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4.1 Introduction

Recent fluid dynamics experiments (13, 10, 4] have shown that the sym-
metry of attractors can manifest itself through the existence of spatially
regular patterns in the time average of an appropriate observable such as
the intensity of transmitted light in the Faraday experiment. In this chapter
we discuss how the symmetry of attractors can be detected numerically in
solutions of symmetric PDEs and how symmetry considerations affect the
appropriateness of a popular method for computing asymptotic dynamics
in PDEs—the Karhunen—Loéve decomposition.

To motivate our discussion we first describe the observed phenomenon.
In the Rayleigh-Bénard experiment a fluid layer is heated from below and
the transition from pure conduction to convection as the temperature gra-
dient is increased is investigated. It is well known that the initial transition
to comvection is accompanied by the appearance of (almost) regular pat-
terns. As the temperature gradient is further increased, more complicated
dynamics that are both temporally and spatially chaotic appear. Pierre
Bergé made the following observation (as reported in a survey by David
Campbell [9]): When operating his experiment in a chaotic regime and in
a rectangular container, the time average of the observed fluid velocities
~ had a well-defined rectangularly symmetric pattern, even though none of
the time instantaneous velocity fields had this symmetry. No explanation
of how this might happen was given. In addition, the experiment, although
very suggestive, was not conclusive, as the time average was taken over
only a rather short (scaled) time interval.

Dellnitz, Golubitsky and Melbourne [11] observed that symmetries -of
attractors of PDEs in phase space should manifest themselves as symmetry
invariants of the time average of the solution. This possibility was verified in
certain numerically computed solutions of the Brusselator and the complex
Ginzburg-Landau equations—both reaction—diffusion systems defined on
the unit interval.
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In addition, Gluckman et al. [13] have investigated the Faraday surface
wave model, looking for indications of pattern on average. This experiment
showed that pattern on average is a physically observable phenomenon.
The experiment is performed by vibrating a fluid layer at a fixed ampli-
tude and frequency. As in Rayleigh-Bénard convection, it is also well known
that a trivial state loses stability as the physical stress parameter of the
system—in this case, the frequency of vibration—is increased. In the Fara-
day experiment the flat surface of the fluid layer begins to deform and forms
surface waves as this frequency is increased. It is also well known that if
the frequency of vibration is further increased, the fluid surface begins to
vary chaotically both in space and time. Observations can be made on this
system by measuring the intensity of light transmitted through the fluid
~ layer. In the experiment this intensity is time-averaged at each point in
space. The experiment was performed in both square and circularly sym-
metric containers, and in both cases the time-average turned out to reflect
the symmetry of the apparatus. See Figure 1.

In another direction, numerical simulations of planar discrete dynam-
ical systems with symmetry have illustrated the symmetry properties of
attractors [10, 12, 15] and the possibility that the symmetry of attractors
can change—through symmetry increasing bifurcations—as parameters are
varied. (It has also been observed by the computation of approximate in-
variant measures on these attractors and by the illustration of these mea-
sures through the use of color that striking images may be found [12].)

With these various manifestations of the symmetry of attractors in mind,
the question of how to compute numerically the symmetry of attractors for
maps, ODEs and PDEs becomes important. In [3], a method, based on the -
notion of detectives, was developed to answer this question. The idea behind
detectives is to transfer the question of determining the symmetry of a set
(the attractor) in phase space to the problem of determining the symmetry
of a point in some auxiliary space determined by the symmetry of the
dynamical system. The way this method works is to thicken the attractor
A to an open set A (preserving the symmetries) and then to integrate (with
respect to Lebesgue measure) a certain (equivariant) observable over the
thickened attractor. This technique was then proved to give the correct
symmetry for open sets—at least generically—and was also implemented
in (3] to show that it could work in practice.

There was, however, a difficulty concerning the use of detectives for com-
puting the symmetry of attractors, which was not noted in [3]. The diffi-
culty surrounds the notion of genericity used. The proof of the detective
theorem relies on having points of trivial isotropy in the set A—which is
automatically valid for open sets. However, if A itself has no points of triv-
ial isotropy, then A will, in general, not be generic in the sense used in the
detective theorem.

It is worth noting that the scientific interest in the symmetries of at-
tractors will be most directly understood in processes that are modeled
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FIGURE 1. Pictures of instantaneous time and time-averaged intensities of trans-

mitted light in the Faraday experiment in both circular and square geometries.
Courtesy of J.P. Gollub.
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by PDEs. One reason for this is that one needs space variables to support
the symmetries and a time variable to support the dynamics. It is well
known, both for equilibria and for time-periodic states, how to transfer
symmetries in phase space to symmetries (or patterns) in physical space.
For more complicated states the question of how to transfer the symmetry
of attractors in phase space to a meaningful quantity in physical space is
less clear and this issue for chaotic dynamics has received less attention.
The numerical and fAuid dynamics experiments suggest that this relation-
ship can and should be made through time-averages. In Sections 4.2 and
4.3 we will show how, with the assumption of a Sinai-Bowen—Ruelle (SBR)
measure on the attractor in phase space, one can prove these statements
about the time average.

As described in [3] the method of integrating over thickened attractors is
not practical in dimensions of more than moderate size—say in dimensions
greater than six. An alternate approach to detectives where (Lebesgue)
integration is replaced by ergodic sums was suggested in [3] and numerical
comparisons between the two methods made (in low dimensions). In Section

4.3 we prove that detectives based on ergodic sums also generically predict
the correct symmetries of attractors. ’

As mentioned previously there is a popular method for computing the
long-term dynamics of a system of PDEs and of constructing sets of model
ODEs for these dynamics and, indeed, for any time series. The Karhunen—
Loéve decomposition, also known as the proper orthogonal decomposition
and by other aliases, proceeds by finding an orthogonal set of eigenfunctions
that is well suited to the data—eigenfunctions that capture in decreasing
order most of the “kinetic energy” of the system. The data is then expanded
in terms of these eigenfunctions at each moment in time and the time
variation of the coefficients describes the dynamics. To obtain a system of
ODEs the eigenfunction expansion is truncated at some finite order, thus
obtaining a sophisticated Galerkin-type approximation to the dynamics.
See (23, 6].

The importance of symmetry for the Karhunen—Logve decomposition was
emphasized in the work of Sirovich [22]. This theme has been expanded in
recent work [2, 6, 7]. We have investigated how well the symmetry of the
attractor used to generate the Karhunen—Loéve decomposition is reflected
in the end result. In Section 4.6 we will show that the Karhunen-Logve
operator is equivariant with respect to the symmetry group of the underly-
ing attractor. With this result we generalize the recent results in [7], where
only Abelian symmetry groups are considered. But we have also found that
the symmetry property of the Karhunen-Logve decomposition does not al-
ways exactly reflect the symmetry properties of the underlying attractor.
In fact, in some important cases, there is more symmetry introduced into
the reduced system of ODEs than is present in the data. For instance, we
will show that an SO(2) symmetric attractor of a scalar PDE on the line
with periodic boundary conditions automatically leads to a reduced system
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which has O(2) symmetry. (This point will be discussed in more detail in
Example 6.4.) We then suggest an extension of the Karhunen~Loéve de-
composition that is guaranteed to have the correct symmetry properties
and show that this extension can be viewed as a construction of a detec-
tive for this case. Qur results suggest that the method for constructing an
appropriate reduced system via a Karhunen—Loéve decomposition should
always be combined with the computation of the symmetry type of the
underlying attractor using detectives.

We now outline the structure of this chapter. In Section 4.2 we discuss the
results on detectives given in [3] and introduce SBR measures. In Section
4.3 we prove that ergodic sums also provide a method for constructing
detectives. We then interpret these results for systems of PDEs in Section
4.4.

