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Using equivariant bifurcation theory, and on the basis of symmetry considerations
independent of the model, we classify square and hexagonally periodic patterns that
typically arise when a homeotropic or planar isotropic nematic state becomes un-
stable, perhaps as a consequence of an applied magnetic or electric field. We relate
this to a Landau—de Gennes model for the free energy, and derive dispersion
relations in sufficient generality to illustrate the role of up/down symmetry in de-
termining which patterns can arise as a stable bifurcation branch from either initial
state. © 2003 American Institute of Physic§DOI: 10.1063/1.1598620

I. INTRODUCTION

There is an extensive amount of literature on spatially periodic pattern-formation in physical
and biological systems: see for example the surveys by Cross and Hohéh®@8yand Cladis
and Palffy-Muhoray(1995. The mathematical techniques to analyze the creation and interactions
of such patterns often involve reduction of the governing partial differential equations to a finite-
dimensional system that captures the essential dynamics near a bifurcation point of a fundamental
equilibrium state, followed by a bifurcation analysis to classify the branching of multiple solu-
tions.

The crucial role ofsymmetryin organizing pattern-forming bifurcations has been recognized
for some time: see Bus9d962; Buzano and Golubitsky1983; Golubitsky et al. (1984), for
example. Indeed, on the basis of symmetry considerations alone, and with some natural nonde-
generacy assumptions, a classification of branching behavior for systems with symmetry can be
given that is independent of the actual mathematical model. This insight, with the associated
technical machinery of group theory and group actions, is the inspiration for the texts such as
Golubitsky et al. (1988; Chossat and Lauterbad®000; Golubitsky and Stewar2002. The
general theory provides a framework: in order to make specific predictions of physical behavior
exerimental numerical valuésr sometimes just their sighaeed to be determined, unfortunately
not necessarily an easy task.

In this paper we generalize methods that have been previously and successfully applied in
other fields(Buzano and Golubitsky, 1983; Golubitsky al., 1984; Golubitskyet al., 1988; Bress-
loff et al, 2001a; Golubitsky and Stewart, 200® the context of pattern formation in planar
liquid crystals. A preliminary version of our results appears in Golubitsky and Chillingworth
(2003. We consider periodic planar patterns with square or hexagonal symmetry that can bifurcate
from a homeotropic or planar isotropic state. We do not claim to predict experimental conditions
under which these states can be observed; rather we set out a dictionary of possibilities on the
basis of natural mathematical assumptions. Numerous patterns similar to those we describe have
indeed been observed in liquid crystal experiments, see, e.g., de G&8ids Huh et al. (2000,
but under conditions often quite different from ours. The question of how to detect experimentally
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the variety of director-field patterns predicted here is one that we are not yet in a position to
answer. However, we do give some pointers on dealing with this issue by calculating key aspects
of branching behavior for an explicit Landau—de Gennes type model.

II. THE GENERAL STRATEGY

In the Landau theory of phase transitions for a liquid crystal the degree of coherence of
alignment of molecules is usually represented kgresor order parameter field of symmetric
3% 3 tensorQ(x), xe R with tr(Q)=0 (Sluckin, 2000. We think of Q as the second moment
of a probability distribution for the directional alignment of a rod-like molecule. In a spatially
uniform system@Q is independent ok e R3. WhenQ=0 the system issotropic, with molecules
not aligned in any particular direction. If there is a preferred direction along which the molecules
tend to lie (but with no positional constraintshe liquid crystal is innematicphase. There are
many other types of phase involving local and global structures, see SI{&}x).

In this paper we consider a thin planar layer of nematic liquid crystal where the top and
bottom boundary conditions on this layer are identical. In this situation the symmetries of any
liquid crystal model will include planar Euclidean symmetrig®) as well as up/down reflection
symmetry.

A configuration orstateof a liquid crystal is often described by a director fiégddunit length
vector field that assigns to each poixin the planar layer a unit vector(x) in the direction inR®
along which molecules tend to align. In this descriptigr) and—n(x) are not distinguished. We
approximate a planar layer by a plane—so for us a liquid crystal state consists of a three-
dimensional director fielah defined onR2.

In the Landau theory the direction afx) is just an eigenvector corresponding to the largest
eigenvalue ofQ(x)—the direction in which a molecule has the “maximum probability” of align-
ing. We shall refer toQ(x) also as thestate of the system. IfQ(x) has two(or threg equal
maximum eigenvalues thar(x) is undefineda dislocation occuds whereas the tensor field(x)
is everywhere defined, continuous and in our case analytic.

