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Abstract. Recently models describing the dynamics of large arrays of Josephson 
junctions coupled through a variety loads have been studied. Since, in applications, 
these systems are to be operated in a state of stable synchronous oscillation, these 
studies have emphasized how the synchronous periodic state can lose stability. A 
common feature of the models equations is that they are invariant under permutation of 
the individual junctions. In our study we focus on the effects that these symmetries have 
on the resulting bifurcations when the synchronous solution loses stability. 

In these systems the causes for loss of stability are: fixed-point bifurcations and 
period-doubling bifurcations. Moreover, these two bifurcations can coalesce in a new 
codimension-two bifurcation which we call a homoclinic twist bifurcation. Due to the S, 
symmetry, it can be shown that the fixed-point bifurcations must lead to families of 
unstable periodic orbits. The period-doubling bifurcations, however, can lead to stable 
period-doubled oscillations, and the possible states and their stabilities are classified. In 
particular, generically, all of the period-doubled oscillations are described by dividing 
the junctions into two or three groups within which the junctions oscillate 
synchronously. The existence of these states in the model equations have been 
confirmed by numerical simulation. 

In addition to these period-doubled states, the existence of the homoclinic twist 
bifurcation and periodic solutions where the junctions oscillate with the same waveform 
but (l/N)th of a period out of phase with each other is observed in the numerical 
simulation. These last types of solution are called ponies on a merry-go-round (POMS). In 
these equations POMS do not arise from a local bifurcation. This issue is discussed in the 
companion paper. 

AMS classification scheme numbers: 58F22, 58F14, 34C25 

1. Introduction 

In a recent series of papers Hadley, Beasley and Wiesenfield [ll-131 have studied 
numerically the dynamics of large series arrays of current biased Josephson 
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junctions coupled through various loads. In applications such as microwave 
generators and parametric amplifiers it is desirable to operate these circuits at a 
stable synchronous (i.e. in-phase) oscillation. Thus it is of interest to determine 
where in parameter space the synchronous oscillations are stable and how the 
stability is lost. In this paper we focus on the types of states which are produced 
through bifurcation as the synchronous oscillation loses stability. A common feature 
of the models considered by Hadley et a1 is that the junctions are all equally coupled 
to one another through the load so that the equations describing their dynamics are 
invariant under permutation of the junctions. Thus, in addition to the usual 
dynamical systems and numerical methods, we can also apply group theoretic 
methods to the analysis of these arrays. We are therefore able to obtain a rather 
complete picture of the primary bifurcation structure associated with the in-phase 
oscillations. 

In section 2 we describe the models studied by Hadley el al and give a detailed 
preliminary analysis of the stability of the in-phase oscillations for the two simplest 
examples of loads (the purely capacitive and purely resistive cases). In particular, we 
show how the in-phase oscillations are born in a homoclinic connection and how 
they can lose stability only through a fixed-point or a period-doubling bifurcation. 
Numerical computations carried out in [12,13] show that both types of bifurcations 
do indeed occur for a wide variety of loads, and this is born out by more detailed 
numerical investigations of the pure capactive and pure resistive load cases (cf 
figures 6 and 9 below). 

The S, symmetry of the equations governing the evolution of an array of N 
Josephson junctions is inherited by the PoincarC map associated with the in-phase 
oscillations. In sections 3, 4, and 5 we study generic S, symmetric fixed-point and 
period-doubling bifurcations for maps. Since the &-symmetry largely determines 
the qualitative features of the normal form of these maps near their bifurcations, we 
are able to obtain a considerable amount of information from this abstract 
formulation. Specifically, we classify all of the possible symmetry breaking period- 
two states which can arise in generic S,-symmetric period-doubling bifurcation 
(section 3), and discuss their stability (section 4). In section 5 we use recent results 
of Field and Richardson [8] to discuss briefly the generic fixed-point symmetry- 
breaking bifurcation. It follows from a result in [14] that generically this bifurcation 
produces only unstable fixed points. 

We emphasize that the analysis in sections 3, 4 and 5 is for generic S, 
symmetry-breaking bifurcations. It therefore applies not only to all of the models 
considered by Hadley et al, but also to any system with the appropriate symmetry. 
On the other hand, for any particular system the analysis tells us only which states 
cannot occur and which states are possible. Further information can only be 
obtained by detailed analysis of the particular system. Nevertheless, these abstract 
results provide an essential framework for studying the dynamics of any system with 
&-symmetry. 

In terms of Josephson junction arrays, the results of sections 3, 4 and 5 can be 
summarized as follows. At a period-doubling bifurcation the period-two points of 
the Poincark map correspond to states where the junctions divide into two or three 
groups. Inside each group the junctions oscillate in phase. When the number of 
junctions in each group is different, the oscillations associated with each group are 
distinct and the periods of these oscillations are approximately twice the period of 
the original synchronous solution. When two of the groups are of the same size, 
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both groups follow the same waveform, but there is a half period phase shift 
between the groups. If, in addition, there is a third group of oscillators, then 
generically its size will differ from that of the two equal groups, and its period of 
oscillation will be half that of the other groups. That is, some of the junctions have 
period doubled oscillations while others do not. 

To determine the stability of each of the possible period-two points requires 
detailed calculations. The structure imposed on the normal form by the S,- 
symmetry makes it possible for us to carry out some of these calculations and 
determine whether or not a given period-two point can be asymptotically stable. 
Roughly speaking, the only period two points which can be asymptotically stable are 
those that correspond to two groups of junctions of approximately equal size. More 
precisely, if the groups consist of k and N - k junctions, then stability is possible 
when N/3 S k S N / 2 .  There are some exceptions to this rule which are described in 
section 4. 

As noted above, the generic &-symmetric fixed-point bifurcation produces only 
asymptotically unstable points. Generically, for each k between 1 and N/2, the 
fixed-point bifurcation produces fixed points in which the junctions are divided into 
two groups of k and N -  k junctions. Within each group the junctions oscillate 
synchronously. There are no other fixed points. 

To supplement our theoretical results, we used numerical simulations to explore 
the regions of instability of the in-phase periodic solution for junction arrays with 
capacitive and resistive loads. These results are given in section 6. As predicted, we 
found no stable periodic solutions resulting from the fixed-point bifurcation. For the 
resistive load we did find that the period-doubling bifurcation leads to stable 
period-doubled periodic solutions whose symmetries are consistent with the results 
of sections 3 and 4. For the capacitive load we found no evidence of stable 
period-doubled periodic solutions (though this too is consistent with the theory), but 
we did find stable periodic solutions which are discrete travelling waves. These 
solutions, which we call ponies on a merry-go-round, are discussed more fully in 
section 6 and are proved to exist using topological methods in the companion paper 

In our numerical investigations we also found a new codimension two bifurcation 
in the capacitive load case at a point on the curve in parameter space along which 
the homoclinic connections which give rise to the in-phase solutions occur. This 
point is a homoclinic twist point since, roughly speaking, as the parameters are 
varied along the curve of homoclinic points through it, the tangent flow along the 
homoclinic trajectory begins to twist vectors in transverse directions. In addition, 
curves of fixed-point and of period-doubling bifurcation intersect at this 
codimension-two point. For this reason we call this point a homoclinic twist 
bifurcation point. For the resistive load case there are homoclinic twist points, but 
no homoclinic twist bifurcations. The existence of these points is discussed in section 
2 and they are analysed more fully in section 7. 

~31. 

2. Josephson junction models 

We begin this section with a general discussion of the dynamics of two specific 
circuits discussed in [11-131. The general circuit considered by Hadley et a1 is shown 
in figure 1. Let qk (k = 1, . . . , N) denote the difference in the phases of the 
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Figure 1. Schematic diagram of a series array of N Josephson junctions with bias current 
I,. ZL is the current flowing through the load. 

quasiclassical superconducting wavefunctions on the two sides of the kth junction, 
and let I ,  denote the current flowing through the load. Then the evolution of the (Pk 

and I ,  is governed by the system of equations: 

8 @ k  + +k + sin( qk) + Z, = Z (2. la) 

C +j = (2. lb) 

where /3 is a dimensionless measure of the capacitence of the junctions, le is the 
applied bias current, and $ ( e )  is an integro-differential operator which depends on 
the particular load considered. Note that the system (2.1) is invariant under 
permutation of the Q)k. 

N 

j = l  

2.1. Pure capacitive load 

When the load is a capacitor equation (2.lb) takes the form: 

1 ‘  
+j = - I I,  dt.  

N 

]=I c 
Following [12,13] we scale by taking C = 3/N and eliminate ZL from equation (2.la) 
to obtain 

3 N  c ( + j  + sin(qj)) = z (2.2) 
N(3 + 8) j = 1  3 + 8  

8 @ k  + @k + sin(qk) - 

for k = 1, . . . , N .  Symmetric in-phase solutions to (2.2) are characterized by 

( P l = q z = . . . = Q ) N = ( P  

where q satisfies the ‘pendulum equation’ 

(3 + /3)@ + + + sin(q) =I. 

Rewrite (2.3) as a first-order system: 

+=I# 
1 

I#=- (I - sin (q) - I#). 
3 + 8  
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For I s 1 the system (2.4) has rest points at (cp', 0), where 

cp- = sin-'(I) and cp+ = n - cp-. 

In fact for I < 1, (cp-, 0) is a sink and (q+, 0) is a saddle. For I = 1, cp+ = cp- = n / 2  
and (n /2 ,0)  is a saddle-node. 

In order to study the dynamics of (2.4) it is more convenient to rewrite it in 
terms of a scaled time variable t = t / m .  Then Q,(t)=cp(mt) and 
Y(t) q ( m  t) satisfy the standard damped driven pendulum system 

@'=Y 
Y' = I  - sin @ - EY 

where ' = d/dt  and 

E = l/l/Gj3. 
Note that E s l / ~ <  1 for b 3 0 .  As long as Y ZO, any trajectory (@(t), Q,(t)) of 
(2.5) can be written, with a slight abuse of notation, in the form Y = Y(@; E, I), 
where 

(I - sin(@)) - E. 
d Y  1 
dQ, Y 
-=- 

Let Y = Yu(@; E, I) denote the branch of the unstable manifold from (cp+, 0) 
which enters the upper half plane for @ > cp' when I < 1, or the centre unstable 
manifold from the saddle-node (n/2, 0) for I = 1. This curve first meets the Y'-null 
cline 

1 Y = - (I - sin(@)) 
E 

(2.7) 

at a point with coordinates (Xu(&, I), @"(E, I)), where 

3n/2 < Xu(&, I )  < q- + 2n  

and 

@"(E,  I )  = YU(XU(E, I ) ;  E, I )  

(cf figure 2). The branch Y = Ys(Y; E, I) of the stable manifold from (cp' + 2n, 0) 
which enters the upper half plane for Q, < cp' + 2n does not necessarily intersect the 

Q, 

Figure 2. The phase plane for (2.5) with I < 1. 



866 D G Aronson et a1 

Y'-null cline, but if it does the first intersection occurs at a point (E"(&, I), @'(E, I)) 
where 3n/2 < Zs < q- + 2 n  and 

OS(&, I )  3 YS(ZS(&, I ) ;  E ,  I )  

(cf figure 2). Note that the V-null cline is monotone decreasing on [3n/2,  q- + 
2x3 c [3n/2, 5n/2]. 

We will show that the non-constant symmetric in-phase solutions to (2.2) are 
generated by homoclinic connections which occur at points in the parameter plane 
where 

e"( E,  I )  = OS( E ,  I ) .  

