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Using equivariant bifurcation theory, and on the basis of symmetry considerations
independent of the model, we classify square and hexagonally periodic patterns that
typically arise when a homeotropic or planar isotropic nematic state becomes un-
stable, perhaps as a consequence of an applied magnetic or electric field. We relate
this to a Landau–de Gennes model for the free energy, and derive dispersion
relations in sufficient generality to illustrate the role of up/down symmetry in de-
termining which patterns can arise as a stable bifurcation branch from either initial
state. © 2003 American Institute of Physics.@DOI: 10.1063/1.1598620#

I. INTRODUCTION

There is an extensive amount of literature on spatially periodic pattern-formation in phy
and biological systems: see for example the surveys by Cross and Hohenberg~1993! and Cladis
and Palffy-Muhoray~1995!. The mathematical techniques to analyze the creation and interac
of such patterns often involve reduction of the governing partial differential equations to a fi
dimensional system that captures the essential dynamics near a bifurcation point of a funda
equilibrium state, followed by a bifurcation analysis to classify the branching of multiple s
tions.

The crucial role ofsymmetryin organizing pattern-forming bifurcations has been recogni
for some time: see Busse~1962!; Buzano and Golubitsky~1983!; Golubitsky et al. ~1984!, for
example. Indeed, on the basis of symmetry considerations alone, and with some natural
generacy assumptions, a classification of branching behavior for systems with symmetry
given that is independent of the actual mathematical model. This insight, with the asso
technical machinery of group theory and group actions, is the inspiration for the texts su
Golubitsky et al. ~1988!; Chossat and Lauterbach~2000!; Golubitsky and Stewart~2002!. The
general theory provides a framework: in order to make specific predictions of physical beh
exerimental numerical values~or sometimes just their signs! need to be determined, unfortunate
not necessarily an easy task.

In this paper we generalize methods that have been previously and successfully app
other fields~Buzano and Golubitsky, 1983; Golubitskyet al., 1984; Golubitskyet al., 1988; Bress-
loff et al., 2001a; Golubitsky and Stewart, 2002! to the context of pattern formation in plana
liquid crystals. A preliminary version of our results appears in Golubitsky and Chillingw
~2003!. We consider periodic planar patterns with square or hexagonal symmetry that can bif
from a homeotropic or planar isotropic state. We do not claim to predict experimental cond
under which these states can be observed; rather we set out a dictionary of possibilities
basis of natural mathematical assumptions. Numerous patterns similar to those we describ
indeed been observed in liquid crystal experiments, see, e.g., de Gennes~1974!; Huh et al. ~2000!,
but under conditions often quite different from ours. The question of how to detect experime
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the variety of director-field patterns predicted here is one that we are not yet in a posit
answer. However, we do give some pointers on dealing with this issue by calculating key a
of branching behavior for an explicit Landau–de Gennes type model.

II. THE GENERAL STRATEGY

In the Landau theory of phase transitions for a liquid crystal the degree of coheren
alignment of molecules is usually represented by atensor order parameter, a field of symmetric
333 tensorsQ(x), xPR3 with tr(Q)50 ~Sluckin, 2000!. We think ofQ as the second momen
of a probability distribution for the directional alignment of a rod-like molecule. In a spati
uniform system,Q is independent ofxPR3. WhenQ50 the system isisotropic, with molecules
not aligned in any particular direction. If there is a preferred direction along which the mole
tend to lie ~but with no positional constraints! the liquid crystal is innematicphase. There are
many other types of phase involving local and global structures, see Sluckin~2000!.

In this paper we consider a thin planar layer of nematic liquid crystal where the top
bottom boundary conditions on this layer are identical. In this situation the symmetries o
liquid crystal model will include planar Euclidean symmetriesE~2! as well as up/down reflection
symmetry.

A configuration orstateof a liquid crystal is often described by a director field~a unit length
vector field! that assigns to each pointx in the planar layer a unit vectorn~x! in the direction inR3

along which molecules tend to align. In this descriptionn~x! and2n(x) are not distinguished. We
approximate a planar layer by a plane—so for us a liquid crystal state consists of a
dimensional director fieldn defined onR2.

In the Landau theory the direction ofn~x! is just an eigenvector corresponding to the larg
eigenvalue ofQ(x)—the direction in which a molecule has the ‘‘maximum probability’’ of alig
ing. We shall refer toQ(x) also as thestate of the system. IfQ(x) has two~or three! equal
maximum eigenvalues thenn~x! is undefined~a dislocation occurs!, whereas the tensor fieldQ(x)
is everywhere defined, continuous and in our case analytic.

In our discussion we assume an initial equilibrium stateQ0 that isE~2!-invariant. Because of
translation symmetry such states are spatially uniform and because of rotation symmetry the
the form

Q05hF 21 0 0

0 21 0

0 0 2
G

for some nonzerohPR. For h.0 the stateQ0 represents ahomeotropicphase~the state has
constant alignment in the vertical direction!, whereas forh,0 it represents a planarisotropic
liquid crystal ~a molecule is equally likely to align in any horizontal direction!. The stateQ0 is
also invariant under up/down reflection, that is conjugacy by the matrix

t5F 1 0 0

0 1 0

0 0 21
G .