In our discussion we assume an initial equilibrium s@tethat isE(2)-invariant. Because of
translation symmetry such states are spatially uniform and because of rotation symmetry they have

the form
-1 0 O
Q=7 0 -1 0
0 0 2

for some nonzeraye R. For >0 the stateQ, represents daomeotropicphase(the state has
constant alignment in the vertical directjprwhereas forp<<O it represents a planasotropic
liquid crystal (a molecule is equally likely to align in any horizontal directiomhe stateQy is
also invariant under up/down reflection, that is conjugacy by the matrix

1 0 O
~=[{0 1 O
0 0 -1

We consider models for equilibria that are determined internally by a free energy rather than
externally by, say, a magnetic field. Thus, the symmetry group for our discussion is

I'=E(2)XZy(7),

since these are the symmetries of both the initial Sfgfeand the model.
Our aim in this paper is to study local bifurcation fradyg to states that have spatially varying
alignment along the plane. Specifically, we consider bifurcation to states exhibiting spatial peri-
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odicity with respect to some planar lattice. Following Golubitskyal. (1988 and Golubitsky and
Stewart(2002 we use group representation theory to extract information about nonlinear behavior
near bifurcation that is independent of the model.

There is a common approach to all lattice bifurcation problems, which we now describe. This
discussion, adapted from Bresslat al. (20013, will be familiar to anyone who has studied
pattern formation in Beard convection models, although there are minor differences due to the
change in context. See Golubitsky al. (1988; Golubitsky and Stewart2002).

Let A be a bifurcation parameter and assume that the equationdhpae an equilibrium for
all . Let L denote the equations linearized ab@y. In the models) is the temperature and
bifurcation occurs a& is decreased.

(1) A linear analysis abou, leads to alispersion curve

Translation symmetry in a given direction implies thedmplex eigenfunctions have plane
wave factor w(x) =e?"k* wherek e R?. Rotation symmetry implies that the linearized equations
have infinite-dimensional eigenspaces; instability occurs simultaneously to all funetigw®
with constantk=|k|. The numbeik is called thewave numberPoints k,\) on the dispersion
curve are defined by the maximum values\ofor which an instability of the solutio, to an
eigenfunction with wave numbésr occurs.

(2) Often, the dispersion curve has a unique maximum, that is, thereriscal wave number
k, at which the first instability of the homogeneous solution occurs msdecreased.

Bifurcation analyses near such points are difficult since the kernel of the linearization is
infinite-dimensional. This difficulty can be side-stepped by restricting solutions to the class of
possible solutions that are doubly periodic with respect to a planar lditice

(3) The symmetries of the bifurcation problem restrictedCtehange from Euclidean sym-
metry in two ways.

First, translations act on the restricted problem modiildhat is, translations act as a torus
T2. Second, only a finite number of rotations and reflections remain as symmetries. Let the
holohedry H- be the group of rotations and reflections that preserve the lattice. The symmetry
groupT . of the lattice problem is then generated By, T2, as well as(in our casg Z,(7).

(4) The restricted bifurcation problem must be further specialized. Fitattiee typeneeds to
be choserin this paper square or hexagon&econd, theizeof the lattice must be chosen so that
a plane wave with critical wave numbley is an eigenfunction in the spadg- of matrix functions
periodic with respect tc.

Thosek e R? for which the scalar plane wave?™** is L-periodic are calleciual wave
vectors The set of dual wave vectors is a lattice, calleddhbel lattice and is denoted b¢*. In
this paper we consider only those lattice sizes where the critical dual wave vectors are vectors of
shortest length inC*. Therefore, generically, we expect ker R" wheren is 4 and 6 on the
square and hexagonal lattices, respectively.

(5) Since kel is finite-dimensional, we can use Liapunov—Schmidt or center manifold re-
duction to obtain a system of reduced bifurcation equationRbwhose zeros are in 1:1 corre-
spondence with the steady states of the original equation. Moreover, this reduction can be per-
formed so that the reduced bifurcation equationslgresquivariant.

(6) Solving the reduced bifurcation equations is still difficult. A partial solution can be found
as follows. A subgrou CT ' is axial if dim Fix(2)=1 where

Fix(2)={xekerL:ox=x VoeX}.

The Equivariant Branching LemméGolubitsky et al, 1988 states that generically there
exists a branch of solutions corresponding to each axial subgroup. These solution types are then
classified by finding all axial subgroups, up to conjugacy.

On general grounds, when restricting attention to bifurcations corresponding to shortest wave-
length vectors, we may assume the representésotion of I' ; to be irreducible: see Golubitsky
et al. (1988; Chossat and Lauterba€¢R000. In Sec. Il we show that there are four distinct types
of irreducible representation @f, that can occur in bifurcations fro,. These representations
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FIG. 1. Stripes from isotropic/{<0) state withr=+1 representations: scalar “martensit@éft); pseudoscalar “chev-
ron” (right). Note that- in the figures indicates points whe@(x) has a double maximum eigenvalue.

are the four combinations @f) scalar or pseudoscalésee Bosch Vivancost al,, 1995; Bressloff

et al, 2001a; Golubitsky and Stewart, 200#hd (ii) preserve or break symmetry. In Sec. Il we

also compute the axial subgroups for each of these representations and draw pictures of each of the
relevant planforms on the square and hexagonal lattices.