We begin by establishing the existence of the homoclinic connections. 

differential of the right-hand side of (2.5) is 
Consider first the case I = 1. At the saddle-nodes (Q,, Y) = ((4k + 1)n/2, 0) the 

so that E = 0 is a degerate saddle-node (Takens-Bogdanov point). For E = 0 we can 
solve (2.5) by quadrature. The trajectories from the saddle-node at ( n / 2 ,  0) are 
given by 

1 12 

Y = w*(Q,) (2[  Q, - 2 - sin(* - z )]}  
and the phase portrait is as shown in figure 3. 

For E > 0 the eigenvalues of the linearized system at the saddle-nodes are 0 and 
-E, and the slopes of the corresponding eigenvectors are respectively 0 and -E. As 
is easily checked using (2.6), the branch W" of the stable manifold from (5n/2 ,  0) 
which enters the upper half-plane for @ < 5n /2  lies below the line 

w 

mre 3. The phase plane for (2.5) with I = 1 and E = 0. 
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w (a)  w 

0 27c 

w 

Figure 4. The phase plane for (2.5) for various values of I E [0, 11 and F > 0. (a) I = 0, 
E > O ; Q " < m = W .  ( b ) 2 ~ ( 0 , 1 ) ,  E z O ; W = W .  ( c ) I = l ,  E > O ; Q " > ~ ~ .  

(cf figure 4(c) in which @ is reduced modulo 2 ~ ) .  The first intersection Os of W" 
with the Y'-null cline (2.7) lies below the intersection of Y = Y*(@) with this null 
cline. Thus @"(E,  1) = O(E*). On the other hand, the centre unstable manifold W' 
from ( ~ / 2 , 0 )  stays close to Y = "+(a) and so W(E, 0) is O(1). Therefore @"(E, 1) > 
@"(E, 1) and there is no connection. Strictly speaking, in the absence of careful 
estimates, this argument is valid only for 0 < E << 1. However, our numerical in- 
vestigations show clearly that the conclusions hold for all E S  l/fi, i.e. for all 
6 3 0. Consequently, we will avoid unessential estimates and simply assume 
that 

W ( E ,  1) > OS(&, 1) for all E s (2.8) 

At the other extreme, for I = 0 the system (2.5) describes an undriven pendulum 
which is undamped for E = 0 and damped for E > 0. In the undamped case E = 0 
there is a homoclinic orbit from the saddle point at (n, 0), while in the damped case 
E > 0 the pendulum always winds down to the rest state at the origin. Thus for E > 0 
the phase portrait is as shown in figure 4(a). 

For each E > 0, in order to go continuously from the configuration for I = 0 
shown in figure 4(a) to the configuration for Z= 1 shown in figure 4(c) there is 
necessarily at least one value of Z E (0, 1) for which W" and W" coincide as shown in 
figure 4(6). We will show that for each E > 0 the value of I for which the homoclinic 
connection occurs is unique and that the resulting function Z = ] ( E )  is continuous. 
The key result is the following technical lemma. 
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Lemma 2.1. If Zl < Z2 then 

'U"(-; E, zl)<Y"(*; E, I,) on [Q12+, c9 ( 2 . 9 ~ )  

as long as W"(.; E, Zl) > 0 and 

Y".; E, Z l )  > W ( * ;  E, I,) on (-CO, q: + 2n) (2.  lb)  
as long as V(.; E, I,) > O  (cf figure 5) .  

Proof. Let ( q T , O )  denote the rest points of (2.5) with Z = h  and Yy(@)= 
Y"(Q,; E ,  4) for j = 1,2.  Since q; < q: we have Yy>O on (qz, q:] and hence 
Yz > Yy for all sufficiently small @ > q:. Suppose there exists a q* > q: such that 

W> W' on (d, q*) and V ( q * )  = V(q* ) -  
Then 

which implies 

On the other hand, 

yields a contradiction. Thus we conclude that ( 2 . 9 ~ )  holds as long as Yy > 0. The 
U proof of (2.9b) is similar and we omit it. 

An immediate consequence of the lemma is the following. 

Corollary 2.2, For each fixed E E (0, l/fi]], @"(E, Z) is an increasing function of I 
and OS(&, Z) is a decreasing function of Z. 

Figure 5. The phase plane for (2.5). Y; = Y'(@; E ;  4 )  for j = 1,2. 



Coupled arrays of Josephson junctions 869 

From the corollary we conclude that for each E E (0, l/a] there exists a unique 
I (&)  E (0, 1) such that 

OU(E, I )  < OS(&, I )  

OU( E, I )  > OS( E, I )  

G = { ( E ,  I )  : E E (0, l/fl], I = I ( & ) }  c (0, l/fl) x (0, 1). 

for OS I < I (&)  

for I (&)  < I s 1. 

(2. loa) 

(2.10c) 

e"( E, I )  = OS( E ,  I )  for I = I (&)  (2. lob) 

Let 

If ( E ~ ,  I,) E G' then Ou( E , ,  I,) # Os( E , ,  I,) and it follows from standard continuity 
results for ordinary differential equations that this inequality holds for all (E, I) in 
some neighbourhood of (e1, Zl). Therefore G is closed. Now let { E & }  be any 
sequence in (O,l/Ib] such that E&-+ E (0, l / a ]  and 

lo = lim 
&-- 

exists. Then, since G is closed, ( E ,  Io) E G and, by uniqueness, I, = Therefore 
] ( E )  is continuous on ( O , l / f l ] .  Moreover, it is not difficult to show that f ( E ) + O  as 
E L O .  

To summarize our results we return to the original parameter B = E-* - 3. We 
have shown that there exists a continuous curve I = I @ )  in the first quadrant of the 
(B, I)-parameter plane such that I ( B ) + O  as /3-=m, O < I ( B )  < 1 for  OS^ <a, and 
such that at each parameter point (/I, I@))  the stable and unstable manifolds of the 
saddle point (q+, 0) coincide (mod2n) as shown in figure 4(b). Figure 6 shows the 
curve I = I (@)  as computed using AUTO. 

For I E [0, I ( B ) )  almost all trajectories of (2.4) are attracted (mod 2n) to the sink 
at (q-, 0). For I E ( I (@) ,  11 the homoclinic connection is broken and, in view of 
(2.10) the phase portrait for (2.4) is as shown in figure 7(a). In particular, the 
closed segment [a, I + 11 of the line q = 0 is mapped (mod 2n) by the flow into its 
open interior so that there is a fixed point which corresponds to a symmetric 
in-phase running solution. The same fixed point argument works for I > 1 since, as 
seen in figure 7 ( b ) ,  the flow maps (mod 2n) the closed segment [0, I + 11 into its 
open interior. Thus, for any (B, I )  with I > I ( @ )  there exists a symmetric in-phase 

P 

IB = 

P' 

I \  
Figure 6. The ( I ,  b )  parameter plane for (2.4). The 
curve of homoclinic connections i s  1 = [(b). y -  indi- 
cates the curve of period-doubling bifurcations and y+ 
indicates the curve of fixed-point bifurcations. The 
point labelled P is the codimension-two homoclinic 
twist bifurcation point. This figure is based on com- 
putations done using AUTO. 

I, 
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Figure 7. The phase plane for (2.4) at various values of I. (a) I(/?) < I S  1. (6) I > 1. 

running solution. Moreover, as the following argument shows, this running solution 
is unique. Note that for Z E  (Z(B), 1, the running solution coexists with the sink 
(v-7 0). 

The variational equation for (2.4) is 

x=(+  0 L ) X .  

If q is a running solution to (2.4) with period T, i.e. if 

q ( t  + T )  = q ( t )  + 2n 
then the corresponding Floquet multipliers A, and A2 satisfy 

A - ,-T/(3+13). 
1 2 -  

(2.11) 

However, since X = @.I is a periodic solution to (2.11), one of the multipliers, say AI ,  
equals 1. Thus 

- -T/(3+B) < 1 
2-e 

and we conclude that every running solution to (2.4) is stable as an object in the 
(q, ?)-plane, but not necessarily as an object in the full 2N-dimensional phase 
space. Consequently, there can be at most one in-phase running solution for any 
parameter point (p, I). 

We now turn to the question of the stability of the symmetric in-phase running 
solution rp of (2.2) as a solution in the full 2N-dimensional phase space. The first 
variation of Q)k about rp satisfies the linear system 

for k = 1, . . . , N. To analyse this system it is convenient to use the variables 

q k  = 5'k+l - 5'k ( k = l ,  . . . ,  N - 1 )  

l N  
N,=l 

6 = - c 6. 
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In these variables the variational system is 

(3 + p)e  + e + 8 cos(cp) = 0 

p q k  + i k  + q k  cos(Q]) = 0 ( k = l , .  . . , iv- l )  

or, written as a first-order system, 

t = .@WE 
where d(t) is the block diagonal matrix 

871 

with 

0 A( t )  = - 

As we have seen, the Floquet multipliers corresponding to A(t )  are AI  = 1 and 
& = e-T’(3+8). Thus the stability of Q, depends on the multipliers p,  and p2 of the 
remaining blocks B ( t )  which occur with multiplicity N - 1. By Abel’s theorem 

pip2 = e-T/@. 

Thus either pl and p2 are complex conjugates on the circle of radius < 1, or 
else they are both real and of the same sign. In particular, the only possible 
bifurcations from Q, are either fixed point (0 < pl  < p2 = 1) or period doubling 

Computations show that in the present purely capacitive load case both fixed 
point and period doubling bifurcations actually occur. Figure 6 shows the com- 
putationaly derived curves y+ of fixed point bifurcation and y- of period doubling 
bifurcation. The bifurcation curves y+ and y- interesect at a point P = ($*, I($*)) 
on the homoclinic connection curve I = I ($ ) .  The symmetric in-phase rotation is 
stable for parameter points in the region to the right of the curves y+ and y - .  For 
parameter points ($, I) between I = I ( $ )  and y- we have 

(-1 = p1< p2 < 0). 

pl < - 1 < -epT’@ < p2 < 0 

with pl+ --03 as ($, I)+ (a, I @ ) )  for > $*. Similarly, 

O <  p1 <e-T‘@< 1 < p2 

for parameter points ($, I) between I =Z($) and y+ with p2+w as ($, Z)+ (B, I @ ) )  for OS6 < B * .  The codimension two point P where y+, y- and r 
intersect is the homoclinic twist bifurcation point mentioned above. We will discuss 
it in more detail in section 7 and in [2]. 
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2.2. Pure resistive load 

In another model considered by Hadley et a1 [12,13] the load is a resistor and 
equation (2. lb) is simply 

2 4.7 = R I L .  
N 

j= l  

Following [12] we scale by taking R = N and eliminate I ,  from equation (2 .1~)  to 
obtain 

I N  

(2.12) 

for k = 1, 2, . . . , N .  Symmetric in-phase solutions to (2.12) satisfy 

/3@ + 24.7 + sin(q) = I. (2.13) 

Rewrite (2.13) as a system 

cp=v 
1 I# = -(I - sin(rp) - tp). B 

(2.14) 

For I S  1, this system has the same rest points at (q*, 0) as the corresponding 
system in the purely capacitive case (2.4). 

