidence for this conclusion is provided by the recent result of Saut and 
TCman [8], that for generic boundary data and fixed Reynolds numbers the 
stationary Navier-Stokes equations have only finitely many solutions. 

We observed in the introduction that an asymmetric point of bifurcation 
can result from an arbitrarily small perturbation of the standard pitchfork. 

The canonical form associated with the standard pitchfork is of course (11) 
with m = 3 .  The Euler beam problem, discussed in Section 6 ,  provides an 
illustration of this singularity, if indeed any illustration is needed. 

The other canonical forms in Section 4 perhaps require more explanation. 
One might well question whether example (I) with m = 3 is properly called a 
bifurcation phenomenon at  all. This singularity is not included on the list of 
Thompson and Hunt [26], and it does not involve the crossing of two solution 
branches. If, however, one accepts the definition of bifurcation phenomena as 
phenomena where the number of solutions of the governing equations as a 
function of a parameter A can be changed by an arbitrarily small perturba- 
tion, then it is appropriate to include this example in a study of bifurcation 

- *  ,” i 
t 
I 
I 

c‘ 

Figure 7.4. Bifurcation diagram. 
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theory; and we take this point of view. Indeed, consider the unfolding of this 
example 

(7.1) F(x, A, a )  = x3 + ax + A . 

If a>O, then for every A the equation 

(7.2) F(x,  A, a )  = 0 

has a unique (real) solution x ( A )  which, moreover, is a smooth function of A. 
If a <0, then (7.2) has one solution for / A (  large and three solutions for A 
near zero-the bifurcation diagram will in fact resemble Figure 7.2. Hys- 
teresis can be observed in this system by varying the bifurcation parameter A 
back and forth across a neighborhood of zero. This is the simplest example of 
a hysteresis point, as described in the introduction. Such a point marks the 
onset of possible hysteresis in the system as the unfolding parameter is varied. 

We refer to Example 1.9.1 on page 38 of Gavalas [ 5 ]  for an occurrence of 
a hysteresis point in a physical problem. (We are grateful to B. Keyfitz for 
calling this example to our attention, and even more so, for explaining it to 
us.) Gavalas considers an irreversible, exothermic, volume-preserving reaction 
involving only one reactant and taking place in a stirred tank in which the 
reactant is added to the tank at a constant rate and withdrawn from the tank 
at the same rate (see Figure 7.5). The concentration and temperature of the 
output are assumed to be equal to those of the tank as a whole-this is what 
is meant by a stirred tank. Let C, and Tf be the feeder concentration and 
temperature, respectively. Under the above idealized hypotheses the output 
concentration and temperature as functions of time satisfy the following 
system of ordinary differential equations: 

(7.3) 

where f(C, T)=  Cexp{-KJ/T) and 8 is  the sa-called holding time, the 

FEE- OUTPUT 

TEMPERATURE Tf TEMPERATURE T 

Figure 7.5. Schematic diagram for model chemical reactor. 
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volume of the tank divided by the feeder rate. Here K1, K 2 ,  I(, are physical 
constants. The equations for equilibrium solutions of (7.3) are obtained by 
setting the left-hand side equal to zero. On introducing non-dimensional 
variables and simplifying, one is led to the equation governing equilibrium 
conditions 

(7.4) 
1 

iY+px 
F(x, A, a, 0) = log (e) - - + A = 0 , 

where a and p are the non-dimensional feeder temperature and concentra- 
tion, A is the logarithm of the non-dimensional holding time, and x is the 
so-called extent, the fraction of the reactant concentration consumed while 
the reactant is inside the tank. These variables are restricted to the following 
ranges: 

Equation (7.4) possesses a one-parameter family of hysteresis points. If x,, 
is any point in the interval (O,& the parameters a, P and A may be assigned 
values so that 

(7.6) F =  F, = F,, = 0 

at the point (xo, A o ,  ao,  Po). In fact a,, and Po may be chosen to satisfy the 
last two equations, and then A. may be chosen to satisfy the first. There is a 
possible difficulty in that xo, Ao, a0, Po are subject to the restrictions (7 .3 ,  
but if O<xo<$, the computed values for the other variables will be consistent 
with (7.5). It is easily verified that Fxa # 0 and obvious that FA # 0; this shows 
that we have indeed found a family of hysteresis points (see Proposition 4.1). 