Note that line fields near hometropic are almost vertical, whereas line fields near isotropic are
almost horizontal. In our figures, where we view the perturbed line fields from above, we see the
planar projections of the line field in all cases. We also see the deviation from vertical and, through
foreshortening of the line field elements, the deviation from horizontal. However, in this presen-
tation, we cannot distinguish the “up” and “down” ends of the line field elements. It is an
elementary yet curious observation that in Landau models restricted to a planar layer, bifurcations
from the homeotropic phases&0) do not lead to clear new patterns unlessymmetry is
broken: ther symmetry “freezes” the director field to the vertical. This point is discussed in more
detail in Sec. lll. Therefore we present pictures of the four bifurcations from the isotropic case
(n»<0) and only the two bifurcations whenacts as—1 in the homeotropic casep(0). The
7= +1 bifurcations in the homeotropic case can lead to patterns in a theory posed on a thickened
planar layer. In such a theory, which goes beyond what we present here, the precise form of
boundary conditions on the upper and lower boundaries of the layer will determine the pattern
types. In the other bifurcations, the contributions to pattern selection of these boundary conditions
should be less important.

In fact, the bifurcation theory for each of these four representations- dfas been discussed
previously in different contexts. It is only the interpretation of eigenfunctions in the context of
Q(x) that needs to be computed, along with the pictures of the resulting planforms. More specifi-
cally, whenr acts trivially on kelL the scalar representation has been used in the study of pattern
formation in Rayleigh—Beard convection by Bussd 962 and Buzano and Golubitski1983,
and the pseudoscalar representation has been studied by Bosch-Vivancos, Chossat, and Melbourne
(1995 and also in the context of geometric visual hallucinations by Bressioéfl. (2001b;
(2001a. When 7 acts nontrivially the two representations have the same matrix generators and
although the planforms are different for these two representations the bifurcation theory is iden-
tical. Indeed, this theory is just the one studied for RayleighhaBe convection with a midplane
reflection by Golubitsky, Swift, and Knoblog1984).

Perhaps the most interesting patterns that appear from our analysis are the stripes or “rolls”
(from convection studigdype patterns that bifurcate from the isotropic state whegmmetry is
not broken, that is= + 1. The scalar pattern is a “martensite” pattern whereas the pseudoscalar
pattern is a “chevron” pattern. See Fig. 1. The fact that such patterns do occur in liquid crystal
layers is well known: see, for example, de Gen(l¥74), and also Hulet al. (2000 from which
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FIG. 2. Rolls(left) and chevrongright). (Pictures courtesy of J.-H. Hyh.

the pictures in Fig. 2 are taken. However, it is important to emphasize that these patterns were
observed under experimental conditions far removed from those to which our theoretical model
applies. Moreover, the observed chevrons exhibit additional fine periodic striathich renders
them visible as chevrons and not stripéisat we do not discuss here. We recall that patterns
described in this paper are those that can arise close to homeotropic or planar isotropic states.
In Sec. IV we introduce free energies that illustrate that all four representations can be
encountered aks is decreased, although in our model only two of them can be the first bifurcation
from homeotropy while only the other two can be the first bifurcation from isotr@pis likely
that different models will allow other variationdt then follows from the Equivariant Branching
Lemma that each of the axial equilibrium types that we describe in Sec. Il is an equilibrium
solution to the nonlinear model equations.

[ll. SPATIALLY PERIODIC EQUILIBRIUM STATES

In this section we list the axial subgroups for each of the four representatidng oh the
square and hexagonal lattices, and then plot the planforms for the associated bifurcating branches
from both the isotropic #<<0) and homeotropic #>0) states. We emphasize that these results
depend only on symmetry and can be obtained independently of any particular model. First, we
describe the form of the eigenspaces for each of these four representations. Second, we discuss the
group actions and the axial subgroups for each of these representations. Finally, we plot the
associated direction fields.

A. Linear theory

Let L denote the linearization of the governing system of differential equatio@g &for the
free energy model with free energ§ we havelL=d?F(Q,)]. Bifurcation occurs at parameter
values wheré_ has nonzero kernel. We prove that generically, at bifurcation to shortest dual wave
vectors, ket has the form given in Theorem 3.1. Let

a0 o0 00 i
Q**=|0 b 0 |, o*=[0 0 o0,
0 0 —a—b i 0 0

D
010 000
Q *=|1 0 0|, Q-"=|0 0 il.
000 0i o

In the double superscript d@, the first* refers to scalar or pseudoscalar representation and the
second= refers to the action of. In Table | we also fix the generators of the lattice and its dual
lattice.
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TABLE I. Generators for the planar lattices and their dual lattices.

