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ON THE LOCAL STABILITY OF DIFFERENTIAL FORMS*1 )
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MARTIN GOLUBITSKY AND DAVID TISCHLER

ABSTRACT. In this paper we determine which germs of differential î-

forms on an n-manifold are stable (in the sense of Martinet). We show that when

s ¥= 1 or when 4=1 and n < 4 Martinet had found almost all of the possible

examples.  The most interesting result states that for certain generic singularities

of 1-forms on 4-manifolds an infinite dimensional moduli space occurs in the

classification of the 1-forms with this given singularity type up to equivalence

by pull-back via a diffeomorphism.

In [4], Martinet proposed the following definition for stability of germs

of differential s-forms on an «-manifold M. (Note. Throughout this paper all

objects will be assumed to be C° differentiable.)

Definition 0.1. Let w and w' be germs of s-forms on M at p and p'

respectively. Then (w, p) and (w1, p') are equivalent if there exists a germ of a

diffeomorphism /: (M, p) —► (AÍ, p') such that f*w' = w as germs near p.

Definition 0.2. Let w be an s-form on M at p. Then w is stable at p if

for any nbhd U of p there is a nbhd V of w (in the C topology on s-forms) such

that if w' is in V, then there is a point p' in U such that (w, p) and (w', p') are

equivalent germs.

Clearly this definition depends only on the germ of w at p.

Using this definition, Martinet constructs several examples of stable germs

of forms. We shall show, using results of Martinet and Hsiung [3], that when

s =£ 1 or when s = 1 and « < 4 the examples of Martinet are essentially the only

examples of stable germs. The only new additions are in the case of (« - l)-forms.

We conjecture that in the remaining case when s = 1 and dim M > 4 Martinet's

examples are the only examples of locally stable forms. We also show that there are

no stable germs of s-forms for 2 < s < « - 2 (Theorem 3.1).

The most satisfactory case in the determination of stable germs of s-forms

occurs when s = « - 1 (Theorem 2.5). Here there is a reasonable theory which

classifies these stable forms according to singularity type. This classification is
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206 MARTIN GOLUBITSKY AND DAVID TISCHLER

given by the order of contact at p of the line field Ker w with the hypersurface

{dw = 0} where w is the germ of the (n - l)-form at p.

Clearly the classification of stable germs of differential forms is but a

small part of the determination of all the equivalence classes for these forms.

This larger classification problem makes its appearance when we try to show that

a given form is not stable. Usually we have had to exhibit small perturbations of

the original form which belong to different equivalence classes.  In this regard,

the most interesting examples occur in the case of 1-forms on 4-manifolds. Here

we find that the various singularity types of germs of 1-forms (as described by

Martinet) give rise to a rich and rigid geometric structure. What we show is that,

except in the simplest cases, these singualrity types do not come close to

describing the equivalence classes of germs of 1-forms. In fact, for at least two

distinct types of singularities, an infinite dimensional moduli space appears in the

classification of equivalence classes of forms with the same singularity type.

See Proposition 4.7 and the proof of Theorem 4.11.

Our order is as follows:  we start with 0- and «-forms, do (n - l)-forms,

then show that there are no locally stable s-forms when 2 < s < n - 2, and end

with 1-forms.

First some notation.  Let A* = A* (M) denote the vector space of exterior

s-forms on T M where TpM denotes the tangent space of M at p.  Let Di =

Dp(M) denote the germs of differential s-forms on M at p, and let d: Lf(M) —►

DS+1(M) denote exterior differentiation.  Let w be an (s + l)-form and Va

vector field on M. Then V J w denotes the s-form on M obtained by contracting

w by V.

Definition 0.3. An invariant of the equivalence class of s-forms is an

assignment of a number, function, germ, etc. defined on some open set of germs

of s-forms which is identical for any two equivalent germs.

1. «-forms and 0-forms. Let w be an «-form on M. Martinet [4, p. 144]

and Hsiung [3, Theorem 2.2] show that w is stable at p iff either

(a) w   =£ 0 or

(b) wp = 0 and (dh)   =£ 0 where w = hv, h is the germ of a function

mapping (M, p) —► (R, 0) and v is the germ of a volume form at p.

Furthermore there exist coordinates x¡, . . . , xn on M at p such that in

case

(a) w = c/Xj A • • • A dxn and in case

(b) w = XjcfXj A • • • A dxn.

A 0-form w is just a function. Clearly if dw(p) = 0 then generically w is

a Morse function, so the critical point p is isolated.  For such forms, the

critical value w(p) is an invariant of the equivalence class of w which is easily
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LOCAL STABILITY OF DIFFERENTIAL FORMS 207

perturbed. So if dw(p) = 0, w is not stable at p. Conversely, if dw(p) # 0, then

w is stable at p.

2. (« - l)-forms.  Let w be the germ of an (« - l)-form. The following

argument is mostly due to Hsiung [3, p. 8, Theorem 2.3].

Lemma 2.1. Suppose that w(p) = 0, rAe« w is not stable at p.

Proof. First note that if w were stable at p, then the zero of w at p would

have to be transverse to the 0-section in A"~1(M) and thus be isolated. So if w'

is a small perturbation of w at p, then w' would also have an isolated zero at some

point p' near p. Hence if/were a diffeomorphism such that w = f*w' as germs

at p, then f(p) = p'.