For large /3 the dynamics of solutions to (2.14) are quite similar to those of 
solutions to (2.4). However, for small /3 the situation is different since (2.14) 
becomes singular as /3 L O .  In the singular limit /3 = 0 we have the 'slow' dynamics 
which take place on the $-null cline and are given by 

3 = (I - sin(q))/2 cp = I#. 
For 0 < /3 << 1 we also have the 'fast' dynamics off the I)-null cline characterized by 

For O <  p << 1 all trajectories of (2.14) very quickly relax to a small neighbour- 
hood of the $-null cline, and the phase portrait with I = 1 is as shown in figure 8(a). 
The centre unstable manifold W' of the saddle-node (n/2, 0) is forced back into the 
saddle-node (mod2n) by the fact that the stable manifold W" is almost vertical. 
Thus for I = 1 and 0 < /3 << 1 there is a homoclinic orbit (saddle-node/saddle-node 
connection). 

For /3 >> 1 an analysis similar to the analysis of the capacitive load case carried 
out in subsection 2.1 shows that there is no homoclinic connection and that the 
phase portrait is as shown in figure 8(c). In order to have a continuous transition 
from the configuration in figure 8(a)  with a homoclinic connection and the 
configuration in figure 8(c)  with no connection there must be at least one critical 
value of /3 for which the stable manifold W s  and the centre unstable manifold W' 
coincide (figure 8(b)) .  Our simple geometric arguments are not sufficiently strong to 
prove the uniqueness of the critical value of p. The difficulty arises from the fact 
that (in the notation of subsection 2.1) both @"(E, 1) and OS(&, 1) are increasing 
functions of E =  2/@ so that more detailed estimates are needed in order to 
establish transversality. We will not attempt to do thus here but will rely on our 
numerical studies which show that there is a unique critical value B of /3 for which W" 
and W' coincide. 

$ = 0(1//3). 
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w w 

V 

F y r e  8. The phase plane for (2.14) for I = 1 and various values of fi. (a) I = 1, 
0 < B << 1. ( 6 )  I = 1, fl  critical. (c )  I = 1, @ >> 1. 

For /? > 8 we can repeat the analysis of subsection 2.1 to establish the existence 
of a continuous curve I = I ( 0 )  along which the homoclinic connection occurs, where 
O<Z(/?)<l for B < / ? < m ,  I(/3)+0 as p+m, and I(/3)+1 as S-8. We extend 
the definition of I ( 0 )  by setting I ( 0 )  = 1 for 0 < /3 s 8. Schecter [16] has shown that 
I’(B + 0) = 0 so that the extended curve I = I (@ is smooth for /3 5 0. Figure 9 shows 
the curve I = I(/?) as computed using AUTO. 

As in the case of the capacitive load, for I E [0, I @ ) )  almost all trajectories of 
(2.13) are attracted (mod2n) to the sink at (cp- ,  0). For I E ( I @ ) ,  m), after the 
homoclinic connection is broken, the arguments given in subsection 2.1 can be 
repeated here to establish the existence of a unique symmetric in-phase running 
solution cp which, moreover, is asymptotically stable in the (q, +)-phase plane (cf 
figure 7). 

The stability analysis for the symmetric in-phase running solution cp in the full 
2N-dimensional phase space is completely analogous to the corresponding analysis 
for (2.2). The result is again that only fixed-point or period-doubling bifurcations 
can occur. Careful numerical studies involving both direct calcualtion of Floquet 
multipliers and continuations using AUTO, show that both period doubling and 
fixed point bifurcations occur in this case just as in the capacitive load case. Figure 9 
shows the computationally derived curve y - of period doubling bifurcations along 
which the multipliers pl and p2 of y = B( t )y  satisfy -1 = pl < p2 < 0, and the curve 
y+ of fixed point bifurcations along which 0 < p1 < p2 = 1. Note that both y+  and y -  
intersect I = I @ )  on its vertical part, i.e., for 0 E (0, 8). Several striking differences 
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Figure 9. The ( I ,  p)-parameter plane for (2.14). The curve of homoclinic connections is 
given by I =  1 below point Q, and by I = I ( B )  above it. y -  indicates the curve of 
period-doubling bifurcations and y+ indicates the curve of fixed-point bifurcations. The 
points labelled P, for j = 1, 2, 3 are homoclinic twist points. The points with coordinates 
(1, P;), (1, #3:) and (1,O:) are bifurcation points. This figure is based on computations 
done using AUTO. 

between the capacitive and resistive load cases should be noted. As we observed 
above, in the capacitive load case the bifurcation curves y+ and y- intersect at a 
point (Z(/3*), /3*) on the homoclinic birth curve I?, and this intersection point is a 
homoclinic twist point. In the resistive load case y+ intersects I? at (1, #3:) and 
(1, #I:) while y- intersects r at (1, /3:), where 

O <  /3: < p: <p; .  
In particular, y+ and y- do not intersect on I? although their intersections (1, B:) 
and (1,#3;) with r are very close together. Also these bifurcation points are not 
homoclinic twist points although there is a homoclinic twist point on I? in the 
interval (/3:, B;) and two more on r in the interval (0, p:). 

Roughly speaking, the bifurcations do not occur at the homoclinic twist points 
here as they do in the capacitive load case because of the difference in the behavior 
of the Floquet multipliers on a running solution near a saddle-node/saddle-node 
connection or near a saddle/saddle connection. We return to this question briefly in 
section 7 and in more detail in [2]. Finally we note that in the resistive load case with 
/3 = 0 both of the Floquet multipliers for the running solution are equal to one [17]. 

3. Period doubling with S, symmetry 

As we indicated in section 1, many models of coupled arrays of n Josephson 
junctions lead, for certain parameters, to a loss of stability of the synchronous 
(in-phase) periodic solution where Floquet multipliers go through -1, that is, by a 



Coupled arrays of Josephson junctions 875 

period doubling bifurcation. Moreover, in the cases that have been studied, these 
multipliers, due to the permutation symmetry of the array models, have multiplicity 
n - 1 .  

In this section we study abstractly the question of symmetry-breaking period 
doubling bifurcations. As we noted in the introduction this information is needed to 
set the framework for the study of bifurcation in models for large arrays of coupled 
oscillators. These general results will be used to interpret the numerical results we 
describe in section 6. We do this by studying period doubling for generic 
S,-equivariant mappings on the (n - 1)-dimensional eigenspace V corresponding to 
the critical Floquet multiplier. This S,,-equivariant mapping is obtained from the 
original problem by a centre manifold reduction applied to the PoincarC mapping of 
the synchronous periodic solution. 

Our main results (theorems 3.1-3.4) enumerate all of the period two points 
which occur for the generic S,,-equivariant mapping at such a period doubling 
bifurcation, with a small exception when n is divisible by three. We begin by giving a 
precise description of V and the action of S,, on V .  

Let the permutation group S, act on [w" by permuting the axes and let 

V = { ( x ,  , . . . ,  X,)E[Wn:X,+ . . . +  x,=O}. (3.1) 

The subspace V is invariant and absolutely irreducible under S,,. In this section we 
discuss period doubling of mappings on V that are S,, equivariant. Thus we let 

g:vx[w-v 

g(ux, A) = ug(x, A )  

be smooth and assume 

(3-2) 
for all permutations U. Let Z, be the identity map on V .  Absolute irreducibility 
implies 

g(0 ,  A.) = 0 (3 .3a)  

(dg)O,A = c (A)zV*  (3.3b) 

By a period doubling bifurcation at A = 0 we mean 

c(0) = -1. (3.4) 

We consider the situation where the invariant fixed point x = 0 is asymptotically 
stable when A < 0 and loses stability at A. = 0, that is, 

c'(0) < 0 (3.5) 

Then, the eigenvalues of (dg),,A have modulus less than unity for negative A. It may 
easily be checked that assumptions (3.1)-(3.5) are (generically) valid for the 
Josephson junction models we study. 

The question we address is: what are the period-two points that arise generically 
from this period doubling bifurcation? The approach we use is the one in [6], which 
we now describe. We assume that g is transformed to a normal form f by a near 
identity transformation up to whatever finite order is needed. That is, we assume 
that 
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is S,, x Z2 equivariant, where Zz = { *Zv}. For such an f, period two points are found 
by solving the equation 

f ( x ,  A) = -x .  (3.6) 

The oddness of f insures that solutions x to (3.6) are period two points of f .  
Assuming (3.59, the equivariant branching lemma [lo, theorem XIII, 3.31 implies 
that there is a unique branch of period two points solving (3.6) for each isotropy 
subgroup Z E S,, x Ez satisfying 

dim Fix(Z) = 1 (3.7) 

where 

Fix(2) = {y E V :  oy = y V u  E Z}. 

Such Z satisfying (3.7) are maximal isotropy subgroups of S,, X Zz. 
Whether solutions to (3.6) exist with submaximal isotropy is a difficult question; 

at present each situation must be handled on a case-by-case basis. 
Once the existence of period two points for f is established, there is a general 

method for proving the existence of corresponding period-two points for the 
S,,-equivariant mapping g. This proof is accomplished in two parts: 

(i) analyse f to the order in which the period-two points off  are generically 
hyperbolic, 

(ii) assume this hyperbolicity holds (i.e. that the genericity hypotheses are valid) 
and use the implicit function theorem or normal hyperbolicity to prove the existence 
for g. See [6], theorem 4.1. 

In this section we 
(i) classify all isotropy subgroups of S,, x Zz, up to conjugacy, 
(ii) determine all maximal isotropy subgroups with one-dimensional fixed point 

subspaces, and 
(iii) determine which submaximal isotropy subgroups support period-two solu; 

tions to (3.6). 
The isotropy subgroups for the action of S, x E2 on V divide naturally into two 

classes: subgroups of S, and subgroups of S, X Z2 not in S,. The first case leads to 
subgroups defined as follows: partition n into s blocks with the jth block having k, 
elements. Thus 

k , + .  . . + k , = n .  (3.8) 

Then the isotropy subgroup associated with these s blocks is 

x k  s k ,  x s k ,  x . . x s k s  (3.9a) 

where 

dim Fix(&) = s - 1. (3.96) 

In the application to large arrays of Josephson junctions, the blocks mentioned 
above correspond to groupings of synchronous oscillators. 

To define the second class, partition n into 2r + 1 blocks. Pair the blocks so that 
the (2j - 1)th and the (2j)th blocks each have l j  members and the last block has 
members. Thus 

211 + . . . + 21, + l,,, = n. (3.10) 
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Define 

where 

dim Fix( T,) = r (3.11b) 

and pI is an order-two group element defined as follows. Consider the jth pair of 
blocks consisting of members 

a19 . . . 7 UIj 

respectively. Define the permutation 

and b i , .  . . , bif 

p' = (a', bl) - * * . * @ I j ,  61,) 
PI = (p' . . . - pr, - I )  E s,, x zz. 

(3.12a) 

(3.126) 

The fact that - I  appears in the symmetry pI implies that the periodic solutions 
corresponding to the two blocks have the same waveform but are a half-period out 
of phase. 

Theorem 3.1. The conjugacy classes of isotropy subgroups of S, X Zz acting on V 
are given by: 

(a) Zk where k = (kl, . . . , k,) satisfies (3.8) and s 2 2 except when s = 2 and 
kl = kZ. We may also assume 

kl s .  . . s k,. 
(b) T, where 1 = (11, . . . , lr+l)  satisfies (3.10) and r 2 1. We may also assume 

ll s . . . S l,. 