Lattice A 0, Ky ko ks=—(ki+ky)
Square (1,0 0,9 1,0 0, —
1 2 1 1
Hexagonal 1— 0— 1,0 Z(—1v3) 5(_ 1,-v3)
V3 V3 2

Theorem 3.1:On the square lattice, lef be rotation counterclockwise by/2. Then, in each
irreducible representationkerL is four-dimensional and its elements have the form

ZleZWik1~X Qii_,r_zz e27rik2‘x g‘Qit'f‘C.C. (2)
for z;,2,e C, where Q°* is the appropriate matrix specified in (1§-Q denotesQé& !, and
c.c. denotes complex conjugate

On the hexagonal lattice, I€tbe rotation counterclockwise by/3. Then, in each irreducible
representationkerL is six-dimensional and its elements have the form

ZleZﬂ'ikl-X Qi * + Z, eZ'n'ikz-X §2' Qi * + Z3 e277i k3-x 64. Qii +c.C. (3)
fOI‘ 21,22,236 C .

Proof: Let V and V. denote the space dfespectively real and complex 33 symmetric
matrices with zero trace. Planar translation symmetry implies that eigenfun¢tiolfeectors of
L are linear combinations of matrices that have the plane wave form

e’k *XQ+c.c., (4
whereQ e V¢ is a constant matrix ankle R? is a wave vector. For fixell let

W, ={e2"k*Q+c.c.Qe V¢} (5)

be the ten-dimensional-invariant real linear subspace consisting of such functions.
Rotations and reflectionge O(2) X Z,(7) CO(3) act onW, by

,y(eZwik-XQ) — eZwi(yk)~X 7Q '}’_1- (6)
When looking for nullvectors we can assume, after rotation, kisak(1,0). We can also rescale
length so that the dual wave vectors of shortest length have length 1; that is, we can assume that
k=1.
Bosch Vivancos, Chossat, and Melbourfi®95 observed that reflection symmetries can
further decompos#&V, into two L-invariant subspaces. To see why, consider the reflection

k(X,¥,2)=(X,—Y,2).
Note that the actiori6) of « on W, (dropping the+c.c.) is
K(eZﬂ'ik-XQ) — e27Ti k(k)-x KQK_:L: e2'n'ik-X KQK_l.
Sincek?=1, the subspac®, itself decomposes as

W =W, oW, , (7)
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where k acts trivially onW,, and as minus the identity oW, , and each oV, andW, arelL
invariant. We call functions iW, evenand functions inW, odd Bifurcations based on even
eigenfunctions are callescalar and bifurcations based on odd eigenfunctions are calsdido-
scalar.

A further simplification in the form of) can be made. Considere SO(2)C O(3) given by
(x,¥,2)—(—x,—V,z). Since(dropping the+c.c.)

p(eZﬂ'ik'XQ) — eZﬂ'ipk-Xprfl: e*2ﬂ'ik'prpfl: e27'1'ik-Xpr71

the associated action gfon V. is related to the conjugacy action by

p(Q)=pQp*. (8)

Since L commutes withp and p>=1, the subspaces of the kernel bfwhere p(Q)=Q and
p(Q)=—Q arelL-invariant. Therefore, we can assume t@ais in one of these two subspaces.
Note moreover that translation By implies that ife?™**Q is an eigenfunction theie®™'¥*Q is

a (symmetry relatedeigenfunction. It follows from(8) that if p acts as minus the identity d@,
then p acts as the identity onQ. Thus we can assume without loss of generality that up to
translational symmetrQ is p-invariant, that isQ has the form

a g ic
Q=g b ih
ic th —a-b

wherea,b,c,g,heR. Therefore we have proved
Lemma 3.2: Up to symmetry eigenfunctions ip Neve the form

e?mkxQ+c.c.
where Q is nonzer-invariant, and either even or odd
Lemma 3.2 implies that typically eigenfunctions Vi, lie in one of the two-dimensional
subspace¥/, ,V, of Wy ,W, that have the form

V ={z&™**Q*:ze C},

V, ={z&€™*Q :zeC},

where
a o0 ic 0 g O
Q*=|0 b 0 and Q =g 0 hi (9)
ic 0 —a—b 0O hi O

with the specific valuea,b,c,g,h e R being chosen by (cf. Golubitsky and Stewart, 2002, Sec.
5.7).
Moreover, sincde commutes withr we can further split
Vi=Vi eV, and V=V, eV, "

into subspaces on whichacts trivially and by minus the identity, and each of these subspaces is
L-invariant. Since
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TABLE II. (Left) D, + T2 action on square latticeyright) Dg - T2 action on hexagonal lattice. Hef#, ,6,]= 6,¢;
+ 6,¢, as in Table I. For scalar representation + 1; for pseudoscalar representatios — 1.