Now suppose that dw(p) ¥= 0. Then there exists a unique vector field V

on M such that w = V J dw. Clearly V has an isolated zero on M at p.  Defining

V' similarly for vv\ we see that if f*w' = w at p, then f*V = F*. So the eigen-

values of the linear part of V at p are invariants of the equivalence class of w at

p. We claim that a small perturbation of w will change these eigenvalues, so that

w is not stable at p. To see this, let w' = w + do where o is the germ of an

(« - 2)-form on M at p and do(p) = 0. Then V' = V + W where (CJdw = do.

Since dw is a volume form and do is closed, the only restriction that we put on

the perturbation W is that it be a volume preserving vector field (relative to dw).

This means that the trace of the linear part of W at p is 0. Clearly there is a W

so that the eigenvalues of V' are different from those of V.

Next note that it is generically impossible for both w and dw to be 0 at p,

which finishes the lemma. But in certain applications of this lemma we will

have the situation where dw(p) is constrained to be zero.  Even so the lemma is

true.  Let Í2 be any volume form on M. Then as above there is a unique vector

field V on M at p such that w = V J Í2.  Had we chosen another volume form

Si' then the corresponding vector field V' would be a nonzero function multiple

of V. In this case the eigenvalues of the linear part of V are not invariants but

the various ratios of these eigenvalues are invariants. Clearly the perturbations

IV are numerous enough to change these ratios. So w is not stable at p.

Remark. We actually proved more than what was stated; namely if

w(p) = 0, then w is not stable at p under perturbations by closed forms.

Assuming that w is stable at p, we have two cases, dw(p) ^ 0 or dw(p) =

0. The first case is Martinet [4, p. 146].

Lemma 2.2. Ifw(p) =£ 0 and dw(p) ¥= 0, rAe« there exist coordinates

JCj.xn on Mat p such that w = (1 + x{)dx2 A • ■ • A dx„.

So we may assume that dw(p) = 0 and w(p) ¥= 0. Genericity implies that

we may choose coordinates on M at p such that dw = JCjcfjCj A • • • A dxn.

See Martinet [4, p. 144].
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208 MARTIN GOLUBITSKY AND DAVID TISCHLER

Since w(p) ¥= 0, there is a well-defined line field near p given by Ker w.

Let X = {dw = 0} = {xj = 0}. Again we have two cases:  either Ker w* X

at p or Ker w(p) Ç TpX.

Lemma 2.3 (Martinet [4, p. 148] ). Suppose that w(p) + 0, dw(p) = 0,

and Ker w ¡isX at p.  Then there exist coordinates xt,. . . ,xnon M at p such

that w = (1 ±x\l2)dx2 A • • • A dxn.

Note.  The sign of the x\\2 term is determined geometrically as follows:

away from X dw is a volume form so there is a well-defined vector field V such

that V J dw = w. The sign of x\\2 is + if the one parameter group of V moves

away from X and is - otherwise.

So now we may assume that w(p) + 0, dw(p) = 0, and Ker wp Ç TpX.

Let ̂ +2(A"_1) be the manifold of (« + 2)-jets of (« - l)-forms on M at

p. Let \v*p be the subset of ^+2(An_1) defined as follows: w is in W*, if

(1) w(p) ¥= 0 and dw(p) = 0.

(2) The zero of dw is generic.

(3) Ker w(p) C TpX where X = {dw = 0}.

(4) The order of contact of the line field Ker w with X is k - 2.

Lemma 2.4. R*, is a submanifold ofJpt+2(An~l) of codimension k-l.

(We assume that k < « + 2.)

Proof.   Choose coordinates xx,..., x„ on M at p so that the line field

Ker w is generated by 3/3x„.  Let V be the vector field—defined off X— such

that w = V J dw.  Hence P" J w = V J(V J aw) = 0 off X So w = ^rfxj A

• • • ^dxn_l off JT. By continuity w = vsax, A • • • A <&„_! on a nbhd of

p where <^: (AT, p) —► R is C°°. By a simple change of coordinates we may

assume that <p(Q) = 1. With these coordinates dw = ±(bip/dxn)dx1 A • • • A dx„.

So jr is given by {3^/3xrt = 0}. In particular 3i/<0)/9xn = 0. The genericity of

the zero of dw implies that d(3<p/3*„)o =* 0. The fact that Ker w(p) C 7pAT

implies that d(3^/3x„)0(3/3xn) = 0 = 32</<0)/3x2. The order of contact of the

Une field Ker dw with X is given by the order of the zero of the function

d(3^/3xn)(3/3xnX0, • • •, 0, x„). To say that the order of contact is k - 2 is

equivalent to

(*) 3^<o)/3x„ = • • • = 3*-1 rfpyaxj-1 = 0

while 3*<p(0)/3x* # 0. Thus W* is defined by fc - 1 independent equations and

is a submanifold of codimension k - 1 in J£+2(An~l).

Let /"""(A"-1) be the manifold of (« + 2)-jets of (« - 1) forms on M

and IV* = Up(=MWkp. Then Wk is a submanifold of Jn+2(An~1) and codim R*

= k - 1. If w is the germ of a stable (« - l)-form at p satisfying (1), (2), and
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(3), then jn+2w * Wk at p. In particular there is a A: between 3 and n + 1

satisfying (*) since codim W"+2 is « + 1 and transversality implies null intersection.

