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Let 2 be a manifold and X, Yr , Ya equidimensional submanifolds, 
all intersecting at 0 E X. Y, and Yz are said to be contact eqil&.~lent 
(r&A respect to X) at 0 if there exists a germ of diffeomorphism 
f: (2, 0) + (Z, 0) mapping X into X and Yr into Yz . The notion of 
contact equivalence is due to John Mather and plays an important role 
in his theory of singularities of differentiable mappings. This paper has 
to do with a slightly modified notion of contact equivalence, namely Z is 
assumed to be a symplectic manifold; X, Y, and Yz are assumed to be 
Lagrangian submanifolds, and f is assumed to be a germ of a symplectic 
diffeomorphism. Our main theorem (Proposition 3.2) states that two 
Lagrangian submanifolds have the same contact with a third if certain 
algebraic data of contact (a local ring and a distinguished element) are 
isomorphic. This is reminiscent of a theorem of Mather [6, Section 2.21 
for ordinary contact equivalence which, for motivational purposes we 
describe in Section 2. The proof of Proposition 3.2 requires some 
results from symplectic geometry which we describe in Section 1. In 
Section 4 we exploit the fact that to each function 4 on a manifold X 
there is an associated Lagrangian submanifold, namely graph 4, in 
T*X to reformulate in symplectic form a theorem about right equiv- 
alence due to Tougeron [8, p. 2091. 

In the last section we give some examples to show that the algebraic 
criteria for contact equivalence given in Section 3 can not be weakened. 
To conclude we note that this paper had its origins in an attempt 
(unsuccessful) on our part to find a simple formula for the order of the 
caustic associated to a (germ of a) Lagrangian manifold (A, A) C T*X 
(see [l, Definition 1.6.11). Th e results here show that this number is a 
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contact invariant of A and the fiber of the cotangent bundle passing 
through A. 

The authors are indebted to Bertram Kostant and Shlomo Sternberg 
for allowing them to use the material in Section 1. We are also grateful 
to Alan Weinstein for informing us that Proposition 3.2 was proved 
independently (unpublished) by Enrique Planchart and for calling our 
attention to the results of Gromoll-Meyer and Nagano mentioned below. 

1. SYMPLECTIC STRUCTURES IN THE NEIGHBORHOOD OF 
LAGRANGIAN MANIFOLDS 

Let 2 be a symplectic manifold with 2-form Qz = Q and X a 
Lagrangian submanifold of 2. For a proof of the following we refer the 
reader to [9]. 

THEOREM 1.1 (Kostant-Weinstein). There exists a nghd M of X in 2, 
a nghd N of the zero section, X, in T*X and a symplectic difleomorphism: 
M g N mapping X onto X as the identity. 

See [9, pg. 333, Theorem 4.11. 
We will call a diffeomorphism of the type described in the theorem 

a cotangent bundle structure on M. On T*X there is a canonical one-form 
C & dx, . The pullback of this to M will be called the one-form associated 
with the cotangent bundle structure. Note that this form, call it LY, has the 
following two properties: 

(4 ff -0 

(b) d: z L?z . 

when pE X, 
(1.2) 

We will show that there is a one-to-one correspondence between 
one-forms with the two above properties and cotangent bundle structures. 
More precisely: 

THEOREM 1.3. Let (Y be a one-form with domain of definition a nghd 
of X in Z and with properties (a) and (b). Then there exists a tubular 
subnhgd M of X in 2, a nghd N of the zero section, X, in T*X and a 
unique vector bundle isomorphism f: (M, X) s (N, X) such that f is the 
identity on X and 01 = f *a ,, , (~0 being the canonical one form on T*X. 

This theorem is due to Kostant and Sternberg (unpublished). A result 
similar to it is stated by T. Nagano in [7]. We will give a brief sketch 
of the proof. 
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LEMMA 1.4. Let (V, Q,) be a 2n-dimensional sympkctic vector space, 
WaL.agrangianeub@ace,andA:V + V a linear map with the properties 

(i) A 1 W = 0, 

(ii) G$(Ao, w) + f&(0, Aw) = Sas(v, w), 0, w  E V. 

Then there is a Lagrangian complement w’ of W invariant under A such 
that A 1 w’ is the identity. 