The reader may readily check that, at the hysteresis points discussed 
above, Fa, < O  and Fpx >O.  It follows that if, starting from a hysteresis point, 
a (feeder temperature) is increased or p (feeder concentration) is decreased 
then hysteresis sets in. This hysteresis can be observed physically in quasi- 
static variations of A (i.e., of the feeder rate). 

Hysteresis points were observed by Benjamin [S] in the paper mentioned 
earlier, and they also occur in the model for buckling of a curved plate [23], 
although the viewpoint there is quite different from ours. 

The following beautiful example illustrates both the canonical forms (II)s 
and (111). It is taken from Poston and Stewart’s forthcoming book [19]; we 
are indebted to them for generously sending us part of their manuscript. Let 
us modify the finite element analogue of a buckling beam considered in the 
introduction by allowing both of the connecting links to be compressible (see 
Figure 7.6). Suppose in fact that the connecting links are linear springs with 
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x 

Figure 7.6. Finite element analogue for buckling strut with compressible links. 

equal spring constants k and uncompressed length unity. For simplicity let us 
assume that there is a supporting frame (not shown in the figure) that forces 
the two springs to have equal compression or extension; this does not change 
the basic conclusion but it simplifies the analysis, eliminating an inessential 
degree of freedom. Choose as coordinates x, the angle the links make with 
the reference line, and X ,  the common length of the springs. Then the 
potential energy is 

V =  k ( X -  1)’ +$x’ + 2AX cos x , 

and the equations for equilibrium are 

(7.7) 

aV 
-= x -2AX sin x = 0 ,  
ax 

av 
ax -= 2 k ( X - l ) + 2 A  C O S X = O .  

If the second equation in (7.7) is used to eliminate X from this system (a 
trivial instance of the Lyapunov-Schmidt reduction) we are left with the 
equation 

(7.8) F(x,A)=2A(l-(Alk)cosx)sinx--x=O 

Bifurcation can occur from the solution x = O  of (7.8) only if 

Fx = -(2A2/k - 2h + 1 )  = 0 ,  

that is, only if 

(7.9) A = 4{ k f ( k 2  - 2 k)”’} . 

Thus for k > 2 there are two distinct bifurcations and for k < 2 ,  none. It is 
readily seen that 
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at each of the bifurcation points (7.9), and thus each of them is at least as 
singular as the pitchfork. Calculation shows that 

F,,, = 2A(4A/k - 1) , 
FAx =2(1-2A/k). 

If the plus sign is chosen in (7.9), then F,,, is positive and FA, is negative, 
regardless of the value of k>2 .  If the minus sign is chosen, then F,,, is 
negative for k > 4 and positive for k <$ while FAX is positive for all k > 2. We 
leave it to the reader to verify these statements. 

Consider what happens to the bifurcation diagram as k is decreased from 
large positive values. For k large there are two bifurcations, approximately at 
Amin = $+ k-’ and at A,,, = k ,  as illustrated in Figure 7.7(a). The bifurcation at  
hmin is a smaIl perturbation of the bifurcation of the rigid system of Section 1, 
while the bifurcation at A,,, requires compressing the springs to almost zero 
length. Both bifurcations are supercritical, since F,,, and FA, have opposite 
signs. For k < $  the bifurcation at Amin becomes subcritical, with of course a 
loss of stability for the branching solutions. For k = $ the cubic term in the 
equation vanishes, and we are faced with a higher-order singularity- 
specifically, example (IX) with m = 5 .  (The conditions of Theorem 4.1 are 
readily verified.) The behavior presented here is perhaps the best way to  
conceptualize this canonical form-as one of the parameters in its unfolding is 
varied the associated diagram changes from subcritical to supercritical. 

As k is further decreased the two bifurcation points collide and the 
branching solutions no longer intersect the axis of symmetry. No bifurcations 
occur for k < 2. This is as it should be, since for k small, stronger restoring 
forces are associated with rotating the springs than with compressing them. 
Note that at the transition point we have FA, = 0 but F A A r $  0. We shall show 
that at this point, namely k = 2, h = 1, equation (7.8) is in fact equivalent to  
the canonical form (111) of Section 4. 

Here also the behavior of the physical system provides a conceptualization 
of the singularity-as one of the parameters of the unfolding is varied, two 
adjacent pitchfork bifurcation points merge and then form a disconnected 
diagram. 

Observe that 

F(x, A )  = 5(2A2- h)x3- (A - 1)’x -t O(x5) . 