Let w have the form ¡pdx1 A • • • A dxn_t and satisfy jn + 2w * Wk at p

with 3 < k < « + 1. Think of y as an unfolding of the function <p(Q,..., 0,xn)

parametrized by JCj, . . . , JC„_!.   Using the unfolding theorem (see, for

example, [5, p. 375], [6], [7] ) we can find functions ^(jCj ,. . . , jc„) and

Xf(jCj, . . . , x„_i) for 1 < / <« - 1 such that

(a) HO) = X,(0) = 0,

(b) p(jc1( . . . ,xn) = ± ^ + Xk_2tk~2 + ■ ■ • + X,* + 1, and

(c) * = (Xj,. . . , X„_ j, \j/) is a legitimate change of coordinates.

Theorem 2.5. Suppose that w is stable at p, dw(p) = 0 and Ker w  C

TpX where X = {dw = 0}. Then there exists a k with 3<k<n and coordinates

JCj,... ,xnon Mat p such that

w = (±xk„+ xk_2xk~2 + • • • + jc,jc„ + l^jc, A • • • A dxn_v

Moreover these germs are stable at 0.

Notes.  (1) When k is odd the ± xk term can be assumed to be xk.

(2) The sign of jc* when k is even is determined as in the note after

Lemma 2.3.

(3) The statements of Lemmas 2.2 and 2.3 are given by k = 1 and k = 2

respectively. The proof of this theorem can be adapted to prove these lemmas

as well.

(4) k-2 is just the order of contact of the line field Ker w with the

hypersurface X.

Proof.  From the discussion above, compute **w =

(*** + h-2*"'2 + • • • + M + O-PÍX,,..., Xn_1)dX1 A • • • A dX^.,

where p(0) # 0 and 3 < k < « + 1.

If k < n, let X„_, = /o"-1/^,, . . . , X„_2, r)c?r. In the coordinates

(Xx,. . . , Xn_2, X„_,, \¡/) w has the appropriate form. Since the conditions

needed to obtain this normal form are all given by transversality statements,

these germs are stable.

To complete the proof of this theorem we need to show that if k = « + 1,

then w is not stable at p. By the above we may choose coordinates x,y1,...,

yn_i so that

w = (±jc"+1 +y„-lx"-1 +-hyxx + l)p(y)dy

with p(0) ¥= 0. Let wa = aw for some number a near but ^ 1. We claim that

at no point q near 0 is the germ of wa at q equivalent to the germ of w at 0.

Note that for both w and wa, 0 is the only point where the order of contact
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210 MARTIN GOLUBITSKY AND DAVID TISCHLER

of the line field Ker w with X is « - 1 ; so if o is a diffeomorphism satisfying

o*w = wa, then a(0) = 0. Let a(x, y) = (f(x, y), g(x, y)) where /: (R", 0) -*

(R, 0), and g: (R", 0) —* (R"_1, 0) be such a diffeomorphism. First note that

a*w = wa implies that a^(Ker w) = Ker w. So g = g(y). Hence o*w = wa is

equivalent to

(±/" + 1 +S„-Ir~1 + • • • W+ l)pfe)det(^)

(* = a(±xn + 1 + y^x"-1 + ---+y1x + l)p(y).

Evaluating (**) at 0 yields det(dg)Q = a while evaluating (**) at y = 0 yields

f(x, 0) = ± x. Finally differentiating (**) with respect to y, and setting y = 0

yields

±%±(o)x»-i±...±^(0)x=*>.

Thus 3ft(0)/37;- = ± 5¿/- and det(<2,g)0 = ± 1. Since a =£ ± 1 we have a contradic-

tion and no such diffeomorphism a exists. Thus when k = n + 1, w is not

stable at 0.

3. s-forms where 2 < s < « - 2.  In this section we adapt Hsiung's theorem

[3, p. 10, Theorem 2.6] that there are no infinitesimally stable s-forms (2 <s <

« - 2) to show

Theorem 3.1.  TTiere are no stable germs of s-forms when 2 < s < n - 2.

Let w be a stable s-form at p. Let U be a coordinate nbhd of p in M. In

these coordinates we may assume that U = W and p = 0.  Since w is stable at

p there is a nbhd W of w in Lf(M) such that if w' is in W then there is a germ

of a diffeomorphism /: (U, p) —► (U, p') with (f*w')p = wp. Since W is a

nbdh of w in the C°° topology, it is also a nbhd of w in the C* topology on

/^(M) for all k large enough.

Let Jk(As)p = the fc-jets of s-forms at p. Consider the map 4>: W x U—►

Jk(As)   given by (w1, a) h+jk(a*w')p where a in ¿7 is viewed as a diffeomor-

phism of U via translation in the coordinates of ¿7 and /*(-)p : & —*Jk(As)p is

the fc-jet extension map on sections.  Let *w»(a) = 4>(w', a). Let Qw be the

orbit through w of the natural action of Diffp(Af) = group of germs of diffeo-

morphisms mapping (M, p) —* (M, p).  Let 0*  = jk(&w)p ■

Lemma 3.2. Ifw is stable, then Im $w> n 0* =£ 0 /or an^ w' in W, and

any k.

