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The primary instabilities and bicritical curves for flow between counter-rotating cylinders have
been computed numerically from the Navier-Stokes equations assuming axial periodicity. The
computations provide values of the Reynolds numbers, wavenumbers, and wave speeds at the
primary transition from Couette flow for radius ratios from 0.40-0.98. Particular attention has
been focused on the bicritical curves that separate (as the magnitude of counter-rotation is
increased) the transitions from Couette flow o flows with different azimuthal wavenumbers m
and m + 1. This lays the foundation for further analysis of nonlinear mode interactions and
pattern formation occurring along the bicritical curves and serves as a benchmark for
experimental studies. Preliminary experimental measurements of transition Reynolds numbers
and wave speeds presented here agree well with the computations from the mathematical

model.

L INTRODUCTION

Instabilities in fiow between concentric rotating cylin-
ders have been studied extemsively since Taylor’s classic
theoretical and experimental work on the problem.' Al-
though several investigators, including Taylor, have dealt
with the general problem of independently rotating cyiin-
ders, much of the recent interest has focused on the succes-
sion of instabilities that occur as the inner cylinder speed is
increased while the outer cylinder is held at rest.” Progress is
made difficult by the fact that no analytic expressions exist
for the flows that follow the basic laminar Couette flow. Da-
vey et al.” succeeded in explaining the instability of Taylor
vortices to nonaxisymmetic perturbations, but the analysis
was performed in the small gap limit {i.e., the ratio of the
radii of the cylinders was nearly equal to 1) and was strictly
valid only in the neighborhood of the transition from
Couette flow to Taylor vortices. More recently, numerical
simulations have determined the structure of fully developed
Taylor vortex flow and of wavy vortex flow, providing in-
sight into mechanisms for instability and producing numeri-
cal results for such measurable properties as wave speeds
(see, e.g., Refs. 4 and 5}. The numerical approaches produce
very detailed information about particular flows and pro-
mise to extend to higher instabilities. However, they are cost-
1y and exploration of a wide range of parameters is slow.

Thus it is worth reconsidering the possibilities for inter-
esting dynamics in the neighborhood of the primary transi-
tion. Provided end effects are ignored, a simple expression
can be written for the basic “Couette” flow and both analytic
and numerical treatments of the flows fellowing transition
are much more tractable, The additional parameter obtained
by rotating the outer cylinder makes possible a much greater
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variety of dynamics, as has been demonstrated by the exten-
sive survey by Andereck et al.® Indeed, counter-rotation of
the cylinders is known to produce a different primary insta-
bility: Instead of time-independent Taylor vortex flow,
Couette flow gives way to spiral vortices, which are traveiing
waves in both the axial and azimuthal directions; see Fig. 1.
The spiral vortex flow thus breaks both the continuous azi-
muthal and axial symmetries and is time periodic. Krueger
et al.” showed with a linear stability analysis that for suffi-
ciently rapid counter-rotation of the outer cylinder, laminar
Couette flow becomes unstable first to 2 nonazisymmetric
mode. The computations of Krueger ef ¢l.” were performed
in the small gap limit and for a limited set of parameters at
finite gap; their narrow gap results were confirmed by the
experiments of Snyder,® who also determined for four widely
separated radius ratios (i.e., finite gap) the location of the
bicritical points where Taylor vortices are replaced by spi-
rals as the primary instability. A curve of these bicritical
points was also produced in the numerical simulations of
Tones.* DiPrima and Grannick® later considered the nonlin-
ear problem of the growth of the nonaxisymmetric perturba-
tions to finite amplitude.

This earlier work or: fiow between counter-rotating cyl-
inders indicates that (i) for a given radius ratio there is a
untique value of the outer cylinder speed beyond which the
primary bifurcaticn is to nonaxisymmeiric flows, (ii) the
azimuthal wavenumber of the new flow increases as the out-
er cylinder speed becomes maore negative, (iii) a nonlinear
analysis is necessary to determine the exact symmetry of the
resulting waveforma (which may not be spiral) and distin-
guish between supercritical tramsitions (thus identifying
possible hysteresis), and (iv) the regions of crossover from

“Taylor vortices to spirals or between spirals of different azi-

muthal wavenumbers may exhibit more complex dynamics
as a result of interaction of several modes of flow. Most of the
past work has either been restricted to the small gap limit or
to a few parameter values for finite gaps; a comprehensive
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(b}

FIG. 1. Fiows branching from Couette flow for counter-rotating cylinders with radius ratio » = 0.800. () Taylor vortex flow {R, = 0}, R, =97). (b) Spiral
vortex flow, m = 1 (R; = — 130, R, = 146). (c) Spiral vortex flow, m =2 (R, = — 150, R, = 156).

quantitative view of the possibilities for a wide range of cylin-
der radius ratios and for several azimuthal wavenumbers
remained lacking.