That Z k  and T, are isotropy subgroups can be seen by computing their fixed point 
subspaces: 

Fix(&) = {(yl, . . . , y , )  E V: 

Fix(T,) = {(zl, -zl,. . . , z,, -z,, 0) E V :  
(3.13b) 

Now take any point in Fix@) where the Icjl's are distinct; then the isotropy of that 
point is exactly Z. This choice of cj is possible except in the case s = 2 and kl = kZ. It 
follows that the dimensions of the fixed point subspaces are those given in (3.96) 
and (3.11b). The proof of theorem 3.1-that these are the only isotropy 
subgroups-will be given below. 

y j  = cj(l, . . . , 1) E W"' 

zj = c,(I, . . . , 1) E IWG for some scalar c j }  

for some scalar c j }  (3 .134  

We can now answer the second question. 

Corollary 3.2. The conjugacy classes of isotropy subgroups of S,, x Zz acting on V 
having one-dimensional fixed point subspaces are: 

n l S k < -  
2 

( 3 . 1 4 ~ )  
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Moreover, these are all of the maximal isotropy subgroups of S, x E2. Note that 

Apply theorem 4.1 of [2] to conclude that a period doubling bifurcation with S,, 
symmetry produces unique branches of period-two solutions for each isotropy 
subgroups Zk and TI. 

Next we show that generically period-two solutions with submaximal isotropy do 
not exist for many isotropy subgroups. 

&=S,  = (1). 

Theorem 3.3. ( a )  Generically isotropy subgroups of the form TI where r > 1 have no 
solutions. 

(b) Generically isotropy subgroups Zk where k = ( k l ,  k l ,  n - 2kl)  have no 
solutions. 

(c) Generically isotropy subgroups of the form Zk where s 2 4 have no solutions. 

Let 

F =f I Fix(Z) x R. 

We shall prove ( a )  by showing that solutions to F(x,  A) = --x must have isotropy 
larger than TI if r > 1, and (c) by showing that such solutions must have isotropy 
larger than Zk when s 2 4. We do this using explicit calculations with the general 
S,, x E2 equivariant restricted to appropriate fixed point subspaces. We prove (b) by 
counting the number of period two solutions with maximal isotropy that must exist 
in Fix(Zk) by theorem 3.1. Then we show that generically this number is the 
maximum number of solutions that occur in Fix(Zk). Hence no solutions with 
submaximal symmetry occur generically with this isotropy. 

Theorem 3.4. The isotropy subgroups &,,klrk,, where the ki are distinct, support 
period-two solutions. These solutions are determined at third order unless one ki is 
the average of the other two. 

By 'support solutions' we mean that generically there exist branches of solutions 
emanating from the period doubling bifurcation. This theorem is proved in two 
ways. First we use topological degree arguments to prove the existence of 
period-two points with submaximal symmetry. Second, we use explicit calculations 
to show that when k2# ( k ,  + k3) /2  these submaximal solutions are determined at 
third order. These calculations are used in section 4 to determine asymptotic 
stability. 

The remainder of this section is devoted to the proof of theorems 3.1, 3.3 and 
3.4. 

We begin with some general remarks. Let be a finite group acting on a space V 
and suppose that -&er. Then TxZ, acts on V. Let Z c I ' x h ,  be a proper 
isotropy subgroup and let K = Z r l  r. 

Lemma 3.5. Under these assumptions: 
( a )  K is an isotropy subgroup for r acting on V. 
(6) Either Z = K c r or the index of K in Z is two. 
(c) In the second case there is an element h E r - K such that 

Z = ( K ,  I,) U (Kh,  -Zv). (3.15) 
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Proof. The proofs of (b) and (c) follow from lemma 4.2 of [6]. 
(a )  Since Z is a proper isotropy subgroup of the action of r x Z2 on V, Z must 

fix some non-zero vector x.  It follows that K fixes x .  If some element y of r fixes x ,  
then y is in I:, since Z is the isotropy subgroup of x .  Hence ~ E K  and K is the 

0 isotropy subgroup of x in r. 

Proof of theorem 3.1. The isotropy subgroups of S,, acting on V are known (cf [8]) 
and they are the subgroups listed in (3.9a), with the single exception that the case 
s = 2, kl = k2 is also an isotropy subgroup of S,. We note, however, that Z k , ,  k ,  is not 
an isotropy subgroup of S, x Z2 since I:,',&, fixes (x ,  -x), but so does (x ,  y)+ 
- ( y ,  x ) .  Thus the isotropy subgroups of S,, x Z2 lying inside S,, are precisely those 
listed in theorem 3.l(~). 

Now let Z be an isotropy subgroup of S,, x Z2 that is not in S,,. It follows from 
lemma 3.5 that 

I: = (K, I,) U (Kh, -z") 

where K c S,, is an isotropy subgroup and h is a permutation satisfying h2 E K. Since 
K is an isotropy subgroup of S,, we can partition the set (1, . . . , n }  into s blocks 
with K having the form, up to conjugacy, of (3.9~). 

Now write the permutation h as a product of disjoint cycles and omit from h any 
cycle permutating members of a single block; this amounts to choosing another 
element in the coset Kh. We assert that we can choose h to be a product of disjoint 
transpositions. 

To prove this assertion we first observe that h2 cannot be in K if h contains a 
cycle of odd length. This follows since such a cycle must permute elements in at least 
two different blocks and its square, which has the same length, must also; hence its 
square is not in K. Since h is a product of disjoint cycles, all of these cycles 
commute. Thus, h2 is not in K, since h2 is the product of the squares of each of the 
cycles of h. Suppose now that h contains a cycle of even length greater than two; 
without loss of generality we may assume that this cycle is p = (1, 2, . . . , 2m), 
where m > 1. Note that p 2 = p 1  - p 2  where p 1  = (1 ,3 ,  . . . , 2 m  - 1) and p 2 =  
(2,4, . . . ,2m). Since p 2  E K ,  we must have that 1,3, . . . ,2m - 1 and 2,4, . . . ,2m 
are in the same blocks. Hence p l ,  p 2 e  K. We now replace h by p;' - p  = 
(1,Z) - (3, 4) .  . . . (2m - 1,2m). Consequently we can assume that h is a product of 
disjoint 2-cycles, as asserted. Thus, h2 = 1. (This fact is not valid for general groups 

Next we assert that if h permutes members of two blocks, then these blocks must 
be of equal size; moreover, h must interchange all members of these blocks. To 
prove this assertion, we use the fact that Z is an isotropy subgroup. Suppose that Z 
fixes x E R". Since K is the isotropy subgroup of x in S, (theorem 3.1(~)), we may 
assume that K has the form: 

r- 1 

K = s k ,  x s k ,  x . . . x sks*  

Hence, 

x = (c1, . . . , c1, . . . , c,, . . . , c,) 

where the c,'s are all distinct. Now we know that h is a product of transpositions that 
interchange elements of different blocks. Suppose that h contains a 2-cycle that 
interchanges element of the first two blocks. Since (h, -Z)EZ, it follows that 
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c2 = -c1 and that c1 is non-zero (else c2 and c1 would not be distinct). Observe that 
for h to fix x it is necessary that h map every element of the first block to an element 
of the second block, since h must map a position containing a c1 to a position 
containing a c2 and all of the c2’s are in the second block (since again the cj’s are all 
distinct). Similarly, h must map all of the entries in the second block to the first 
block. Thus, the first block and the second block have the same number of 
elements. After renumbering, this proves the assertion; hence, we may assume that 
h contains all cycles in (3.12~~). 

Finally, we know that h must permute a fixed number of pairs of blocks, say r. 
Thus p I  defined by (3.12b) is in the isotropy subgroup Z. It follows that the vector x 
fixed by K has the form: 

x = (c1, . . . , c1, c2, . . . . , c2, . . . , c>, . . . , C Z r ,  . . .) 
where 

c2 = -c1, . . . , CZr = - -CZr- l .  

For such an x to be fixed by pI we must have all of the remaining entries equal to 
zero. The isotropy subgroup fixing such an x has the form TI where 

lj = k, for j = 1, . . . , r and l,,, = n - 2(Z1 + . . . + &). 

To discuss the existence of period-two points with submaximal isotropy we need 
to write out the general S,, X Z2 equivariant mapping. The form of these mappings 
may be derived directly from the form of the general S,, equivariant mapping, which 
is known. We summarize here the results which may be found in [8, §9]. Let 

q ( x ) = x ’ , + .  . . + x i  (3.16u) 

1 x. = - nvVaj+l I v = (x<, . . . 
I j + l  

U.  
, x L ) - i ( l , .  . . , (3.16b) 

where nv : R“ + V is orthogonal projection. Then: 

Proposition 3.6. ( a )  The set {a2, . . . , a,,} forms a Hilbert basis for the S,, invariant 
polynomials on V. 

(b) The set {XI, . . . , X,,-l) forms a free basis for the module of S,, equivariant 
polynomial mappings over the ring of S,, invariant polynomials. 

Consequently, the S,, equivariant mapping g : V x R + V can be written uniquely 
in the form 

g(x, A) = p d x ) X , ( x )  + . . . +p,-1(x>Xn-1(x) 
where the pi are functions of a,, . . . , a,, and A. 

summarized by: 
The S,, x Z2 invariant theory follows directly from proposition 3.6, and is 

Lemma 3.7. (a )  The set 

{aj : j even; j c n} U { oiaj : i, j odd; 2 6 i, j C n }  

is a Hilbert basis for the S,, x Zz invariant polynomials on V. 
(b) The set 

{X i :  j odd; 1 C j C n  - 1) U {aiXj:i odd, j even; 3 S i S n ,  1 C j C n -  1) 
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is a basis for the module of S,, X Z2 equivariant mappings on V over the ring of 
S,, x Z2 invariant polynomials. 

It now follows that up to third order we can write out explicitly the normal form 
mapping f, namely, 

(3 .17~)  f ( x ,  A) = (-1 + CUA + pa& + YXJ(X) + . . . 
where 

0 3  

n 
X,(x)  = (x?,  . . . , x:)  - - (1, . . . , 1). (3.17b) 

So, remarkably, for all n there exist only two independent S,, X Z2 equivariant cubic 
mappings on V. This fact drastically simplifies the calculations that follow. 

Proof of theorem 3.3. (a )  We let Z = T and assume that r > 1. We note that Fix(Z) 
has the form 

Fix@) = {fyl, -yl, y2, -y2, . . . , y,, -y,, 0) : yj E R’j is a multiple of (1, . . . , 1)). 

By abuse of notation we let these multiples be yi. Since Fix(Z) is an invariant 
subspace for f we can write the restriction F in the yj coordinates. This calculation is 
simplified by the observation that uj I Fix@) = 0 for all odd j .  Using lemma 3.7 we 
arrive at the following explicit expression for F(yl, . . . , y,, A) 

P l y  +P3X3 + . . . +Pzr+lXu+l  

q y )  = (Y4, . * 9 YS). 

where t = [ (n - 1)/2], the pi are functions of ai (i even) and I, and 

Thus, solving F ( y ,  A) = - y  leads to the system of equations 

PlYj +P3$  + . . * +Pzr+1Yff+l= 0 (3.18) 

for j = 1, . . . , r. Observe now that if a solution (yl, . . . , y,, A) to (3.18) has some 
yj = 0, then that solution has isotropy strictly larger than T.  Thus, we may divide 
(3.18) by yj when searching for solutions with isotropy T.  

We also observe that if a solution has yi = *yj  then the isotropy of that solution is 
strictly larger than T.  Next, subtract equations (3.18) for j = 1 and 2 (which we can 
do if r > l),  obtaining: 

(3.19) 

Thus, it follows from (3.19) that if p3(0)  = y is non-zervwhich generically it 
is-then solutions to (3.18) must satisfy y1 = f y 2 .  Thus T does not support solutions. 