Proof.  Let w' be in W. Since w is stable, there is a diffeomorphism

/: (M, p) —► (M, p') such that (f*w') = w as germs at p.  Let a = p'.  Note in

the coordinates on M at p, p = 0.  Then w = f*w' = (~af)*a*w' as germs at

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



LOCAL STABILITY OF DIFFERENTIAL FORMS 211

p. So a*w' = (f 1 ° a)*w and a*w' is in 0* . Hence $w>(a) = jk(a*w')  is in

0*."w

Lemma 3.3. For k large enough, codim 0* in Jk(As)  is greater than «

wAe« 2 < s < n - 2. (We can assume « > 4.)

Proof.   Let Diffk+1(M) = group of invertible (k + l)-jets on M at p.

Clearly 0* is also given by the action of Diffk, + 1(M) on /k(A*) . So

dim 0* < dim Diffk+1(M) = n

and

codim 0* = dim /*(A,)p - dim 0* > dim Jk(As)p - n

/n\/n + k\      fn + k + l\■{■A- )-"{   »   )

_  (n + k) •••(«+ 1)  f"/«\    n(n + k+ 1)1
*• • ' 1 ' [W        * + 1    J

K1+Í)-(1+t-)[(2)-»('+ítt)]

when 2 < s < « - 2.  Hence codim 0^, > (1 + «/A:)* when k is large and « >

4. So as k —*■ o«, codim 0* > e" - 1 > «.

Proof of Theorem 3.1. Consider tf: 7* (As)p x U-+Jk(As)p defined

by ^(u, a) = $(w + u, a) where 4> is as above. Since 4>(w + u, 0) = ;*(w + v)p,

* is a submersion near (0,0) and ^u * 0*. Let ¥„(«) = ty(u, a). By the

fundamental lemma on transversality (see [1, p. 54]) there is a dense set of param-

eters B CJ k(As)p such that ^u*0* when u is in B.  Choose k large enough so

that codim 0* > «. Since *„: U —■*• y*(A*)p and codim 0* > « we have that

Im tyv D 0W = 0 for all ü in Ä  So for a set of germs w + v arbitrarily close to

w, w + v at p' is not equivalent to w at p for any p' in t/.  Since for v small

enough w + u is in W, we have that w is not stable at p.

4.  1-forms. In this section we finish the classification of stable germs of

1-forms on manifolds of dimension < 4. We show, in fact, that there are no

examples except for the ones which Martinet computed.

§ § 1 and 2 completed the classification of stable germs of 1 -forms on mani-

folds of dimensions 1 and 2 respectively.

First we assume that n = dim M = 2k + 1. Martinet's results are as

follows:

.♦¡¡♦A
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Lemma 4.1. Let w be the germ of a contact l-form on M2k+t at p; that

is, w A (dw)k(p) =£ 0. 77ie« there exist coordinates z, xt,. .. , xk, yt,. . . , yk

at p such that w = dz + xtdyt + • • • + xkdyk.

The proof is classical; see, for example, [4, p. 152].

Let w be the germ of a l-form on M2k+1 at p satisfying w A (dw)k(p) =

0. If w is stable, then we may assume that S = {q E M\w A (dw)k(q) = 0} is

a submanifold of codimension one. This is, of course, given by transversality.

Let /: S c-* M be the inclusion map.

Lemma 4.2. Let w be the germ of a l-form on M2k+ ' at p for which

w(p) ¥= 0, w A (dw)k has a generic zero at p, and l*(dw)k(p) =£ 0. 77ie« there

exist coordinates z,xi,...,xk,yl,...,ykonMatp such that

w = ± zdz + (1 + xl)dyi + x2dy2 + • • • + xkdyk.

Proof.  See [4, p. 154]. Martinet actually assumes that w(p) & 0 without

stating it.

Note.  The sign of z dz is given as follows:  Let V be the vector field defined

off S by (dw)k = V J w A (dw)k.  If the one parameter group of V flows

toward S, then the sign of zdz is —, otherwise it is +.

Proposition 4.3. 77ie only stable germs of I-forms on M3 at p are given

by Lemmas 4.1 and 4.2.

Proof.  Let w be the germ of a stable l-form on M3 at p. This implies

that dw(p) =£ 0. For if w is stable at p, then dw is stable amongst closed forms

at p. Since dw is a 2-form on a 3-manifold we can apply the Remark after

Lemma 2.1. By eliminating the case considered in Lemma 4.1, we may assume

that w A dw(p) = 0. As above S = {w A dw = 0} is a two-dimensional sub-

manifold of M. Let /: S c-* M be the inclusion map. Then w stable at p

implies that l*w(p) + 0; since l*w is a l-form on a 2-manifold we can apply the

same type of argument as in Lemma 2.1. Thus stability implies that w(p) ¥= 0.

Eliminating the case considered in Lemma 4.2 yields the following situation;

w A dw(p) = 0, l*(dw)(p) = 0, l*w(p) ± 0, and dw(p) ± 0. Since dw(p) ̂  0 we can

choose coordinates x, y, and z on M at p such that dw = dxdy. Let w = adx + bdy

+ cdz. Since w A dw = cdxdydz, S is defined by c = 0. By a small perturba-

tion of w, we can perturb the defining function for 5, namely c, in any direction.