A fundamental problem in the Taylor-Couette experi-
ment has been the explanation of the mechanism for the for-
mation of the intriguing variety of patterns observed in the
experiments. The recent bifurcation theory analysis of Chos-
sat et al.'® and Golubitsky and Stewart!! suggest that the
patterns can be explained in terms of mode interactions and
the symmetry of the apparatus. For example, in Ref. 11, the
flow patterns in the neighborhood of the bicritical primary
transitions separating Taylor vortices and spirals were clas-
sified using group theoretic technigues. Patterns with sym-
metries corresponding to Taylor vortices, spirals, ribbons,
wavy vortices, twisted vortices, and modulated periodic
flows were found, most of which have been observed in ex-
periments,® but not always at parameter values close to
bicritical points. The question was left open as to which of
these flow patterns are stable and can be expected tc be ob-
served under given experimental conditions. In this paper we
present the necessary linear calculations, both analytical and
nurnerical, required for specific predictions to be made. The
nonlinear calculations, which determine the direction of
branching and the stabilities of the solutions corresponding
to the different flow patterns near this bicritical point, will be
reported in a later paper.
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A basic assumption in the theoretical model is that the
flow is axially periodic, which implies that end effects can be
neglected. In this paper we present detailed numerical work
and preliminary experimental work that indicate that this
assumption is a reasonable one, particularly in the neighbor-
hood of the bicritical primary transition between Taylior vor-
tices and spirals for sufficiently long cylinders.

The linear stability problem is formulated and the pa-
rameters and choice of scaling are given in Sec.II; the nu-
merical approach used in the present work, including esti-
mates of the accuracy of the computed results, are discussed

in Sec. ITI; the results are described in Sec. IV; and the con-

nection of the results to further work is discussed in Sec. V.

L HYPOTHESES AND NOTATION

In 1923 Taylor' calculated the curve of neutral stability
with respect to time-independent axisymmetric disturbances
(that is, the sz = O curve in our notation ). Chandrasekhar!?
carried out an extensive analysis of the eigenvalue problem
with # = 0. Later, neutral stability with respect to time-
dependent nonaxisymmetric disturbances (m > () was com-
puted by Krueger e al.” The case of m > 0 was alsc treated by
Roberts," but only for a fixed outer cylinder. Thus the linear
stability analysis has long been well understood and needs

Langford ef a/. 777

Downloaded 05 Jun 2004 to 129.7.158.16. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



only be summearized here for the purpose of making clear the
choices of the notation, scalings, and methods used in the
present work.

With the mathematical idealization of infinitely long
cylinders, there exists an exact solution of the Navier-Stokes
equations, known as Couette flow, which satisfies the bound-
ary conditions on the cylinder walls and is independent of
the axial coordinate z. However, in real experiments in finite
cylinders, the Ekman pumpirg at the ends produces a large
cellular circulation for arbitrarily small cylinder rotation
rates; hence the bifurcation to Taylor vortex flow is imper-
fect. On the other hand, the transition to spiral flow is a Hopf
bifurcation, which is necessarily a perfect bifurcation.'® The
present work focuses on primary transitions cccurring in the
central region of a sufficiently long cylinder, where end ef-
fects appear to be of minor significance and the observed
flow below criticality agrees closely with the ideal Couette
flow.

In the mathematical model the physical boundary con-
ditions are replaced by the assumption that the flow is peri-
odic in the z direction, with period 27/k (where k is the
wavenumber). This introduces an additional variable & into
the problem. The method of determining & from Taylor,' is
to treat it as a continuous variable and to minimize the criti-
cal Reynolds number corresponding to inner cylinder rota-
tion as a function of &, choosing the value that achieves this
minimization, k.. The numerical procedure for determining
k. is described in Sec. IIL

An important consequence of the axial periodicity as-
sumption is to introduce an additional symmetry into the
problem. Axial periodicity means that axial transiations are
identified modulo 2#/k. The Navier-Stokes equations,
boundary conditions, and Couette flow solution are al} in-
variant under these transiations, as well as is the reflection
z— —z. Together these symmetries generate the group
0(2). These facts lead one to expect to find double eigenval-
ues of the linearized system, as can be seen from the follow-
ing simple argument. Let F(u) = 0 represent the full Na-
vier-Stokes boundary value problem. Then the symmetry
properties described above can be expressed by