The remainder of the chapter discusses symmetry aspects of the Karhun-
en-Logve decomposition. In Section 4.5 we describe the standard Karhun-
en-Logve decomposition and in Section 4.6 we show how the symmetries
of an attractor for a PDE system are inherited by the Karhunen—Loéve de-
composition. We note that this decomposition has at least the symmetries
of the PDE attractor; as noted previously it may have more. In Section
4.7 we show how to modify this method so that it will produce the correct
symmetries. This technique is based on the theory of detectives of Sec-
tion 4.3. In the last two sections we discuss the symmetry of the reduced
(Galerkin type) system of ODEs produced by the Karhunen-TLogve decom-
position (Section 4.8) and present an example—the Kuramoto—Sivashinsky
equation (Section 4.9).

4.2 Detectives and SBR Measures

In this section we introduce the notion of detectives and recall the main
theorem of [3] which presents one method for constructing detectives based
on Lebesgue integration. The main aim of detectives was to find a method
for the (numerical or experimental) computation of the symmetry types of
attractors. We also recall a second method based on ergodic sums. In the
next section we will prove that this method also yields detectives—at least
under the assumption that the attractor has an SBR measure. With this
in mind we also introduce SBR. measures in this section.

Detectives

Let T be a finite group acting orthogonally on R™ and let A be an open
subset of R™ with piecewise smooth boundary. We discuss a method for
determining the symmetries of the set A—defined as follows:

T(A)={yel:vyA= A}
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We assume that A satisfies the dichotomy yA = A or YAN A = 0 for
all v € T. (This dichotomy is natural (see [10], [18]) when the set A is
a “thickened attractor” (see [3]) for a continuous I'-equivariant discrete
dynamical system.) We will denote this class of open sets by A.

We find the symmetry of sets A by transferring the question to that of
finding the symmetry of a point in some observation space W. This is done
by use of observables, which we now define. Let W be a finite-dimensional
_ representation space of I'.

Definition 2.1. An observable is a C* I'-equivariant mapping ¢ : R — W.
The observation of A is

Ko(4) = [ oa,

A
where v is Lebesgue measure.

Note that the observation K,(A) is a vector in the space W. since the
observation is just the integral of a W-valued function. Thus, Ky : A — W.

It can easily be verified that K,(A) always possesses at least the sym-
metry properties of the set A. More precisely, the isotropy subgroup of the
observation K4(A) in W,

Y(4) :‘{’Y eD:yKy(A) = Ky(A)},

always contains 3(A). Observables ¢ which generically yield equality of
Z(A) and T, (A) are called detectives.

Definition 2.2. The observable ¢ is a detective if for each subset A € A,
an open dense subset of near identity I-equivariant diffeomorphisms ¢ :
R™ — R™ satisfy Zy(¢¥(4)) = Z(4).

Before stating the main theorem we introduce the notion of lattice equiv-
alence.

Definition 2.3. Two representation spaces V and W of I are lattice equiv-
alent if there exists a linear isomorphism L : V — W such that

L(Fixy (X)) = Fixw (%)
for every subgroup & C I

Let Wi, ..., W, be, up to lattice equivalence, all the nontrivial irreducible
representations of I' and define

W) =W @ & W,. (2.1)
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The following theorem is the main result of 3]

Theorem 2.4. Let W contain W(T) and let W = W(I') @ WO, Let ¢ :
R™ — W be a polynomial observable where ¢ = (q’;l,...,c,bs,q'ao) in coor-
dinates adapted to the decomposition of W. Suppose that ¢; # 0 for all
1< j <s. Then ¢ is a detective.

It was noted in (3] that detectives based on ergodic sums provides an
alternative method to computing symmetries that is more effective in many
instances. We shall prove an analogue to Theorem 2.4 for ergodic sums—
but we will have to make explicit our assumption that attractors have
points of trivial isotropy.

When speaking of the ergodic sum we will assume that the set A is an
attractor (that is, A is the w-limit set of a point z € R™ for a continuous
mapping f : R® — R™ and there is an open neighborhood U D A in which
all points have w-limit sets contained in A) rather than an open set. For
these attractors A, the ergodic sum is defined by '

‘ N-1
KE(4) = Jim > ol @)
For this definition of K (A) to be useful, the right-hand side of (2.2) must
be largely independent of z in a sense that we will make precise later.

The advantage of using the ergodic sum is particularly evident in PDE
systems where typically approximations in high-dimensional spaces are
taken. In the next section we show that the ergodic sum also transforms
observables ¢ into detectives under the same conditions on ¢ and W that
work for the method of integrating with respect to Lebesgue measure over
thickened attractors. However, an extra assumption must be imiposed on
the type of attractor A for which the method will work; in particular, we
must assume that a Sinai-Bowen—Ruelle measure exists on A. We now dis-
cuss why we need this assumption and why it is a reasonable assumption
to make.

Sinai-Bowen—Ruelle Measures

For the ergodic sum method to be useful, the limit in (2.2) should be inde-
pendent of the point € R"™. What is actually required is that Lebesgue
a.e. z € U give the same limiting sum. It is well known that for any contin-
uous transformation of a compact metric space, there is always an ergodic
invariant measure [19]. Note that U is a compact f-invariant set. Then the

girkhoff ergodic theorem states: If p is an f-invariant ergodic measure on
U and if ¢ € L2(TU), then for p a.e. €U
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o(fi(z) = |_¢dp. (2.3)

However, p is typically a singular measure and so this result has little
physical relevance in terms of justifying the arbitrariness of the choice of
z. In particular, in order for this method to be useful, we need to be able
to choose almost any = € U and get the same answer on the left-hand side
of (2.3). Thus, for the ergodic sum method to work, one needs a physi-
cally relevant measure, a Sinai-Bowen—Ruelle measure. The consequence
of the existence of such a measure is that the ergodic sum is then con-
stant Lebesgue a.e. in a neighborhood of the attractor and the constant is
equal to the integral of ¢ with respect to the SBR measure over the attrac-
tor. This equality allows us to construct detectives in a way similar to the
method outlined previously.

There is a general feeling that SBR measures “usually” exist in physical
dynamical systems [25]—although rigorous results along these lines are
scarce. Thus, the assumption of an SBR measure, even though. it is not
usually verifiable, appears to be a reasonable one.

First, we discuss in more detail the properties of SBR measures and list
the systems for which the existence of SBR measures has been established.
Then, in Sections 4.3 and 4.4, we prove the existence of detectives, using
the ergodic sum method, in both discrete dynamical systems and PDE
systems.

In the literature there are two main definitions.of SBR measures. One
stresses the statistical behavior of the system and the other stresses the
technical conditions that guarantee this behavior. For most systems the
definitions are essentially equivalent. The consequence of either definition
is that the average of an observable on the orbit of a point is constant
Lebesgue almost everywhere on a neighborhood of the attractor, and this
constant is determined by a measure (often singular) on the attractor.
For our purposes we will only consider the definition based on statistical

- properties.

Definition 2.5. An SBR measure for a mapping f : R® — R™ with an
attractor A is an ergodic measure u with support equal to A and with the
property that there exists an open neighborhood U O A such that for every
continuous function ¢ : R™ — R and for Lebesgue a.e. z € U

N—co

S I N
i 3 (e = | ou (2.4)

Typically, we apply this definition to I'-equivariant ¢ : R™ — W where
W is a vector space on which I' acts. This definition is sometimes weakened
to requiring that (2.4) holds for a set of positive Lebesgue measure and
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requiring that supp(p) C A. We call this the weak form of the SBR measure
in order to contrast it to the stronger form where (2.4) holds Lebesgue a.e.

Note that one consequence of Definition 2.5 is that for Lebesgue a.e. T near
A,

KJ(A) = /‘1 bdp.

