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ITERATES OF MAPS WITH SYMMETRY*

PASCAL CHOSSAT" AND MARTIN GOLUBITSKY$

Abstract. In this paper the elementary aspects of bifurcation of fixed points, period doubling, and Hopf
bifurcation for iterates of equivariant mappings are discussed. The most interesting of these is an algebraic
formulation of the hypotheses of Ruelle’s theorem (D. Ruelle [1973], "Bifurcations in the presence of a

symmetry group," Arch. Rational Mech. Anal., 51, pp. 136-152) on Hopf bifurcation in the presence of
symmetry.

In the last sections this result is used to show that Hopf bifurcation from standing waves in a system
of ordinary differential equations with 0(2) symmetry can lead directly to motion on an invariant 3-torus;
indeed, depending on the exact symmetry of the standing waves, one might expect to see three invariant
3-tori emanating from such a bifurcation. The unexpected third frequency comes from drift along the torus
of standing waves whose existence is forced by the 0(2) symmetry.
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Introduction. Symmetries change the types of bifurcation that may be expected
in discrete dynamical systems. Typically, nonsymmetric systems generate unique
branches of new solutions at points of bifurcation while symmetric systems generate
multiple branches. Results of Vanderbauwhede [1980] and Golubitsky and Stewart
[1985] on steady-state and Hopf bifurcation in continuous systems show that certain
of these solution branches may be enumerated using only group theoretic techniques.
The first task in this paper is the translation of these results to statements about
bifurcation in the discrete dynamics of equivariant mappings. For further background,
see Field [1980], [1986].

In 1, we briefly describe the group theoretic results of Vanderbauwhede [1980]
and Golubitsky and Stewart [1985]. In 2, we apply Vanderbauwhede’s result in a
straightforward manner to enumerate certain branches of fixed points and branches
of period two orbits for equivariant mappings. We also indicate how the simplest
nontrivial symmetry (2-- {ztz 1} acting on E) may be expected to affect period doubling
cascades and lead naturally to mergings of attractors. In 3, we adapt the results of
Golubitsky and Stewart [1985] to enumerate branches of invariant curves stemming
from Hopf bifurcation of equivariant mappings. This adaptation leans heavily on
nontrivial results of Ruelle 1973]. Our contribution is really only to observe that there
is an algebraic formulation for Hopf bifurcation of equivariant maps that satisfies the
hypotheses of Ruelle’s theorem.

The second task in this paper is to enumerate the number and type of tori that
are produced when a periodic solution to an equivariant system of ordinary differential
equations (ODEs) loses stability by having Floquet multipliers cross the unit circle in
the complex plane. For example, we show in 4 that (under certain hypotheses)
standing wave solutions to 0(2) symmetric systems generate (generically) three
branches of 3-tori at such a bifurcation. The existence of this extra frequency comes
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1260 P. CHOSSAT AND M. GOLUBITSKY

from the 0(2) symmetries and is based on observations of Iooss [1986] and Chossat
[1986]. In 5, we give a general setting for the example in 4.

1. Background. Let F c O(n) be a compact Lie group acting linearly on R and
let f:R" -> n be a one-parameter family of smooth mapping commuting with F, i.e.,

(1.1) f( yx, A) yf(x, It).

The equivariant branching lemma of Vanderbauwhede [1980] and Cicogna [1981]
gives a simple algebraic condition for determining the existence of branches of steady-
state solutions to the system of ODEs

=f(x, it).

We assume that F acts absolutely irreducibly on ", that is, that the only linear
maps on " that commute with F are scalar multiples of the identity. For a subgroup
E, we define

(1.2) Fix ()- {y

Applying the chain rule to (1.1) implies that

(df)o,y=y(df)o,.

Absolute irreducibility then implies that

(1.3) (df)o,;= c(It)I.

Also observe that

(1.4) f: Fix (E) x R - Fix (E)

since of(y, It) =f(o-y, It =f(y, It for all tr E, y Fix(E). In particular, irreducibility
implies Fix (F)= {0}, and hence by (1.4)

f(0, it) 0.

Thus, there is a "trivial" solution at x 0.
EQUIVARIANT BRANCHING LEMMA. Let Z F be a subgroup. Assume that c(O) O,

c’(O) s O, and dim Fix ()= 1. Then there exists a unique (nontrivial) branch of small
amplitude steady states for f[(Fix (E) x ) 0.