Flya) = yF(e), Yye0(2). (1)
MNow linearize F by differentiation with respect to u and,
since ¥ commutes with the differentiation operator, (1) be-
comes

D F(0)-yu=yD, F(0)u, Yye0(2), (2)
that is, the derivative of F also commutes with elements of
the group. Now suppose that A is an eigenvalue of D, F(G),
e,

D F(Q)v=Av. (3

Then (2) implies
D F(0)(yv) = A(yv), ¥yeO(2), (4)

so that yv is also an eigenfunction corresponding to the same
eigenvalue and the eigenspace is invariant under O(2}. Ge-
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nerically then, it is either one- or two-dimensional. Experi-
ments show that the bifurcation flows break the 0(2) sym-
metry, s¢ the expected dimension is 2. The linear stability
analysis confirms that all the critical eigenvalues are double.
In the subsequent nonlinear analysis, the presence of this
symmetry group has even more significant consequences.
See Golubitsky and Stewart'’ for a more complete discus-
ston of the effects of symmetry in Taylor-Couette flow.

The analysis begins with the Navier-Stokes equations
for incompressible fluid flow:

P V- @V)a—Vp, Vu=0, (5)
p

It

where

u(r,?) = the velocity vector at reR *,

P = pressure ,
P (6

p = mass density ,

v = kinematic viscosity .

The boundary conditions on the cylinder walls are the
no-stip conditions, u = cylinder velocity. The idealization
that the flow is periodic in the axial coordinate z is equivalent
to posing the problem in a finite cylinder of length (2#/k),
with periodic boundary conditions at the ends.

It is necessary to introduce some additional notation:

a = inner cylinder radius,

b = outer cylinder radius,

d=gapwidth =& —gq,

% = radius ratio = ¢/, {7}
{}, = inner cylinder angular velocity,

{t, = outer cylinder angular velocity,

w=80,/0,.

In the present work, £}, >0 and £}, <0. The Navier-Stokes
equation (5} is brought into nondimensional form by rescal-
ing the lengths by the gap width d, the velocity u by the inner
cylinder velocity a{},, and time ¢ by the quantity (d 2/v). The
separate time scale, although redundant, simplifies the anal-
ysis; physically, it is the time scale appropriate to the growth
rate of the destabilizing modes. Then, in rescaled variables,
(5) can be written as

%:Vzule(u=V)ﬂ~Vp, Vu=0. (8)

Here we define inner and outer cylinder Reynolds numbers
R, and R, by

Ri=alld/v, R,=860,d/v. {9)

For purposes of comparison with previcus work, we also
define the angular speed ratio and Taylor number, respec-
tively, by
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=0/ =R,/R,,

(10)
T=4R(qR, — R,y (1 —5}/[n(1 + m].

Inorder to exploit the cylindrical geometry of the exper-
iment, we intreduce the cylindrical coordinates (#,9.z) and
the corresponding velocity components u = (w,v,w), where
it is understood that 7, 2, 4, v, and w are scaled to nondimen-
sional variables, as above. The boundary conditions now
take the form

inner cylinder: r=5/{i1 — n),

=0 v=1, w=0,
outer cylinder: = 1/(1 — 1}, u=20, (11}
v=p/n, w=0,

axial periodicity: u(r,8,z} = u(r,6,z 4+ 2n/k) .

We remark that the gap width is now equal to one and the
axial wavenumber £ is now in units of 1/d.

The exact Couette flow solution of (8)-(11) is given by
u, = [0,v,(#),0], p = p.(r), where

2
pc(r):RIJidr, vc(r)=Ar+£, (12
r r
and
2 o

(1 +7) (I—m(1—75%

Quantities 4 and B correspond to the choice of nondimen-
sional variables defined above; the classic quantities corre-
sponding to the original physical variables in (6) are

~ 2. ~ i -
Aﬁ..nl(’? £ B:azal(‘ "‘2)-.
T — 5/ P—7

Next we transform the problem (8)—(11) to one for the de-
viation from Couette flow by substituting

(14}

u=u +8 p=p +p (15)

and then dropping the carets. The resulting equations, writ-
ten out explicitly in cylindrical coordinates, are

u,:VZu_%—-%ve —p, — C(#)(ug — 20)

v v?
——R,(uu, +~ e + Wi, ———) ,
r r

2 1
=V __i’__,_:_,_ _ 2Dy — C
v v tig rpe—i- 7] (v,

(16)
——=R1<uv, +Eu9 + wo, +-E-l£) R
r r
w, =V’w—p, — C(Nw, — R [uw, + (v/Nw, +ww, ],
4, + (V/ryu + (/v +w, =0,

where the 7, 7, 8, and z subscripts indicate partial derivatives.
Here we have introduced the constant D and the noncon-
stant coefficient C(r) defined by
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D= —RlAz (ﬂRl“sz/(1+7?)>oa

C(r) = R,(A " g;)

(7
R, —»R 1
- -0+ (75 () ()
+(1—17 11— »
The boundary conditions for (16) are
u=v=w=_0,
at r=5/{1—%) and r=1/(1-79),
(18)

as well as being 27/k periodic in z and 27 periodic in 8.