We define an SBR attractor to be an attractor with an SBR measure.

Numerical experiments provide justification for the belief that SBR mea-
sures are a “common” phenomenon [24]. Their existence is often assumed
in physics and numerical experiments. The existence of SBR measures in
Axiom A systems has been proven in the works of Bowen, Ruelle, and Sinai
8, 20, 21]. Axiom A systems are those systems for which the nonwandering
set is uniformly hyperbolic ‘and whose periodic points are dense. _

Although it has been conjectured that many other attractors admit SBR
measures (and this conjecture has been supported by numerical results)
very few nonuniformly hyperbolic attractors have been shown to possess
SBR measures. In fact, maps of Henon and Lozi type are so far the only non-
uniformly hyperbolic systems in which SBR measures have been established
[25]. Henon maps have the form

Ta,b(mv y) = (1 - a$2 + Y, bil:)

SBR measures have been established only for small values of the parameter
b. More precisely, Benedicks and Young (5] have shown that there is a set
S of positive Lebesgue measure in parameter space such that for (a,b) € S
the map T, has an attractor A which is the support of a measure 4 such
that

Kg(4) = /Aqﬁdu

holds for a set of positive measure in any sufficiently small neighborhood
of A.

Young [24] also has results which show that certain types of Lozi maps
have a weak SBR measure; however, the support of this measure is the
whole attractor. Lozi maps have the form

Ta(z,y) = (1 —alz| + by, 7).

The techniques used to prove these results depend in an essential way upon
the hyperbolicity of the system. The main technical difficulty is to obtain
absolutely continuous conditional measures on unstable manifolds; then
one proves some form of ergodicity which implies that the orbits of points
on different unstable manifolds behave the same way statistically.
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4.3 Detectives for the Ergodic Sum Method

In this section we prove the existence of detectives using ergodic sums.
When symmetry is present, we assume that attractors have points of trivial
isotropy. The main result of this section is that ergodic sums lead to a
detective for such SBR attractors.

Suppose the finite group I acts on R™ and suppose p is an SBR. measure
for the I'-equivariant map f with attractor A. We denote the symmetry
group of A by £(A) and we denote the isotropy subgroup of the observation
K f (4) by Z4(A). Thus, there exists an open set U containing A such that
(2.3) is valid for Lebesgue a.e. z € U.

We may choose the open set U so that D(U) = Y(A). (This follows from
the compactness of A which allows us to choose U to be an e-neighborhood
of A.) We call U the future basin and write the SBR attractor as (f,4,p,U).
The following proposition is proved in the same way as the corresponding
result in [3], Proposition 3.3 and for this reason its proof is omitted. It
states that given a specific SBR attractor it is possible to find an observable
which correctly distinguishes the symmetry of that attractor. A detective
satisfies the stronger condition that generically it distinguishes the correct
symmetry of SBR attractors.

Proposition 3.1. Given an SBR attractor (f,A,p,U), there is a vector
space W and an observable ¢ : R™* — W such that S4(4) = Z(A).

We begin with some preliminary observations. Let ¥ be a C* I'-equivariant
diffeomnorphism of R™ and let (f, 4, p, U) be an SBR. attractor. Note that
¥(A) is an SBR attractor for the mapping fy = ¥ f9~*. The SBR attrac-
tor is (fy,¥(A), py,¥(U)) where py is the measure defined by pw(B) =
p(¥=1(B)).

Almost everywhere with respect to Lebesgue measure, the future average
=
. Y
J\}E)noo N ZO @(f¢($))
]:

converges to [ 4 ®otbdp. This is seen by making a change of variables and
the fact that ¥ is a nonsingular transformation (that is, sets of positive
Lebesgue measure are taken to sets of positive Lebesgue measure under
). Furthermore, if ¢ is a C* I-equivariant diffeomorphism on R™, then
the symmetry groups of 4 and ¥(A) are identical, that is, Z((A4)) = Z(A).

We now define the notion of detective that is relevant for ergodic sums.
Recall that SBR attractors are assumed to have points of trivial isotropy.

Definition 3.2. The observable ¢ is an SBR detective if for each SBR. at-
tractor (f, 4, p,U) almost all near identity diffeomorphisms v € Diffr(R")
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satisfy

Zs($(A)) = T(A).

Theorem 3.3. Let W contain W(T') and let W = W(T') @ WO, Let ¢ :
R™ — W be a polynomial observable where ¢ = (¢1,...,0s,¢°) in coor-
dinates adapted to the decomposition of W. Suppose that ¢; # 0 for all
1<j<s. Then ¢ is an SBR detective.

This theorem has a natural physical interpretation. It says that we may
perturb an SBR attractor (f, 4, p, U) by any element of an open dense set
of near-identity I'-equivariant diffeomorphisms ¥ and the resulting SBR
attractor, call it (f', A’, o/, U"), will satisfy

Se(4)) = T(4') = T(A).

Before proceeding with the proof of this theorem we note the following
proposition. This proposition is of fundamental importance to the interpre-
‘tation of symmetries of attractors as leading to patterns in the time-average
of experiments. See Remark 4.2 for a discussion of the continuous time ver-
sion of this proposition. To facilitate the statement of this proposition we
make precise our definition of the ergodic sum or time-average of a contin-
uous function.

The ergodic sum of a continuous function ¢ is the function @ given by

N-1
B@)= m — 3 6(7(@)
=0

where this limit exists. When E(m) is independent of z and ¢ is an observ-
ablé we may use the notation of Section 2 and write K f (A) instead of ¢(z).
Given a measure p and a symmetry o we define the measure p, by

ps(B) = p(¢71(B)).

Proposition 3.4. Suppose (f, A, p,U) is an SBR attractor and A is Z-
invariant, where X is a subgroup of I'. Then,

(a) The SBR measure p is L-invariant, that is, p, = p.

(b) The ergodic sum of a continuous function ¢ : R* — R is Z-invariant,
that is, ¢(oz) = ¢(z) for Lebesgue a.e. z € U.

It is worth mentioning that Proposition 3.4(a) gives a reason why the
color pictures of [12] appear to be symmetric.
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Proof. a) To show the invariance of p we note that for each continuous
function ¢ : R® — R and for Lebesgue a.e. z € U, we have

1 N-1 . 1 N-1 '
dp = li — J = 1 - 7 = o odp.
/Ag p=lim — ;g(f (z)) = Jim = ,;og(f (o)) /Ag odp

This is a consequence of the Z-invariance of U, the equivariance of f and
the fact that p is an SBR. measure. Thus for all continuous functions g :

R =R
/gdp=/g°0dp-
A A

A change of variables and the X-invariance of A implies that for all contin-
uous functions g : R* = R
/ gdp = / 9dpe -
A A
Hence p = ps.

(b) As a consequence of the Y-invariance of U and the fact that p is an
SBR. measure with basin U, we have for Lebesgue a.e. z €U

1 N-1 ‘ 1 N-1 ‘
Jm 3 A = Jim 7 Y el = [ edo.

Thus ¢(z) = ¢(oz) for Lebesgue a.e. £ € U. Note that if ¢ is an observable
then for Lebesgue a.e. = € U, @(z) lies in Fixw () C W. ="

The following technical lemma will be needed in the proof of Theorem
3.3. It was given in [3] in the context of observations formed by integrating
with respect to Lebesgue measure over thickened attractors. The proof of
the analogous result in the present context of observations formed by taking
an ergodic sum; so we omit the proof.

Let Diffr(R™) denote the set of C* T-equivariant diffeomorphisms on
R™. We define

T¢ : Diffp(R™) — Fixw (2(4))

by
TS () = /A porpdp.

Note that a change of variables argument shows that the image of Tj’ is
actually in Fixw (2(4)).