Dy Action D¢ Action
1 (21.2) 1 (21,2.25)
g (évﬂ) § (22123121)
& (21.22) & (2,2, 2;)
& (22.21) & (21,2, 25)
« €(21.2) & (22,23,2)
K.§2 €(22,21) & (23,21,25)
K €(21.2)) « €(21.23,2)
73 €(z2,21) K& €(22,21,23)
k& €(23,23,21)
K€ €(21,23,25)
ké €(25,21,23)
K€ €(23,25,21)
[61,65] (e ?m01z, @ 27 02z,) [61,6,] (e 2701z, @~ 27iloz, @27(01+02)7,)
a g —ic
Q7= g b —ih

—ic —ih —a—b

we see thaW/ ~={z&™k*Q**:ze C}, where the matrice®*~ are as given ir(1).
Finally, note that kek is invariant under the action af It follows that on the square lattice

kerL=V, "@ &V ™)
whereas on the hexagonal lattice
kerL=V, “@ &V, @&V, )

thus verifying(2), (3) and completing the proof of Theore(8.1). O

B. Axial subgroups

The scalar and pseudoscalar action& @) on the eigenfunctions on the square and hexago-
nal lattices are computed in Bressleff al. (2001a. The results are given in Table Il in terms of
the coefficientg; in (2) and(3).

The axial subgroups for each of the four irreducible representatiohs @fre given in Table
I, together with generatorsz( ,z,) € C? or (z;,2,,23) € C? (fixed vectors of the corresponding
one-dimensional fixed-point subspadesial eigenspacgsn kerL, and descriptions of the asso-
ciated patterngplanforms.

The results in Table Ill summarize known results for scalar actions with and without the
midplane reflection(Buzano and Golubitsky, 1983; Golubitsket al., 1984 and the less well
known results for pseudoscalar actidBosch Vivancost al, 1995; Bresslofet al,, 2001a. See
also Golubitsky and Stewaf2002. More precisely, on the hexagonal lattice, the scakation is
identical to the action studied in"Bard convectioriBusse, 1962; Buzano and Golubitsky, 1983
and the scalar action is identical to the one studied in ied convection with the midplane
reflection(Golubitskyet al, 1984. The pseudoscalaraction is identical to that studied in Bosch
Vivancoset al. (1999 and Bressloffet al. (20013, whereas the pseudoscalaaction is again the
same as the one in"Bard convection with the midplane reflection—but with different isotropy
subgroups, as Figs. 5 and 6 show.
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TABLE Ill. Summary of axial subgroups. On the hexagonal lattice in the scalar caserwithl the points(1,1,1) and
(—1,-1,—-1) have the same isotropy subgrdups(«,£) ® Z,(7)]—but are not conjugate by any elementlgf. There-
fore, the associated eigenfunctions generate different planforms.

Lattice Planform Axial isotropy subgroup Fixed vector

Scalar representatiore€ +1); 7=+1

Square Squares Duy(k,&)®Z5(7) (1,
Stripes Z3(k£2, 1)@ 0(2)] 0, k] (1,0

Hexagonal Hexagoris Dg(k,&)®Z,(7) (1,1,
Hexagons De(k,&)®Z,(7) (-1-1-1)
Stripes Z3(k &3, 1)@ O(2)] 6,, K] (1,0,0

Pseudoscalar representation<—1); 7=+1

Square Squares D4(K[%, %],5)@22(7) 1,1
Stripes Z3(k€%(5,01,7) 8 O(2)[ 6,4[ 7.01] (%0

Hexagonal Hexagons Zg(&)®Zy(7) (1,1,
Triangles Dy(ké,62)@Zy(7) (i,i,i)
Rectangles Z3(k,&8,7) (0,1,-1)
Stripes Z5(k&13,01,7) 8 O(2)[ 0,4[ 2,011 .00

Scalar representatiore € +1); 7=—1

Square Squares D4(K,§)@Zz(r[%, %]) (1)
Stripes Z3(k&%,13,00) 8 O(2)[ 0,] 4.0

Hexagonal Hexagons De(, &) 1,1,
Triangles Dg(x, 7E) (i,i,i)
Rectangles zg(m,é,f[o,%]) (0,1,-1)
Stripes Z5(k&, 75,0 O(2)[ 05,x] (.00

Pseudoscalar representation<—1); 7=—1

Square Squares D4(TK,§)€BZz(T[%, %]) 1,1
Stripes Z5(k43,01,713,01) & O(2)[ 6,4 3.0]] €0

Hexagonal Hexagons Dg(7x,£) (1,19
Triangles Dg(7x,7E) (i,i,i)
Rectangles zg(K,gs,T[o,%]) (0,1-1)
Stripes Z(k€3,01,75,0) ©O(2) 6,,x[ 2,011 (1.0.0

C. The planforms

We now consider two-dimensional patterns by disregardingztbeordinate inx (but not in
Q) and restricting attention to equilibrium states that are periodic with respect to a square or
hexagonal lattice in they plane.