(b) We begin by observing that the isotropy subgroup Z = &  has a two- 
dimensional fixed point subspace 

Fix@) = {(a, . . . , a,  b, . . . , b, c, . . . , c): kla + klb + k3c = 0) 

where k3 = n - 2kl and 

4 if kl # k3 
O6 if kl = k3 D(Z)  = N ( Z ) / Z  = { 
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Illhere X(2) is the r?orma!izer of 2 ir? s,, x ‘2. Poirlts ir? FiX(2) have isotropy ! q e r  
than I: when 

{a  = b }  {a  = c} { b  = c }  { b  = - a, c = O}, 

and, in addition, if k ,  = k3 when 

{C = -a, b =O} and {c  = -6, a = 0). 

The idea of the proof is the following. Since - I ,  is in S,, x Z2 it follows from 
theorem 3.1 that there must be at least eight half branches of period-two solutions 
emanating from the bifurcation (excluding the trivial fixed point) if k , # k 3  and 
twelve half branches if kl = k,. 

Recall that equivariance implies that Fix(Z) is an invariant subspace for f and let 
F =f I Fix@) x R. Now the restriction F commutes with the action of the group 
D ( Z )  = N(Z)/I: on Fix@) where N ( Z )  is the normalizer of Z in S, x H2 (cf lemma 
XIII, 10.2 in [lo]). 

Next we recall from [9, chapter XI that generically 4 equivariant bifurcation 
problems admit at most eight non-trivial half branches, and from [lo, XIII, OS] that 
generically D6 equivariant bifurcation problems admit at most twelve non-trivial half 
branches. Moreover, the genericity conditions for the D2 equivariant case are at 
third order and for the D6 case at fifth order. A long but straightforward calculation 
shows that generically the restriction F satisfies these genericity conditions, and 
hence ( b )  is proved. 

(c) It follows from proposition 3.6 and lemma 3.7 that f has the form 

PlX l  + P d ,  + . . . +pn-lX,,-l 
where p2,(0) = 0. Each coordinate of F I Fix@ has the form 

(3.20) 
When s 3 4 F I Fix@) has at least four coordinates; so we may replace a in (3.20) 
with b, c, and d ,  to represent the first four coordinates. We refer to the 
corresponding formulae as (3.20),, (3.20),, etc. 

pla  +p2(aZ - u2/n) + . . . + ~ ~ - ~ ( a , - *  - un-Jn). 

To prove (c )  we perform a sequence of calculations. Begin with: 

Equation (3.21)u,b is valid if we assume that a # b. Of course, any solution to F = 0 
that has two equal coordinates has isotropy strictly larger than x k .  It follows 
therefore, that if we want to find solutions with isotropy exactly Zk we may assume 
that a f b. 

Next we assume a # c and b # c and calculate: 

a - 6  a - c  ~. . + 
b - c  =p2 

Hence, (3.22)u,b,d can be formed if we assume, in addition, that a # d and b # d. 
Note that the coefficient of p2 in (3.22)u,b,c reduces to unity and the coefficient of p, 
reduces to a + 6 + c. 
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Finally, assuming that c # d we may calculate: 

(3.23) 

It follows from (3.23) that generically no solutions with isotropy Ck occur near the 
period doubling bifurcation, since generically p3(0)  y # 0. U 

Proof of rheorem 3.4. There is a simple degree theoretic proof for the existence of 
period-two points with submaximal symmetry Z = &+z,k3 where k l  < k2 < k3.  This 
proof was pointed out to us (simultaneously) by Pascal Chossat, Mike Field and Ian 
Melbourne. We need three remarks. 

(a) dim Fix@) = 2. 
(b) All of the period-two points with maximal isotropy that lie in Fix(Z) can be 

enumerated. There are three branches, one each with isotropy & , + k 2 , k 3 ,  C k 2 + k , , k ,  

(c) Each of the bifurcating branches of solutions with maximal isotropy is a 
pitchfork with the two non-trivial solutions being identified by -1. 

We have verified (a )  in (3.9b) and (b) in corollary 3.4. To verify ( e )  note that - I  
acts non-trivially on the fixed-point subspaces corresponding to solutions with 
maximal isotropy. 

It follows from (a) that the degree of the trivial solution is the same for A < 0 and 
A>O.  It follows from ( e )  that the degrees of the two non-trivial solutions of the 
pitchfork are equal. Assume that there are no solutions with submaximal isotropy. 
Since the total degree cannot change as A is varied through zero, it follows that the 
sum of the degrees of the maximal isotropy solutions is zero. This is impossible since 
there are three branches of such solutions. 0 

The calculations in the remainder of this section are needed to show that 
solutions with submaximal symmetry C are determined at third order unless 
k2 = ( k ,  + k3)/2.  We shall need these calculations when we discuss the asymptotic 
stability of these solutions with submaximal isotropy. 

At third order the equations for F(x,  A) = f ( x ,  A )  + x = 0 restricted to Fix(Z) are: 

(3.244 

(3.246) 

and Zkg+kl,k2- 

(&A + pu2>a + y(a3 - u3/n) = 0 

(ah + pa*)b + y(b3 - u3/n) = 0. 

Observe that [(3.24a) - (3.246)]/(a - b) yields: 
aA + /?az + y ( 2 +  ab + 62) = 0. (3.25) 

Any solution to F = 0 satisfying a = b has isotropy strictly larger than X; so we can 
assume a # b. Substituting (3.25) into (3.24~) and assuming the genericity condition 
y # 0 yields: 

(3.26) 
The proof of this theorem proceeds from the fact that (3.26) is a homogeneous 

cubic equation. After dividing by b3 we can write (3.26) in terms of the variable 
U = a/b .  From theorem 3.1 we know that there exist solutions to F = 0 when a = b 
and a = c. This yields two roots of (3.26), namely, 

U3 = -nab(a + 6). 
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Thus, a solution with submaximal isotropy, if it exists, must correspond to the third 
root of (3.26). This third root is: 

(3.27) 

Note that a new solution can occur at third order only if uo is not equal to one of 
the other two roots or to U = 1 (that is, a = b). It is easy to check that when uo is 
equal to 1, u1 or u2 one of the kj equals the average of the other two. Since we 
assume that this averaging condition does not hold, we see that uo leads to a new 
solution branch at third order. 

The actual equation for the branch with submaximal isotropy is obtained by 
setting b = uoa and substituting into (3.27), obtaining: 

A = - (@(k)B + W(k)Y)b2/Cy (3- 28) 
where 

@(k) [ki(kz - k3)2 kz(k3 - ki)’ k3(ki - kzl2]/(k3 - ki)’ 
W(k)  = [(k3 - ki)’ - (k3 - k2)(k2 - k i ) ] f ( k  - ki)’. 

Note that @(k) and W(k) are always positive. This branch is supercritical if the 
coefficient 

@(k)B + W ) Y  >o- 
Next we show that the existence of the branch, that we have established at third 

order, persists independently of what the higher-order terms in Fare.  Here we use a 
result of McLeod and Sattinger [15]. See also [4]. This result states that a. solution 
(a, 6 ,  A) to (3.24) persists independently of higher-order terms if the two equations 
(3 .24~)  and (3.246) have independent gradients with respect to (a, b )  at the solution 
(a,  b, A). 

These gradients are independent if the determinant of the matrix 

) (3.29) 
-A + pa2 + Baa2,, + 3 ya2 - ya3,,/n aBa2,b - ya3,b/n 

-A + /?a2 f BbU2.b + 3yb2 - ya,,b/n ( bBD2.a - ~03,aIn 
is non-zero. Using (3.25) allows us to rewrite (3.29) as: 

(uBD2’a bpa,,, - ya3,,/n 
+ y(2u2 - ab - b2 - a3,,/n) aaa2,b - ya3.b/n 

bfia2,b + y(2b2 - ab - a2 - ~ ~ , ~ / n )  

+p + y t ]  
n 

(3.30) 

where 

(3.31) 
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Then compute, using a = uob and (3.27),  that: 

0 2 , ~  = -2bklK2 
U2,b = 2bkzKl 
u ~ , ~  = 3b2k1 K2 
0 3 , b  = -3b2k2K1 
2 a + b = - b K z  
a +  2b = b K 1  
a - 6 = bK3.  

It follows that: 

(3.32) 

(3.33) P = 2b4K1&K31k1(k2 - kdK2 + k&- kdK11 
z = b4K1K2K3[(kl + k2 - 2k3)2 + 3k: + 3k:]/(k3 - k1). 

Hence, generically the gradients of (3.24a,6) are independent if one index is not the 
average of the other two. The non-degeneracy conditions are y # 0 and a certain 
condition involving /3 and y that we do not compute explicitly here. 

4. Asymptotic stability 

In this section we compute the asymptotjc stability for the solutions whose existence 
was demonstrated in the previous section. In general, computing the eigenvalues of 
an n x n matrix is quite complicated. Our calculations here are simplified in two 
ways. 

First, as was shown in (3.17), independent of n, there exist only two linearly 
independent equivariant cubics in the normal form f. This makes expljcjt calcula- 
tions using the truncated normal form possible. Recall from (3.17) that the 
coefficients of these cubics are 

Second, the decomposition of V into irreducible representations of an isotropy 
subgroup lets us block diagonalize df when evaluated at a solution with that 
isotropy. This allows us to show that, independent of n, there are at most three 
independent eigenvalues of df whose signs are not determined by exchange of 
stability considerations. 

and &&k8 we can 
decompose 

and y. 

More precisely, for each of the isotropy subgroups &‘, 

V=Fix(Z)@W,$W,@ . . .  @W, (4.1) 
where the M$’s are all distinct absolutely irreducible representations of Z. It then 
follows that df, evaluated at a solution of (3.6) with isotropy Z, is a scalar multiple 
of the identity when restricted to each W,. We show below that, independent of n, 
t s 3 .  Thus, we can determine the eigenvalues of df on Fix(2) by exchange of 
stability considerations, and the eigenvalues whose eigenvectors lie in transverse 
directions to Fix(Z) with a minimum of calculation. 

In section 3 we assumed that the invariant fixed point x = 0 is asymptotically 
stable when A < 0 and loses stability by a period doubling bifurcation at A = 0. See 
(3.4) and (3.5).  The assumption of normal form allows us to find period-two points 
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by solving (3 .6) ,  which we write as: 

F(x, A) - f ( x ,  A) + x = 0. 

In our discussion of stability we actually work with the eigenvalues of d F  which, 
because of isotropy, are real. Thus, near bifurcation, positive eigenvalues of d F  
correspond to eigenvalues of df inside the unit circle. Hence asymptotic stability of 
period two points of f-and hence, assuming hyperbolicity, of g-corresponds to 
positive eigenvalues of dF. 

Theorem 4.1. Consider period-two solutions ot (3.6) with isotropy x k  = S k  x S n - k ,  

where 1 G k < n / 2 .  
( a )  When 1 < k < n / 3 ,  these solutions are generically unstable, the genericity 

condition being y # 0. 
(b) When n / 3  < k < n / 2 ,  these solutions are stable if  

y > 0 and nk(n - k)/3 + (nz - 3nk + 3k2) y > 0. 

( c )  When k = n / 3 ,  the stability of these solutions is not determined at third 
order. Necessary conditions for stability are 

y > O  and 2 k / 3 + y > 0 .  