Lemma 3.5. Let ¢ : R® — W be an observable and assume that W
contains W (D). If for each SBR attractor (f, A, p, U) there ezists an open
neighborhood N of the identity in Difip(R™) such that the observations

e B i 20t
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Tj (N) cover an open neighborhood O of KJ(A) in Fixw (X(A)), then ¢ is
a detective.

Proof of Theorem 3.3. We begin by giving an outline of this proof. We
first specify a polynomial observable ¢. Next we verify that the conditions
of Lemma 3.5 hold if a certain linear map constructed from ¢,

L% : C*R™R™) — W,

is onto Fixy (Z(A)). This step is basically an application of the implicit
function theorem. We then show that for an open dense set of C* T-
equivariant diffeomorphisms 1 close to the identity, the corresponding lin-
ear maps Li‘w are onto Fixy (Z(A)). Thus, by Lemma 3.5, for an open

- dense set of near identity I'-equivariant diffeomorphisms 9, the groups

$4(¥(A)) and 5(A) are identical. Hence, ¢ is an SBR detective.

Now we proceed with the details.

Let ¢ be a polynomial observable such that Wy, the subspace generated
by the vectors ¢(z),z € R™, is equal to W where W D W(T'). It is shown in
(3] how to obtain such an observable ¢ and vector space W. In particular,
we may take W to be W(I') and ¢ to be a polynomial observable with a
nonzero component in each irreducible representation.

In light of Lemma 3.5 we need to show that for each SBR. attractor
(f,A,p,U) and for each element 7 of an open dense set of near identity
I'-equivariant diffeomorphisms, the map Tio‘b is onto a neighborhood of
[, ¢dp. We do this by using the implicit function theorem.

The Lebesgue-dominated convergence theorem allows one to show that
the map Tﬁ is smooth and to compute its derivative Lﬁ. More precisely,
let 7, be a smooth one-parameter family of C ! Tequivariant maps of R",
with 1o the identity map. Let X = -j—tv,bt| 0" Then

g /A poudp

= /A D¢(X)dp.

d
¢ x)= 2
L4(X) = =

(3.1)

Since Li (X) is the derivative of a mapping whose image lies in Fixw (Z(4)),
its image also lies in Fixy (2(4)). If L% is onto Fixy (E(A)), then as a con-
sequence of the implicit function theorem and Lemma 3.5, ¢ is a detective.

We now show that Li may be perturbed to Lﬁw for an open dense set
of T-equivariant 1 € Diffir(R™) so that L% ¥ is onto Fixw (Z(A)). This will
be sufficient to establish the theorem.

There are four steps in this proof:

1. First, we thicken A to A¢ = {z : d(z, A) < €} by choosing € sufficiently
small so that the symmetry group of A is the same as the symmetry group
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of A¢. Let P: W — Fixw(X(A)) be the orthogonal projection. Define the
vector space S§ C Fixw (%(4)) by

S = span {P(D¢)=(X(2))},

where z € A and X € C*(R™, R"™). We claim that S§ = Fixw (Z(4)).
We begin by noting that if g : R® — R™ is smooth and if the images
(Dg).X () all lie in a proper subspace of R™, then, modulo a fixed constant
vector, the image of g also lies in that subspace. We also note that since
# is a polynomial mapping and A€ is an open subset of R™, the space Wy
is equal to the span of ¢(z) for all z € A°. Applying the first comment to
g = Pog| A, it follows that if the linear subspace S5 is a proper subspace
of Fixw (5(A)), then P(Wy) must lie in a proper subset of Fixw (Z(4)),
contradicting the assumption that Wy = W.

2. Since S§ = Fixw (Z(A)), we may choose a finite number of points
z; € A¢ and a finite number of vector fields X; € C*(R™, R™) such that the
set of vectors {P(D¢)z, (Xi(z:))} is a basis for Fixy (32(A)). By continuity,
this basis property holds for y; € A® sufficiently close to z;.

3. In this step our goal is to show that the image of L% [see (3.1)] is onto
S, where the subspace S is defined as

Sg = span {P(D¢)s(X(z))},

for ¢ € A and X € CY(R", R™). Certainly the image of L% is contained in
S4. We prove the reverse inclusion, with the aid of the trace formula (3],
which gives an explicit formula for the projection P defined by

P(o) = 2(1 5 2 o (3.2)

c€T(A)

- Choose points z; € A and vector fields X; € C'(R™, R™) so that {P(D¢);,
(X;(2:))} is a basis for S;. We now show that we may approximate each
vector {P(D¢).,(X;(z))} arbitrarily well by a vector in the image of L%
and, hence by linearity, we have that the image of L contains Sg. For
concreteness, choose the vector P(Dg),, (X1(21)). Let Be(zl) be a small
ball centered at z;. Let X be a vector field such that

X1(z) for z € Be(z1),

1
X(2) = { 1B(A)p(Be(21))
) {0 off of a slightly larger set.

Use the group action of I' to extend X to a I-equivariant vector field
on R™ supported on the balls ¥B¢(z1) (which we can assume are either
disjoint or equal if € is small enough). Then,
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14 = [ Dolx)ds
1
Z \/Be(o'zl) |Z(A)|p(Be(oz1))

ceT(A)

' 1
o] 2 (P alen)

ceT(A)
= P(D¢)., (X1(z1)) by (3.2).

Thus, the image of L‘i equals Sg. Note that in the last equality we needed
to use the fact that p(Be(oz)) = p(Be(z)), which follows from the %(A)-
invariance of SBR measures. See Remark 3.4.

There is an error in (3.3) due to the truncation of the vector field X
‘outside the ball B(z1,¢), which we have ignored for ease of exposition. It
is easy to see that this error can be controlled and we -omit the proof.

4. Recall that S§ equals Fixw (Z(A)). Choose a:basis for ‘Fixw (X(4))
of the form {P(D¢)s, (Xi(z:))} where z; € A® and X; € CY(R™, R"™). We
may assume that the z;’s have disjoint orbits under I' and have trivial
isotropy. Note that if an attractor has one point of trivial isotropy, then it
has a dense subset of points with trivial isotropy.

Now choose a; € A close to z; with trivial isotropy and map T; — 4;
under a [-equivariant diffeomorphism . We now define

Sy = span {P(D@)y() (X ()}
where = € A and X € C*R"™ R™). By our choice of ¥ the sets Sy and
Fixyw (5(A)) are equal. But, as shown in step 3, Sy is the same as the image
of Lf;"l’.
Hence, the image of'L‘ffw is equal to Fixw (Z(A)) which finishes the
proof. "

Q

(Dd)z(X1(z)dp  (3:3)

4.4 Detectives for PDE SYstems

In this section we show that detectives exist in the context of the ergodic
sum method for revealing the symmetry of an attractor A in a PDE system.
The proof of this result involves representing each function U(z,t) with
respect to a basis and then truncating the representation at a high enough
dimension so that I' acts faithfully on the resulting finite-dimensional space.

The Equations and Their Symmetry

We investigate the dynamical behavior of a system of partial differential
equations of the form

8
5V = G(U), | _ (4.1)
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where G is a differential operator and U(z,t) = (U(z,t),...,U™(z,t)) is
a function of spatial coordinates z and time ¢. We consider this system on
a domain {2 C R™ and impose some homogeneous boundary conditions.
There are three types of symmetry for this system that we will consider
here.

(a) The symmetry Dp of the domain Q.
(b) The symmetry of the boundary conditions.
(c) Range symmetries of the operator G.