To visualize the patterns of bifurcating solutions we assume a layer of liquid crystal material
in the xy plane that to first order has the form

Q(X)=Qo+eE(x),

whereE is an axial eigenfunctiorg is small, andQ is either isotropic = —1) or homeotropic
(n=+1). At each point X,y) we represent the director field by a standard-length interval in the
eigendirection corresponding to the largest eigenvalue of the symmetr& @atrix Q(x) at x
=(x,y) and we plot only the projection of that interval in tlg plane. In this picture, a line
element that degenerates to a point corresponds to a vertical eigendirection.

Suppose first tha®, is homeotropic. In this case the associated pattern is an array of points.
Moreover, in our simulations no pattern will appear in bifurcations for wig¢R) is fixed by the
action of 7. For, if E(x) e Vi © or V * then
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FIG. 3. Square lattice bifurcations from isotropig<0) liquid crystal to square pattern@ipper lef} scalarr=+1;
(upper righj pseudoscalar=+1; (lower left) scalarr=—1; (lower righf) pseudoscalar=—1. Corresponding stripes
patterns can be found in Figs. 1 and 7-10.

A O

Q=4 |

whereA is a 2x 2 block andb is a scalar. Since is close to 2(the largest eigenvalue &) it

is also the largest eigenvalue fQ(x) for £ small. Hence, the leading eigendirecti@morrespond-

ing to the largest eigenvalués always vertical and no patterns appear that are determined by
changes in eigendirection. Nevertheless, since variation in the vertical eigenva(e)ofepre-
sents variation in the propensity of molecules to align vertically it is plausible that indistinct
patterns could nevertheless be observed in practice.

Next suppose tha, is planar isotropic. For small the director field is nearly horizontal
(exactly horizontal ifr=+1) and so our figures represent the pattern fairly accurately. When
= —1 there are small sinusoidal oscillations in the vertical component of the director field.

Bifurcations from isotropy exhibit lines or points of dislocatiomhere the director field is
undefined whereas bifurcations from homeotropy do not. In the latter case the director field is
near vertical and there are small sinusoidal variations in the horizontal components. In this context
the standard “rolls” terminology is misleading, as the director field is never horizontal: rather it
oscillates about the vertical in a vertical plane and so generates “stripes.”

In Figs. 3 and 4 we plot solutions corresponding to scalar and pseudoscalar square lattice
patterns. In Figs. 5-10 we plot those for a hexagonal lattice. In the planforms obtained by
bifurcation from homeotropy indicates a vertical line element; whereas in the planforms obtained
by bifurcation from isotropy- indicates points wher®(x) has a double maximum eigenvalue,
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FIG. 4. Square lattice bifurcations from homeotropigx0) to squares withr

Corresponding stripes patterns can be found in Figs. 5 and 6.
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What remains is to complete a linear calculation to determine when a steady-state bifurcation

occurs and whether it is scalar or pseudoscalar. The outline of such a calculation goes as follows.

These results imply that for a planar liquid crystal there are four types of steady-state bifur-
We first compute alispersion curvdor both scalar and pseudoscalar eigenfunctions. That is, for
each wavelength=|k| we determine the first valug, of the bifurcation parameterwhereL has

cations, scalar, pseudoscalar, and+ 1 of each type, that can occur from a spatially homoge-
N\ on the dispersion curve; the corresponding wavelekgtts thecritical wavelength. We

that is, a dislocation. Observe that across lines of dislocation the two competing directions are

necessarily orthogonal iR3.
neous equilibrium to spatially periodic equilibria. Whichever bifurcation occurs, then generically

all of the planforms that we listed in the relevant section of Table Il will be solutions. We have not
discussed the difficult issue of stability of these solutions since these are model dependent results,

whereas the classification of equilibria that we have given is independent of the model.
bifurcation parameter. A bifurcating branch can consist of stable solutions only if the branch

a nonzero kernel. The curvé,},) is called the dispersion curve. We then find the minimum value
emanates from the first bifurcatigat A, ).

expect the first instability of the spatially homogeneous equilibrium to occur at the valoéthe

FIG. 8. Hexagonal lattice bifurcations from isotropig<0) with scalarr

right) hexagons{lower leff) triangles;(lower right rectangles.