The stability of the Couette solution uis calculated from
the linearization about u, in (8) or the linearization about
e=0in (16):

u, =Vu—u/¥ — (2/Fvg —p, + 2C0 v — C(Nuy,,
v, =V —v/P + (2/P)ug — (1/P)py + 2Du — C(rv, ,
w, = Vw—p, — C(rjw,, (19)
u, + (I/ryu+ (1/rv, +w, =0.

Asymptotic stability of (19) is determined by the eigenval-
ues of the operator defined by the right-hand side of (19).

These eigenvalues and the corresponding eigenfunctions
have been calculated by substituting into (19) the ansatz

u = U(ryexplilkz + m8) + ot ] .
v=V(riexpli(kz + mb) 4ot ],

w= W(rexplilkz + (#/2) + m0 | + ot},
2= P(ryexpli{kz + mb) + ot} .

(20}

Here ¢ is the eigenvalue, possibly complex, and m is the
azimuthal wavenumber, either 0 {(axisymmetric case) or a
positive integer (nonaxisymmetric). The phase shift of iw/2
in the w component has the mathematical consequence that
Eg. (21) is purely real in the case m = 0. The result after
substitution is

UU:U"+_} U — [(1+m?) /P + kU + 20V
— P —im[(2/PAV+C(NU],

eV=V"+ (/N V — (1 + m)/P +k*IV+2DU
— (im/NP+ im{(2/ YU - C(nV1, (2h)

oW=W"+ (/W' — (m*/P + k)W — kP
— imC(rY W,

U+ (/U4 {m/nNV—-—kW=0,

where the primes denote derivatives with respect to r.

The final step of the simplification is to eliminate the
pressure P from (21) by means of a classical trick involving
the continuity equation; see Roberts.'* Define a new depen-
dent variable X{7} by

X=U'+(I/U-P.

From the continuity equation one obtains

(22}
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P= — X+ kW — (im/rYV, (23)

which is used to eliminate P from the second and third equa-
tions of (21), while the derivative of (22) is used to eliminate
P’ from the first eguation.

For the numerical analysis, it is preferable to work with
a system of first-order equations, rather than second-order
equations. Therefore, we introduce two more new variables

Y=V'+(I/nV, Z=W', (24}
so that (21) can be written as the eigenvalue problem
U'= —(1/U+EW — (im/r)V,
Vi= —(I/nV+ 7%,
W'=2Z2,
X =gU+ (m¥/P + kU -2C0(nYV
+im[(2/AV+C(nUY,
y’:av+<3§+k2>V_ 2DU (23)
+im<—=:;—,z% U+ C(?‘)V—{-% W——;%X),
Z' =W+ (/P +2kDW - (V/PNZE - kX
+im[ —(k/MV+-CHW],
with the boundary conditions
U=V=W=0, at r=5/{1—75),1/(1—9). (26}

For neutral stability we are interested only in the cases with
eigenvalue o = 0 0r 0 = iw (pure imaginary}. The eigenval-
ne problem (25) and {26) has been solved numerically, as
described in Sec. I

Equations (25} and (26) possess a symmetry in that
they are unchanged by the substitution (&,W.2)
—-{ —k,— W, — Z). This corresponds physically to a re-
flection of the apparatus in the axial direction; z— —z.
Mathematically, this symmetry implies that for any given
solution of (25) and (26) for k, there corresponds another
sclution for — k. In the real case this means that solutions
occur in pairs. In the complex case, solutions of (25) and
(26) occur in quadruples corresponding to + & and the two
complex conjugates. This is in accord with the earlier re-
marks concerning symmetry.

. NUMERICAL PROCEDURES

In Sec. 11 the study of the Navier-Stokes partial differ-
ential equation was reduced to that of an ordinary differen-
tial equation eigenvalue problem (25) and (26). Standard
techniques are available for the numerical sclution of such
two-point boundary value problems, '’ so the procedure need
only be sketched here. The main difference between these
calculations and those performed in the 1960°s and 1970's is
the advancement in computer technology, which makes it
possible to perform more extensive calculations on personal
computers than could have been done on mainframe com-
puters of that era.