Proof. For w  E IV, Gs(Av, w) = @(v, ru); so, because of the non- 
degeneracy of 0s , A induces the identity map on V/W. Therefore, the 
generalized eigenspace of A associated with the eigenvalue 1 is exactly 
n dimensional. (It can’t be more than n-dimensional since A = 0 on IV.) 
Call this generalized eigenspace IV. Since A = identity on V/W, 
A = identity on IV’; so for vi, o, E IV’, 2A&(v,, v,) = B,(er, , va) 
by (ii); so &,(vr , vs) = 0. Q.E.D. 

Now let a be a one form on 2 satisfying the hypotheses (1.2). Let & 
be the vector field defined by the equation 

By (a) of (1.2) E.(p) = 0 when p E X. From (1.5) we get 

Now apply the lemma. with p E X, V = T,J, IV = T,X, and A = the 
linear part of & at p. By the lemma there exists a complementry 
Lagrangian space to TpX in TPZ on which the linear map A is 
“expanding” i.e. the real parts of its eigenvalues are > 0. (In fact they 
are all 1 by the lemma.) By a theorem of Hirsch, Pugh, and Shub on 
hyperbolic fixed point sets of flows (see [4]) there exists a tubular 
nghd, M, of X in 2 and a (unique) fibration of M, MA X, such that 
X c-* M 5 X is the identity and S, is tangent to the fibers. This 
fibration is our candidate for the “cotangent bundle” associated with a. 
To show that it is indeed the cotangent bundle we make use of an 
observation of Weinstein. (See [9, Theorem 7.71.) 

THEOREM 1.6. Lat Z be a sympkctic manifold and v: Z + X a 
j?htion whose jibers are Lakangian submaafolds of 2. Then each fiber 
possesses a canonical trivi&zation of its tangent bundle. 
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Proof. Let F, be the fiber above x and let x E F, . Let V, be the 
tangent space to F, at x and let V,l be the annihilator of V, in T,*. 
Then (d7~,)*: T,* -+ T,* maps T,* isomorphically onto V,J-. Since 
F, is Lagrangian the form Qz gives us an isomorphism between V, and 
V,J- so we get a canonical map V, E Tz*, i.e., the tangent bundle of the 
fiber possesses a canonical trivialization. Q.E.D. 

Now suppose there exists a section u: X -+ 2 such that the image of u 
is a Lagrangian submanifold of 2. Since V,,lz. is a complementary 
Lagrangian space to (du)( T,) in T,,(,) we can canonically identify it with 
T,*X. On the other hand the connection on F, defined by Theorem 1.6 
supplies us with an “exp” map at u(x): 

Thus we get a diffeomorphism between a tubular nghd of u(X) in 2 and 
a tubular nghd of the zero section in T*X. 

To apply this discussion to the fibration constructed above we have 
to show that the fibers, F, , are Lagrangian manifolds. To do this let 
a1 be the flow associated with & . Since 9&G = Sz, @,*52 = etSZ 
while, for a vector tangent to the “unstable manifold” F, at z E F, , 
I(&,), 21 1 = O(el). Therefore for two such vectors 

CDt*Q(w, w) = eQ(w, w) = Q(d@,(o), dat(w)) = O(ezt) 

implying 52(v, m) = 0. This concludes our proof of Theorem 1.3. 
One consequence of the theorem is the following. 

COROLLARY 1.7. Let a! and /3 be one-forms satisfying (1.2). Then there 
exists a symplectic dzyeomorphism p: (2, X) ---t (2, X) such that p = 
identity on X and p*/3 = 01. 

2. CONTACT EQUIVALENCE VIA THE GROUP OF DIFFEOMORPHISMS 

In this section we review some results of John Mather on contact 
equivalence. The reader is refered to VII, Section 3 of [2] for a more 
leisurely exposition of this material. 

Let 2 be a manifold with X and A equidimensional submanifolds. 
Let p be in A n X. Consider germs of functions on Z near p which 
vanish to kth order on A. The restrictions of these functions to X forms 
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an ideal .9&X, A) in CPa(X) (germs of smooth functions on X near p); 
Define 

%(X9 A) = C,~(X)/#,(X, A) = local risg of contact of n with X (to order A).’ 