Let w = w + dH. Then w' A dw' = (c + SH/dz)dxdydz.  By choosing H

small we can perturb c in any direction. View c as an unfolding of the function

c(0, 0, z) with parameters x and y. Using transversality and the unfolding theorem

[5, p. 375], [6], [7], there exist functions <p(x, y, z), X(x, y), p(x, y) with
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,¿(0) = 0 = X(0) = p(0) such that * = (X, p, <p) is a legitimate change of coor-

dinates and either

(1) c(x,y,z) =u7,

(2) c(x,y,z) =±<^-X,or

(3) c(jc,v,z) =u:3-Xip-p.

This is similar to the situation for (n - l)-forms described in §2. In the coor-

dinates defined by ^ we have that dw = f(x, y)dxdy for some function /and

w = adx + bdy + cdz where either

(i) c(x, y, z) = z,

(ü) c(jc, y, z) = ± z2 - x,

(iii) c(x, y, z) = z3 -xz- y.

In case (i), S = {z = 0} and l*dw = dx dy =£ 0 on S. In both cases (ii) and

(iii), l*(dw)(p) = 0. These cases are distinguished as follows:  There is a well-

defined line field given by Ker dw = (3/3z).  For l*dw(p) to equal zero we must

have that K.ei(dw)p C TpS. The order of contact of the line field K.ex(dw) with

S distinguishes cases (ii) and (iii).

First we consider case (ii). From the above discussion, including the fact

that dw is independent of z, we have

w = (±z2 + x)dz + (z + b(x, y))dx + e(x, y)dy.

In coordinates, 5 = {jc = ± z2}. Let T = [l*dw = 0}. Then T = {x = z = 0}.

Let a be a diffeomorphism such that o*w = aw for a near but ^ 1. Then

c>(Ker dw) = Ker dw which implies that a*(3/3z) = (3/3z). So if a = (f, g, A),

then 3//3z = bg/dz = 0. Since o(T) = T we have that /(0, y) = 0 = A(0, y, 0).

Hence/jr(0) = 0 = AJ,(0).

Matching the dz terms in the equation o*w = aw yields

(1) (±A2+/)Ax = a(±z2+j:).

Set jc = 0 in (1) to obtain ± A2AZ = ±az2. So A(0, y, z) = a*13 and Az(0) =

all3. Next differentiate (1) by jc and evaluate at 0 to obtain fx(0) = a2'3.

Now suppose e(0) = 0. Let /: T c-* R3 be the inclusion map. Then

j*w = e(0, y)dy.  So the set {j*w = 0} = e-1(0) n T. Generically this set is

just a point. Since o must preserve the set {j*w = 0} we have that a(0) = 0.

Matching coefficients on the dx term yields the equation

(2') (A + b(f, g))fx + e(f, g)gx+(f± h2)hx = a(z + b(x, y)).

Evaluate (2') at 0 to yield b(0)fx(0) = ab(0). Since w(0) # 0 and e(0) = 0, we

must have b(0) ¥= 0. Thus/x(0) = a which contradicts our calculation above,

since a # 1. So w is not stable at p and we may assume that e(0) ¥= 0.
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Consider the change of coordinates x = x, y = f%e(x, t)dt, ~z = z. This

is a legitimate change of coordinates since e(0) =£ 0.  In these coordinates (drop-

ping the bars) w has the form

w = (z + b(x, y))dx + dy + (x ±z2)dz.

Equation (2') now has the form

(2) (h + b(f, g)Vx +gx+(±h2+ f)hx = a(z + b(x, y)).

Matching coefficients on dy yields

(3) (h + b(f, g)Yy +gy+(f±h*)hy= a.

The equation o*dw = a dw yields

(4) by(f, g)det(d(f, g\xy)) = by(x, y).

Evaluate (3) at 0 to obtain ̂ (0) = a. Thus det(d(f, g)0) = a5/3 since fx(0) =

a2/3 and fy(0) = 0. All that we know about a(0) is that it must be in T. So

let ft, = £(0). Evaluate (4) at 0 to see that 6^(0, ft,) = a~sl3by(0). Next

differentiate (2) by y and evaluate at 0 to obtain

KO, goYxy(0) + gxy(0) = by(0) [a-I].

Finally differentiate (3) by x and evaluate at 0 to obtain

b(0,go)fyx(0)+gyx(0) = 0.

Note that dw(0) ¥= 0 implies that b (0) ¥= 0. So a = 1. This is a contradiction

so w is not stable at 0.

Finally we consider case (iii). We have that

w = (z3 +xz+ y)dz + (z2/2 + b(x, y))dx + (z + e(x, y))dy.

Again, suppose that a is a diffeomorphism such that o*w = aw for a near but =£

1. Note that for both w and aw, 0 is the unique point where Ker dw = Ker adw

= (3/3z) has contact of order 1 with 5, so o(0) = 0. Let a = (f, g, h). Since

a*(Ker dw) = Ker(cfw) we have that 3//3z = dg/dz = 0. So o*w = aw yields

(5) (h3 +fh+ g)dh/dz = a(z3 + xz + y),

(6)

and

(7)

{h*+fh+g)*!LJbl +*m +(h + e(f,g))^

= a(z + e(x, y)),

-a(j + b(x,y)Y

(»•+/»+^ + (L + w^|+(, + ̂ /Bt
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Evaluate (5) at x = y = 0 to yield A(0, 0, z) = ±all4z. Evaluate (6) and (7) at

0 to yield

(6') b(0)fy(0) + e(0)gy(0) = ae(0),

and

(7') b(0)fx(0) + e(0)gx(0) = ab(0).