In addition, a condition involving fifth-order terms needs to be satisfied in order for 
stability to hold. 

(d) When k = 1 ,  these solutions are stable if: 

y<O and n(n - 1)/3 + (nz - 3n + 3 ) y  > O .  

Theorem 4.2. Consider period-two solutions to (3 .6)  with isotropy 
Sn-z x E,(& where 1 s 1 =s [ n / 2 ] .  

condition being y # 0. 

= S, x S, x 

(a)? When 1 =s 1 < n / 2 ,  these solutions are generically unstable, the genericity 

(b) When 1 = n / 2 ,  these solutions are stable if 

y > O  and n B + y > O .  

Theorem 4.3. Consider period-two solutions to (3.6) with isotropy &,,k2,k3 where 
1 s kl  < k2 < k3.  These solutions can be asymptotically stable only if: 

k l = l  and k , < 2 k 2 - 1 .  

Moreover, if these conditions hold, then for certain choices of y>O and /3 
asymptotic stability holds. 

The first step in the proofs of these theorems is the explicit computation of the W, 

For the first set of isotropy subgroups & we have: 
in (4.1). 

w, = {(& 0 )  E I w k  x I W n - k : C  x j  = 0 )  

t When I = 1 and n = 3, the stability of 4 solutions is not determined at third order. See [6]. 
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Observe that (4.1) holds with (4.2) except that: 

Wl is omitted when k = 1. 

For the second set of isotropy subgroups T, we have: 

1 w, = (x ,  y ,  0 )  E R' x R' x R"-Z':C xi = 0 = c yj [ 
1 w,= ((0,  0,  2) E R' x RI x R"-2':c zj = 0 

Observe that (4.1) holds with (4.3) except that: 

W, is omitted when 1 = 1 

W2 is omitted when 1 = [ n / 2 ]  
W, is omitted when 1 = n / 2 .  

For the third set of isotropy subgroups &,,k2,k3 we have: 

I 
w*= { (0, y ,  0) E Rkl x Rk2 x R k 3 : C  y; =o>  

w3= {(O, 0,  2) E Rkl x Rk2 x R k 3 : Z  2; =o}. 

wl = (X, 0, 0)  E Rkl X [Wkz X Rk3: xi = 0 { 

(4.3) 

(4.4) 

Observe that (4.1) holds with (4.4) except that: 

W, is omitted when k, = 1. 

The second step is to determine how to compute eigenvalues of df on each W,. 
This is a straightforward calculation since (dF) I q- is this eigenvalue times the 
identity matrix. For example, in the & case we can choose U = (1, -1, 0, , . . , 0) E 
W, and compute the corresponding eigenvalue ,U. Since 

,UV = (dF)(v) = ( a F , / d x ,  - dF,/ax2,  * , . . . , * ) 
and the first entry of U is 1 ,  we see that 

= a e / a x l  - a f i / a x 2 .  

Here we assume that F = (6, . . . , F , )  in coordinates. The other cases are similar; 
we record the results: 

i3F1ldxl- dFl / i3~2  
(4.5) 2 dF,ldx, - aF, /dX, - ,  

a f i i a x ,  - a ~ , / a x ,  

(4.6) 
dFn/i3x, - dF,/ax,- ,  

d F , / a x l +  . . . + ~ F ~ / ~ x Z I - -  ( a f i / a x , , + ,  +.  . . + aF, /ax , )  
21 

n - 21 

(a 
w3 
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In the third step, we take the third-order truncated normal form of F from 
(3.17), namely, 

(ak + B 0 2 b  + YX,(X). (4- 8) 
Then we compute the derivatives listed in (4.5)-(4.7) evaluated on Fix@). Recall 
that for the isotropy subgroups we consider here, Fix@) is given by the formulae: 

Fix(TJ = ( ~ ( 1 ,  . . . , 1, -1, . . . , -1, 0)  E R' X R' X R"-2'} (4.9) 

FiX(xk,,kz,k,) = { (a ,  . . . , a, b, . . . , b, C, . . . , C) E Rkl X Rkz X Rk3} 

It follows from (4.8) that 

5 = (ah + Bo2)x, + y(x; - u,/n). (4.10) 

The branches themselves are determined by F 1 Fix(2). Here we discuss the first 
two types of isotropy subgroups. The third was discussed in (3.28). F 1 Fix(Z) leads 
to the branching equations: 

n2 - 3nk + 3k2 
(n - k)2  

cuA.+Ba,+ y s 2 = 0  @k) 
(4.11) 

( T I )  aA. + pa2 + ys2 = 0. 

Next we compute the derivatives in (4.5) and (4.6). The first derivative, 
aF, ldx ,  - aF,/dx2, is: 

( T I )  2 ys2. 

The second derivative, dFn/dxn - dF,/d~,-~, is: 

n 
(n - k)2 

(n - 3k)  ys2 -~ 

(4.12) 

(4.13) 

Proof of theorem 4.1. In order for solutions with & isotropy to be asymptotically 
stable we need the eigenvalues listed in (4.12) and (4.13) to be positive. The sign of 
the eigenvalue in (4.12) is sgn(y), since k is between 1 and n/2.  When y > O  the 
eigenvalue in (4.13) is positive only when k > n/3 .  This proves (a) .  

The eigenvalue corresponding to Fix(C) is positive precisely when the branch of 
period two points is supercritical (exchange of stability). From (4.11) we compute 
that: 

S2 

a ( n  - k)2 
A = -  [n(n - k)@ + (n2-  3nk + 3k2)y]  + . . . . 
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Since CY < 0 by assumption (3.5), this branch is supercritical if 

n(n - k)@ + (n2 - 3nk + 3k2) y > 0. (4.14) 

These calculations verify (6). 
To have stability when k = n/3 we still need y > O  and (4.14) to be valid, as in 

the proof of (b). In this case (4.14) reduces to the condition stated in the theorem. 
The difficulty here is that the eigenvalues in (4.13) are zero to third order and a 
computation to fifth order is necessary in order to establish stability. 

We can see that fifth order suffices as follows. From (4.2) we know that all of the 
eigenvalues associated with W, are equal; so we need compute only one of them. We 
consider the two-dimensional space V = Fix(Z,,,,) and observe that the eigenvalue 
of dF  1 V transverse to the line Fix(&) is the eigenvalue associated with W2. Now 
F I V x R commutes with D(X,,,,+), which as noted in the proof of theorem 3.3(b) 
is isomorphic to D6. Furthermore, period doubling bifurcations with D6 symmetry 
are known to produce period two points whose stability is determined (generically) 
at fifth order (see [6] or [lo]). Moreover, the non-degeneracy condition needed to 
determine stability is precisely the one needed to show that solutions with 
submaximal E,,,, symmetry do not exist. We note that this sign is independent of 
the conditions on the third-order terms needed for stability. 

Finally, we recall that the eigenvalue in (4.12) is omitted when k = 1. In this case 
we are free to choose y < O  to make the eigenvalue in (4.13) positive, thus 
establishing (d). 0 

Proof of theorem 4.2. By inspection, it is obvious that the eigenvalues in (4.12) and 
(4.13) are of opposite signs when y f O .  Thus, when both eigenvalues are present, 
which occurs in the range 1 < 1 < [n/2], these period-two solutions are unstable. 
Thus, we have verified ( a )  except when 1 = 1 and 1 = (n - 1)/2. 

When I = n/2, the eigenvalues corresponding to (4.13) and W, are to be omitted. 
The eigenvalue in (4.12) is positive when y>O. Thus stability occurs when the 
branch is supercritical. From (4.11) we compute the branching equation: 

S 2  
A=-- [n@+y]+ . . . .  

Ly 

Since (Y < 0 by assumption (3 .9,  supercriticality corresponds to 

nB+ y > O ,  

thus establishing (b). 

to compute dF on W,, as given in (4.8). We obtain: 
To determine the stability of solutions when 1 = 1 or when 1 = (n - 1)/2 we have 

n - 3  
n ( I  = 1) 2- Y S 2  

(4.15) 

When 1 = 1, we omit the eigenvalue in (4.13), but the eigenvalues in (4.12) and 
(4.15) have opposite signs, as long as n f 3 .  When 1 = (n - 1)/2, we omit the 
eigenvalue in (4.13), but here the eigenvalues in (4.12) and (4.15) have opposite 

U signs. This completes the verification of (a). 
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Proof of theorem 4.3. In coordinates we can write F to third order as in (3.24). 
Computing the derivatives in (4.7) yields the eigenvalues transverse to Fix(Z). These 
computations are straightforward if the computations in (3.32) are used. The results 
are: 

(4.16) 

Observe that the assumption kl < kz < k3 implies that K1 > 0 and K3 < 0 while K2 
can have either sign. In any case, the sign of the eigenvalue in the space W, is 
positive only when y > 0, which we now assume. The signs of the eigenvalues in the 
spaces W, and W3 are now sgn(Kz) and -sgn(K,), respectively. Thus when both 
eigenvalues are present the solutions are unstable. This happens for all isotropy 
subgroups except for those for which kl = 1, when the eigenvalues in Wl are 
omitted. 

When kl = 1 the transverse eigenvalues to Fix(Z) are all positive only if K3 is 
negative. Note that K3 < 0 when 

k,<2k3- l ,  

which we now assume. For these isotropy subgroups we have stable period two 
points precisely when the eigenvalues of d F  on Fix@) are positive. To compute the 
signs of these eigenvalues, we need to compute det(dF) and tr(dF). We already 
computed det(dF) when we computed the determinant in (3.30-ee (3.33). The 
trace of (3.30) can be computed in a straightforward manner, using the computa- 
tions in (3.32). We obtain: 

(4.17) 

Finally, one checks that it is possible to choose y > 0 and /? so that both det(dF) and 

tr(dF) = b2[2/3(k2K1 - k1KZuO) - 3y(klKz - k2Kl)/n] 

tr(dF) are positive. 0 

5. Bifurcation of fixed points 

As discussed in section 2, loss of stability of the in-phase periodic solutions of the 
Josephson junction equations can occur either through period doubling or through 
bifurcation of fixed points. In this section we discuss both existence and stability of 
bifurcating fixed points for maps with S,  symmetry. These bifurcating fixed points 
correspond to asymmetric periodic solutions of the ODE with period approximately 
equal to that of the in-phase solution. Our results are based entirely on the work of 
Field and Richardson [8] and Ihrig and Golubitsky [14], and lead to the somewhat 
surprising conclusion that generically all bifurcating fixed points are asymptotically 
unstable. Indeed, this conclusion is supported by the numerical computations on 
which we will report in the next section. 

A symmetry breaking fixed point bifurcation of the Poincard map associated with 
an in-phase $,-symmetric periodic solution leads after a centre manifold reduction to 
an S,-equivariant mapping 
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where V is the (n - 1)-dimensional space defined in (3.1). The absolute irreducibility 
of S,, acting on V implies 

g(0 ,  A.) = 0 (5 .1~)  

(dg)o,A = c(A)&. (5. lb)  

The assumption of a fixed point bifurcation of g at A. = 0 implies 

c(0) = +l. (5.2) 
We study the situation where the invariant fixed point n = 0 has a generic change in 
stability at A. = 0, that is, 

c'(0) # 0. (5.3) 

f ( x ,  A.) = g(x, A) - x = 0 (5.4) 

Observe that bifurcating fixed points satisfy the equation: 

with eigenvalues of (d& passing through the origin with nonzero speed as A. is 
varied. 