The numerical investigation of the eigenvalue problem
(25) and (26} separates naturally into two distinct cases; the
real case with m = 0 {axisymmetric) and the complex case
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with m > 0 (nonaxisymmetric). In both cases, the eigenval-
ue problem was solved by a shooting method using a stan-
dard fourth-order Runge—Kutta integrator for the differen-
tial equations and quasi-Mewton iteration for the eigenvalue
condition. All computations were done in double precision
(64 bits) and selected calculations were repeated with
smaller step sizes as a check on accuracy. Normally, the
eigenfunctions were computed with 100 equally spaced steps
in the interval. This approach was chosen over finite differ-
ence or collocation approaches because of the ease with
which it gives high-order accurate results on small comput-
ers. In all cases, tests with smalier step sizes showed the nu-
merical accuracy to be at least four digits, which was deemed
adequate for comparison with experimental data.

In the axisymmetric {m = 0) case, as noted previously,
the eigenvalue problem becomes real. The procedure was to
input values of k, 9, and R.; fix o = O (for neutral stability);
and then solve the resulting eigenvalue problem for R, by
guasi-Newton iteration. [ Note that &, R, and R, enter (25)
onty through the coefficients Cand D defined in {17).] This
calculation was repeated using a mesh of values of k until a
minimum of R, vs k was detected. The actual minimizing
value of &, k., and the corresponding R, were then deter-
mined by quadratic interpolation.

In the nonaxisymmetric {m > 0} case, the complex six-
dimensional system {(25) and (26) was rewritten as a 12-
dimensional real system and the solution computed as be-
fore, except that we set o = iw (for neutral stability) and
performed quasi-Newton iteration to find R, and w simulta-
neously from the complex eigenvalue condition. Note that w
has a useful physical interpretation as the azimuthal wave
speed. The minimization algorithm to find the critical axial
wavenumber k., was the same as in the m = Q case.

The derivative with respect to B; (and with respectto o
in the m > 0 case), reguired for Newton iteration, was com-
puted in the two different ways. The first was simply divided
differences recomputed every third iteration. This method
was found to be numerically unstable at smaller values of the
radius ratio 5. The second method, which was found to be
more stable, was numerical integration {again by shooting)
of the linear variational equations satisfied by the R, and o
derivatives of the solution.

Enitially, these calculations were performed on IBM-PC
class microcomputers with 3087 numeric coprocessors {on
which each curve in Fig. 4 took up to 8 h). Later calculations
were performed on a Ridge 32 minicomputer, which com-
pleted the same calculations in minutes.

V. RESULTS

The principal resulis are graphed in Figs. 2 and 3, which
show the regions in the (R,,%) and (u,n) planes, respective-
ly, in which secondary flows of different azimuthal wave-
numbers are predicted to appear. The boundaries of the re-
gions are of special interest since it is in their vicinity that
mode interaction might be expected. At these boundaries,
modes of two different wavenumbers are unstable simulta-
neously; consequently, we refer to points on the boundaries
as bicritical points. Since they are in general obtainable only
by variation of two parameters, they are also referred to in
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FIG. 2. Regions in the (R,,%) plane in which different azimuthat wavenum-
bers m are selected when Couette flow becomes unstable as R, is increased.
Bicriticality occurs at the curves separating the regions.

the language of bifurcation theory as codimension-2 points.

It should be emphasized that Figs. 2 and 3 represent the
resulis of linear theory only. As was pointed out by Krueger
et al.” and investigated for a limited selection of parameters
by Di Prima and Grannick,’ the exact spatial symmetry of
the nonaxisymmetric flows (m#0) remains undetermined
by the linear theory. Also undetermined is the effect of sub-
critical bifurcations, which might have the result that a sub-
critically unstable mode is seen experimentally instead of the
mode expected from linear theory. The subcritical behavior
of the axisymmetric flows has been examined numerically by
Iones.* The results from the nonlinear theory and from nu-
merical simulations over the wide parameter range consid-
ered here will follow in later papers, in which modifications
of Figs. 2 and 3 will be presented.