Differentiate (5) with respect to y and evaluate at 0 to obtain dg(0)/dy = a3'4.

Differentiate (5) with respect to jc and evaluate at jc = y = 0. Now equate the

coefficients of the linear terms to obtain 3g(0)/3jc = 0 and 3/(0)/3jc = a1'2.

Substitute in (7') to obtain b(Q) = 0, since a # 1. Now (6') implies that e(0) =

0. Since we assumed that w(0) #= 0, we have a contradiction and w is not stable

at 0.

We now investigate what happens on even manifolds. So let n = dim M =

2k.

Lemma 4.4. Let w be a \-form on M2k at p swcA rAar w(p) = 0. 77je«

w is not stable at p.

Proof. Generically, if w(p) = 0, then p is an isolated zero for w and

(dw)k(p) =£ 0. Otherwise we would require more than « functions to be

simultaneously zero on a manifold of dimension «. Then dw is symplectic near

p and there is a unique vector field V such that w — V J dw. Also V has an

isolated zero at p.  As in Lemma 2.1, the eigenvalues of the linear point of V at

p are invariants of V under changes of coordinates.  By perturbing w by arbitrary

closed forms, we can perturb V arbitrarily amongst Hamiltonian vector fields.

In this way we can change the eigenvalues of the linear part of V by using a

small perturbation of w. Thus w is not stable at p.

We now describe Martinet's results in this case.

Lemma 4.5 [4, p. 153]. Let w be the germ of a l-form on M2k at p with

w(p) + 0and (dw)k(p) =£ 0; rAen rAere exist coordinatesx1,y1,. . . ,xk, yk

on M at p such that

w = (1 + *,)<*>! + x2dy2 + ••-+ xkdyk.

Lemma 4.6 [4, p. 154]. Let w be a l-form on M2k at p with w(p) =£ 0,

(dw)k(p) = 0 (generically), and w A (dw)k~l(p) ¥= 0. 77ie« rAere exist coordi-

nates JCj, Vj,..., xk, yk on M2k at p such that

w = (l± x2l2)dyi +x2dy2 + -"+xk dyk.

Note. Let X be the hypersurface defined by (dw)k - 0. Then off X dw

is symplectic and there is a unique vector field V such that w = V J dw. The
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sign of x2/2 is determined by whether the one parameter group of V flows toward

(-) or away from (+) X.

Now let w be the germ of a stable l-form on M2k at p. Using Lemmas

4.4, 4.5, and 4.6 we may assume that

(A) w(p)±0,

(B) (dwf(p) = 0,
(C) wA(dw)k-1(p) = 0.

Next we assume that

(D) (dw)k~1(p)^0.

The stability of w implies that (B) holds transversely. Let AT2*-1 = {q EM\

(dw)k(q) = 0} and let i: X C-*M be the inclusion map. Transversality implies

that AT is a hypersurface in M. We also assume

(E) i*(dw) has the maximum rank possible; that is i*(dw)k~l(p) =£ 0.

Martinet calls a singularity of dw at p satisfying (B), (D), and (E) a S20 singular-

ity and proves the following: There exist coordinatesxlt.. . ,xn,y1,... ,yn

on M at p such that dw = xt dxx dyx + dx2 dy2 + • • • + dxk dyk. See [4,

p. 157].
So we may assume that X = {x1 = 0} and that i'*w = x2 dy2 + • • • +

xkdyk + df where /: (X, p) —► (R, 0). Now let

r= {qEX\i*(w A (dw)"-^) = 0}

and/: T c-*M be the inclusion map. In coordinates T= {df/dy1 = 0 = Xj}.

The stability of w implies that the zeroes of i*(wA(dw)k~1) occur generically, so

T is a submanifold of codimension one in X. Moreover, d(df/dy1)(p) =£ 0.

Assume

(F) f*(dw)k-l(p)±Q.

Now (F) is equivalent to Ker i*(dw) * T at p. Since Ker i*(dw) = (d/dyj we

have that d&fldyJfllByi) =¡¿ 0, or b2f(p)loy\ # 0. Note that (F) implies (E)
when X and T are submanifolds.

Proposition 4.7. Let w be the germ of a l-form satisfying (A)-(F).

77ien w is not stable at p.

Note.  For w to be stable it would have to satisfy these conditions

generically (where applicable); so the discussion above holds.

Lemma 4.8.  t7«cfer the above hypotheses there exists a unique vector

field V on X such that

(a) VJ i*(dw) = 0,and

(b) Vl(i*w)(V)]=±l.
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Proof.  As above we assume that dw = xl dxx dyx + dx2 dy2 + * • • +

dxkdyk. So Ker i*dw = (3/3^t); if Vexists (a) implies that V = ab/by1 for

some function a. Since i*w = jc2 dy2 + • ' • + xn dyn + df we have that

W"X*)]-■££+-* 7*.
Wi ^l by]

Letting b = a2 yields

1 36     3/ 32/
V[(i*WM]=-rr- -¿- + Ä77.