We consider models for equilibria that are determined internally by a free energy rather
externally by, say, a magnetic field. Thus, the symmetry group for our discussion is

G5E~2!3Z2~t!,

since these are the symmetries of both the initial stateQ0 and the model.
Our aim in this paper is to study local bifurcation fromQ0 to states that have spatially varyin

alignment along the plane. Specifically, we consider bifurcation to states exhibiting spatia
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



avior

. This
d

the

ns

on is
ss of

-

s
et the
metry

at

tors of

re-
-
e per-

und

e
re then

wave-
y
es
s

4203J. Math. Phys., Vol. 44, No. 9, September 2003 Patterns in planar nematic liquid crystals

Downloaded 
odicity with respect to some planar lattice. Following Golubitskyet al. ~1988! and Golubitsky and
Stewart~2002! we use group representation theory to extract information about nonlinear beh
near bifurcation that is independent of the model.

There is a common approach to all lattice bifurcation problems, which we now describe
discussion, adapted from Bressloffet al. ~2001a!, will be familiar to anyone who has studie
pattern formation in Be´nard convection models, although there are minor differences due to
change in context. See Golubitskyet al. ~1988!; Golubitsky and Stewart~2002!.

Let l be a bifurcation parameter and assume that the equations haveQ0 as an equilibrium for
all l. Let L denote the equations linearized aboutQ0 . In the models,l is the temperature and
bifurcation occurs asl is decreased.

~1! A linear analysis aboutQ0 leads to adispersion curve.
Translation symmetry in a given direction implies that~complex! eigenfunctions have aplane

wave factor wk(x)5e2p ik"x wherekPR2. Rotation symmetry implies that the linearized equatio
have infinite-dimensional eigenspaces; instability occurs simultaneously to all functionswk(x)
with constantk5uku. The numberk is called thewave number. Points (k,l) on the dispersion
curve are defined by the maximum values ofl for which an instability of the solutionQ0 to an
eigenfunction with wave numberk occurs.

~2! Often, the dispersion curve has a unique maximum, that is, there is acritical wave number
k* at which the first instability of the homogeneous solution occurs asl is decreased.

Bifurcation analyses near such points are difficult since the kernel of the linearizati
infinite-dimensional. This difficulty can be side-stepped by restricting solutions to the cla
possible solutions that are doubly periodic with respect to a planar latticeL.

~3! The symmetries of the bifurcation problem restricted toL change from Euclidean sym
metry in two ways.

First, translations act on the restricted problem moduloL; that is, translations act as a toru
T2. Second, only a finite number of rotations and reflections remain as symmetries. L
holohedry HL be the group of rotations and reflections that preserve the lattice. The sym
groupGL of the lattice problem is then generated byHL , T2, as well as~in our case! Z2(t).

~4! The restricted bifurcation problem must be further specialized. First, alattice typeneeds to
be chosen~in this paper square or hexagonal!. Second, thesizeof the lattice must be chosen so th
a plane wave with critical wave numberk* is an eigenfunction in the spaceFL of matrix functions
periodic with respect toL.

ThosekPR2 for which the scalar plane wavee2p ik"x is L-periodic are calleddual wave
vectors. The set of dual wave vectors is a lattice, called thedual lattice, and is denoted byL* . In
this paper we consider only those lattice sizes where the critical dual wave vectors are vec
shortest length inL* . Therefore, generically, we expect kerL5Rn wheren is 4 and 6 on the
square and hexagonal lattices, respectively.

~5! Since kerL is finite-dimensional, we can use Liapunov–Schmidt or center manifold
duction to obtain a system of reduced bifurcation equations onRn whose zeros are in 1:1 corre
spondence with the steady states of the original equation. Moreover, this reduction can b
formed so that the reduced bifurcation equations areGL-equivariant.

~6! Solving the reduced bifurcation equations is still difficult. A partial solution can be fo
as follows. A subgroupS,GL is axial if dim Fix(S)51 where

Fix~S!5$xPkerL:sx5x ;sPS%.

The Equivariant Branching Lemma~Golubitsky et al., 1988! states that generically ther
exists a branch of solutions corresponding to each axial subgroup. These solution types a
classified by finding all axial subgroups, up to conjugacy.

On general grounds, when restricting attention to bifurcations corresponding to shortest
length vectors, we may assume the representation~action! of GL to be irreducible: see Golubitsk
et al. ~1988!; Chossat and Lauterbach~2000!. In Sec. III we show that there are four distinct typ
of irreducible representation ofGL that can occur in bifurcations fromQ0 . These representation
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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are the four combinations of~i! scalar or pseudoscalar~see Bosch Vivancoset al., 1995; Bressloff
et al., 2001a; Golubitsky and Stewart, 2002! and~ii ! preserve or breakt symmetry. In Sec. III we
also compute the axial subgroups for each of these representations and draw pictures of eac
relevant planforms on the square and hexagonal lattices.