We now discuss each of these symmetry types in turn. We assume that
the partial differential equation (4.1) is invariant under all symmetries of
the domain and we have denoted this group of symmetries by D,. We
assume that the boundary conditions respect these domain symmetries.
However, depending on the domain and the type of boundary conditions,
there may be additional symmetries for the PDE. For example, when a dif-
ferential operator defined on one space variable has translation symmetry,
then periodic boundary conditions with translation symmetry yield SO(2)
symmetry in (4.1). We combine all of these domain symmetries into the
group I'y. Finally, there are symmetries that act on the range of the dif-
ferential operator. For example, in reaction—diffusion equations there is a
Zo symmetry that appears when the reaction term is itself odd. We denote
the range symmetries by I'. and observe that the actions of the groups I'y
and I'; on (4.1) commute . Hence, the full group of symmetries that we
considerisI' =1, x I'y. ,

More precisely, these domain and range symmetries act on the domain
and range function spaces on which the differential equation is defined. We
now consider these spaces. We assume that an appropriate function space
for (4.1) is a subspace X of L?(Q) and we denote by & the subspace of
elements that satisfy the boundary conditions. This system can be consid-
ered as a dynamical system. There is a continuous one-parameter family of
maps S(t) : Xy — Xp where S(¢)(Up(0)) = Up(t) and Up(t) = U(z, t).

We now consider the action of I" on function spaces. An element v4 € T'y
acts on V € Ay by a coordinate transformation

74V (z) = V(77 ).

On the other hand, the range symmetries of G are symmetry operations
on the components of V. An example for this is the gauge symmetry in
the complez Ginzburg-Landau egquation (see also Example 6.5). We assume
that I'. consists of orthogonal matrices.
The previous discussion shows that it is natural to denote an element
v €I as a pair
7= 7a),




4
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where 7, is acting on the range and -y, is acting on the domain. The action
on V € Xy is explicitly given by

1V (2) = (1 7a)V (&) = 1V (77" 3)-
The symmetry group of a subset A C L?(Q) is defined by
T(A)={yel :vA = A}.
As for isotropy subgroups of points, it is easy to verify that foryel
S(yA) =S4 (4.2)

The Attractor

Definition 4.1. The compact set A C Xy is a PDE attractor if the follow-
ing properties are satisfied:

(a) There is a neighborhood N’ D A such that forallU e N, S(t)U — A.
(b) S(t)AC Aforallt>0.

(c) A has an S(t)-invariant measure p, S(t)|4 is ergodic, and for all Uy
in an open, dense X-symmetric subset N C N and for all continuous
“®: Xy — R we have
1 [T

Jim 7 [ e(s(Uoy = A Bdy.

We call the measure p defined on the PDE attractor A an SBR measure
for A.

Remarks 4.2.

1. Let o € £(A) and assume that A is o PDE attractor with SBR mea-
sure u. Then p is o-invariant. The proof of this is identical to the
proof of the corresponding statement in Remark 3.4

2. If ® is a continuous function then B(oly) = (Up) for all Up € No.
The proof of this also is identical to the proof of the corresponding
statement in Proposition 3.4(b).

3. The four conditions of Definition 4.1 are satisfied whenever there s
an inertial manifold M, conditions (a) and (b) hold and the set A is
a finite-dimensional Aziom A attractor for S(t).

4. By the assumption on Ny C N we give a topological notion of a
“large” or “physically relevant” set to avoid the technical difficulties
associated with Gaussian or Lebesgue measures on infinite dimen-
sional spaces.
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Note that (2) states that the time-average can be symmetric, that is, have
a well-defined “pattern”, even though at each instant of time no symmetry
exists.

The Basis Representation

Assume that the compact group I' acts linearly on X. Let {vk} be a basis
for X. We assume that X D W(I') and that '

X =8V,
where each V,, is a I'-invariant subspace generated by basis functions. (This
basis could be obtained by solving an eigenvalue problem and then V;, would
correspond to a particular eigenspace.) Thus, we may write each vector
U € N in terms of this decomposition as

Ulz,t) = Z ap(t)vg(z). ' (4.3) | ,

k=0

We truncate the series at Vp = @/_V;. There is a natural action of T
on Vp. We choose P large enough so that I' acts faithfully on Vp.

Let IIp be the projection IIp : X — Vp. Then Ilp is I'-equivariant. Let
& : Vp — W be a detective for I'; in particular, we assume that W > W(I)
and that ¢ is a polynomial mapping which is nonzero on the irreducible
subspaces of W (T'). ‘

Theorem 4.3. ¢ollp is a detective for the PDE.

- Proof. For U € Ny we define

1T
K, (4) = Jim = [ 6T,U (@, 0.

This vector lies in W. By Definition 4.1(c), as ¢olIl, is continuous, for all
U € Ny the integral above equals [, ¢oIl,(U)du(U). This integral is easily
seen to be T(A)-invariant by the usual change of variables argument and
Y (A)-invariance of A.

Thus, K27 (A) lies in the fixed-point subspace of ©(A), Fixw (Z(4)).
We want to show that generically it lies in the fixed-point subspace of no
larger subgroup; that is, the observable is a detective. In fact, we show that
for an open dense set of near-identity invertible I'-equivariant transforma-
tions ¥ : Xy — Xp, the observation

T
lim = / $oTL, Tl (, £)dt = / $olL, (Lol ) du(T)
T—oo T 0 A
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has symmetry group S(A). We consider a perturbation ¥ as acting on the

components of the representation of a function U(z,t); that is, if Ul(z,t)
has basis representation

U(z,t) = Y ar(t)ve(2),
k=0

then
af (t)ve(z)-

[]8

TolU(z,t) =

ox

=0

Note that W has been chosen so that W D W(I'). We adopt with lit-
tle modification the following lemma which was used in the proof of the
existence of detectives for the ergodic sum method in the case of maps.

Lemma 4.4. Let ¢ Vp — W be an-observable and assume that W con-
tains W(T). If for each PDE attractor (S (t), A, p, N) there ezists an open
neighborhood O of the identity in the space of invertible T'-equivariant maps
¥ : Vp — Vp such that the observations fA gopollpdy cover an open neigh-
borhood O’ of [, ¢ellpdp in Fixw (3(A)), then ¢ollp is a detective.

Proof. The same proof given in (3] for the case of maps holds in this
context. The only thing to note is that an open set of ¥ : Vp — Vp extends
to an open set of transformations U : Xy — Xy where [Ipo¥W = tollp. B

We return to the proof of the theorem. Let 9; be a one-parameter family
of maps ¥ : Vp — Vp. Define X = Edilt=o ;. We form the linear map

_ 4
Todt

Note that by the Lebesgde—dominated convergence theorem,

L%(X)

/A dosollpdu. | (4.4)

t=0

I3(X) = / (D&)X (TpU)du(D),
A

and it is easy to see that L% (X) lies in Fixw (Z(4)). If we show that L% is
onto Fixw (2(A4)), then as a consequence of the implicit function theorem
and Lemma 4.4, ¢ is a detective.

However, since we have reduced to the finite-dimensional map ¢ : Vp —
W, the same proof given previously holds. Note that this argument uses just
the differentiability of ¢ot and the fact that ¢ is a -equivariant polynomial
map with a nonzero component in each irreducible representation of I’
(which gives Wy = W). Thus, we show in exactly the same manner as
before that, for each element ¥ in an open dense set of T'-equivariant near
identity diffeomorphisms, L% is onto Fixw (X(4)). Hence, ¢ is a detec-
tive. .



92 Michael Dellnitz, Martin Golubitsky, and Matthew Nicol

One interpretation of this fact is that given any basis for Ap for which
the conditions above can be demonstrated to hold and a PDE system with
attractor 4, then for any of an open, dense set of near identity invertible
transformations ¥ : Xy — Xp, the observation

T—c0

T
lim % / SoTlpol (U (z, £))dt (4.5)
i |

has the same symmetries as A for all U € M. Another interpretation is:
Suppose we perturb (S(t), A, N) with flow S(t) where A is an attractor
with basin A by any of an open dense set of invertible I-equivariant 0.
Then we obtain the flow ToS(t)o¥ ™! with attractor ¥(A) and basin ¥(N),
and for these ¥ the symmetry group of our observation on ¥(A) is precisely
Z(A).