2 3^i   o>i        3^2

The lemma reduces to the following; does there exist a unique solution to the

differential equation

f     ^ I   bb   bf  ,   b2f      _
(♦**) -T—^r- + *      =±129>'i 9^i     3^2

with ¿(0) > 0? If so, let a = \¡b.  This depends on /, of course. Solving the

corresponding homogeneous differential equation by separation of variables

yields b = KKbf/by^2 whe.  K = K(x2, .. . ,xk,y2.yk). As we saw

above, bf(p)/byt = 0. So these solutions are undefined at p = 0 unless K = 0,

and if a solution to (***) exists, it is unique.

We can now solve (***) by variation of parameters. Let b = £V(3//3Vi )2

where K depends on yt as well. Then

1 _bb

2 by1 ^l        by2     2   W W

Define <p(x2, . . . ,yk) implicitly by

(a//3vi)(*, x2.>-„) = 0   and   tfp) = 0.

This is possible since b2f(0)/by] # 0. Then let

r>i bf
K = 2/  , v -— (t, *,,...,y„)dt.

J <p{x2,...#„) dyt v'    2' ""'

By construction b = KKpfltytf is defined at 0 (since b2f(p)/by\ * 0) and

solves the equation

L*LJL+b?£ = l
2 ^1 3^i        by\

Now fc(0) = (tffipyby])-1 # 0.  If ¿(0) > 0, then a = \/b solves (***) and

we are done. If not c = - b solves the differential equation

¿j£_V+c3V=_1
2  byx byt    C 3j,2 "

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



218 MARTIN GOLUBITSKY AND DAVID TISCHLER

with c(0) = - 0(0) > 0. So there is precisely one vector field Koni satisfying

(a) and (b).

Lemma 4.9.  Under the hypotheses above, there exist vector fields Y and

Z on M such that

(1) Z J dw = 0onX,

(2) Y is an extension of V on X,

(3) Zdw(Z, Y) = 1 on X.

Moreover any two choices of Z satisfying (1), (2), and (3) differ by some multiple

ofVonX.

Proof.   For existence, let Y = a blby1 (as in the previous lemma) and Z =

a-1'23/3x! in the local coordinates chosen above for M. Note that 3a/3xj = 0

and check that (1), (2), and (3) are satisfied.

Now let Y and Z be any vector fields satisfying (1), (2), and (3). Then

Y = a3/3^j + Xj Yx    by (2)
and

Z = bdlbxl + cblby1 + xxZx   by (1)

where a, b, and c are independent of x¡ and a is as above. To prove the more-

over part of the lemma we need only show that b is uniquely determined on X.

For this, look at (3).  In particular

dw(Z, Y) = abx1 + x\l,

for some function / and

Z[(cfiv)(Z( V)] = ab2    onI= {xx = 0}.

So b = a"1/2 on X. (Recall that a(0) > 0 from the last lemma.)

Lemma 4.10. Let Z be a vector field satisfying the hypotheses of

Lemma 4.9.  Let g: T —► R be defined by g = w(Z) | T.   Then g is defined in-

dependently of the choice of Z.  Moreover if w' = h*w where h: (M, p') —►

(M, p) is some diffeomorphism, then the corresponding g': 7*'—► R is given

byg'=goh.

Proof.  On T we have that

0 = V J i*(w A (dw?-1) = (VJ i*w) A i*(dw)*_1.

So V J i*w = 0 on T. Since V is tangent to X it follows that V J w = 0 on

T. Apply the moreover part of Lemma 4.9 to see that g is well defined on T.

The moreover part of this lemma is an easy functorial diagram chase.

Proof of Proposition 4.7. Let j:T C-*M be the inclusion map.

There are two possibilities; either
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(Gl) j*w(p) ¥=0, or

(G2) j*w(p) = 0.

We assume that (Gl) holds first. Thus there is a nonzero vector field U on T

such that j*w = U J j*dw.  U exists since j*dw is symplectic on T by (F) and

is nonzero by (Gl).  Let <j>(: T—► The the infinitesimal generator for U. Define

g p: R —*■ R by gp(t) = g((¡)t(p)). We claim that the germ of gp at 0 is an invariant

of the equivalence class of w; that is, if w' = h*w for some diffeomorphism

h: (M, p') —*• (M, p), thengp = gp> . This is true since U = h*U' andg' =g °h

by Lemma 4.10.

Let / 2 *(R, R)0 = (2k) -jets of mappings of R —*• R with source 0. Then

the form w defines a map *w: r —► J2*(R, R)0 defined by q H72fc(iF,)(<7).

We claim that w can be perturbed by an arbitrarily small perturbation to a 1-

form w ' so that the new *,„> is transverse to any given submanifold W of

/2fc(R, R)0. Note that if the perturbation is small enough tyw> is well defined.

This will be enough to prove that any w satisfying the hypotheses of this propo-

sition and (Gl) will not be stable at p. To see this, let W = the point j2k(jgp)(p).

Then the codimension of W inJ2k(R, R)0 is 2k + 1.  So Vw> * IV implies that

*w'(T') nW = 0 since dim T = 2k - 2.   Hence at no point of f is the

(2fc)-jet of g'q for w' equal to the (2&)-jet of g   at 0 for w. So w at p is not

equivalent to w' at any point q in 7*'. Since any diffeomorphism h for which

h*w' = w must satisfy h(T') = T we have that w is not stable at p.