See Ihrig and Golubitsky [1984], Golubitsky, Swift, and Knobloch [1984], and
Golubitsky, Stewart, and Schaeffer 1988] for applications of this result.

There is a similar result regarding Hopf bifurcation in symmetric systems. Here
we assume that the system =f(x, A) is on the center manifold. In particular, we
assume that x 2n and that

L =- (df)o, o wI,

There is the natural action of the circle group S or 2. given by

(1.5) x - exp (tL)x.

We assume that the action of F x S on 2, is irreducible. It then follows, as above,
that f(0, It)-= 0, i.e., that there is a "trivial" steady-state solution. It also follows that
the eigenvalues of (df)o, are tr(It) +/- ko(It), each of multiplicity n.
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ITERATES OF MAPS WITH SYMMETRY 1261

THEOREM 1.1. Let E c F xS be a subgroup. Assume that tr(0)=0, to(0)#0,
tr’(O) # O, and dim Fix (5:)= 2. Then there exists a unique (nontrivial) branch of small
amplitude periodic trajectories with period near 2r/to(0) to Yc =f(x, A with symmetries
5:.

Note (tr, 0) 5: c F x S is a symmetry of a periodic solution x(t) to -f(x, A) if

(1.6) yx(t) x(t + O).

See Golubitsky and Stewart [1985], [1986b], Roberts, Swift, and Wagner [1986], and
Golubitsky, Stewart, and Schaeffer [1988] for a proof and applications.

We remark that in certain instances it is possible to use invariant theory and group
theory to compute the asymptotic stability of the steady-state and periodic solutions
found using the results stated above. We refer to these references for examples of this
process.

2. Fixed points and period doubling. Let g:R" x R-n be a one-parameter family
of F-equivariant mappings. We assume that F acts absolutely irreducibly on n. It
follows that x =0 is a "trivial" fixed point for g and that (Dg)o,x c(A)I. In this
section, we briefly discuss the bifurcation of fixed points (c(0)= +1) and period
doubling bifurcation (c(0) -1).

LEMMA 2.1. Let 5: F be a subgroup. Suppose that c(0)= 1, c’(0)# 0, and dim
Fix (5:)= 1. Then g(x, A has a unique (nontrivial) branch offixed points in Fix (5:).

Proof Set f(x, ,) g(x, A) x and apply the Equivariant Branching Lemma. VI
To eliminate trivialities, we assume that is an isotropy subgroup, that is, there

is an x " such that

(2.1) 5: { y F: yx x}.

The largest subgroup of F that leaves Fix (5:) invariant is N(5:), the normalizer of 5:
in F (cf. Golubitsky [1983] or Golubitsky, Stewart, and Schaeffer [1988]). It follows
that g[Fix (5:)x commutes with the action of N(5:)/;,. Now, if we assume that 5: is
a maximal isotropy subgroup (a hypothesis that is satisfied when dim Fix (5:)= 1), then
N(E)/5: acts fixed point free. It follows that when dim Fix (5:) 1, either N(5:) 5: or
N(E)/E Z2. In the latter case, the bifurcation of fixed points in Lemma 2.1 will be
via a pitchfork bifurcation, with the two new bifurcating fixed points lying on the same
group orbit (conjugacy being given by any y N(E)---E). When N(5:)= E, we expect
each new fixed point to be on a distinct group orbit.

We now discuss the case of period doubling, i.e., c(0)---1. As in the standard
period doubling theorem (without symmetry), we observe that nonzero fixed points
for the composite mapping g2 correspond to period two points for g, since the implicit
function theorem guarantees that there are no new fixed points for g. We apply Lemma
2.1 to g2 to obtain the following lemma.

LEMMA 2.2. Let 5: c F be a subgroup. Suppose that c(O)--1, c’(O) # O, and dim
Fix (5:)= 1. Then g(x, A) has a unique branch ofperiod two points in Fix (5:).

Again, we have different interpretations for Lemma 2.2, depending on whether
N(E) E or N(5:)/5: 7/2. In the first case, we expect a standard period doubling to
occur, while in the second case, the equivariance of gl(Fix (5:) x R) with respect to 2
implies that

(2.2) g(x, A -x.