4.5 The Karhunen—Loéve Decomposition

We shall briefly outline the Karhunen-Logve decomposition and its basic
properties. For a more detailed discussion the reader is referred to [6, 22].

The idea behind the Karhunen—Logve decomposition can be formulated
as follows. Let us assume that (4.1) has a PDE attractor A, as in Definition
4.1. Suppose that U is a solution to the PDE in a neighborhood of A4; for
example, in a fluid PDE, U will be a velocity field. Then we want to find
a direction ¢; in phase space with ||¢1]| = 1, which has the most kinetic
energy on average; that is, we want to maximize the expression

| (T
= (f / <@1,U<-,t>>2dt> ,

where (-,-) is the usual inner product on L?(Q). Next, we want to find ¢,
with ||@2|| = 1 and orthogonal to ¢;, such that

T
h = (% | @ U(-,t>>2dt>

is maximal. Proceeding inductively this leads to an eigenvalue problem
Kugp = Ao

with a (non-negative and compact) integral operator Ku.
Let us be more precise. For a (bounded) function V : [0,00) — L2 (QF)
we define the temporal ensemble average by
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Let (L2(02))™™ be the m x m matrices with entries in L?(Q?%) and let
L:I2(Q) — (L*(Q*))™™ be defined by

LV)(&1,&2) =V (&) V(&)

where the dot stands for matrix multiplication.
Using this notation we define the kernel K

K(U)(€1,&) = (LU (€1, 62)) -

The kernel K appears to depend on the trajectory U; but, under the as-
sumption that U lies in Ay (see Definition 4.1), it actually only depends
on the attractor defined by the trajectory U. Note that L acts on U by
acting on U(:,t) as a function on Q for each fixed time ¢. For instance, for
the special case m = 2 we obtain

<W@JU%w»W%y%W&JU-
(U261, YU €2, (U6 D026 )

Finally, we define the associated operator Ky by

K({U)(&1,8) = (

<m@m=Lmewwwm

Let 1 be the SBR measure on the PDE attractor A. The following equa-
tion then holds for all continuous functions S : &y — R and for all U € Np:

ww»=£sw.

In particular we have

K(U) = (L)) = /A Cp. (5.1)

Moreover, 4 is invariant with respect to the symmetry transformations in
2(A) (see Remarks 4.2).

Under certain additional assumptions on the underlying invariant mea-
sure u it can be shown (see, e.g. (1, 6, 19, 22, 23]) that Ky is non-negative
and compact. Hence, its eigenfunctions generate a complete orthonormal
set {¢x}. Moreover, the following Karhunen—Loéve decomposition for U
holds almost everywhere with respect to the invariant measure 4 (see (1,

6]):
U(CC, t) = Z ak(t)gbk(a:) . (52)
k=1

One can show (see [6]) that the a) are uncorrelated, i.e.,

(a;ak) = Oik Ak
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where &;. is the Kronecker delta and the Ay are the eigenvalues of the
operator K. If we order the eigenvalues so that

M2 N> 20,

then it can be shown that the Karhunen-Logve decomposition is optimal
in the sense that the first eigenmodes contain the most kinetic energy on
average (for a proof, cf. [6, 22]):

Proposition 5.1. Let {ax(t)} be defined as in (5.2). Let {1x} be an arbi-
trary orthonormal set such that

U(o,0) = 5 b)),

k=1

Then for every n, we have

3
3
3

4.6 Symmetry in the Karhunen-Logve
Decomposition

In the numerical use of the Karhunen—Loéve decomposition one performs
a Galerkin approximation which is based on the eigenfunctions of the op-
erator Ky. Therefore, it is of interest to study the symmetry properties of
the Karhunen—Loéve decomposition.

The main results of this section concern the symmetry properties of
the kernel K (U) (Proposition 6.1) and the operator Ky (Proposition 6.3).
Essentially we show that both of them possess at least the symmetry X(A)
of the underlying PDE attractor A. These results extend those in (7], where
abelian groups are considered.

Although we will prove that the operator Ky has the symmetry Y (A) of
the underlying attractor, we will also see that in certain cases the symmetry
of the Karhunen-Loéve operator does not precisely reflect the symmetry
property of the underlying attractor—Ky might possess more symmetry
(see Example 6.4). This can lead to a choice of a basis for the Galerkin
method which is not optimal. We will illustrate this by an example in
Section 4.9.

Proposition 6.1. Suppose that v = (7,74) € B(4) and U € Ny. Then
NK(U)y = K(7al).
In particular,

v E{U) = KU for all v € B(A); (6.1)
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that is, K(U) is equivariant with respect to the elements in I'y N %(A).

Remark 6.2. There is one immediate but interesting consequence of this
proposition (see also [2]). Suppose that we impose periodic boundary con-
ditions. As indicated above, this implies that I'y contains a p-torus TP
and—under the assumption that T? C ©(A)—Proposition 6.1 states that

K({U)(z,y) =K{U)(z—6,y—0) foralfeT”

Hence, in the case where p is equal to the dimension of the spatial domain,
K(U) is simply a periodic function of z =z —y.

Proposition 6.3. If U € N, then Ky is B(A)-equivariant; that s,
oKy =Kyo  for all o € B(A).

The following example illustrates that the symmetry property of the
operator Ky is not exact in the sense that Ky might possess more than

just Z(A)-symmetry.

Example 6.4. We consider a system of (parabolic) partial differential equa-
tions on the line with periodic boundary conditions, that is, U(z,t) =
U(z +1,t) for all ¢ > 0. Assuming that there is no additional range sym-
metry, the symmetry group of the problem is ' =Ty = SO(2) [or even
O(2) if G does not contain any odd powers of z-derivatives of odd order].
Here 6 € SO(2) acts by

0U(z,t) =U(z —0,1)
and the reflection k € O(2) as
kU(z,t) = U(1 —z,1).

Let A be the w-limit point set of the time series {U(+,%) : 0 <t < oo}
that is,

A=Ng5o{U(:t) 1 t > s}

Suppose that A is an SO(2) symmetric PDE attractor of the system and
that the solution U lies in the set Ap of Definition 4.1. Then by Remark:
6.2 the corresponding kernel K (U) satisfies

K({U)(z,y) =KU)z—0,y—0) forallde SO(2)
and therefore can be written as a periodic function F of z —y

K(U)(=,y) = Flz —y).
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By construction of the kernel, we have
Flz—y)=F(y—z)*.

This implies that for x € O(2),

=F(y —z)
=F(z - y)*
= K(U)(z,y)".

Hence, for a scalar equation, we conclude that the kernel K is invariant not
only with respect to SO(2) but also with respect to O(2). Accordingly, the
~ operator K is not just SO(2) but also O(2)-equivariant, even if the system
is just SO(2) symmetric. |

We give another example in which the Karhunen-Loéve decomposition
fails in the sense that the symmetry of the underlying attractor cannot be
recovered in the related operator K:

Example 6.5. We consider the complex Ginzburg-Landau equation,

U : &°U .
¥ =qz(z+co)5‘£§‘*fPU+(z—P)UlU|2-

- The constants g, co, p are real, whereas U is a complex-valued fpnctioh. .