~ultiplication of this function by [5(2h2- A)]-1 gives an equivalent function, 
and if we define a new variable by h=  [4(2AZ- A)]-l”(A - 1) we obtain a new 
function 



90 M. GOLUBITSKY AND D. SCHAEITER 

C )  

k= 2 

Figure 7.7. Bifurcation diagrams associated to system in Figure 7.6. 

We now appeal to Proposition 3.10. Consider the ideal J generated by 
x 3 - h 2 x  and its derivative, 3x2-,i2. Clearly A4cJ, so that, according to the 
proposition, any perturbation by an element of As c AJ will still be equival- 
ent to x3-x2x. The perturbation in (7.10) obviously belongs to A5, so 
x3- A 2 x  is indeed the relevant canonical form. 

b. Two essential degrees of freedom. We only discuss one problem in 
any detail, the one-dimensional reaction-diffusion equations associated to the 
so-called tri-molecules model of Lefever and Prigogine [14]. We are deeply 
grateful to Giles Auchmuty for suggesting this problem as a possible 
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application of our theory. The relevant equations are 

(7.11) 

subject to the boundary conditions of Dirichlet type 

(7.12) X(0)  = X(T) = A ,  Y(0) = Y(n) = B/A . 

Here the unknown functions X and Y are chemical concentrations, A and B 
are constant, externally controlled chemical concentrations, and D, , D2 are 
diffusion coefficients. We are interested in time-independent, non-negative 
solutions of (7.11), (7.12), particularly in the dependence of such solutions 
on the parameter B, which we take as the bifurcation parameter. 

First, let us consider the ordinary differential equation associated with 
space-independent solutions of (7.1 I), 

(7.13) 

dX 
-= X ~ Y -  ( B  + i)x+ A ,  
dt 

dY - = - X 2  Y + BX 
dt 

This system has a unique rest point at X =  A, Y = B/A. We define 

(7.14) X = A + u ,  Y = B / A + v  

and compute that u, v satisfy an equation near u = v = 0 whose linear part is 

(7.15) 
-A2 A2 )iu) v * 

It is easily seen that the eigenvalues of the matrix in (7.15) have negative real 
part if and only if 

(7.16) B < 1 + A 2 .  

Thus if (7.16) is satisfied, then X =  A, Y = B/A is a local attractor for (7.13). 
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In fact, it may be shown (cf. [2]) that if (7.16) is satisfied, this rest point is a 
global attractor for (7.13). For values of B not satisfying (7.16), equation 
(7.13) has an attracting limit cycle which encloses the unstable rest point at 
(A, BIA). A Hopf bifurcation occurs for B = 1+A2, connecting the two 
regimes. 

Because of our choice of boundary conditions in (7.12), the rest point 
X =  A, Y = B/A of (7.13) also provides a solution to the boundary problems 
for the partial differential equations (7.11), (7.12). To discuss the stability of 
this solution we again define u, v by (7.14) and compute that u, u can satisfy 
an equation whose linear part is 

(7.17) 

We must determine the spectrum of the linear operator L appearing on the 
right in (7.17), a linear operator, say, on L2(0, 1)@L2(0, 1) with homogene- 
ous Dirichlet boundary conditions. Since L commutes with (alax)’, the 
eigenfunctions of L may be assumed to have the form 

(7.18) 

where a, b are constants 2nd J/ is an eigenfunction of (alax)”, say, +“(x) = 
-pLJf(x). The two eigenvalues of L associated with eigenfunctions of the form 
(7.18) are the eigenvalues of the matrix 

(7.19) 

Observe that (7.19) has zero as an eigenvalue if and only if 

(7.20) D A2 
0 2  DZP 

B =  1+--IA2+ Dip+-. 

In conclusion, the linearization of (7.11) about the trivial solution is singular 
only for values of B which satisfy (7.20), where 1. is an eigenvalue of 
-(alax)’. Only for values of B which satisfy (7.20) can one expect nontrivial, 
time-independent solutions of (7.1 l), (7.12) to bifurcate from the trivial 
solution X =  A, Y = BIA. We emphasize that the bifurcations coming from 
(7.20) are associated with time-independent solutions of (7.1 l), (7.12), in 
contrast to the Hopf bifurcation of the ordinary differential equation. 
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Let us define a function B ( p )  by the right-hand side of (7.20). A calculus 
argument shows that 

(7.21) min B ( p )  = (1 + (D1/D2)”2A)2 , 
w 

On comparison with (7.16), one sees that the partial differential equation can 
lose stability with respect to spatially dependent perturbations at  values of B 
considerably smaller than where the ordinary differential equation loses 
stability, provided D2 is rather larger than D,. A more complete analysis (cf. 
[3]) shows that for B in the range (7.16) the only possible bifurcations from 
the trivial solution, into either time-independent or time-dependent states, are 
the bifurcations associated with (7.20). 