To verify (2.2), note that g(-x, )t) -g(x, A ). Therefore, if x is a period two point for
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1262 P. CHOSSAT AND M. GOLUBITSKY

g, then so is -x. Since x and -x are in Fix (5;) and the period two orbit obtained from
Lemma 2.2 in Fix (E) is unique, it follows that g(x, A)=-x.

Remark. Identity (2.2) states that this period two trajectory is a discrete analogue
of a rotating wave; the same result is obtained by taking one timestep (iteration by g)
or by acting by the group (x--x).

We end this section with some speculations on period doubling sequences when
N(E)/E-72. As a parameter is varied, we might expect the trivial fixed point to
undergo a bifurcation to a nontrivial fixed point, as in Lemma 2.1. As we discussed
above, when N(E)/E 72, this new fixed point is formed by a pitchfork bifurcation.

Suppose now that, as this parameter is varied, each of the nontrivial fixed points
undergoes a period doubling sequence. The 7/2 action forces the period doubling
sequence to occur at the same parameter values for each nontrivial fixed point. The
simplest such example is given by the cubic polynomial

(2.3) g(x, ;t x- x3, >0
on Fix (E)xR. For/x > 0, each of these period doubling sequences seems to behave
like the simple logistic equation. This results in pairs of attractors (one for x > 0 and
one for x < 0) consisting of single orbits filling up parts of the real line, say, for x in
[a,/3] and for x in [-/3,-a].

As , is increased, a dicreases and eventually becomes negative (when A 3x//2).
This merging of attractors causes an interesting kind of chaotic behavior. Start with
an initial point Xo>0 and form the iterated sequence X,+l g(x,, A). Now form the
symbol sequence of +’s and -’s where the nth element in the sequence is sgn (x,).
In effect, we see chaotic behavior on two time scales. There is the chaotic behavior on
a fast time scale within each of the attractors ([0,/3] and [-/3, 0]) and then there is
the chaotic behavior on a slow time scale defined by the transitions between the
remnants of the two attractors.

A detailed study of the related map

h(x, A -(txx x3), /x > 0

is given in Rogers and Whitley [1983]. There, however, the primary bifurcation of the
fixed point x 0 is a period doubling bifurcation, as discussed in Lemma 2.2.

3. Hopf bifurcation. In this section, we assume that the trivial fixed point for the
F-equivariant mapping g loses stability by a pair of complex conjugate eigenvalues
crossing the unit circle. Due to the presence of symmetry, the eigenvalues may have
high multiplicity. We assume that g:R2nX2n and that (Dg)o.o has eigenvalues
e+2i, each with multiplicity n, where 0 0, 1/2.

The standard Hopf bifurcation theorem for mappings (n 1) states that if 0
3, z, , and if the eigenvalues cross the unit circle with nonzero speed, then there exists
a family of invariant circles for g(., A) emanating from the trivial fixed point x 0.
This theorem is proved using near identity changes of coordinates to put the terms of
g up to order four in normal form. This truncated normal form actually has S symmetry,
and, because of this symmetry, we can easily find invariant circles using polar coordi-
nates. Then we use scaling and normal hyperbolicity arguments to show that the invariant
circles that are present at order four persist independently of the higher order terms
in g. When resonances exist (0- , , ,-34), the normal form does not have this S1-

equivariance in the fourth-order truncated normal form (cf. Arnold [1977], 1983] and
Iooss 1979]).

We obtain a simple generalization of the Hopf bifurcation theorem as follows:
Let E c F be a subgroup with dim Fix (E) 2. Then there exists a branch of g-invariant
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ITERATES OF MAPS WITH SYMMETRY 1263

circles in Fix (), as long as 0 3,
, ,-34. Just apply the standard Hopf theorem to

g[Fix (); the eigenvalues of D(g[Fix (E)) are constrained by dimension to be simple.
Remark. Assume that E is an isotropy subgroup with dim Fix (E) 2. The group

N()/ acts on Fix () by a fixed-point free action and g[Fix () commutes with this
action. (In fact, E is a maximal isotropy subgroup since the complex eigenvalues
preclude the existence of one-dimensional fixed-point subspaces; cf. Golubitsky and
Stewart [1985].) Fixed-point free actions on 2 exist only for the groups 1, 7/, (n => 2)
or SO(2). Observe that if N(E)/E- 7/, (n => 5) or SO(2), then g[Fix (E) automatically
has a fourth-order truncated normal form with S symmetry. In these cases, the
assumption 0 1/2, 1/4, , 1/4 is not necessary, as the remainder of the proof of the standard
Hopf theorem is still valid.