Note that line fields near hometropic are almost vertical, whereas line fields near isotrop
almost horizontal. In our figures, where we view the perturbed line fields from above, we se
planar projections of the line field in all cases. We also see the deviation from vertical and, th
foreshortening of the line field elements, the deviation from horizontal. However, in this pr
tation, we cannot distinguish the ‘‘up’’ and ‘‘down’’ ends of the line field elements. It is
elementary yet curious observation that in Landau models restricted to a planar layer, bifurc
from the homeotropic phase (h.0) do not lead to clear new patterns unlesst symmetry is
broken: thet symmetry ‘‘freezes’’ the director field to the vertical. This point is discussed in m
detail in Sec. III. Therefore we present pictures of the four bifurcations from the isotropic
(h,0) and only the two bifurcations whent acts as21 in the homeotropic case (h.0). The
t511 bifurcations in the homeotropic case can lead to patterns in a theory posed on a thic
planar layer. In such a theory, which goes beyond what we present here, the precise f
boundary conditions on the upper and lower boundaries of the layer will determine the p
types. In the other bifurcations, the contributions to pattern selection of these boundary con
should be less important.

In fact, the bifurcation theory for each of these four representations ofGL has been discusse
previously in different contexts. It is only the interpretation of eigenfunctions in the conte
Q(x) that needs to be computed, along with the pictures of the resulting planforms. More sp
cally, whent acts trivially on kerL the scalar representation has been used in the study of pa
formation in Rayleigh–Be´nard convection by Busse~1962! and Buzano and Golubitsky~1983!,
and the pseudoscalar representation has been studied by Bosch-Vivancos, Chossat, and M
~1995! and also in the context of geometric visual hallucinations by Bressloffet al. ~2001b!;
~2001a!. When t acts nontrivially the two representations have the same matrix generator
although the planforms are different for these two representations the bifurcation theory is
tical. Indeed, this theory is just the one studied for Rayleigh–Be´nard convection with a midplane
reflection by Golubitsky, Swift, and Knobloch~1984!.

Perhaps the most interesting patterns that appear from our analysis are the stripes or
~from convection studies! type patterns that bifurcate from the isotropic state whent symmetry is
not broken, that ist511. The scalar pattern is a ‘‘martensite’’ pattern whereas the pseudos
pattern is a ‘‘chevron’’ pattern. See Fig. 1. The fact that such patterns do occur in liquid c
layers is well known: see, for example, de Gennes~1974!, and also Huhet al. ~2000! from which

FIG. 1. Stripes from isotropic (h,0) state witht511 representations: scalar ‘‘martensite’’~left!; pseudoscalar ‘‘chev-
ron’’ ~right!. Note that• in the figures indicates points whereQ(x) has a double maximum eigenvalue.
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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the pictures in Fig. 2 are taken. However, it is important to emphasize that these pattern
observed under experimental conditions far removed from those to which our theoretical
applies. Moreover, the observed chevrons exhibit additional fine periodic structure~which renders
them visible as chevrons and not stripes! that we do not discuss here. We recall that patte
described in this paper are those that can arise close to homeotropic or planar isotropic st

In Sec. IV we introduce free energies that illustrate that all four representations ca
encountered asl is decreased, although in our model only two of them can be the first bifurca
from homeotropy while only the other two can be the first bifurcation from isotropy.~It is likely
that different models will allow other variations.! It then follows from the Equivariant Branchin
Lemma that each of the axial equilibrium types that we describe in Sec. III is an equilib
solution to the nonlinear model equations.

III. SPATIALLY PERIODIC EQUILIBRIUM STATES

In this section we list the axial subgroups for each of the four representations ofGL on the
square and hexagonal lattices, and then plot the planforms for the associated bifurcating b
from both the isotropic (h,0) and homeotropic (h.0) states. We emphasize that these res
depend only on symmetry and can be obtained independently of any particular model. Fir
describe the form of the eigenspaces for each of these four representations. Second, we dis
group actions and the axial subgroups for each of these representations. Finally, we p
associated direction fields.

A. Linear theory

Let L denote the linearization of the governing system of differential equations atQ0 @for the
free energy model with free energyF we haveL5d2F(Q0)]. Bifurcation occurs at paramete
values whereL has nonzero kernel. We prove that generically, at bifurcation to shortest dual
vectors, kerL has the form given in Theorem 3.1. Let

Q115F a 0 0

0 b 0

0 0 2a2b
G , Q125F 0 0 i

0 0 0

i 0 0
G ,

~1!

Q215F 0 1 0

1 0 0

0 0 0
G , Q225F 0 0 0

0 0 i

0 i 0
G .

In the double superscript onQ, the first6 refers to scalar or pseudoscalar representation and
second6 refers to the action oft. In Table I we also fix the generators of the lattice and its d
lattice.

FIG. 2. Rolls~left! and chevrons~right!. ~Pictures courtesy of J.-H. Huh.!
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Theorem 3.1:On the square lattice, letj be rotation counterclockwise byp/2. Then, in each
irreducible representation, kerL is four-dimensional and its elements have the form

z1e2p ik1"x Q661z2 e2p ik2"x j•Q661c.c. ~2!

for z1 ,z2PC , where Q66 is the appropriate matrix specified in (1), j•Q denotesjQj21, and
c.c. denotes complex conjugate.