To prove the claim, let / be a function on M such that l(X) = 0 and (dl)(Z)

= 1 near p. Let wk = w + cf(/Ä:) for some function fc. Define Vk as in Lemma

4.8. But Vk = V since i'*wk = i*w, and JTfc = X since cfwfc = cfw. Similarly we

can let Zk = Z; so gk = wk(Z) \ T. Now wfc = w + A:a7 on X; thus gk = £ + k.

Since /*wfc = j*w, Uk = U. Therefore we can perturb g   arbitrarily. Thus the

map T x /fc(R, R)„ —*Jk(R, R)0 given by (q, k) \~* Vw+k(q) is a submersion.

By the fundamental transversality lemma (see [1, Remark, p. 54] there is a dense

set of parameters k near 0 for which *w+fc $s a given submanifold W of

/k(R, R)0. This proves the claim.

Next assume that w satisfies the hypotheses of the lemma and (G2); i.e.,

(j*w)(p) = 0. Again the assumed stability of w forces the zero of j*w to be

generic and thus isolated. Similarly for any small perturbation w' of w,

0')*(w')(p') = 0 is isolated. Thus any diffeomorphism h satisfying h*w' = w at

p must satisfy h(p) = p'. As above, the value g(p) depends only on the equiva-

lence class of w at p; that is g'(p') = g(p) if h*w' = watp. Yet the above perturba-

tions make it easy to change the value g'(p) while keeping the isolated zero of j*w'

at p. Thus, if w satisfies (G2), it also is not stable.   Q.E.D.
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Theorem 4.11. Cm a A-manifold M4, any germ of a l-form at p satisfy-

ing (A), (B), and (C) is not stable.

Note.   As a consequence of this theorem, we see that there are only two

types of stable germs of 1-forms on 4-manifolds and they were given by

Martinet as in Lemmas 4.5 and 4.6. We strongly suspect that this is the case on

all even-dimensional manifolds.

Proof.  Since dw has six coordinate functions, generically they cannot all

be zero [4, p. 107]. So if w is stable, assumption (D) must hold. If (E) and (F)

hold, then Proposition 4.7 states that w is not stable at p. Next assume (E) fails;

that is, i*(dw)(p) = 0. Since i*(dw) is a 2-form on the 3-manifold X, we may

apply the reasoning in Lemma 2.1 to show that this cannot happen stably.

Finally assume that (E) holds while (F) fails. So j*dw(p) = 0. Let W =

{q ET \j*dw(q) = 0}. Generically W is a submanifold of dimension one.  Let

S = [q E T\ w A dw(q) = 0}. Generically S is also a submanifold of T of dimen-

sion one. We claim that if w is stable, then W * S at p. Let w' = w +

d(xxk) for some function k with k(0) = 0. Then dw' = dw and i*w' = i*w, so T"

= T. Also W' = W. But S' is given by w' A dw' = 0, which we compute by

noting that

w' A dw' \X = (w + kdx^dXidy^

Thus we can change the coefficient of the term dxt dx2 dy2 arbitrarily on T.

This is enough to change the direction of S' at p and proves the claim. Note

that now the point p is distinguished by W n S = {p}.

Next we claim that j*w(p) =£ 0. For j*w is a l-form on the 2-manifold T.

Applying the reasoning in Lemma 2.1 again we see that j*w cannot equal zero

at p stably.

Since j*w(p) =£ 0, Ker j*w is a well-defined line field on T. We claim that

if w is stable, then Ker j*w * W at p and Ker j*w * S at p. Using the perturba-

tion above; namely, w' =w + d(xlk), we see that j*w' = j*w while S' can be

rotated arbitrarily from S. So we have that stability implies that Ker j*w * S

at p. Suppose that Ker j*w(p) = TpW. Stability implies that the Une field

Ker j*w be tangent to W at an isolated point. Thus p is the unique point where

W meets S and where Ker j*w = TW. Both of these properties are preserved

under pull-back via a diffeomorphism.  Use the same type of perturbation.  As

before j*w = j*w, so W' = W.  Yet if we assume that Jfc(0) =£ 0, then vv' A dw'\X

is not zero at p, so p is not in S. Now S D W # {p} while Ker j*w(p) = TpW.

So stability also implies that Ker j*w * W at p.

We have the following situation:  If w is stable at p, then there exist one-

dimensional submanifolds W and S of T with W n S = {p} and a nonzero line

field Ker j*w transverse to both W and S at p.  hit it: T —► S be the projection
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map defined by Ker j*w. Then ttIIV: W —► S is a germ of a diffeomorphism on

W at p. There also exist natural coordinates on both W and S. Let A:: S c->-M

and /: W c-* M be the respective inclusion maps. Then k*w and ¡*w are both

not zero at p since Ker j*w * S and If at p. So there exist functions jc on W

and 7 on S such that jc(p) = y(p) = 0,dx = l*w, and dy = k*w. Using these

coordinates it\W yields the germ of a diffeomorphism g: (R, 0) —► (R, 0). This

germ is an invariant of the equivalence class of w as it is defined in a totally

functional way. Since the perturbations described above give a way of rotating

S while fixing W and the line field Ker j*w, we can change the diffeomorphism

g by small perturbations of w. So in this case, too.w is not stable at p.   Q.ED.
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