As in the case of Hopf bifurcation for systems of ODEs (Theorem 1.1), we can
improve on this simple generalization by looking for subgroups of F x S with two-
dimensional fixed-point subspaces. First, we define the action of S. Choose a matrix
A with purely imaginary eigenvalues such that ea-- (dg)0,o. The action of S is then
given by e ’A. Since (dg)o, o commutes with F, so does the action of S. In this way, we
have defined an action of F x S on 2..

THEOREM 3.1. Let c F x S be a subgroup such that dim Fix ()= 2. Assume
0 # , , , and that the eigenvalues cross the unit circle with nonzero speed. Then
generically there exists a unique branch of g-invariant circles emanating from the trivial
fixed point x 0 and this branch is tangent to Fix ()c 2"x at x O.

Proof. The truncated normal form h of g has symmetry group F S1. Therefore,
h :Fix () --> Fix (E), and we can find invariant circles for h, as above. At this point,
however, we cannot conclude directly from the proof of the standard Hopf bifurcation
theorem that there is a family of g-invariant circles. The difficulty is that g itself need
not leave invariant Fix (E) since g does not necessarily commute with S. However,
Ruelle 1973, Thm. 3.1] does prove a theorem sufficient to conclude that g has a family
of invariant circles, at least when certain assumptions, which are valid generically, hold.

The needed assumptions are the following:
(a) The third-order terms in h determine the direction ofbranching ofthe invariant

circles of h in Fix (E).
(b) The invariant circles for h are normally hyperbolic in the sense that the

eigenvalues of dh on the invariant circles, which are not forced by the F S action
to be unity, in fact lie off the unit circle.

In order for (b) to hold, it is often necessary to have truncated the normal form
at some high order. This order depends on both F x S and the subgroup E. Once the
invariant circles of h are normally hyperbolic, Ruelle’s Theorem 3.1 is sufficient to
prove that the higher order terms of g (which are not in normal form) will neither
destroy the invariant circles nor change their stability. [3

Example 3.2. Consider F D, (n => 3) acting absolutely irreducibly on C and by
the diagonal action on C2. As was shown in Golubitsky and Stewart [1986b], there
are three (conjugacy classes of) isotropy subgroups in D, S where the fixed-point
subspaces are two-dimensional. Theorem 3.1 implies that for D,-equivariant mappings,
we may expect three families of g-invariant circles at such a Hopf bifurcation. We
note that two of the isotropy subgroups are isomorphic to 7/2 and one to 7/3- The
normal hyperbolicity of the 7/3 circles are determined at third order, while the normal
hyperbolicity of the 7/2 branches are determined at order m where

n, n odd,
m=

(n+2)/2, n even.
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1264 P. CHOSSAT AND M. GOLUBITSKY

4. Bifurcation of standing waves to 3-tori. For an 0(2) invariant system of ODEs,
a symmetry-breaking Hopfbifurcation leads to two types of periodic solutions: rotating
waves and standing waves (cf. Golubitsky and Stewart [1985]). We are interested here
in the bifurcation of these periodic solutions to tori. Bifurcation from rotating waves
has been considered by Rand [1982], Renardy [1982], and Iooss [1984]. By changing
coordinates to a rotating frame, they show that rotating waves correspond to stationary
solutions and that 2-tori may be found by standard Hopf bifurcation techniques for
systems of ODEs. Moreover, the circular symmetry of the rotating waves forces the
flow on the 2-torus to be linear. Standing waves, however, have no circular symmetry
in their isotropy subgroup, and the technique of changing coordinates to a rotating
frame does not apply. Using the techniques described in {} 3 applied to a certain
Poincar6 map, we shall study here the bifurcation to tori from standing waves. In the
next section, we give a unified discussion of these two techniques when 0(2) is replaced
by a general group F.