(2*1) 

The corresponding geometric notion is the following: let X, 4, , and 
da be equidimensional submanifolds of 2 with p in X n II, n /l, . Then 
A, and A, have the same contact with X if there exists a germ of a 
diffeomorphism f: (2, p) ---, (2, p) such that f 1 X = id, (near p) and 

f(4) = 4 (near PI. 
This notion and the following proposition are essentially due to 

Mather. See [6, Section 2.21. 

PROPOSITION 2.1. A, and A, have the same contact with X at p ;f 

-%(X, 4 = %(X9 4). 

The necessity of this condition is clear. We sketch a proof of the 
sufficiency. Choose coordinates x1 ,..., xk on X at p and a tubular 
neighborhood U = UP x llV of X near p so that X is identified with 
Rk x (0) and p with 0. Do this so that II, and II, intersect {0} x RI 
transversely. Then locally we can write II = graph b, where b, , b,: 
X --+ LFP are smooth functions. Let y1 ,..., yr be coordinates on Iwr and let 
b, = (zq,..., bj) in these coordinates. The functions JJ~ - b,+) vanish on 
d,forj = l,..., I so that Yr(X, 113 3 (bli,..., bf). An elementary argument 
shows equality; so 9,(X, A,) = C,“~(X)/(ZJ,~,..., ZJ:). The hypothesis that 
9,(X, Al) = W,(X, As) implies that the ideals (ZJ~ ,..., b:) = (bi8 ,..., b,2). 
Thus there exist smooth functions g,, and he,, where 1 < OL, /3, y < I so 
that 

b,l = i g&2 and b,z = i h&l. 
B-1 y-1 

Let G and H be the matrices (gaB) and (he,,). It is not hard to show that 
G and H can be chosen so that for all + near p, G(x) and H(x) are 
invertible. Now define f: U -+ U by f(x, y) = H(x) y. Then f is a 
diffeomorphism; since f is linear on fibers of U over X, f ) X = id, ; 
and f is constructed so that f(/l,) = A,. So A, has the same contact 
WithXatpasAs. 

Geometrically there is good reason to want to replace the above 
definition of contact equivalence by a slightly weaker definition. We will 
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say that A, and A, have the same contact with X at p in the generalized 
se7tse if there is a germ of diffeomorphsim f: (2, p) -+ (2, p) such that 
f(Ar) = A, and f(X) = X ( ra th er than f 1 X = id,). Using this 
definition, if A, and A, have the same contact with X at p then 9,(X, Ai) 
is isomorphic to 9&(X, Aa), the isomorphism being induced by the 
pullback map f * where f *z,b = a,4 of for # in Cpm(X). The converse is 
more difficult. It is not true that every isomorphism of 9,(X, A,) into 
9,(X, A,) is realizable as the isomorphism induced by the pullback 
mapping f * of some diffeomorphism f. On the other hand, if 
dim 9&(X, Ai) < co, i = 1,2 then it is not hard to see that such a 
realization is possible. Given such an f, the proof of Proposition 2.2 
sketched above goes through in this case also, and we have the following. 

DEFINITION 2.3. A has $nite order of contact with X at p if 
dim, .%?i(X, A) < oz. 

PROPOSITION 2.4. Let A, and A, have jinite order of contact with X 
at p. Then A, and A, have the same ‘contact with X at p (in the generalized 
sense) if and only if 9,(X, AI) s L&(X, AJ. 

Remark. To indicate what this finiteness hypothesis means, we 
mention the following result. If A has finite order of contact with X at p, 
then p is an isolated point of intersection of A with X. 

It is natural to consider contact equivalence for restricted classes of 
submanifolds under pseudogroups other than the pseudogroup of all 
local diffeomorphisms. In the following section we consider the equiv- 
alence problem for Lagrangian submanifolds of symplectic manifolds 
with the pseudogroup being the pseudogroup of all local symplectic 
diffeomorphisms. 