On the hexagonal lattice, letj be rotation counterclockwise byp/3. Then, in each irreducible
representation, kerL is six-dimensional and its elements have the form

z1e2p ik1"x Q661z2 e2p ik2"x j2
•Q661z3 e2p ik3"x j4

•Q661c.c. ~3!

for z1 ,z2 ,z3PC .
Proof: Let V and VC denote the space of~respectively! real and complex 333 symmetric

matrices with zero trace. Planar translation symmetry implies that eigenfunctions~nullvectors! of
L are linear combinations of matrices that have the plane wave form

e2p ik"xQ1c.c., ~4!

whereQPVC is a constant matrix andkPR2 is a wave vector. For fixedk let

Wk5$e2p ik"xQ1c.c.:QPVC% ~5!

be the ten-dimensionalL-invariant real linear subspace consisting of such functions.
Rotations and reflectionsgPO(2)3Z2(t),O(3) act onWk by

g~e2p ik"xQ!5e2p i (gk)"x gQg21. ~6!

When looking for nullvectors we can assume, after rotation, thatk5k(1,0). We can also rescal
length so that the dual wave vectors of shortest length have length 1; that is, we can assu
k51.

Bosch Vivancos, Chossat, and Melbourne~1995! observed that reflection symmetries c
further decomposeWk into two L-invariant subspaces. To see why, consider the reflection

k~x,y,z!5~x,2y,z!.

Note that the action~6! of k on Wk ~dropping the1c.c.) is

k~e2p ik"xQ!5e2p ik(k)"x kQk215e2p ik"x kQk21.

Sincek251, the subspaceWk itself decomposes as

Wk5Wk
1

% Wk
2 , ~7!

TABLE I. Generators for the planar lattices and their dual lattices.

Lattice ø1 ø2 k1 k2 k352(k11k2)

Square ~1,0! ~0,1! ~1,0! ~0,1! —

Hexagonal S 1,
1

)
D S 0,

2

)
D ~1,0!

1

2
~21,) !

1

2
~21,2) !
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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wherek acts trivially onWk
1 and as minus the identity onWk

2 , and each ofWk
1 andWk

2 areL
invariant. We call functions inWk

1 evenand functions inWk
2 odd. Bifurcations based on eve

eigenfunctions are calledscalar and bifurcations based on odd eigenfunctions are calledpseudo-
scalar.

A further simplification in the form ofQ can be made. ConsiderrPSO(2),O(3) given by
(x,y,z)°(2x,2y,z). Since~dropping the1c.c.)

r~e2p ik"xQ!5e2p irk"xrQr215e22p ik"xrQr215e2p ik"xrQr21

the associated action ofr on VC is related to the conjugacy action by

r~Q!5rQr21. ~8!

Since L commutes withr and r251, the subspaces of the kernel ofL where r(Q)5Q and
r(Q)52Q areL-invariant. Therefore, we can assume thatQ is in one of these two subspace
Note moreover that translation by1

4k implies that ife2p ik"xQ is an eigenfunction thenie2p ik"xQ is
a ~symmetry related! eigenfunction. It follows from~8! that if r acts as minus the identity onQ,
then r acts as the identity oniQ. Thus we can assume without loss of generality that up
translational symmetryQ is r-invariant, that isQ has the form

Q5F a g ic

g b ih

ic ih 2a2b
G ,

wherea,b,c,g,hPR. Therefore we have proved
Lemma 3.2: Up to symmetry eigenfunctions in Wk have the form

e2p ik"xQ1c.c.

where Q is nonzero, r-invariant, and either even or odd.
Lemma 3.2 implies that typically eigenfunctions inWk lie in one of the two-dimensiona

subspacesVk
1 ,Vk

2 of Wk
1 ,Wk

2 that have the form

Vk
15$ze2p ik"xQ1:zPC%,

Vk
25$ze2p ik"xQ2:zPC%,

where

Q15F a 0 ic

0 b 0

ic 0 2a2b
G and Q25F 0 g 0

g 0 hi

0 hi 0
G ~9!

with the specific valuesa,b,c,g,hPR being chosen byL ~cf. Golubitsky and Stewart, 2002, Se
5.7!.

Moreover, sinceL commutes witht we can further split

Vk
15Vk

11
% Vk

12 and Vk
25Vk

21
% Vk

22

into subspaces on whicht acts trivially and by minus the identity, and each of these subspac
L-invariant. Since
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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tQt5F a g 2 ic

g b 2 ih

2 ic 2 ih 2a2b
G

we see thatVk
665$ze2p ik"xQ66:zPC%, where the matricesQ66 are as given in~1!.

Finally, note that kerL is invariant under the action ofj. It follows that on the square lattice

kerL5Vk
66

% j~Vk
66!

whereas on the hexagonal lattice

kerL5Vk
66

% j2~Vk
66! % j4~Vk

66!

thus verifying~2!, ~3! and completing the proof of Theorem~3.1!. h

B. Axial subgroups

The scalar and pseudoscalar actions ofE~2! on the eigenfunctions on the square and hexa
nal lattices are computed in Bressloffet al. ~2001a!. The results are given in Table II in terms o
the coefficientszj in ~2! and ~3!.