The eigenvalues of - ( a / a ~ ) ~  on (0, T) are p = 12 ,  E = 1 ,2 ,3 ,  - * - , associated 
with the eigenfunction sin lx. Thus (7.21) only represents a lower bound on 
the value of B at which the partial differential equation loses stability, the 
exact value being 

(7.22) min {B(12) : I = 1,2 ,3 ,  - * - } .  

For most values of the parameters in the problem, the minimum in (7.22) will 
be assumed at exactly one point, but if 

(7.23) A’= D2D2kZ(k + 

for some integer k, then the minimum in (7.22) is achieved at both 1 = k and 
E = k + 1. In other words, when the partial differential equation first loses 
stability, it loses stability simultaneously to disturbances of wave number k 
and of wave number k + 1. Such cases provide instances of bifurcation from a 
double eigenvalue. Even if (7.23) is satisfied approximately but not exactly, 
we would argue that conclusions based on bifurcation from a simple eigen- 
value will be misleading, the presence of a second bifurcation point close by 
changing the nature of the diagram. We believe this case can be best 
understood as a perturbation of bifurcation from a double eigenvalue. 

The analysis of this problem by the methods of singularity theory will be 
published elsewhere [l2]. It turns out that when (7.23) is satisfied exactly the 
two-dimensional probIem, which results from (7.11) and (7.12) after the 
Lyapunov-Schmidt reduction, is contact equivalent to one of the canonical 
forms in (5.6); exactly which problem depends on the parameters A, D, , D, . 
Interestingly, four of the five qualitatively different cases illustrated in Figure 
5.8 can actually occur in this problem as the parameters are varied. 

The axisymmetric buckling of a complete spherical shell (cf. [4]) provides 
another instance of bifurcation from a double eigenvalue, rather analogous to 
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the problem considered above. Further instances are documented by Thomp- 
son and Hunt, [25], [261. 

8. Remarks on the Variational Case 

Consider a bifurcation problem in variational form: 

where g : R" x R-+R is the germ of a one-parameter family of potential 
functions and V indicates the gradient with respect to x only. It is a matter of 
considerable interest to discuss perturbations of (8.1) which themselves have 
variational form. For example, knowledge of the potential permits a discus- 
sion of stability, which is not (yet) possible in the general framework of 
contact equivalence. Here we sketch an approach to this problem which in 
fact was the starting point of the present paper. Briefly, all the abstract results 
of Section 2 and 3 have analogues in the variational case, but the computa- 
tions of Sections 4 and 5 are much more difficult. Indeed, we have not 
succeeded in completing any calculation in several dimensions. 

We introduce the special notation f(x) = g ( x ,  0) for the potential function 
in (8.1) when A = 0. We assume that f vanishes to third order at the origin so 
that x = 0, A = 0 is a solution of (8.1) and the Jacobian of (8.1) vanishes there. 
We suppose that the reader is familiar with various notions from catastrophe 
theory such as the concept of right equivalence for germs in 8,. We assume 
that f has finite codirnension relative to right equivalence, that codimension 
being dim d, , l (af /ax) ,  where @flax) is the ideal generated by the n partial 
derivatives of f. Let FoL(x), where a E R, be a universal unfolding of f(x). Let 
S, be the universal bifurcation set of F, namely, the  dimensional sub- 
manifold of R"xR' defined by 

S, = {(x, a )  : V F , ( x )  = 0} , 

Let ?r : S,+R' be the restriction to S,  of the projection onto the second 
factor in the cross product R" x R'. The reader may review these ideas in the 
survey paper [lo]. 

We regard the potential function g ( x ,  A )  in (8.1) as a one-parameter 
unfolding of f. As such g may be factored through the universal unfolding Fa. 
Thus, for all A, g ( * ,  A )  is right equivalent to F,<*) ,  where I/J is some smooth 
curve JI : R+R'. Let g(x, A )  = F+(,&). A simple argument shows that (8.1) 
and V g ( x ,  A )  = 0 are contact equivalent bifurcation problems. Hence it in- 
volves no loss of generality to assume that 
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which we henceforth suppose. Similarly, in considering perturbations of g, 
say, g(x, A, E )  where E E Rk, we may suppose without loss of generality that 

where * : RXRk--+R'. In other words, we may represent perturbations of the 
potential as an unfolding of the curve +. 