Bifurcation to 2-tori from a branch of standing waves has been considered in the
context of degenerate, symmetry-breaking, 0(2) Hopf bifurcations by a number of
authors (Erneux and Matkowsky 1984], Knobloch 1986], and Golubitsky and Roberts
1987]). These authors decouple the normal form equations for 0(2) Hopf bifurcation
(on C2) into phase-amplitude equations and find the 2-tori by steady-state bifurcation
in the amplitude equations. Using the extra S phase shift symmetry of normal form,
it is easy to see that in normal form the flow on these 2-tori must also be linear. Chossat
[1986] uses a Lyapunov-Schmidt reduction to prove that the flow on such 2-tori is
linear even when the vector field is not assumed to be in normal form. His method is
to assume that the flow on the 2-torus has the form y(t)= R,tx(t) where x is periodic,
r/is a real parameter, and Ro denotes the action of 0 in SO(2). The original equation
is then transformed by substitution of y(t) and elimination of R,t to an equation for
x. It is this equation to which the Lyapunov-Schmidt reduction is applied, and this
idea we will use to analyze bifurcation to tori from standing waves. In 5, we will
show that, in principle, when considering bifurcation to tori from a branch of periodic
solutions in a symmetric system, one of the two techniques described above always
works. Which one will work depends on the symmetries of the periodic solution.

Consider the following system of ODEs"

(4.1) 3) F(y, A), F(0, A) =0

where yv and F’N x->N commutes with a linear action of 0(2) on s. This
action may not be faithful; we assume, however, that the kernel of the action is the
cyclic group 7/n, n _-> 1.

Let y(t) be a standing wave periodic solution to (4.1), that is, assume that the
isotropy subgroup

(4.2) E {y 0(2)" /y(t) y(t)}

is discrete and contains a reflection in 0(2). Thus E Dn. Note that standing waves
lie on the invariant 2-torus

M= {7y(t)" /e O(2)}

foliated by periodic trajectories.
We now consider bifurcation of standing waves to tori. This bifurcation is detected

by having a complex conjugate pair of Floquet multipliers cross the unit disk at e+/-2ri

where 0 # 1, , , , , . The eigenspaces corresponding to these Floquet multipliers
are invariant under E D,, and generically we may assume that D, acts irreducibly
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ITERATES OF MAPS WITH SYMMETRY 1265

on the eigenspaces. The irreducible representations of Dn are either one-dimensional
or, if n _-> 3, two-dimensional.

We prove the following theorem.
THEOREM 4.1. Let x t) be afamily ofstanding wave periodic solutions to the 0(2)

symmetric system (4.1) with isotropy subgroup D,. Assume that the periodic solution loses
stability by having a pair ofcomplex conjugate Floquet multipliers cross the unit disk with
nonzero speed and assume that Dn acts irreducibly on the corresponding eigenspaces.

(a) Ifthe Floquet multipliers are simple, then there exists a branch of 3-tori emanating
from this bifurcation.

(b) Ifthe Floquet multipliers are double (which may happen generically when n >-_ 3),
then there exist three branches of 3-tori emanating from the bifurcation.

Our proof consists of constructing a D-equivariant Poincar6 map to which we
can apply the results of 3.

Remarks. (a) Such bifurcations to 3-tori occur in the interaction oftwo symmetry-
breaking 0(2) Hopf bifurcations (see Chossat, Golubitsky, and Keyfitz [1986]) and
in the interaction of 0(2) symmetry-breaking steady-state and Hopf bifurcations (see
Golubitsky and Stewart [1986a]).

(b) Normally we would expect the bifurcation of a periodic solution to tori to
produce an invariant 2-torus. The extra frequency comes from the 0(2) symmetry. As
noted above, each standing wave x(t) lies on the 2-torus M defined by yx(t) for
2’ 0(2). When bifurcation to tori occurs, we get two independent frequencies from
the "Poincar6 map" and a third independent (slow) frequency from flow transverse
to yx(t) in the group generated 2-torus M. It is here that we use the ideas of Iooss
[1986] and Chossat [1986], described above.

(c) Suppose that the standing waves are generated by Hopf bifurcation with 0(2)
symmetry from an invariant steady state in (4.1). Then the bifurcation to tori we
describe in Theorem 4.1 cannot occur in a system of differential equations posed only
on the four-dimensional center subspace. Since the hypotheses of the theorem presume
the existence of four nontrivial Floquet multipliers and periodic solutions always have
one trivial Floquet multiplier (equal to unity), such a system cannot live on a four-
dimensional manifold. In effect, the question we discuss here is: suppose that a standing
wave with Dn symmetry is formed from a symmetry-breaking 0(2) Hopf bifurcation
and suppose that we track this solution to finite amplitude; then how should we expect
this standing wave to lose stability?