In the linear stability computations, R, was restricted to
be greater than — 400 for two reasons: (i) several changes in
azimuthal wavenumber have already occurred by this point,
thus producing many possibilities for mode interaction; and
(ii} experiments® show that end effects become significant

1.0

N

0.8 | J

n é

07 | ] ]
m=2

0.6 L. /

3

1

0.5 L

0.4 t ! i 1 1 L 1 1

FIG. 3. Regions in the (¢,%) plane in which different azimuthal wavenum-
bers m are selected when Couette flow becomes unstable as T is increased.
As in Fig. 2, bicriticality occurs in the curves separating the regions. Note
the convergence of the curves as 57— L.
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for R, « — 400. The radius ratic was restricted to be greater
than 0.4 because precise experimental systems have been
constructed more often for larger radius ratios (smaller
gaps). Moreover, for counter-rotating flows with wide gaps,
the interesting dynamics occurs near the inner cylinder and
is difficuit to observe. Finally, the azimmuthal wavenumber
was restricted to values of less than 5; higher values of the
azimuthal wavenumber might appear as regions in the upper
left-hand corners of Figs. 2 and 3, i.e., for radius ratic close to
i and R, near — 400.

Within these limits there are many regularities to be
observed. At constant radius ratio (i.e., for a given experi-
mental apparatus), regions occupied by successive nonzero
values of m span wider ranges of R, or g It appears that the
variation of m with R, is monotonic, i.e., there do not appear
to be any cases where a lower value of m reappears as R, is
made more negative. The boundary curves in the (R,,%)
plane are bowed, so for any given jump in wavenumbers
there is a value of the radius ratio such that the jump occurs
at a minimum value of R,. Also note the confiuence of the
multicritical curves as the radius ratio approaches unity
(small gap limit). The asymptotic behavior in Fig. 3 is con-
sistent with the small gap calculations of Krueger ef al.’

Finally, one way to view Fig. 2 is as the projection onto
the (R,,5) plane of the intersection of surfaces in the three-
dimensional (R, R,,»n} parameter space, across which a
mode of azimuthal wavenumber m first becomes unstable
for some axial wavenumber k. Similarly, Fig. 3 is the projec-
tion onto the (u,n) plane of instability surfaces in the
(7e,77) parameter space.

Experiments are performed at fixed radius ratio. Transi-
tion is typically found in one of two ways: (i) one cylinder

=4 (a) ©=0%83 (#) 7=0800

100

(¢) 1=0736 @) 1=0500

— e e e e e R i. [P RS P 1. !
—40{ ~300 =200 -100 0 =300 =200 -130 0

FIG. 4. Critical values of R, as a function of R,. (8} % =0.883, (b)
7 = 0.800, (¢) 5 = 0.736, and (d) = 0.500. Separate curves are for differ-
ent vatues of the azimuthal wavenumbers m. The solid curve is the envelope
defined by the smallest critical value of R, for all possible values of .
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®) n=080 |

(a) =0883

(@) n=0.500

FIG. 5. Axial wavenumber as a function of X, when R, is at its critical value
for (a) 7 = 0.883, {(b) 3 =0.800, {c) % = 0.736, and (d) 57 = 0.500. Each
curve represents a different value of m. The sclid portions identify the val-
ues corresponding to the smallest critical R,.

speed is held constant (usually the outer} and the other cyl-
inder speed is adjusted until transition is observed, {ii) the
speed ratio y is held fixed and T is varied. After transition
oceurs, experiments can measure m, &, and (if the flow is
time periodic) . Following the first approach, for radius
ratios stepped in increments of 0.05, we have tabulated the
following for each value of m and for R, varying from 0 to
—400: R, 4, T, k, and 0/} ,. These tables have been depos-
ited with the publisher’® and are also available from the
authors. The scaling of the data is as explained in Sec. 1L
Similar data for two radius ratios ( = 0.95and 0.752) were
computed by Demay and Iooss'%; the results agree to within
0.1%.

The tabulated results have been used 1o generate the
plots of Figs. 4-6. Here for the radius ratios 0.883, 0.800,
0.736, and 0.500 are plotted curves of the transition inner
Reynolds number versus outer Reynolds number (Fig. 4);
axial wavenumber versus outer Reynolds number {Fig. 5);
and azimuthal wave speed versus outer Reynolds number
(Fig. 6). A different curve is drawn for each value of the
azimuthal wavenumber m. The solid portions of the curves
identify the values corresponding to the lowest critical R ;
these are the values that linear stability theory predicts
should be seen in experiment.