Using these notions and example (5.16), one can prove that there exist 
nonvariational perturbations of a variational problem which have bifurcation 
diagrams which are not obtainable by a variational perturbation. Let 
g(x, y , h ) = $ x 3 + x y 2 4 h ( ~ x 2 + $ y 2 ) .  Then Vg is just (5.16) with the second 
equation multiplied by S. For this example, f(x, y ) = $x3 + xy', which is Thorn's 
hyperbolic umbilic. The universal unfolding of f is given by F,(x, y) = 
f(x, y)+$al(x2-y2)+aZ~+cr,y. One may check that codimF, is 0,1, or 2 if 
(x, y, a )  # 0. Now recall perturbation P1 of (5.16). The diagram associated 
with G + P ,  in (5.16) ha5 a bifurcation point at the origin of type (II).+. In two 
variables this problem has the form V h  = 0, where h(x,  y, A )  = x2+ y 5 - i h y 2 .  
In particular, a potential function right equivalent to x2 + y 5  must be included 
in the universal unfolding F, for some a if the diagram G + P , = O  can be 
realized by a variational perturbation. This is impossible, as the codimension 
of x 2 + y s  is 3. 

We now return to our problem of classifying perturbations of (8.2). To do  
this we introduce a notion of equivalence for curves in Definition 8.4 below. 

DEFINITION 8.3. A d i ~ e o m o r p h i s ~  germ cp : (Ri,O)-+(R',O) is called 
liftable (to S,) if there exists a diffeomorphism germ Qj : SF+SF such that 
qoa = n o @ .  Similarly, a vector field w on R' is called liftable if there is a 
vector field W on S,  such that d r  W =  w. 

Let LDo be the identity component of the group of liftable di~eomorph-  
ism germs. 

DEFINITION 8.4. Two curves +, 4 : (R, O)+(R', 0) are diagram equivalent 
if there exists a one-parameter family cp,, of diffeomorphism germs in LDo 
and an orientation preserving diffeomorphism germ A on the line such that 

$(A) = ~ , , O + O A ( A ~ .  

To get a feeling for this notion of equivalence one should return to the 
analysis of (II), and (111) in Section 4 as well as Figure 4.8. Observe that any 
liftable diff eomorphism preserves the apparent contour (or critical values) of 
a which is the cusp curve in Figure 4.8. Then at the very least the number of 
solutions to F$cA\,(x) = 0 for fixed h is the same as the number of solutions to 
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F,l(h(A))(x) = 0. In fact, more is true since we chose the name because it can be 
shown that if $ and 6 are diagram equivalent and if g, g are defined as in 
(8.2), then the bifurcation diagrams of Vg = 0 and V g  = 0 can be mapped into 
one another by a diffeomorphism on R"xR of the form (x, A)- 
(p(x, A ) ,  h(A)). We suspect that in this case Dg and DS are contact equivalent 
bifurcation problems, but have been unable to prove this. (It is not true that g 
and g are right equivalent.) 

The notion of a universal unfolding of a curve $ relative to diagram 
equivalence proceeds along standard lines. One considers the orbit 0, c %f, of 
curves equivalent to $, computes the tangent space TJ/ of the orbit at $, and 
identifies the unfolding parameters with the quotient %:/Tt,h when TJ/ has 
finite codimension. In this case it turns out that 

where LV1 is the space of all one-parameter families of liftable vector fields, 
LV,(+) is the set of one-parameter families of vector fields of the form 
WA($(A)), where W E  LV, ,  and ~ A { ~ $ ~ ~ ~ ~  is the submodule of %: generated 
by ~ ~ / ~ A .  Criteria for finite determinancy analogous to Theorems 3.10 and 
4.1 are also available in the variational context. 

It is generally true that the analytic vector field germs in LV are finitely 
generated. What makes the computation of T$ difficult is the enumeration of 
an explicit set of generators for LV. When this can be done, it is possible to 
compute the codimension of T$ (even in the C category). Arnold [1] has 
found generators for LV in the one-dimensional case when f(x) = xm for 
some integer rn. With this representation we have computed unfoldings for all 
the one-dimensional examples considered in Section 4, obtaining completely 
analogous results. 
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applications. Tim Posten, John Mather and Giles ~ u c h m u t y  have made 
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