Field and Richardson [8] determine all of the zeros of (5.5) that occur generically 
at such a bifurcation. They prove that there is a unique branch of bifurcating zeros 
to each maximal isotropy subgroup of S, and that each of these subgroups has a 
one-dimensional fixed-point subspace. These maximal isotropy subgroups were 
listed previously in ( 3 . 1 4 ~ )  with the single exception that k = n / 2  also gives an 
isotropy subgroup. Thus we can expect [n/2] bifurcating branches of zeros, each 
corresponding to periodic solutions where the n oscillators divide into two groups 
with the oscillators in each group behaving identically. 

Note that the stability of the bifurcating solutions are determined by the signs of 
the real part of the eigenvalues of df. Ihrig and Golubitsky [14] show that when 
there exists a non-zero equivariant quadratic mapping, then generically all branches 
of bifurcating zeros corresponding to maximal isotropy subgroups with one- 
dimensional fixed-point subspaces are unstable. Their proof is based on the fact that 
irreducibility implies that tr dfi E 0 where fi is the quadratic part of f, and hence 
generically there must be eigenvalues of df with real parts of each sign. We have 
already listed the SE-equivariants in proposition 3.6. In particular, Xz, as defined in 
(3.16b), is a non-zero quadratic S,,-equivariant mapping. 

6. Numerical simulation 

In order to test and supplement some of the theoretical predictions made in previous 
sections concerning period-doubling bifurcations we wrote programs to integrate 
both the capacitive and resistive loaded Josephson junctions with a variable number 
of oscillators. The programs were run on an Apollo DN4500 colour system, with 'the 
trajectory of each oscillator appearing in a different colour. For each oscillator we 
plotted the phase q against e. The phase was plotted modulo 236. This made it 
rather easy to see when a set of oscillators merged into one block (all but one colour 
disappeared) and when two blocks of oscillators had the same trajectory but were 
out of phase. A difficulty with this method, however, is that it was impossible to 
obtain hard copy of the graphical output. In this section we document our results by 
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giving explicit parameter values ( f i ,  I, N) and initial conditions for the trajectories 
we describe. Most simulations were done with two to thirteen oscillators. 

6.1. Pure resistive load 

We integrated the second-order system (2.2) by writing it as a first-order system: 

@k = '1vk (6. la) 

(6. lb )  

for k = 1, . . . , N .  
As noted in section 2.1, see figure 9, the in-phase periodic solutions are born at 

homoclinic bifurcations (which can be tracked in the two-dimensional SN-symmetric 
phase plane). Since these in-phase periodic solutions are asymptotically stable in this 
plane, they are easily found. 

The numerical evidence presented in [12] indicates that in the case of a pure 
resistive load the only loss of stability of the in-phase periodic solutions to 
asymmetric perturbations is by a period-doubling bifurcation. Our more detailed 
numerical studies confirm the occurence of the period-doubling bifurcation and also 
show the existence of fixed-point bifurcations (albeit for a very small parameter 
range). The bifurcation curves are shown in figure 9. We integrated a variety of 
initial conditions near the period-doubling bifurcation, finding period-doubled 
solutions that were in accord with the theoretical predictions of sections 3 and 4. In 
particular, when N = 5 we found a period-doubling bifurcation, as I was decreased, 
at /? = 2 and I =  1.6. Some of these results are tabulated in table 1. It is worth 
pointing out that we did not make a coherent organized search in parameter space 
for different phenomena. 

We note that as we varied the parameters quasistatically away from the curve of 
period-doubling bifurcations in the (/3, I)-plane, we found secondary bifurcations to 
more complicated block structures of oscillators whose existence and/or asymptotic 
stability was not predicted by our local theory. This was not a surprise. Finally, we 
did not find any evidence for primary branches of stable period-doubled solutions 
with submaximal symmetry, which would have been allowed by local theory. For 
moderate and large values of beta we also found another type of global solution. In 

Table 1. Numerical simulation results for pure resistive load. 

Initial conditions (cp, QI) 

Block 3 Isotropy Stability Block 1 Block2 

4 1.0 1.6 
5 2.0 1.55 
5 2.0 1 .5  
5 2.0 1.55 

13 2.0 1.55 
2 1.5 1.01 
2 5.0 0.9 

21 

E6 
T,t 
Semirotor 

1.41,O. 11 1.30,0.63 
2.75,0.39 3.34,O.m 
4.53, l . l l  2.99,0.40 
0.60,0.88 5.74,1.13 
3.94,0.91 3.09,0.50 
1.27,0.072 1.44, -0.021 
4.64,0.73 0.86, -0.01 

3.76.0.77 

t In systems with two oscillators TI solutions have the same symmetry as POMS. 
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these solutions, which we call semirotors, there are two groups of junctions with the 
junctions within each group in phase with one another. In one group the junctions 
all follow a running waveform (i.e., a solution which is periodic on a cylinder) while 
in the other group they all execute a simple periodic motion. Semirotors are 
discussed in more detail in [l]. 

6.2. Capacitive load 

We integrated the second-order system (2.7) by writing it as a first-order system: 

(Pk = Wk 

for k = 1, . . . , N. 
As noted in section 2.2, see figure 6, the in-phase periodic solutions are born at 

homoclinic bifurcations and lose stability both by period doubling and fixed-point 
bifurcations. Since theory predicts that the fixed-point bifurcations should lead to 
unstable asymmetric solutions, it is not surprising that we found no local bifurcation 
dynamics at this transition. More surprising, perhaps, is that no asymptotically 
stable period-doubled solutions were observed at these transitions, though this is 
‘allowed’ by theory. Instead of stable period doubled solutions we found semirotors 
(described in section 6. i) and discrete rotating waves (described below). 

We did experiment with initial conditions inside fixed-point subspaces and this 
did lead to the predicted fixed-point and period-doubled oscillator groupings. Some 
of our results are presented in table 2. 

The codimension-two point (labelled P) where curves of period-doubling and 
fixed-point bifurcation terminate along the curve of homoclinic bifurcations is 
shown in figure 6. This point is discussed in the next section. 

In our numerical exploration of the capacitive load model we found discrete 
rotating wave solutions whose existence could not have been predicted by local 
bifurcation theory in this system. We call these solutions ponies on a merry-go- 

Table 2. Numerical simulation results for capacitive load; all period-doubled and fixed 
point solutions are unstable. 

N B  I 

4 0.7 1.4 
5 0.7 0.8 
5 0.9 0.8 
5 0.3 0.9 
3 0.1 1.2 
3 0.1 1.02 

3 0.1 0.99 
6 0.1 1.2 

2 3.0 0.64 

Isotropy Bifurcation 

Initial conditions 

Block 1 Block 2 Block 3 

X1 
Zl 
x2 

x 2  
POM 
per-dbl 
POM 
torus 
POM in 
groups of two 
semirotor 

per-dbl 
per-dbl 

fixed-pt 
stable 
stable 

per-dbl 

stable 
unstable 

stable 

2.13,0.49 
4.75,0.96 

6.06,0.96 
2.11,0.33 
1.73,0.41 

1.72, -0.22 

2.49,0.24 
1.36.0.27 

2.49.0.12 

2.18,0.52 - 
4.38,0.82 - 
3.00,0.37 - 
5.57.1.32 - 
6.08, 1.56 1.34,0.23 
1.92,0.44 1.40,0.42 

3.01,0.67 1.77, -0.12 
6.23, 1.45 2.15.0.39 

1.29, -0.01 - 



894 D G Aronson et a1 

round or WMS. More precisely, an N-oscillator POM is a period-T solution in which 
each oscillator traverses the same trajectory in phase space and the oscillators can be 
ordered so that each oscillator is TIN out of phase with the previous oscillator. Of 
course, POMS can be formed with groups of oscillators rather than with single 
oscillators. We have observed POMS with non-trivial groupings, but only with initial 
conditions in particular fixed-point subspaces. These POMS appear to be asymptoti- 
cally unstable. Several entries in table 2 indicate parameter values where POMS have 
been found. 

POM solutions can be found by solving a differential delay equation in the plane 
as follows. Order the oscillators and search for T-periodic solutions of the form: 

(cpl(t), M), 9)3Cf ) ,  * . .) = ( d t ) ,  dr - 4, cp(t - 2 4 ,  . * -1 
where the delay z = T/N. Such a delay equation is unusual since we search for 
periodic solutions whose period is coupled to the delay. Using topological degree 
methods it is possible to prove the existence of POMS in both the resistive and the 
capacitive load models whenever I > 1. See the companion paper [33 for this proof. 
Asymptotic stability is not considered by this method. Tracking along branches of 
POMS leads to an interesting bifurcation whose theoretical analysis is found in Fiedler 
[7]. To describe this bifurcation requires a short diversion into the theory of periodic 
solutions in symmetric systems. 

Consider a system of ODE with symmetry group r and periodic solution x ( t ) .  
There are two subgroups of r related to ~ ( t ) :  

K = { y E r : p ( t )  = x ( t )  for all t }  ( 6 . 3 ~ )  

H = { y  E r: y{x(t)) = { ~ ( t ) ) ) .  (6.36) 

K is the subgroup of spatial symmetries of x ( t )  and H is the subgroup of 
spatial-temporal of x.  To see this note that h E H maps the trajectory of x onto 
itself. Hence, by uniqueness of solutions, there is a phase shift 8 such that: 

hx(t) = x( t  - e). (6.4) 

For the POM solutions discussed above H = S, and K = { l}. 
Let S be a cross-section to the periodic solution x .  S can be chosen to be 

K-invariant. Let P be the associated PoincarC map. Uniqueness of solutions to 
systems of ODE implies that P commutes with K; it is less clear what effects the 
symmetries H have on P. Roughly speaking, Fiedler's observation is that if 
[ H / K ]  = m is finite then P = Qm, where Q is the l/mth period map obtained by 
integrating the ODE. There is a simple consequence of this observation for generic 
bifurcations of P, since 

(dP),(o,= (dQ)X"(o). 
Thus, when m is even and dQ has -1 as an eigenvalue, then d P  will have +1 as an 
eigenvalue. 

We have observed such a bifurcation of POMS. Period-doubling of Q leads to a 
pitchfork-type bifurcation of fixed points for P when m is even (that is, to non-PoM 
asymmetric period orbits for the original system of ODE) and to a period-doubling 
bifurcation for P when m is odd (that is, to a period-doubled POM for the original 
system of ODE). This bifurcation was detected numerically at: 

N = 3  I = 1.172 p = 0.1. (6.5) 
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We also note that a bifurcation to invariant tori off the period-doubled POW was 
observed when 

N = 3  I = 0.992 p=0.1.  (6.6) 
Finally we note that there is numerical evidence that the POM solutions disappear 

(at some I < 1) through a heteroclinic bifurcation indicating that the complete 
dynamics of this system is far from understood. 

7. Homoclinic twist points and a new codimension-two bifurcation 

In our numerical studies of Josephson junction arrays with a pure capacitive load we 
have observed a new codimension-two bifurcation where, in parameter space, a 
curve of period doubling bifurcations and a curve of fixed point bifurcations 
terminate simultaneously on the curve r of homoclinic orbits along which the 
in-phase rotations are born. This bifurcation occurs at the point labelled P in figure 
6. The point P is a homoclinic twist point, i.e., as the parameter point passes 
through P on r there is a change in orientation in the tangent flow over the 
homoclinic orbit. In subsection 7.1 we show that homoclinic twist points occur for 
both resistive and capacitive loads. Indeed, our numerical studies show that in the 
capacitive load case the homoclinic twist point is unique, while in the resistive load 
case there are three of them. A homoclinic twist point will be called a homoclinic 
twist bifurcation point if there are bifurcation curves emanating from it. In 
subsection 7.2 we explain why the unique homoclinic twist point in the capacitive 
load case is also a bifurcation point. However, as we will see in subsection 7.3 where 
we discuss the resistive load case, a homoclinic twist point is not necessarily a 
bifurcation point. 