Consider first Figs. 4(a}—4(d). Following the solid por-
tion of the curves, the predicted tramsition Reynolds
numbers form by definition a continuous curve; the azi-
muthal wavenumbers change where the curves for individ-
ual values of 2 cross. There are, however, discontinuities in
the slope of this transition curve at the crossing point. The
curves for each value of m remain close to one another, so
that the crossings are nearly tangent. The numerical values
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FIG. 6. Wave speed as a function of R, when R is at its critical value for (a)
77 = 0.883, (b) # =0.800, (c) = 0.736, and (d} » = 0.500. Each curve
represents a different value of /. The solid portions identify the value corre-
sponding to the smallest critical R,.

of the crossings, i.e., the bicritical points, are in Table I. A
more compiete table for many other radius ratios has been
deposited with the American Institute of Physics Auxiliary
Publication Service {(PAPS).!®

There is a2 weak minimum in the predicted transition
curve that aiways occurs for the Taylor vortex flow state.
Beyond this minimum, the curves climb upward so that by
R, = — 400, the critical value for R, is more than twice that
at R, = 0. This appears to be the case for all of the radius
ratios studied, although there is a downward shift of the
curves as 7 is decreased. Rotation of the outer cylinder is
seen to be at first weakly destabilizing, but soon becomes
stabilizing. Experimental data are compared to the comput-
ed transition Reynolds numbers in Fig. 7.

Next consider Figs. 5(a)-53(d), which show the axial
wavenumber £ (normalized by the full gap width d) versus
R,. Here is it seen that there are discontinuities in & at the
points where the azimuthal wavenumber changes. The size
of the discontinuities increases as m becomes larger. It also
increases for a given multicritical point as the radius ratio
decreases. Note that the jumps are toward decreasing wave-
number for the transitions 0— 1 and 1 -2, but then toward
increasing wavenumber for 2— 3 and 3 —4. The wavenum-
ber increases as R, becomes more negative. This is to be
expected since the gap over which the basic fiow is centrifu-
gally unstabie (in the inviscid limit ) becomes narroweras R,
becomes more negative.

Finally, Figs. 6(a)-6(d) present wave speed versus R,
where the wave speed is normalized by the inner cylinder
speed (&,. The wave speed (w/m{};) is plotted rather than
frequency (@/{},) in order to examine the extent to which
the waves are dispersionless with respect to azimuthal wave-
number. The wave speeds stay within a confined range
{between 0.3 and 0.4), but there are discontinuities when m
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TABLE L Bicritical points computed for the radius ratios used in Figs. 4-6; also included are the wavenumbers and wave speeds at the bicriticat points.

n—m+1 R, R, “ T k., S @, /mfd, @, (m A+ 18,
7 = 0.500
[1S} —73.79 95.25 —0.3874 30 842 4.079 3.813 0 0.2813
12 — 3C0.85 175.94 —0.8550 182 420 6.354 5.280 0.3365 0.2825
7 =0.736
01 — 8771 114.82 — 0.5622 16 344 3.631 3.590 0 0.3345
12 -~ 126.45 132.91 — 0.7004 24611 3.872 3.7%6 0.3670 0.3216
2-3 - 326.98 202.37 — 1.1890 79518 3.7658 4.722 0.3702 0.3047
7 = (.80C
-1 —98.25 129.55 —0.6129 14 603 3.571 3.551 0 0.3445
1-2 — 124.60 141.80 —0.7030 18 751 3.726 3.678 0.3683 0.3355
23 - 243,40 186.67 — 1.0430 40 729 3.871 4.114 0.3731 0.3174
7 = (.R83
0-1 — 128.93 166.88 — 0.6822 12972 3516 3.511 0 0.3546
12 — 142.81 173.83 —0.7254 14 498 3.592 3.574 0.3654 0.3505
2-3 — 185.68 193.78 - 0.8643 19679 3.704 3.708 0.3711 0.3418
34 — 345.74 248.16 — 1.2300 39 456 3.779 4.070 0.3688 0.3253

changes. (If the wave speed were dispersionless, not only
would there be no jumps, but also all of the carves for differ-
ent values of m would collapse onto one another. ) The jumps
increase with increasing m for fixed radius ratic and also
increase with decreasing radius ratio for fixed m, — #1,.
Since this work has been motivated by the desire to iden-

s "1 =083
250 —\%\N
150 | il
)
Ry 77 Si=0s00 |
200 | \\\\% |

—400 =300 200

FIG. 7. Experimentally determined critical values of R, for radius ratios
7 = 0.883, % == 0.800, and » = 0.736. The solid curves are the theoretical
envelopes of the lowest critical R, for all possible m. The dotted curves are
the theoretical vatues of R, for m = 0.
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tify multicritical peints, it is important to check how well
experiments agree with the predictions for the location of the
multicritical points, wave speeds, and wavenumbers. Table
1l contains the resuits of experimental observations for radi-
us ratio 0.8. The differences between theory and experiment
are within the experimental uncertainties. Observations at
other radius ratios are in progress. The relatively large un-
certainties asscciated with wave speed and wavenumber has
prompied further study, some early results of which are giv-
en in Table III. As shown in Fig. 8, the wave speeds fall off
rapidly as the Reynocids number R, is increased above criti-
cal. When care is taken to select the wave speed measured
closest to transition, agreement with linear theory is excel-
fent. A systematic nonlinear analysis of wave speeds and
wavenumbers at and above transition is now under way.