IV. FREE ENERGY MODELS
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Fo+Fq4. For a system in three dimensions these
4

0, while Fy consists of thos&O(3)-invariant terms of at

NQI* = 3B Q%+
most order 2 in spatial first derivativéthe chiral term/Q- VOQ]| is not reflection-invariant

1
2

(lower right) rectangles.

Fo(Q)
Fa(Q)

wher¢R|? denotes the sum of the squares of the coefficients of the téhsBhe

expression forF, represents the simple§O(3)-invariant function onV exhibiting nontrivial

Grebadt al. (1983] take the form

g

e.

As an illustration we now carry out these calculations for a Landau—de Gennes type model

with appropriate planar symmetry. Related calculations were carried out for bifurcation from the

three-dimensional isotropic phase in Grebehl. (1983. In this model we show that there are
The free energy is expressed as an integral per unit volume &ea energy densitf§ which

has two principal components, and F4 corresponding tdulk termsand deformation terms

bifurcations corresponding to each of the four irreducible representatiohs pfind which of
respectively: we writeF accordingly asF

them occurs first depends on the actionrof
A. Dispersion curves for a two-dimensional Landau—de Gennes model

FIG. 9. Hexagonal lattice bifurcations from isotropig<<0) with pseudoscalar

(upper righi hexagons{lower left) triangles;
interaction of local minima close tQ

typically [see

respectively,
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FIG. 10. Hexagonal lattice bifurcations from isotropig<(0) with pseudoscalar=—1 representation(upper lef}
stripes;(upper right hexagons{lower left) triangles;(lower righy rectangles.

For a two-dimensional problem this choice of free energy function is not fully appropriate: the
relevant symmetry group is hoW=E(2)XZ,(7). Consequently a wider range of terms can
appear inF,, while the|Q- VOQ| term will no longer appear it .

We are interested in planforms that bifurcate from either the bulk homeotropic state or iso-
tropic state, represented ), with >0 or <0, respectively. An example of a bulk term with
E(2)X Z,(7) invariance is Qq- Q)?, and a candidate for a deformation term to replace the chiral
term is| AQ|? representing longer range interactions of molecules. Accordingly we consider a free
energy densityF= F,+ F4 where now

Fo(Q)=3NQI*=3BtrQ*+ :C[Q[*+ £D(Qp- Q)%
Fa(Q)=c1|VQ[*+¢c,|V-Q[*+c,]AQ[.
Equilbrium states are critical points &f, and for 7, we have
dF(Q)R=AQ-R—BQ* R+C|Q[?Q-R+§D(Qo-Q)(Qo-R)

for arbitrary 3< 3 real symmetric matrice®,R ; thus restricted t&@Q with trace zero we have
dFo(Q)=0 when

NQ—B(Q?—3]QI*)+C|Q*Q+5D(Qp Q) Q=0
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TABLE IV. Computation ofd?F(Qg)R2.

R Fo(Qo)R? d*F4(Qo)R?

Vit M@+ b?—2ab) 2k?(c, a2+
—B(a%+b2+10ab) 7 (a?+ b2+ (a+hb)?)(cy+c4k?)
+6C(7(a’+b?) +10ab) 7>

Ve~ 4(N\—Bp+6C7? (4c,+2¢,)k?+4c,k*
=—4D7? by (10)

Y 4(\+2B7n+6C7?) (4cy+2¢,) k2 +4ck?

Vi~ 4(A—B7n+6C7?) 4c,k?+4c,k?
=—4Dy?

and we easily verify the following:
dFo(Qgp)=0&N—B7n+(6C+D)7?=0. (10)

Observe thatd F(Q)R=0 automatically for any spatially periodic stéewith zero mean, as
the integral of an expression linearkhor its derivatives remains bounded as the volume tends to
infinity. Therefore(10) is the condition foiIQg to be an equilibrium state in our free energy model.

To study stability of the stat®, we evaluate the second derivative of the free enerdyqat
For Re V we find

d?Fo(Qo)R*=\|R|?=2BQy- R*+ C(2(Qo-R)?+|Qo|?|RI*) +§D(Qo- R)?

and (integrating over unit arga

dZFd(QO)R2=c1f|VR|2+c2J |v.R|2+c4f GE

sinceQy is spatially constant and terms linearfintegrate to zero.

We have already seen from Theorem 3.1 thatE(2)X Z,(7) invariance of the free energy
implies that generically the eigenfunctions @fF(Q,) on the space of-periodic matrix func-
tions are linear combinations of functions belonging to one of the four subspgcesnd their
rotations underr/2 (square latticeor +27/3 (hexagonal lattice We next seek dispersion rela-
tions for each of the spac&g * in turn. WhenR=e?"k*Q+c.c. it is easy to check that

1 1 1
o | IVRIP=21Q1 o [ 1V-RE=2lQK?, 1oz [ IaRIZ-2601%,

wherek=|k|. Without loss of generality we can take=(k,0,0) and then after rescalingby a
factor of 2 the evaluations 0fl2F 5(Qo)R? andd?F 4(Q,)R? are given in Table IV.