3. CONTACT EQUIVALENCE FOR THE SYMPLECTIC GROUP 

Let 2 be a symplectic manifold and X and A Lagrangian submanifolds 
tangent at 0 in 2. We will show that there is an element u E 9, = 
9,(X, A) naturally associated with A. This element is not uniquely 
defined but it is uniquely defined up to an automorphism of &?‘a . We 
denote the automorphism class by 6 and call the pair (W, , 6) the 
symplectic contact data at 0 associated with A. To define u we choose a 
cotangent bundle structure on a neighborhood M of X in Z so that 
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M = T*X, and A = graph # for some function 4 on X. It is easy to 
see that 

@f = co=w/(~ ,a.., $) 
1 n 

Now let u be the image of + in as. We will prove that u is well 
defined up to an automorphism of Ws . Suppose we choose another 
cotangent bundle structure. Let u and b be the canonical one forms 
associated with the two cotangent bundle structures. Then OL = fi = 0 
on X and CY - /I is closed, so near X, (Y - p = dH for some H which 
vanishes to second order on X. Now let k,: X + X be the diffeo- 
morphism obtained by going from X to A via the OL cotangent bundle 
structure then from /l to X using the /.I structure. If A = graph #, in 
the c1 structure and A = graph d&, in the /I structure then we claim: 

LEMMA 3.1. 

when? (in the a cotangmt CooYd) H = z k*,(x, f) &k; . 

Roof. Let & (resp. r&,) be the lii of +a (resp. &) to A using the CY 
(resp. fl) structure. Note that the restriction of OL to 4 is closed since A 
is a Lagrangian submanifold and that Q = d+= on A. Similarly for p. 
Since t9 - or=dHwehavethat&=&+HonA.Nowlet~beinA 
and let pI1 and pe be the projections of p into X using the u and fi cotangent 
bundle structures respectively. Then 

which in view of the definition ‘of & is the assertion above. Q.E.D. 

By differentiating the equation above one sees that k& maps the ideal 
of functions (+,/ax, ,..., %&/ax,) into the ideal (+,/ax, ,..., +,/ax,,). 
But these ideals are identical, i.e., identical with the ideal 3,(X, A); so 
KzB induces an automorphism in Ws carrying c+, , the representative of 
$B,‘in Ws onto 0, , the representative of 4. . 

. 
Q.E.D. 

Let A and A’ be Lagrangian manifolds that are tangent to X at 0, 
and let (Ea, , u) and (as’, u’) be their contact data. We will show that if A 
and A’ are contact equivalent via a symplectic ditkomorphism then their 
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contact data are isomorphic; i.e., there exists a ring isomorphism 
y: 9s z 9,’ with y(a) = 4. In fact, let p: 2 + 2 be a symplectic 
diffeomorphism leaving X fixed and carrying A into A’. If, for some 
cotangent bundle structure, p = df 6 where f: X ---t X is a diffeo- 
morphism, then the symplectic data are isomorphic via the pullback 
isomorphism f *. Therefore, we can assume p is the identity on X. 
Now let 01 be a one-form defining a cotangent bundle structure on a 
tubular nghd of X and let A = graph d$ in this cotangent bundle 
structure. Then A’ = graph d# in the cotangent bundle structure 
associated with (p-l)* LY. 

Our main result is that, in certain cases, the converse is true. 

PROPOSITION 3.2. Let A and A’ be Lagrangian submanifolds of Z 
tangent to X at 0. Suppose A and A’ have Jinite order of contact with 
X at 0. Suppose that their contact data are isomorphic, i.e., (9& , u) g 
(9Yz’, 0’). Then A and A’ are contact equivalent. 

Proof. Since dim G%$ < co any automorphism between &!a and .%?a’ 
can be realized by a diffeomorphism of X which in turn can be extended 
to a symplectic diffeomorphism of 2 so we can assume, choosing a 
cotangent bundle structure on 2 (i.e., 2 = T*X), that A is defined as 
graph d4 and A’ as graph d+’ where 

since 5&’ = W, and 4’ mod g2 . 
Let 01 be the one form associated with the above cotangent bundle 

structure and define the function H on Z = T*X by H(x, 5) = 
C hij(x) &&. Now let /I = 01 + dH. Let Ras be the diffeomorphism 
obtained by going from X to A via the 01 cotangent bundle structure and 
then from A to X via the /3 structure (note: there is no problem of /3 
being a “graph” in the /3 structure because in both structures X is the 
zero section and A is tangent to X at 0.) By Lemma 3.1 

where & and 4 = q& are the functions associated with A in the /I and (Y 
cotangent bundle structures respectively. 