The axial subgroups for each of the four irreducible representations ofGL are given in Table
III, together with generators (z1 ,z2)PC2 or (z1 ,z2 ,z3)PC3 ~fixed vectors! of the corresponding
one-dimensional fixed-point subspaces~axial eigenspaces! in kerL, and descriptions of the asso
ciated patterns~planforms!.

The results in Table III summarize known results for scalar actions with and withou
midplane reflection~Buzano and Golubitsky, 1983; Golubitskyet al., 1984! and the less well
known results for pseudoscalar actions~Bosch Vivancoset al., 1995; Bressloffet al., 2001a!. See
also Golubitsky and Stewart~2002!. More precisely, on the hexagonal lattice, the scalar1 action is
identical to the action studied in Be´nard convection~Busse, 1962; Buzano and Golubitsky, 198!
and the scalar2 action is identical to the one studied in Be´nard convection with the midplan
reflection~Golubitskyet al., 1984!. The pseudoscalar1 action is identical to that studied in Bosc
Vivancoset al. ~1995! and Bressloffet al. ~2001a!, whereas the pseudoscalar2 action is again the
same as the one in Be´nard convection with the midplane reflection—but with different isotro
subgroups, as Figs. 5 and 6 show.

TABLE II. ~Left! D4 u T2 action on square lattice;~right! D6 u T2 action on hexagonal lattice. Here@u1 ,u2#5u1ø1

1u2ø2 as in Table I. For scalar representatione511; for pseudoscalar representatione521.

D4 Action D6 Action

1 (z1 ,z2) 1 (z1 ,z2 ,z3)
j (z2,z1) j (z2,z3,z1)
j2 (z1,z2) j2 (z3 ,z1 ,z2)
j3 (z2 ,z1) j3 (z1,z2,z3)
k e(z1 ,z2) j4 (z2 ,z3 ,z1)
kj e(z2,z1) j5 (z3,z1,z2)
kj2 e(z1,z2) k e(z1 ,z3 ,z2)
kj3 e(z2 ,z1) kj e(z2,z1,z3)

kj2 e(z3 ,z2 ,z1)
kj3 e(z1,z3,z2)
kj4 e(z2 ,z1 ,z3)
kj5 e(z3,z2,z1)

@u1 ,u2# (e22p iu1z1 ,e22p iu2z2) @u1 ,u2# (e22p iu1z1 ,e22p iu2z2 ,e2p i (u11u2)z3)
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



re or

terial

the

ints.

4209J. Math. Phys., Vol. 44, No. 9, September 2003 Patterns in planar nematic liquid crystals

Downloaded 
C. The planforms

We now consider two-dimensional patterns by disregarding thez coordinate inx ~but not in
Q) and restricting attention to equilibrium states that are periodic with respect to a squa
hexagonal lattice in thexy plane.

To visualize the patterns of bifurcating solutions we assume a layer of liquid crystal ma
in the xy plane that to first order has the form

Q~x!5Q01«E~x!,

whereE is an axial eigenfunction,« is small, andQ0 is either isotropic (h521) or homeotropic
(h511). At each point (x,y) we represent the director field by a standard-length interval in
eigendirection corresponding to the largest eigenvalue of the symmetric 333 matrix Q(x) at x
5(x,y) and we plot only the projection of that interval in thexy plane. In this picture, a line
element that degenerates to a point corresponds to a vertical eigendirection.

Suppose first thatQ0 is homeotropic. In this case the associated pattern is an array of po
Moreover, in our simulations no pattern will appear in bifurcations for whichQ(x) is fixed by the
action oft. For, if E(x)PVk

11 or Vk
21 then

TABLE III. Summary of axial subgroups. On the hexagonal lattice in the scalar case witht511 the points~1,1,1! and
(21,21,21) have the same isotropy subgroup@D6(k,j) % Z2(t)#—but are not conjugate by any element ofGL . There-
fore, the associated eigenfunctions generate different planforms.

Lattice Planform Axial isotropy subgroup Fixed vector

Scalar representation (e511); t511
Square Squares D4(k,j) % Z2(t) ~1,1!

Stripes Z2
2(kj2,t) % O(2)@u2 ,k# ~1,0!

Hexagonal Hexagons1 D6(k,j) % Z2(t) ~1,1,1!
Hexagons2 D6(k,j) % Z2(t) (21,21,21)
Stripes Z2

2(kj3,t) % O(2)@u2 ,k# ~1,0,0!

Pseudoscalar representation (e521); t511
Square Squares D4(k@

1
2 ,

1
2#,j) % Z2(t) ~1,1!

Stripes Z2
2(kj2@

1
2,0#,t) % O(2)@u2 ,k@

1
2,0## ~1,0!

Hexagonal Hexagons Z6(j) % Z2(t) ~1,1,1!
Triangles D3(kj,j2) % Z2(t) ( i ,i ,i )
Rectangles Z2

3(k,j3,t) (0,1,21)
Stripes Z2

2(kj3@
1
2,0#,t) % O(2)@u2 ,k@

1
2,0## ~1,0,0!

Scalar representation (e511); t521
Square Squares D4(k,j) % Z2(t@

1
2 ,

1
2#) ~1,1!