TABLE II. Comparison of experimental and theoretical results at bicritical
potnts for radius ratio i = 0.80. For the experimental data the aspect ratio
was 30. The experimental uncertainties are about ! % in Reynolds number,
5% in wavenumber, and 2% in wave speed.

Theoretical Experimental Bifference
m =0 to m = 1 bicritical point
R, —99.2 — 100.7 —1.5%
R, 129.3 131.0 1.1%
! —0.613 - 0.615 —0.3%
ky 3.57 3.59 0.6%
k, 3.55 3.49 - 1.7%
/8L, 0.345 0.339 —1.8%
m = 1 to m = 2 bicritical point
R, — 124.6 — 139.2 —4.3%
R, 141.8 145.3 2.4%
r — 0.703 - 0717 — 2.0%
ky 373 3.55 —5.1%
k, 3.68 3.78 2.7%
an /8L, 0.365 0.364 - 0.5%
w,/ 28}, 0.335 0.332 -~ 3.9%
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TABLE III. Comparison of theoretical and experimental critical wave
speed values for radius ratio y = 0.883. Experimental uncertainties are
about 1% in Reynolds number and wave speed.

Theoretical Experimental

R, m ®,, /M @,,/mf}; Difference
— 155 2 0.3561 0.354 0.6%
— 220 3 0.3462 0.346 0.0%
— 225 3 0.3470 0.350 0.9%
— 250 3 0.3512 0.349 0.6%
- 255 3 0.3521 6.333 0.3%
— 260 3 0.3530 0.354 0.3%
— 300 3 0.3604 0.361 0.2%
V. DISCUSSION

Figures 2-8 (and the corresponding tables on deposit
with the publisher'®) provide a comprehensive survey of the
primary transitions from Couette flow over a wide range of
the parameters R, R,, and % for counter-rotating cylinders.
Special attention was given to the multicritical curves, where
two modes go unstable simultanecusly in the three-dimen-
sional parameter space. This body of data will provide the
basis for further studies, both theoretical and experimental,
of multicritical phenomena in the Taylor-Couette systerm.

Recent advances in the mathematical theory of multi-
critical phenomena and equivariant bifurcation theory have
led to a new qualitative explanation of pattern formation and
of transitions leading to complex dynamics in 2 wide variety
of systems. The Taylor~Couette system is one of the few
systems governed by partial differential equations for which
it is possible to calculate explicitly the predictions of these
theories for multicritical phenomena and to test them ex-
perimentally. The emphasis in our work is quantitative rath-
er than qualitative in order to make rigorous tests of these
new mathematical theories. The guantities that have been
tabulated (Reynolds numbers, wavelengths, and wave
speeds) are ali readily measured experimentally. The results
of this work will have relevance, not only for Tayior-Couette
fiow, but for any system exhibiting multicriticality and sym-
metry. The agreement found in preliminary experimental
work on the location of the m = { to m = 1 transition and
associated wavelength and wave speed values (Tables I and
IIT) supports further theoretical investigations based on the
assumption of axial periodicity.

These numerical results have already guided the experi-
ments in new directions and have led to new insights. For
example, Figs. 2 and 3 show that investigation of the m = 0
to m = 1 transition for narrow gaps is more likely to encoun-
ter interference with modes having higher m values than the
same transition for wider gaps (smalier ). Therefore, the
experimental work has moved away from an apparatus with
77 = 0.883 to others with 5 = 0.800, 8.736, and 0.500. Guid-
ed by the maps of multicritical curves presented here, experi-

- ments have already found effects unnoticed previously, such
as the early onset of secondary bifurcations and hysteresis
near the primary fransition. These nonlinear phenomena
will be reported in a later paper.
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FIG. 8. Wave speed of spirals for R, varying through its critical value (with
5 =0.803and R, = — 132.15). Circles are data taken while increasing R
and crosses are data taken while decreasing R ;. The square is the result from
the linear stability computations at onset. The wave speeds are derived from
a time-varying signal produced by detection of laser light reflected from the
fiow visualization material. With the exception of the data points at
R, = 151.8, where the signal is extremely weak, the wave speeds decrease
monoctonically with increasing R ;.
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