(d) In models of the Couette-Taylor apparatus where periodic boundary condi-
tions in the axial direction are assumed, the transition from wavy vortices to modulated
wavy vortices is an example of the bifurcation considered in Theorem 4.1.

Proof of Theorem 4.1. Let x (t) be the one-parameter family of standing-wave
solutions to (4.1) with periods 2r/toa. Write the Floquet equation

de(4.3)
dt La (t). y

where

La(t)=(DxF)x(t).a.
We assume that (4.3) has a Floquet multiplier a(A) of multiplicity two where a(0)=
e2i and 0 1, , 3, 2,

, . We also assume

d
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1266 P. CHOSSAT AND M. GOLUBITSKY

We know that :(t) is always a solution to (4.3) yielding a Floquet multiplier
equal to unity. Similarly, the 0(2) equivariance of F implies that Jx(t) is also a
solution to (4.3) yielding another Floquet multiplier equal to unity where J is the
infinitesimal generator of the SO(2) action.

In order to eliminate this extra "trivial" Floquet multiplier, we look for solutions
to (4.1) of the form

(4.4) y(t) R,,x(t)
where R denotes the action of b SO(2) on R v, and / is a real parameter. As
mentioned above, this trick is used in Chossat 1986] and, in a slightly different context,
in Iooss [1986]. The system (4.1) now becomes

(4.5) y F( y, A rIJy.

Observe from (4.4) that periodic solutions of (4.5), (y(t), rt), correspond to

quasiperiodic solutions of (4.1), x(t).
Next we define our Poincar6 map. Let 4,(yo, A, r) denote the one-parameter

group of solutions to (4.5) with initial condition Yo. Note that when r/=0, (4.5) is
identical to (4.1). Recall that Xo(t) is a 2rr/wo-periodic solution to (4.1), and hence

Xo(0) 6=/o(Xo(0), 0, 0),

that is, Xo(0) is a fixed point for the mapping b2=/,oo(", 0, 0).
Let ’1 dxo/dt(O) and st2 Jxo(O). Since Xo(t) is a nonconstant periodic solution

to (4.1), we know that Xo(0) 0 (since F(0, A 0). Thus, ’1 is tangent to the trajectory
Xo(t) and 2 is tangent to the 0(2) group orbit through Xo. The hypothesis that Xo(t)
is a standing wave guarantees that rl and ’2 are linearly independent. Let (,) denote
an inner product on RN and let W span {sq, ’2}-.

We now define the first return map of trajectories to (4.5) starting in the plane
Wo {Xo(0)+ Yo: yo W} close to Xo(0). In order for such a trajectory to return to Wo
at time r, it must satisfy the equations

(4.6) f(Yo, A, r/, r) (’j, 4,(Xo(0)+Yo, A, r/)- Xo(0)) 0.

Now recall that if we set y(t)= Xo(t)+ z(t) in (4.5) and z(0)= Yo is close enough to
zero, then the integral form of (4.5) is

(4.7) z(t)=S(t)yo+ S(t-s)F(z(s),A, r)ds

where S(t) is the monodromy operator associated with (4.3) and

/3(z, A, r/)= F(xo+ z, A )- F(xo, A Lo( t)z- rlJ(z).

Since b,(Xo(0)+yo, ,X, r/)= Xo(r)+ z(r) it can be seen from (4.7) that

(a) fl(Yo, A, r/, r)= r-2rr/Wo+"
(4.8)

(b) f2(Yo, A, r/, r)= r/+-..,

where indicates terms of the form

o(I,- 2,,/,,ol + nl + o(lal+lyol)).

Using the implicit function theorem, we can solve equations (4.6) for r-- r(yo, ,)
and r/=r/(yo, A)when r(0,0)=2r/wo and r/(0,0)=0. Observe that generically r/

itself is nonzero. The Poincar6 map is now defined by

(4.9) Ga(yo)=Cb{yo.a)(xo(O)+yo, a, r/(yo, a)) Xo(0).