Stripes Z2
2(kj2,t@

1
2,0#) % O(2)@u2 ,k# ~1,0!

Hexagonal Hexagons D6(k,j) ~1,1,1!
Triangles D6(k,tj) ( i ,i ,i )
Rectangles Z2

3(tk,j3,t@0,
1
2#) (0,1,21)

Stripes Z2
2(kj3,t@

1
2,0#) % O(2)@u2 ,k# ~1,0,0!

Pseudoscalar representation (e521); t521
Square Squares D4(tk,j) % Z2(t@

1
2 ,

1
2#) ~1,1!

Stripes Z2
2(kj2@

1
2,0#,t@

1
2,0#) % O(2)@u2 ,k@

1
2,0## ~1,0!

Hexagonal Hexagons D6(tk,j) ~1,1,1!
Triangles D6(tk,tj) ( i ,i ,i )
Rectangles Z2

3(k,j3,t@0,
1
2#) (0,1,21)

Stripes Z2
2(kj3@

1
2,0#,t@

1
2,0#) % O(2)@u2 ,k@

1
2,0## ~1,0,0!
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Q~x!5FA 0

0 bG ,
whereA is a 232 block andb is a scalar. Sinceb is close to 2~the largest eigenvalue ofQ0) it
is also the largest eigenvalue forQ(x) for « small. Hence, the leading eigendirection~correspond-
ing to the largest eigenvalue! is always vertical and no patterns appear that are determine
changes in eigendirection. Nevertheless, since variation in the vertical eigenvalue ofQ(x) repre-
sents variation in the propensity of molecules to align vertically it is plausible that indis
patterns could nevertheless be observed in practice.

Next suppose thatQ0 is planar isotropic. For small« the director field is nearly horizonta
~exactly horizontal ift511) and so our figures represent the pattern fairly accurately. Wht
521 there are small sinusoidal oscillations in the vertical component of the director field.

Bifurcations from isotropy exhibit lines or points of dislocation~where the director field is
undefined! whereas bifurcations from homeotropy do not. In the latter case the director fie
near vertical and there are small sinusoidal variations in the horizontal components. In this c
the standard ‘‘rolls’’ terminology is misleading, as the director field is never horizontal: rath
oscillates about the vertical in a vertical plane and so generates ‘‘stripes.’’

In Figs. 3 and 4 we plot solutions corresponding to scalar and pseudoscalar square
patterns. In Figs. 5–10 we plot those for a hexagonal lattice. In the planforms obtaine
bifurcation from homeotropy• indicates a vertical line element; whereas in the planforms obta
by bifurcation from isotropy• indicates points whereQ(x) has a double maximum eigenvalu

FIG. 3. Square lattice bifurcations from isotropic (h,0) liquid crystal to square patterns:~upper left! scalart511;
~upper right! pseudoscalart511; ~lower left! scalart521; ~lower right! pseudoscalart521. Corresponding stripes
patterns can be found in Figs. 1 and 7–10.
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FIG. 4. Square lattice bifurcations from homeotropic (h.0) to squares witht521: ~left! scalar;~right! pseudoscalar.
Corresponding stripes patterns can be found in Figs. 5 and 6.

FIG. 5. Hexagonal lattice bifurcations from homeotropic (h.0) with scalart521 representation:~upper left! stripes;
~upper right! hexagons;~lower left! triangles;~lower right! rectangles.
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FIG. 6. Hexagonal lattice bifurcations from homeotropic (h.0) with pseudoscalart521 representation:~upper left!
stripes;~upper right! hexagons;~lower left! triangles;~lower right! rectangles.

FIG. 7. Hexagonal lattice bifurcations from isotropic (h,0) with scalart511 representation: stripes in Fig. 1;~left!
hexagons1; ~right! hexagons2.
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ns are

bifur-
ge-
cally

not
results,

cation
ollows.
, for

lue

anch

4213J. Math. Phys., Vol. 44, No. 9, September 2003 Patterns in planar nematic liquid crystals

Downloaded 
that is, a dislocation. Observe that across lines of dislocation the two competing directio
necessarily orthogonal inR3.

IV. FREE ENERGY MODELS

These results imply that for a planar liquid crystal there are four types of steady-state
cations, scalar, pseudoscalar, andt561 of each type, that can occur from a spatially homo
neous equilibrium to spatially periodic equilibria. Whichever bifurcation occurs, then generi
all of the planforms that we listed in the relevant section of Table III will be solutions. We have
discussed the difficult issue of stability of these solutions since these are model dependent
whereas the classification of equilibria that we have given is independent of the model.

What remains is to complete a linear calculation to determine when a steady-state bifur
occurs and whether it is scalar or pseudoscalar. The outline of such a calculation goes as f
We first compute adispersion curvefor both scalar and pseudoscalar eigenfunctions. That is
each wavelengthk5uku we determine the first valuelk of the bifurcation parameterl whereL has
a nonzero kernel. The curve (k,lk) is called the dispersion curve. We then find the minimum va
l* 5lk

*
on the dispersion curve; the corresponding wavelengthk* is thecritical wavelength. We

expect the first instability of the spatially homogeneous equilibrium to occur at the valuel* of the
bifurcation parameter. A bifurcating branch can consist of stable solutions only if the br
emanates from the first bifurcation~at l* ).