If we normalize by choosin@® so that(10) is satisfied byny=1 (corresponding to homeot-
ropy) then we find the conditions for a zero eigenvalue in each of the last tbneedimensional
eigenspaces are, respectively,

A—B+6C+(cy+ c,)k?+ck*=0,
A+2B+6C+(cy+ 2c,)k?+csk*=0, (11
A—B+6C+ck?+csk*=0
with the analogous expressions fpr= — 1 (bifurcation from two-dimensional isotropybtained

by merely reversing the sign & in these equations.
Stationary values ok as a function ok occur where
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k?=—(c;+ 3cy)/2¢c,
for Vi~ andV, ", or
k?=—c,/2¢c,
for V,, —, giving values
B—6C+(c,+3Cy)%4c, for Vi~

A={ —2B—6C+(c,;+3Cy)%4c, for V, * (12
B—6C+c3/4c, for V, .

Finally, if Re V,, © then the matrix ford?F(Q,)R? as a quadratic form im,b is

N—B+42C —\—5B+30C
—\—5B+30C N—B+42C

and ford?F4(Qq)R? is

4c,k?+2c,k?+4c,k? 2¢,k%+ 2¢,k?
2c,k?+2¢,4k? 4c,k%+4ck?

and sod?F(Qo)|Vy  has a nontrivial kernel when the determinant of the sum of these two
matrices vanishes.

With ¢,=0 (that is, in physical terms, with no energy cost to the molecules for “spldy8
algebra simplifies to yield the dispersion relation

2
)\:—ZB—6C+i (13
ac,’

From (11) and(13) we therefore see that witt,=0 the values ok for V, = depend only on
the second=, that is on whether bifurcating solutions have vertical reflection symmetry (
=+1) or not (r=—1) and are the same for the scalar and the pseudoscalar representations.
Moreover, as\ decreases, the first bifurcation from the homeotropic stgte ) hasr=—1
while the first bifurcation from the isotropic statey€0) has7=+1. These statements remain
true for sufficiently smallc,| .

B. Plausibility and applications

The models that we have described are of course mathematical idealizations of any real
physical situation. In particular

(i) full two-dimensional Euclidean lattice symmet(lgy its nature infinit¢ cannot exist in
practice, and
(i) the question of stability of the patterns has not been addressed.

Issue(i) arises in many areas of pattern formation, and it is a common observation that,
despite the meaninglessness of full Euclidean lattice symmetry, the types of pattern that such
symmetry predicts are indeed seen in physical situations over even fairly small regions. Moreover,
attempts to force a planar solution into a sphere or other geometrical surface naturally lead to
dislocations in the pattern. For liquid crystals these questions become particularly important in the
context of membranes and other structures in biol@®&ypwn and Wolken1979] where hexago-
nal patterns, for example, are not uncomnfaithough we make no claim to connect them directly
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with the hexagonal planforms that we discus3ur planar idealization may thus form a starting
point for understanding two-dimensional pattern formation in more realistic contexts.

The very interesting question of stability of solutiaiig is a mathematical issue that needs to
be addressed on two levels. First, stability restricted to perturbations within the lattice should be
considered. The general analysis has been worked out for the scalar represe(Batzam® and
Golubitsky, 1983; Golubitskyet al, 1984 and discussed for the pseudoscatarl (Bressloff
et al, 20013, but has not been completed for the pseudoscatar 1 representatiofthough the
analysis should be similar to the pseudoscalarl case. A full treatment of this stabilitybased
on symmetry and otherwise independent of the equatiaily even for our simplified model,
require a long calculation and is beyond the scope of this work. We note that with the extra
assumption of a free energy function it might be feasible to address even more general stability
issues. However, we again believe that such efforts should be reserved for models more physically
realistic than ours.

V. CONCLUSION

We have classified those square and hexagonally periodic patterns that are predicted to arise in
the director field of a planar layer of a nematic liquid crystal when a homeotropic or planar
isotropic state loses stability via the simplest spatially doubly periodic steady-state bifurcations.
The techniques are those of group theory and representation theory, and are valid for any PDE
model under various reasonable assumptions. If such patterns are observed experimentally, under
conditions consistent with our assumptions, then our analysis provides the explanation: what
remains is to evaluate relevant constafie the basis of physical datin order to determine
which of the patterns is to occur. We have investigated some aspects of this for a Landau—de
Gennes free energy model. Analogous methods to these have been used for some time in related
fields such as Beard convection, but for liquid crystal models the extra complexity of the matrix
order parameter here gives a richer geometric structure.
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