Note that Go(0)= 42,/,oo(Xo(0), 0, 0)- Xo(0)= 0.

D
ow

nl
oa

de
d 

05
/1

7/
16

 to
 1

40
.2

54
.8

7.
14

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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A consequence of this construction is that, if G undergoes a Hopf bifurcation
at Yo =0, then we find an invariant 2-torus in (4.5) that corresponds using (4.4) to an
invariant 3-torus in (4.1). It follows from (4.4) that one of the independent frequencies
is 7, which is small, but typically nonzero.

A second important consequence of the construction (4.8) is that G is
equivariant. We claim that

(a) ysr,=", V?,D.;

(4.10) (b) ysr=sr2 V.),,77., and t(’YYo, A, /)’- yb,(yo, A, /);

(c) S’= -sr2 VS D, E,, and ch,(Syo, A, -1)= Scb,(yo, A, l).

Using the identities (4.10) in (4.6) and uniqueness of solutions to the implicit function
theorem allows us to conclude that

(a) ’(yYo, A)= ’(Yo,)t) Vy D,,

(4.11) (b) /(yyo,,) /(yo, A) Vy7/,, and

(c) "q(Syo, A) -l(Yo, A) VS D,

Using the definition of G in (4.8), we now find it easy to check using (4.9) and (4.10)
that G commutes with D,.

To verify (4.10)(a), recall that since Xo(t) is a standing wave, we know that
yXo(t) Xo(t) for all 3’ D,. Now differentiate with respect to t. Next, observe that 7/,
commutes with J while SJ =-JS for all S in D,---7/,. Now we prove (4.10)(b),(c) by
invoking uniqueness of solutions to the initial value problems for systems of ODEs.

If the Floquet multipliers are simple, then this construction gives a unique invariant
circle by the standard Hopf theorem for mappings. However, when the Floquet
multipliers are double, we can invoke the discussion concerning Hopf bifurcation for
D,-equivariant mappings given at the end of 3. We conclude that when G undergoes
a Hopf bifurcation, three families of invariant tori are produced from this bifurcation.
Of course, the hypotheses of Theorem 4.1 imply that G does undergo a Hopf
bifurcation at A 0. This completes our proof.

Remarks. (a) The stability of these 3-tori can, in principle, be computed from the
results in Golubitsky and Stewart [1986b]. The simplest statement of these results is:
suppose the standing waves are stable when )t < 0. Then generically, for any of the
3-tori to be stable, all those families must appear supercritically (for)t > 0). If all three
families are supercritical, then precisely one family is asymptotically stable.

(b) The reader may check that these results explain the existence of the invariant
3-tori found in the interaction of two symmetry-breaking 0(2) Hopf bifurcations from
a branch of standing-wave solutions. See Chossat, Golubitsky, and Keyfitz [1986].

5. Bifurcation from periodic solutions. In this section, we generalize the discussion
of bifurcation from a periodic solution of 0(2) symmetric systems of ODEs to
bifurcation in systems invariant under a general compact Lie group F. Our formulation
here is mainly geometric and may be contrasted with the analytic nature of the remarks
in 4.

Let x(t) be a T-periodic solution to

(5.1) =/(x)

where f:"-" is F-equivariant, F O(n). Let 4, :"" be the flow associated
with (5.1) and note that 4, is also F-equivariant. We now define a Poincar6 map
associated with x(t).
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1268 P. CHOSSAT AND M. GOLUBITSKY

Define a local action of F x on n by

(5.2) (),, t).x= ’yb,(x).

Since the actions of y and commute (b, is F-equivariant), we see that (5.2) actually
defines an action of F x R. Let Xo x(0). Since orbits of (smooth) Lie group actions
are immersed submanifolds (cf. Bredon [1972]), we see that

(5.3) M=(Fx). Xo

is an immersed submanifold of Rn. However, since x(t) is periodic, it follows that M
is compact, and hence a submanifold of R". Moreover, M is foliated by the periodic
solutions { yx(t): / F}.

Remark. Let S be identified with the interval [0, T). Then we can define

(5.4) Exo {(y, 0) e rx s’: (y, O)xo=Xo}.