FIG. 8. Hexagonal lattice bifurcations from isotropic (h,0) with scalart521 representation:~upper left! stripes;~upper
right! hexagons;~lower left! triangles;~lower right! rectangles.
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As an illustration we now carry out these calculations for a Landau–de Gennes type
with appropriate planar symmetry. Related calculations were carried out for bifurcation from
three-dimensional isotropic phase in Grebelet al. ~1983!. In this model we show that there ar
bifurcations corresponding to each of the four irreducible representations ofGL , and which of
them occurs first depends on the action oft.

A. Dispersion curves for a two-dimensional Landau–de Gennes model

The free energyF is expressed as an integral per unit volume of afree energy densityF which
has two principal componentsF0 and Fd corresponding tobulk termsand deformation terms,
respectively: we writeF accordingly asF5F01Fd . For a system in three dimensions the
typically @see, e.g., Grebelet al. ~1983!# take the form

F0~Q!5 1
2 luQu22 1

3 B trQ31 1
4 CuQu4,

Fd~Q!5c1u¹Qu21c2u¹•Qu21c3uQ•¹∧Qu,

respectively, whereuRu2 denotes the sum of the squares of the coefficients of the tensorR. The
expression forF0 represents the simplestSO~3!-invariant function onV exhibiting nontrivial
interaction of local minima close toQ50, while Fd consists of thoseSO~3!-invariant terms of at
most order 2 in spatial first derivatives~the chiral termuQ•¹∧Qu is not reflection-invariant!.

FIG. 9. Hexagonal lattice bifurcations from isotropic (h,0) with pseudoscalart511 representation:~upper left! stripes;
~upper right! hexagons;~lower left! triangles;~lower right! rectangles.
29 Oct 2005 to 193.60.94.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



: the
an

r iso-
h
iral
free

4215J. Math. Phys., Vol. 44, No. 9, September 2003 Patterns in planar nematic liquid crystals

Downloaded 
For a two-dimensional problem this choice of free energy function is not fully appropriate
relevant symmetry group is nowG5E(2)3Z2(t). Consequently a wider range of terms c
appear inF0 , while theuQ•¹∧Qu term will no longer appear inFd .

We are interested in planforms that bifurcate from either the bulk homeotropic state o
tropic state, represented byQ0 with h.0 or h,0, respectively. An example of a bulk term wit
E(2)3Z2(t) invariance is (Q0•Q)2, and a candidate for a deformation term to replace the ch
term isuDQu2 representing longer range interactions of molecules. Accordingly we consider a
energy densityF5F01Fd where now

F0~Q!5 1
2 luQu22 1

3 BtrQ31 1
4 CuQu41 1

12 D~Q0•Q!2,

Fd~Q!5c1u¹Qu21c2u¹•Qu21c4uDQu2.

Equilbrium states are critical points ofF, and forF0 we have

dF0~Q!R5lQ•R2BQ2
•R1CuQu2Q•R1 1

6 D~Q0•Q!~Q0•R!

for arbitrary 333 real symmetric matricesQ,R ; thus restricted toQ with trace zero we have
dF0(Q)50 when

lQ2B~Q22 1
3 uQu2I !1CuQu2Q1 1

6 D~Q0•Q!Q050

FIG. 10. Hexagonal lattice bifurcations from isotropic (h,0) with pseudoscalart521 representation:~upper left!
stripes;~upper right! hexagons;~lower left! triangles;~lower right! rectangles.
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and we easily verify the following:

dF0~Q0!50⇔l2Bh1~6C1D !h250. ~10!

Observe thatdF(Q)R50 automatically for any spatially periodic stateR with zero mean, as
the integral of an expression linear inR or its derivatives remains bounded as the volume tend
infinity. Therefore~10! is the condition forQ0 to be an equilibrium state in our free energy mod

To study stability of the stateQ0 we evaluate the second derivative of the free energy atQ0 .
For RPV we find

d2F0~Q0!R25luRu222BQ0•R21C~2~Q0•R!21uQ0u2uRu2!1 1
6D~Q0•R!2

and ~integrating over unit area!

d2Fd~Q0!R25c1E u¹Ru21c2E u¹•Ru21c4E uDRu2

sinceQ0 is spatially constant and terms linear inR integrate to zero.
We have already seen from Theorem 3.1 that theE(2)3Z2(t) invariance of the free energ

implies that generically the eigenfunctions ofd2F(Q0) on the space ofL-periodic matrix func-
tions are linear combinations of functions belonging to one of the four subspacesVk

66 and their
rotations underp/2 ~square lattice! or 62p/3 ~hexagonal lattice!. We next seek dispersion rela
tions for each of the spacesVk

66 in turn. WhenR5e2p ik"xQ1c.c. it is easy to check that

1

4p2 E u¹Ru252k2uQu2,
1

4p2 E u¹•Ru252uQku2,
1

16p4 E uDRu252k4uQu2,

wherek5uku. Without loss of generality we can takek5(k,0,0) and then after rescalingk by a
factor of 2p the evaluations ofd2F0(Q0)R2 andd2Fd(Q0)R2 are given in Table IV.