If we impose periodic boundary conditions, this problem has the range
symmetry S! given by U — €*U and the domain symmetry O(2). In the
literature usually the following kernel is considered (see, e.g.; [19]):

K.(z,y) = (U(x)U([))

in which real and imaginary parts are not correlated separately. Obviously

this kernel is invariant under symmetry transformations in S* and there-
fore it is not possible to distinguish between different range symmetries
of attractors by the symmetry properties of the operator K. Correspond-
ingly, phenomena which are related to the S* symmetry cannot be seen in
a reduced system which is obtained by use of this operator. - B

In the remainder of this section we prove Propositions 6.1 and 6.3.

Lemma 6.6. The kernel K is L(A)-invariant: If U € Ny, then

K(cU) = K(U) foralloc € %(A).

e e ean o se
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Proof. Since cA = A for all o € B(A) we compute using (5.1)
K(oU) = (L(cU))
- / £
A
= Ldp (since p is B(A)-invariant)

oA
=/ Ldp
A
— K(U)

o) du

Proof of Proposition 6.1. We compute

K(U)(m,y) = (Ul ) (U )
= (U (v e)U (g ) )
=7-(U(y3 ') U7z '9)r
= '7T'K('7dU>(z7 y)’?’i'

Using the fact that the elements of I', are orthogonal the result follows
immediately by Lemma 6.6.

We consider next the eigenvalue problem
Kupd=Ap, O€EX. (6.2)

The following result concerns the symmetry properties of the operator
Ky.

Proposition 6.7. Let v € T'. Then for U € No,

Ky =vKuy™t. (6.3)
Proof. Using Proposition 6.1 we compute for v € Ap
()@ = [ KU u)b() &
=7 /Q KU (vg =g v)ndy) dy
= /Q KU (3 z v)vid(vay) dy

:%/QK(U)(ﬂlr,y)(’riﬁc?l)lb(y) dy
= (vKy77'9)(2)
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and the proposition is proved. : |

Corollary 6.8. Suppose that ¢ € Xp, U € Ny and A € C. Then

Kud=XAp <= Kiuuyvd=XI¢ forallyel.

Proof. We set 1 = v¢. Then with (6.3)

Kyuyd = Kyuh = vKuy ' = vKuod = Mo . |

Proof of Proposition 6.3. The proof follows dlrectly from (6.3) since by
Lemma 6.6, K,y = Ky for all o € £(A).

4.7 Finding the Symmetry of an Attractor

In this section we will indicate how detectives can be used to obtain a
Karhunen-Loéve decomposition which generically has the appropriate sym-
metry properties.

~ First let us investigate the rela.tlonshlp between the quantities in the
Karhunen-Logve decomposition and the notion of observables and obser-
vations. A comparison of.Definition 2.1 and (5.1) shows that L can be
viewed as an observable ¢ and, accordingly, the kernel K represents the
observation Kg(A). The observation space W then is just the subspace of
(L2(Q?))™™ given by

{(hij(z, ¥)1gi5<m € (L2(Q))™™ « hij(z,y) = hyi(y, o)}

The open, dense set Ny can be viewed as the set from which solutions U
‘can be expected to be sampled. The pair (7;,7vq) € I' is acting on w € W
a8 4

yw =7 (Yaw) s -

In this notation it can be seen that Proposition 6.1 just states the result
mentioned in Section 4.2: the observation carries at least the symmetry of
the set A.

As pointed out previously, the Karhunen~Logve decomposition is useful
when analyzing the dynamical behavior of a PDE as it approximates the
dynamics by a low-dimensional ODE (cf. [16]). On the other hand, the
discussion in Section 4.6 has shown that this method cannot be used for
the detection of the symmetry type L(A) of an attractor. The symmetry of
the operator K might not exactly reflect the symmetry of the underlying
PDE attractor (see Example 6.4) and, as a consequence, the reduced system
might not possess the correct symmetry. In other words, the observable £
cannot always be a detective.
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One way to overcome this difficulty is to consider detectives for the dy-
namical system that is used in the numerical simulation of the underlying
PDE. Using finite-difference schemes, we always end up having a finite
symmetry group acting on a finite-dimensional space so that the results
of Sections 4.2 and 4.3 can be applied. Moreover, those approximating dy-
namical systems always have the form of coupled oscillators with a certain
symmetry. The difficulty with this approach is that the symmetry group
then depends on the discretization.

For instance, for a system of PDEs on the line with periodic boundary
conditions we obtain after the discretization a system of coupled oscillators
with Dp-symmetry, where p is the number of points on the line used in the
discretization. These are systems of the form

ijf(zj—hzjvzj-i-hk)’ (lewyp)y (71)

where z; € R™ and f(a,b,¢, A) = f(c,b,a,A) for all a,b,c € R™. In the
following theorem a detective for such dynamical systems is presented.

Theorem 7.1 ([3]). Assume that the number of cells p is at least three
and the number of equations governing each cell m 1is at least two. Then
the mapping

p(z) =z 2" (7.2)

15 a detective.

Observe that in the discretized version of the PDE the kernel K(U) of
the Karhunen—Logve decomposition is precisely of the type (7.2). Hence, in
the discretized problem, this kernel is a detective if and only if the number
of PDEs in the system is greater than or equal to two—assuming that at
least three spatial points are taken into account for the discretization. In
fact, this also explains why the Karhunen-Loéve decomposition does not
distinguish between SO(2) and O(2) symmetry in Example 6.4. In the case
of a scalar PDE on the line, the number of equations m governing each cell
in the discretization is one, which is not sufficient by Theorem 7.1.

Tnstead of (7.2), let us consider the observable (z, ©(2))t - (2, (z)) with
an equivariant polynomial function ¢. We can view this construction as an
artificial introduction of a second component in the oscillator and in the
observable. By Theorem 7.1 we know that this extended observable is a
detective—even in the case where m = l—as long as ¢ is nontrivial. In
particular, we may choose ¢ to be the right-hand side in (7.1), that is, we
additionally consider correlations of z with its derivative 2.

These considerations suggest that in the PDE we should enlarge the
observable £ in the following way. Instead of just considering the time
series of U one has to consider the pair (U, U;) and to redefine L by

LV (En &) = (VIED, Val€D)t - (V(E2), Val&2))
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<v<§1>V<§2> v<§1>vt<§z>> |
Vi(6)V(&2) Vi(&)Ve(é2)
Then SO(2) and O(2) can be distinguished by the symmetry properties of

the corresponding operator K.. To see this we first observe that, whenever
SO(2) is contained in 3(A), then also the extended kernel K. has to have

the form _
Fi(z—y) Falz—y)
Foly—z) Fs(z—y)

with periodic functions F;, j = 1,2, 3 (see Remark 6.2).

Differentiation of U(z,t)U(y,t) with respect to t and averaging shows
that

K (U)(z,y) = (

Fale - y) = Ula, Wilw, ) = ~(Ve(z, W (5, ) = ~Faly - ).
In particular, for F to possess O(2) symmetry we must have

Falz —y) = Fo2m —z ~ (27 — 1))
= Fa(y — x)
= -—.7:2(33 - y),

i.e., F, vanishes identically. Here we have assumed that the reflection in
O(2) is acting by z — 27 — z.

The following example illustrates that, as expected, SO(2) symmetry
alone does not imply that 72 has to vanish:

Example 7.2. Assume.that U(z,t) = w(z—t) defines the SO(2) symmetric
attractor. Then the modified kernel K. becomes '

(w(z —tuly—1)  (~w(z— &)y —1)
K. (U)(z,y) = .
(0)9) (<—w’(m—t>w<y—t>> <w'<z—t>w'<y—t>>>

Since, in general,
(w(z —t)w'(y — 1)) #0

we can conclude that in that case K.(U)(z,y) is not O(2)-invariant.

We will illustrate the usefulness of the extension of the kernel in Section
4.9 where we compute the symmetry types of attractors in the Kuramoto-
Stvashinsky equation.