E is the isotropy subgroup of x(t) and M is diffeomorphic to (F x S)/E.
Since M is compact and F-invariant, there exists an open F-invariant tubular

neighborhood of M in N". More precisely, there exists a vector bundle N--SM and a
smooth F-equivariant ditteomorphism o-: NN" defined on an open neighborhood
of M and N such that Im r is an open neighborhood of M in R" and o-[M is the
identity (see Bredon [1972, p. 306]). Via r we can pull back the vector field f to N
and discuss the bifurcation ofthe periodic orbit in N. The advantage ofthese coordinates
is that F acts linearly on the fibers of N and these fibers are orthogonal to M.

Next we define the manifold

(5.5) P7 /.-1({/ x(t)});

that is, Pv is just that part of the vector bundle N that lies over the periodic trajectory
3/" x(t) in M. It is possible to write (cf. Vanderbauwhede, Krupa, and Golubitsky
[1988] or Krupa [1988])

(5.6) f(Y) fp(Y) +fr(Y)

where fp(y) is tangent to Pv for all y e Pv and fr(y) is tangent to the group orbit Fy.
Moreover, both fp and fr are F-equivariant.

Next, observe that F-equivariance implies that fr is a linear vector field on Fy.
Hence, the flow offr is given by exp (tr/) for some r/e L(F), the Lie algebra of F. (In
fact, if we define

(5.7) Fo= {3 e F: 3’Xo Xo}

and we choose a vector space complement U to (Fo) in &e(F), then we can assume
r is uniquely defined in U.) Note that (O(2))= N and that the r/defined in 4 may
be thought of as residing in the Lie algebra of 0(2). Also, in 4, we solved _implicitly
for r/= r/(yo, A). This discussion allows us to write explicitly the first-order terms of
r/. We have not set up such an explicit algorithm here. Nevertheless, we know that
generically r is nonzero, which is all we need. Similarly, since fp is F-equivariant, the
dynamics of fp are determined by the dynamics of fpIP1. We just transport the flow
from P1 to Pr using multiplication by y, which acts orthogonally.

It now follows that the flow off may be understood as composing the flow of fp
on P with linear flow on orbits Fy. In particular, if W is an invariant set under the
flow of fp, then

I?V= U Fy N
y.W
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is invariant under f. Moreover, W is asymptotically stable under fp if and only if the
invariant set I is asymptotically stable under f. Since frlM =- O, we may think of the
flow of f on as being the co,rnposition of the flow of fp on W with a slow drift
along the group orbits of F in W. For the example O(2), connected components of
the group orbits are just circles (being diffeomorphic to SO(2)) and the flow for fr
al.,ong the group orbit is periodic. If, in addition, we assume that W is a 2-torus, then
W will be a 3-torus with the flow along the group orbit having a small frequency.

Thus, bifurcation of the periodic orbit x(t) for f is determined by bifurcation of
the periodic orbit x(t) for F =fp]P1. Note that, since fp is F-equivariant, it follows
that F is Fo-equivariant where Fxo is the isotropy subgroup defined in (5.7). We assume
henceforth that f, and hence F, depend on a real parameter h.

Recall now the isotropy subgroup Exo of x(t) in F x S1, which was defined in (5.4).
We call x(t) a rotating wave if there is a loop

(5.8) (7(0), O) EXo, 7(0)= 1

and a standing wave otherwise. The bifurcation analysis for rotating waves proceeds
along the lines of the Renardy-Rand approach. The assumption (5.8) implies that

X(t)=y(t)-l’x(O).

Now transform the equation 3-fp(y) by looking for solutions of the form

y(t)=T(t)z(t)

and obtain the system

(5.9) .( t) fp(Z( t), A)- 3)(O)z(t).

In this system, x(t) corresponds to the steady-state solution z(t)- Xo and bifurcation
to tori for x(t) is determined by a Hopf bifurcation in (5.9).

For standing waves, we use another approach, which is also valid for rotating
waves. Let S be a cross section to x(t) in the fiber of N over Xo. Since x(t) is periodic,
the flow of F(., 0) returns to Xo after time T. Thus, we can define the Poincar6 map

:SxRS
with g(Xo, 0) Xo, and since F commutes with Fo, so does p. We can now study Hopf
bifurcation of g with symmetry F using the techniques of 3. Of course in the
discussion of 4, F Dn and that specific case represents an example of the general
approach described here.

Acknowledgment. We are grateful to Andre Vanderbauwhede for making a number
of helpful comments.
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