If we normalize by choosingD so that~10! is satisfied byh51 ~corresponding to homeot
ropy! then we find the conditions for a zero eigenvalue in each of the last three~one-dimensional!
eigenspaces are, respectively,

l2B16C1~c11 1
2c2!k21c4k450,

l12B16C1~c11 1
2c2!k21c4k450, ~11!

l2B16C1c1k21c4k450

with the analogous expressions forh521 ~bifurcation from two-dimensional isotropy! obtained
by merely reversing the sign ofB in these equations.

Stationary values ofl as a function ofk occur where

TABLE IV. Computation ofd2F(Q0)R2.

R d2F0(Q0)R2 d2Fd(Q0)R2

Vk
11 l(a21b222ab)

2B(a21b2110ab)h
16C(7(a21b2)110ab)h2

2k2(c2a21

(a21b21(a1b)2)(c11c4k2))

Vk
12 4(l2Bh16Ch2)

524Dh2 by ~10!
(4c112c2)k214c4k4

Vk
21 4(l12Bh16Ch2) (4c112c2)k214c4k4

Vk
22 4(l2Bh16Ch2)

524Dh2
4c1k214c4k4
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k252~c11 1
2c2!/2c4

for Vk
12 andVk

21 , or

k252c1/2c4

for Vk
22 , giving values

l5H B26C1~c11 1
2 c2!2/4c4 for Vk

12

22B26C1~c11 1
2 c2!2/4c4 for Vk

21

B26C1c1
2/4c4 for Vk

22.

~12!

Finally, if RPVk
11 then the matrix ford2F0(Q0)R2 as a quadratic form ina,b is

F l2B142C 2l25B130C

2l25B130C l2B142C G
and ford2Fd(Q0)R2 is

F4c1k212c2k214c4k4 2c1k212c4k4

2c1k212c4k4 4c1k214c4k4G
and sod2F(Q0)uVk

11 has a nontrivial kernel when the determinant of the sum of these
matrices vanishes.

With c250 ~that is, in physical terms, with no energy cost to the molecules for ‘‘splay’’! the
algebra simplifies to yield the dispersion relation

l522B26C1
c1

2

4c4
. ~13!

From ~11! and~13! we therefore see that withc250 the values ofl for Vk
66 depend only on

the second6, that is on whether bifurcating solutions have vertical reflection symmetryt
511) or not (t521) and are the same for the scalar and the pseudoscalar represent
Moreover, asl decreases, the first bifurcation from the homeotropic state (h.0) hast521
while the first bifurcation from the isotropic state (h,0) hast511 . These statements rema
true for sufficiently smalluc2u .

B. Plausibility and applications

The models that we have described are of course mathematical idealizations of an
physical situation. In particular

~i! full two-dimensional Euclidean lattice symmetry~by its nature infinite! cannot exist in
practice, and

~ii ! the question of stability of the patterns has not been addressed.

Issue ~i! arises in many areas of pattern formation, and it is a common observation
despite the meaninglessness of full Euclidean lattice symmetry, the types of pattern tha
symmetry predicts are indeed seen in physical situations over even fairly small regions. Mor
attempts to force a planar solution into a sphere or other geometrical surface naturally l
dislocations in the pattern. For liquid crystals these questions become particularly important
context of membranes and other structures in biology@Brown and Wolken~1979!# where hexago-
nal patterns, for example, are not uncommon~although we make no claim to connect them direc
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with the hexagonal planforms that we discuss!. Our planar idealization may thus form a startin
point for understanding two-dimensional pattern formation in more realistic contexts.

The very interesting question of stability of solutions~ii ! is a mathematical issue that needs
be addressed on two levels. First, stability restricted to perturbations within the lattice sho
considered. The general analysis has been worked out for the scalar representations~Buzano and
Golubitsky, 1983; Golubitskyet al., 1984! and discussed for the pseudoscalart51 ~Bressloff
et al., 2001a!, but has not been completed for the pseudoscalart521 representation~though the
analysis should be similar to the pseudoscalart51 case!. A full treatment of this stability~based
on symmetry and otherwise independent of the equations! will, even for our simplified model,
require a long calculation and is beyond the scope of this work. We note that with the
assumption of a free energy function it might be feasible to address even more general s
issues. However, we again believe that such efforts should be reserved for models more ph
realistic than ours.

V. CONCLUSION

We have classified those square and hexagonally periodic patterns that are predicted to
the director field of a planar layer of a nematic liquid crystal when a homeotropic or p
isotropic state loses stability via the simplest spatially doubly periodic steady-state bifurca
The techniques are those of group theory and representation theory, and are valid for an
model under various reasonable assumptions. If such patterns are observed experimentall
conditions consistent with our assumptions, then our analysis provides the explanation
remains is to evaluate relevant constants~on the basis of physical data! in order to determine
which of the patterns is to occur. We have investigated some aspects of this for a Land
Gennes free energy model. Analogous methods to these have been used for some time in
fields such as Be´nard convection, but for liquid crystal models the extra complexity of the ma
order parameter here gives a richer geometric structure.
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