Now let p: 2 + 2 be a symplectic mapping carrying j3 to (Y (/I = plop) 
and mapping X to X as the identity. Then & is also the defining function 
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on X for the Lagrangian manifold p(A) using the OL cotangent bundle 
structure. Finally if T.+: Z --t 2 is the map obtained by regarding Z as 
T*X via the 01 cotangent bundle structure and inducing from k,,: X + X, 
then #’ = &$,I$~ is the function on X associated with (Tag 0 p) (A) in the 
01 cotangent bundle structure, i.e., (TV 0 p) (A) = graph &’ (“graph” 
means with respect to the (Y cotangent structure). But by assumption 
A’ = graph d+’ so T,~ o p maps A to A’. Q.E.D. 

In the next section we will investigate what contact equivalence with 
respect to the symplectic group means when the Lagrangian sub- 
manifolds are graph d$ and graph d# in T*X. 

4. RIGHT EQUIVALENCE 

Let 4 and $ be germs of Cm functions at 0 in X with b(O) = #(O) = 
d+(O) = u!+(O) = 0. Then 4 and $I are right equivalent if R/ = 4 *f where 
f: (X, 0) + (X, 0) is the germ of a diffeomorphism. In this section we will 
show that the problem of right equivalence for functions can be reduced 
to a problem of contact equivalence in symplectic geometry, thus 
recovering a result due to Tougeron [8, p. 2091. 

Given a germ+ in Cam(X), let 4 be the ideal of first partials in C,,W(X); 
i.e., Y* = (a+/ax, ,..., &j/&r,). Let 334) = Cam(X)/@ and let 4 be the 
image of 4 in this local ring. We say that 4 satisfies the Milnor Condition 
if dim, L%,(4) < co. 

PROPOSITION 4.1. Let 4 and 4 be germs of functions at 0 in X satisfying 
the Milnor condition with 4(O) = $(O) = e(O) = d+(O) = 0. Then 4 
and 1+5 are right equivalent if 

(1) The rank and signature of the Hessians da+(O) and dv(O) are 
equal, and 

(2) There is an z&morphism y: W,(4) + W,(4) such that r(d;) = 4. 

The necessity is obvious. To prove the sufficiency we first make one 
reduction; namely we may assume that the Hessians da+(O) = d+,G(O) = 0. 
To see this we use the “relative Morse lemma” proved by Hormander 
[5, p. 1381 and G romoll and Meyers [3, p. 3621. Let k = signature of 
d%+(O) and I = rank of S+(O). Then there exist coordinates x1 ,..., x, 
on X at 0 so that 
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where d2#‘(0) = 0. Similarly for I/ in some coordinate system yr ,..., yn . 
Thus 4 og(x) = -(xl2 + ... + xk2) + x;+r + ... + ~12 + #‘(xr+r ,..., x,J 
where g is the change of coordinates from x to y. So 4 and z/ are right 
equivalent if 4’ and 4’ are right equivalent. Note that the isomorphism y 
induces an isomorphism 7’: a,(+‘) + W,(#‘) such that r(p) = $. 

Note. W,($) may b e used to recover the rank of d2$(0) (using the 
relative Morse lemma, for example) but cannot be used to recover the 
signature of d2#(0). Consider I$ = x12 + x22 and # = x12 - x22. 

The following is sufficient to prove Proposition 4.1. 

PROPOSITION 4.2. Let 4 and # be germs of smooth functions at 0 in X 
with 4(O) = +(O) = d$(O) = d+(O) = d2$(0) = d2#(0) = 0. Then 4 and 
1+3 are right equivalent ;sf graph d+ and graph d# have the same contact with 
the O-section in T*X with respect to the symplectic group. 

Proof of 4.1. Since 4 and $ satisfy the Milnor condition, graph d+ and 
graph d$ have finite order of contact with the O-section at 0; and since 
d2$(0) = d2$(0) = 0, graph a!# and graph d# are tangent at 0. Thus we 
may apply Proposition 3.2. 

The proof which we shall give of Proposition 4.2 (and which we 
include here for completeness sake) is contained in Tougeron [8, p. 2091 
and Weinstein [ 10, Appendix]. 