7.1. Homoclinic twist points 

The occurrence of homoclinic twist points is independent of the number N of 
junctions in the array. We therefore restrict our attention to the simplest case N = 2. 
Set 

= $((PI - (P2) s = $((PI+ (Pd. 

Then for a resistive load r and s satisfy 

pi: + i. + sin(r) cos(s) = 0 
+ 2s + sin(s) cos(r) = I 

while for a capacitive load r and s satisfy 

pi: + i. + sin(r) cos(s) = 0 
(3 + p)i’ + S + sin(s) cos(r) = I. 

Note that the r-equation is the same in both systems. 
The invariant subspace (plane) of in-phase solutions is 

S = { ( r ,  i , s , S ) E R 4 : r = i . = O } .  

(7.1 res) 

(7.1 cap) 
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For I < 1, both of the systems (7.1) have two rest points in S given by 

The point 9 ( Z )  E (0, 0, n-sin-'(Z), 0) is hyperbolic. The differential of either of the 
systems (7.1) evaluated at 9 ( Z )  has a stable and an unstable eigendirection in S, as 
well as a stable and unstable eigendirection transverse to S in R4\S. For Z = 1, 
P(1) = (0, 0, n / 2 ,  0) is a non-hyperbolic rest point. The differentials of the system 
(7.1) at 9(1) have a stable and a center unstable eigendirection in S, as well as a 
stable and center unstable eigendirection in R4\S. For the flow restricted to S, the 
stable and unstable or centre unstable manifolds coincide for ( I ,  /3) E I', i.e., for 
Z = Z@). We will use the notation 9 ( P )  = 9(Z(/3)). 

For any parameter point on r, let 

4.; B )  = (0, 0, d*; PI,  e(.; PI )  
denote the homoclinic orbit in S. Then a(t; /3)+ 9(/3) as t+ fa. As we have seen 
in section 2, the variational system along the symmetric orbit a(-; /3) is partially 
uncoupled into two two-dimensional subsystems, one over S and the other over 
R4\S. The variational subsystem over R4\S  is given by 

x = B( t ;  @)X (7.2) 
where 

) *  B, = j ( -cos q ( t  ; /3) - 1 
1 0 

To study the tangent flow, we introduce polar coordinates 

so that the system (7.2) becomes 

1 1 b = -sin2(e) - - sin(e) cos( e) - -cos(rp) cos2(e). 
B /3 

( 7 . 3 ~ ~ )  

(7.36) 

Note that equation (7.3b) is independent of p, so that given the homoclinic orbit 
a(.; /3) we can analyse the angular evolution of the restriction of the tangent flow to 
R4\S simply by studying the dynamics of (7.36). 

The &null clines of (7.36) are given by 

1 1 
sin2( e )  + - sin( e )  cos( e) + - COS cp cos2( e) = 0 

B B (7.4) 

Since the left-hand side of (7.4) is equal to 1 when 8 is any odd multiple of n/2, we 
can divide both sides by cos2(B) to obtain 

1 1 
tan2( e )  + - tan( e) + - cos( q) = 0, 

/3 B 
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Therefore the equations for the &null clines are 

(7.5) 

As t+ fm, rp(t; @)+ @(@) = x-sin-'(1(/3)). Thus 

as t+ f-m, where 

pvi=F@). 
Set Si(@) E @*(fa; B). It is easy to verify that tan(@+(@)) is the slope of the 
unstable or centre unstable eigendirection and tan(@-(@)) is the slope of the stable 
eigendirection for 

If 8 < 2 then the h u l l  clines 8 = O*(t; B )  and all their translates by multiples of 
R are defined for all t E R. The &flow given by (7.36) is as shown in figure lO(a). 
For convenience, in the figure we have drawn 8 as a function of q on the interval 
[@, @ + 2x1. This is permissible since, in view of the constructions described in 
section 2, along the symmetric homoclinic orbit @(.; /3) > 0 on (@, @ + 2n). There is 
a unique orbit 8 = el(.; @) such that 

as c +  fa w; B)+ 0" 
and a unique orbit 8 = €I2(-; 6) such that 

6 2 0 ;  B)-+ @-(B) as t - ,  fm. 

For all other orbits 8 = e(.; 8) which lie 

For @ >> 1, 

tan e*(t; 6) - *4tiij 

between 8 = O2 and 0 = O2 + JC we have 

as t +  --03 

as t-+ +W. 

as t - ,  fa, 

and outside the &null clines the @-flow is approximated by 

6 = -sin2(8). 

From these observations it is not difficult to verify that the &flow is as shown in 
figure lO(c). In particular for 8 >> 1 there are no orbits which satisfy 8(t; /3)+ 
e'(@) as t+ or 8(t; B)-. 0-(/3) as t--t -fa. Instead, there is a unique orbit 
0 = el(-; 6) such that 

@+(@I as t-+ --m 

as t-+ +m %(t; P I 4  { @+(B) 

and a unique orbit 0 = 64.;  @) such that 

as t 4  --Q) 
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e=@+@) 

@=s-(P) 
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e=@- 
- 

@=@ $=$+27c 

e=@+(p) 

e=@-(@) 

e=@+( P)-n 

e=@-(p)-x I -re IO. The e - m v  for various values of 8. (a) 
j3 < 1/4. ( b )  @ = fi ' ,  a homoclinic 1-twist point. (c) - 

@=$+27c @>>1. 
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Thus the 8-flow for /3 >> 1 is twisted by -n radians in comparison to the 8-flow for 
#I < 114. 

For any solution 8 = e ( - ;  #I) to (7.36) we have 

8(t; #?)+@*(#I) + k n  

for some choice of sign and some choice of k E Z both as t+ - w  and as t+ +w. 

Given k E N we call a point ( I @ * ) ,  p * )  a homoclinic k-twist point if there exists an 
orbit 8 = e,(.; @*) such that 

and an orbit 8 = &(e; p* )  such that 

That is, for @ = #I* the &flow carries the unstable or centre unstable eigendirection 
in R4\S at S(@*) into the stable eigendirection in R4\S at S(@*) after a twist of 
- (k  - 1)n radians. Similarly, the stable eigendirection in R4\S at S(/3*) is carried 
into the corresponding unstable or centre unstable eigendirection after a twist of 
-kn radians. It is clear that in the transition from the configuration for small /3 
shown in figure lO(a) to the configuration for large /3 shown in figure 1O(c) there 
must be at least one value of /?, say /3*, for which ( I @ * ) ,  /3*) is a homoclinic 1-twist 
point as shown in figure 10(b). 

In the case of a capacitive load, our numerical studies show that there is a unique 
homoclinic 1-twist point (labelled P in figure 6) and no other twist points for k # 1. 
In the case of a resistive load our numerical studies show that there are exactly three 
isolated homoclinic twist points (labelled 5 in figure 9). The pi have coordinates 
( 1 ,  #I:) where 

@;E (0.3, 0.4) #I;E (0.5, 0.6) #I;€ (2.05, 2.1). 

Points Pl and P3 are homoclinic 1-twist points, while P2 is a homoclinic 2-twist point. 

Z 2. Homoclinic twist bifurcation in the capacitive load cave 

Let U ( - ;  I ,  #I) = (0, 0, q(.; I ,  #I), @(-; I, /3)) denote the (unique) symmetric running 
solution to either of the systems (7.1) for Z > Z ( / 3 )  and @ B O .  As we observed in 
section 2, the stability of this solution depends on the Floquet multipliers pl(Z, #I) 
and p2(I ,  0)  associated with the two-dimensional variational subsystem 

and that only fixed point or period doubling bifurcations are possible. Let X(-; I, /3) 
denote the fundamental matrix solution to (7.6), i.e., the solution with X ( 0 )  = I. 
Then pl and p2 are the eigenvalues of X ( I ,  /3) = X(T(I ,  0); I, #I), where T(Z, /3) is 
the period of U. It is well known that, modulo a transversality condition, fixed point 
bifurcations occur when 

tr X ( I ,  /3) = 1 + e-T'@ (7.7a) 
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and period doubling bifurcations occur when 

trX(Z, B )  = -(I +e-"'@). (7.7b) 

P(0) = 1 
and * = 0 or nI2. 

coordinates (Z(B*), 6'). For f l >  B* 
In the capacitive load case there is a unique homoclinic 1-twist point P with 

while for /3 E (0, #I*) 

Moreover, it can be shown that for any > 0 

(cf [2]). Hence it follows from (6.8) that 

For arbitrary p1 and p2 satisfying 0 < < B* < p2 consider an arc V lying wholly 
to the right of r and joining K1 = (Z(B1), Pl) to K 2  = (Z(&), p2). For points near K ,  
on 'd: 

tr X ( I ,  B )  << -2 s -(I + e-"@) 

and for points near K2 on V 
tr X(Z,  B )  >> 2 2 1 + e-T'@. 

Since trX(Z, B )  is continuous on 'd: it follows that there exist points on V where 
(7.7~) and (7.7b) hold, i.e., fixed point and period doubling bifurcation points. This 
proves the existence of bifurcations arbitrarily close to the homoclinic twist point P. 
Further argument is needed to show that there are curves of fixed point and period 
doubling bifurcation emanating from P as indicated by our computations. For this 
the reader is referred to [2]. 
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Fiedler has observed that an index argument similar to those given in [7] implies 
the existence of another curve of homoclinic orbits emanating from the homoclinic 
twist bifurcation point P. A formal analysis in the case N = 2  suggests that the 
homoclinic orbits on this curve are double homoclinic loops through S(f?*) in R4\S 
(‘bellows’). An analysis of these homoclinic loops will appear in [2]. 

7.3. The resistive load case 

If P E I? is a homoclinic twist point then, by the argument given in subsection 7.2, P 
is a homoclinic twist bifurcation point if 

infltr X(Z, f ? ) I  > 1 

in some neighbourhood of P. On the other hand, P is not a homoclinic twist 
bifurcation point if 

supltr X(Z, @)I < 1 (7.9) 
in some neighbourhood of P. 

Our numerical studies show that (7.9) holds for each of the three homoclinic 
twist points 4 ( j  = 1,2,  3) in the resistive load case. Thus we conclude that the pi are 
not homoclinic twist bifurcation points. Figure 11 shows the computed values of 
tr X(-, l.ooOo1) for @ E (0, 2.2). For more details refer to [2]. 

Even though there are no homoclinic twist bifurcations in the resistive load case, 
there are nevertheless bifurcation points on the segment of r with @ E (0, 8). These 
points are shown in figure 9 along with the curve y+ of fixed point bifurcations and 
the curve y- of period doubling bifurcations. These curves represent our best 
current knowledge of the complete bifurcation picture. They were computed using 

Figure 11. tr X ( I ,  #?) against #? for I = 1.ooOOl. 
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AUTO and verified by various other numerical techniques. There is some 
uncertainty due to the smallness of the interval (/I;, /I;). Although we believe that 
this interval has positive length, further study may show its length to be zero in 
which case the homoclinic twist point P3 will be promoted to a homoclinic twist 
bifurcation point. 
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