Remark 7.3. Observe that Zg-symmetry and Dy-symmetry of an attrac-
tor are distinguished by the standard Karhunen-Loéve decomposition, even
in the case of a scalar equation: discrete cyclic symmetry does not auto-
matically lead to dihedral symmetry of the operator Ky .
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The reason for this is related to the discussion surrounding Theorem 7.1.
In the Z,-symmetric case, a k-dimensional observable would fail, since this
would correspond to a coupled oscillator where each cell is governed by one
equation. But the Karhunen—Loéve kernel provides an infinite-dimensional
observation and the (infinitely many) additional components again can be
viewed as an extension of a k-dimensional observable.

4.8 The Reduced System and Its Symmetry

Tn applications, it is useful to employ the eigenfunctions ¢; of Ky (the
Karhunen-Logve operator) in a Galerkin method. This approach provides
a reasonable approximation to the dynamical behavior of (4.1), though no
rigorous estimates stating the accuracy of this approximation are known. In
this section we investigate the symmetry properties of the reduced system
which is obtained by this Galerkin method. .
We will assume that in the decomposition (5.2) the eigenfunctions ¢; are
ordered according to the magnitude of their eigenvalues A;, that is,

AL 2 A2 220,

We make the Galerkin ansatz
M
Ul(z,t) ~ Z ax(t)dr(z) ,
k=1

and solve the equations

M M
(¢j,zak(t)¢k ~-G <Z ak(t)qbk).) =0, j=1,...,M, (81)
k=1 k=1 | )

where (-, -) denotes the T-invariant inner product on L?(Q). This is an M-
dimensional system of ordinary differential equations which we will refer to
as the reduced system.
From now on we additionally assume that M is chosen in such a way
that
Ava1 < Aus - : (8.2)

Then we can rewrite (8.1) in a coordinate-free manner. Let X = (¢1,.. .,
éar). Since the operator Ky is %(A)-equivariant (cf. Proposition 6.3), we
may decompose X into irreducible subspaces

N
X=X,
j=0
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Let II; : X — X, be a projection. According to the decomposition of X
we denote £ € X by z = z¢ + -+ + zn. Then (8.1) is equivalent to

N
Hj <Z bk(t)mk - G(bg(t)mo +oo T bN(t)xN)) =0, 7=0,...,N.
k=0
(8.3)

Proposition 8.1. The reduced dynamical system (8.3) is £(A)-equivariant.

Proof. Using the ©(A)-invariance of X; and the I'-equivariance of G we
compute for o € L(A)

O’HjG(bo(t)Zlo 4k bN(t)QZN) = HjO’G(bo(t)IEQ + -+ bN(t)fL'N)
= HjG(O’(bo(f)mo + et bN(t):L‘N))
=IL,G(bo(t)ozo + - - - + bn(t)oTN).

Remark 8.2. With Proposition 8.1 we generalize a result in [2] concern-
“ing the symmetry of a reduced system. There the authors considered the -
specific case of the Kuramoto-Sivashinsky equation.

We already know that for a range of parameter values there might exist
simultaneously different attractors in the dynamical system (4.1) which are
related by symmetry, that is, which are lying on the .same group orbit of I’
and are conjugate to each other. However, during the process of collecting
data for the approximation of the eigenfunctions ¢ of Ky we always stay
in one of those conjugate attractors.

Proposition 8.3. The reduced system (8.1) does not depend on the specific
choice of the attractor on the group orbit T'A of attractors.

Proof. For v € T we write

where the 1 are eigenfunctions of X.,7. By Corollary 6.8 and (8.2) we may
assume that 1, = v¢x. By writing down the reduced system (8.1) for vU
the result immediately follows since G is I'-equivariant and since the inner
product on L?(Q) is [-invariant. ' -

It is immediate from Proposition 6.3 that eigenspaces of the eigenvalue
problem (6.2) are ©(A)-invariant. Therefore, the I action on L*({2) induces
naturally a $(A) action on the reduced system (8.1). To identify this action
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we define the representation of %(A) on C™ by 0 = (Chj)kj=1,mes M where
on {¢ktk=1,.,M

M
opr =Y Crid;-
j=1
In coordinates, this is the action for which (8.1) is B(A)-equivariant.

Remark 8.4. As expected by Proposition 8.3 the transformation matrices
(ck;) induced by the T(A) action on {¢x} are the same as the transforma-
tion matrices induced by the ¥4 action on {~¢r}. To verify this, simply
use (4.2). _

Let us assume that we want to collect data numerically (for the compu-
tation of the kernel K(U)) at a specific parameter value where we know
the symmetry ©(A) of the attractor A, for example, through the use of a
detective. Then we know by Proposition. 6.3 that the corresponding oper-
ator Ky is B(A)-equivariant. But the numerical procedure will, in general,
lead to an approximation Ny of the operator Ky which just approximately
possesses this symmetry property. We would expect Ny to be “almost”
3}(A)-equivariant. '

We regain the 5 (A)-symmetry in this finite approximation by symmetriz-
ing the operator Ay; that is, we define

py
and consider the % (A)-symmetric eigenvalue problem
NFp=Xp, ¢€Xo.
Now we can use the Z(A)—symmetry and finally obtain a %(A)-equivariant
reduced system (8.1) for the approximation of solutions of (4.1).

Observe that the numerical effort for computing the operators Ny is
negligible. We simply make use of the relation (6.3).

4.9 FExample
The Kuramoto—Sivashinsky equation can be written as (see, e.g., (14])
1
Us + 4Uzgzz + <Un + §(Um)2> =0.

We impose periodic boundary conditions, i.e.,

U(z,t) =Ulz +2m,t) for all t € R.
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Hence, the symmetry group of the problem is I' = O(2). A very impressive
numerical work has been performed in [14], where the authors varied «
between 0 and about 300. We will focus our attention on a small range
in parameter space where very complicated dynamics have been found.
Namely, we will focus on the region between o = 89 and o = 93 in [14],
Figure 3. We denote by as and o two parameter values inside this region
and indicate the corresponding temporal behavior in Figure 2. Even if
we were looking at the solutions for a longer period of time, it would be
impossible to read off symmetry types of the corresponding attractors.

We computed the standard kernel K for both of the parameter values and
the result is shown in Figure 3. Their symmetry type reflects the fact that
the two attractors have at least SO(2) symmetry. If we want to find out
whether there is additionally an O(2) symmetry we have to check whether
or not

({U(z,)U:(y,")) =0

In Table 1 we present numerical computations of the L? norm of
(U(z,-) Usly,-)) for the two different parameter values. '

TABLE 1. The L? norms of F2.

a | Norm of (U(z,)Ui(y, "))
s 120.76

The jump in the norm indicates that for @ = co the attractor has O(2)
symmetry, whereas for & = ag the attractor is just SO(2) symmetric. Thus,
there is a symmetry increasing bifurcation between ag and ao (10}, [12].

" Finally, in Table 2, we illustrate how the distribution -of energy over the
eigenfunctions changes as « is varied. In particular, the significant increase

in energy in the third mode is remarkable, indicating that this mode has

become much more important after symmetry creation.

TABLE 2. Epergies of the modes before and after the symmetry creation.

Energy for
Mode No. ag Qo
1 0.581 | 0.500
2 0.228 | 0.195
3 0.097 | 0.183
4 0.073 | 0.091
5 0.011 | 0.020
6 0.008 | 0.008
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Temporal behavior for alpha = alpha_O

Temporal behavior for alpha = alpha_S
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FIGURE 2. The temporal behavior of the solution for the paramneter values

as and (b) ao.
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FIGURE 3. The standard kernel of the solution for the parameter values (a) as
and (b) ao together with a contour plot. '
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