Proof of 4.2. The necessity is obvious; so we just consider the 
sufficiency. Conjugating if necessary by a diffeomorphism of X we can 
assume (by Lemma 3.1) that 

$=d +Chijg$$* (4.3) 
3 

Let 

+t =d +tzhijg$* (4.4) 
3 

We will prove that there exists a germ of a diffeomorphism 
fi: (X, 0) + (X, 0) depending smoothly on t such that 

ft*A = d forall O<t<l. (4.5) 

Evaluating at t = 1 proves the proposition. Suppose that fr exists. 
Then differentiating (4.5) with respect to t yields 

do-t> + c 2 M)ft” = 0 (4.6) 
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where the dots indicate differentiation with respect to t and 
ff = (f>,...,fp) in coordinates. 

Evaluate (4.6) atftl to obtain 

h + c -$ft’(fT’) = 0. (4.6’) 

If we set 

4% t) = ft(f3, 

then the expression (4.6’) becomes 

Now note that (4.7) can be written as a system of ODE’s 

ft = wi(f$,...,fta, t) for 1 < i < n 

with initial data fod = x, . Thus if we can solve (4.8) for w~(x, t) with 
WC@, t) = 0, then this system can be solved forff on some nbhd of 0 in 
X and all t with 0 < t < 1. With this f we get (d/&) ff*+r = 0, so 
ft*h =fo*A = 4. 

We now return to (4.4) in order to find the wls needed for (4.8). 
Differentiating (4.4) with respect to t yields 

(4.9) 

so ir is in the ideal generated by +/ax, ,..., +/ax,, . 
We claim that this ideal is identical with the ideal generated by 

ahlax, ,..., wa3c, . In fact differentiate (4.4) with respect to xr to get 

*t -=*+t~[*&$+ul,&~ ax, 8~~ 1 (4.10) 

and set 

to obtain 

2- =~+t~a~,~=~,(6u+ta~,)~. (4.10’) 
I J-1 ’ 1-l f 
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Note that av(0) = 0 since the first and second derivatives of 4 vanish at 0; 
so for x near 0 the matrix (6, + taU) is invertible. Now we can write 

dJ$- = C bzi(x, t) +$- for 0 < t < 1. 

with b,(O, t) being the identity matrix. This proves the claim. 
Now substituting (4.11) into (4.9) yields 

(4.12) 

so defining 

%(x, t) = -1 h&) 2: b,, 
3 

yields (4.8). Note that ~~(0, t) = 0 since (+/ax,)(O) = 0. Q.E.D. 

5. EXAMPLES 

We now wish to give some examples to show that all of the conditions 
in Proposition 4.1 are necessary. 

(I) Let+(x, y) = x5 + Gy2 + y5. S ince 4 has an isolated singularity 
at 0, dimw W,(4) < co, so Proposition 4.1 applies. By a power series 
matching argument one can show that 44 = ~(a$/&) + b(i+/ay) has no 
smooth solution; so 6 # 0 in .G?r(+). Let #(x, y) = 4(x, y( 1 + x)); by 
construction + is right equivalent to z,k A calculation shows that 
# #$mod4. Thus in Proposition 4.1 one needs to assume 

92w 5% 92074 not just W,(4) = .!Z2(#) since the constructed 
isomorphism is induced by f(x, y) = (x, y(1 + x)) and f * does not 
induce the identity isomorphism on k&(#). Also 1/1 # + mod Y+2 (since 
4 # + mod Y&); so one must consider orbits of 4 in &?s(+). 

(II) Let $(x, y) = x4 + y4 and $(x, y) = x4 - y4. Clearly W,(4) = 
a,($) and dims &3J1(#) < co so that Proposition 4.1 applies. By 
considering the zero sets of 4 and # it is also clear that 4 is not right 
equivalent to t,k From this example we see that one must consider the 
second order information W,($) not just W,(4). In particular t$ is not 
in the orbit of 4 in a,(#). 

(III) Finally for Lagrangian submanifolds, the problem of contact 
equivalence via diffeomorphisms is not the same as the problem of 
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contact equivalence via symplectic difkomorphisms. For example, let 
4 = graph(&) and A, = graph(&) where 4 and $ are as in (II). The 
contact rings SS?&F@, A+) and W&W, A+) are the same so that A6 and A+ 
are contact equivalent via diffeomorphisms using Proposition 2.4. 
However they are not contact equivalent via symplectic diffeomorphisms 
using Proposition 3.2. 
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