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• Comparisons between H/K lists for equations, oscillators, and systems are made.
• Comparisons of phase-shift patterns are made.
• The H/K theorem for periodic solutions of coupled oscillators is valid.
• The H/K lists for equivariant and admissible maps are not equal for coupled equations.
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a b s t r a c t

In this paperwe discusswhat is known about the classification of symmetry groups and patterns of phase-
shift synchrony for periodic solutions of coupled cell networks. Specifically, we compare the lists of spatial
and spatiotemporal symmetries of periodic solutions of admissible vector fields to those of equivariant
vector fields in the three cases of Rn (coupled equations), Tn (coupled oscillators), and (Rk)n where
k ≥ 2 (coupled systems). To do this we use the H/K Theorem of Buono and Golubitsky (2001) applied
to coupled equations and coupled systems and prove the H/K theorem in the case of coupled oscillators.
Josić and Török (2006) prove that the H/K lists for equivariant vector fields and admissible vector fields
are the same for transitive coupled systems.We show that the corresponding theorem is false for coupled
equations. We also prove that the pairs of subgroups H ⊃ K for coupled equations are contained in the
pairs for coupled oscillators which are contained in the pairs for coupled systems. Finally, we prove that
patterns of rigid phase-shift synchrony for coupled equations are contained in those of coupled oscillators
and those of coupled systems.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Many biological phenomena, such as respiration [1,2], loco-
motion [3–7], or rivalry [8] are characterized by robust rhythmic
patterns that exhibit particular phase relationships or phase-shifts.
The neuronal networks responsible for these behaviors can be
represented as coupled systems of differential equations that ex-
hibit periodic behavior corresponding to these phase-shift pat-
terns. These phase relationships appear to occur robustly in nature;
hence, it is reasonable to utilize models in which the phase-shifts
are rigid, that is, they are preserved under small perturbations of
the corresponding network of differential equations.
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It is well known that rigid phase-shifts in networks of
differential equations may be caused by the symmetries of the
underlying network. Stewart et al. [9–11] developed a framework
for studying coupled systems of differential equations that
associates to each directed graph a collection of admissible vector
fields. These authors and others have then studied properties of
solutions and of bifurcations in admissible systems.

The fact that rigid phase-shifts are also informed by the state
spaces of the network nodes is frequently overlooked. Classically,
modelers often use state spaces for individual nodes that are either
one-dimensional R (smoothed out integrate and fire systems),
circles T (oscillators), or multidimensional Rk where k ≥ 2
(Hodgkin–Huxley neurons).We call these cases: coupled equations,
coupled oscillators, and coupled systems. This paper studies the
similarities and the differences between patterns of phase-shift
synchrony forced by network symmetry in these three contexts,
both for the class of admissible vector fields and for the less
restrictive class of equivariant vector fields.
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(a) Two identical node, identical coupling
network with σ = (1 2) symmetry.

(b) Four-cell network with
σ = (1 2)(3 4) symmetry.

Fig. 1. Examples of networks with Z2 symmetry.

Examples of rigid phase-shifts for periodic solutions

Before presenting our results we recall some terminology.
Specifically, we discuss rigid phase-shifts, patterns of phase-shift
synchrony, and their relationship to symmetry. Suppose that a
network has n nodes and state variables (x1, . . . , xn).

Definition 1.1. A T -periodic solution X(t) = (x1(t), . . . , xn(t)) of
an admissible system has a phase-shift θij if there are two nodes i
and j such that

xj(t) = xi(t + θijT ).

This phase-shift is rigid if any perturbed admissible system has a
perturbed T̃ -periodic solution X̃(t) = (x̃1(t), . . . , x̃n(t)) such that

x̃j(t) = x̃i(t + θijT̃ )

with the same phase-shift.

To illustrate different rigid phase-shifts, consider the networks
shown in Fig. 1. The admissible systems corresponding to Fig. 1(a)
have the form

ẋ1 = f (x1, x2)
ẋ2 = f (x2, x1)

(1.1)

and the admissible systems corresponding to Fig. 1(b) have the
form

ẋ1 = h(x1, x3, x4)
ẋ2 = h(x2, x3, x4)
ẋ3 = g(x3, x1)
ẋ4 = g(x4, x2)

(1.2)

where x1, x2 ∈ P; x3, x4 ∈ Q and P and Q are phase spaces of indi-
vidual nodes. The overline indicates that h(a, b, c) = h(a, c, b).

As is well known, there are stable anti-phase periodic solutions
of coupled systems and coupled oscillators for (1.1) having the
form

x2(t) = x1


t +

1
2
T


,

(found by Hopf bifurcation), but it is less often discussed that
such solutions cannot exist for coupled equations. Similarly, there
are stable periodic solutions of coupled systems and of coupled
oscillators for (1.2) having the form

x2(t) = x1


t +

1
2
T


x4(t) = x3


t +

1
2
T


,

Fig. 2. Z2-symmetric, three-cell quotient network of the network in Fig. 1(b).

but this solution does not exist for coupled equations. Each of these
solution types is generated by the σ symmetry of their associated
networks (see Fig. 1).

The second network illustrates the subtle fact that a pattern of
phase-shift synchrony can be forced by a symmetry on a quotient
network, rather than by a symmetry on the network itself. See
[12–14]. Specifically, (1.2) can also have a periodic solution of the
form

x2(t) = x1(t) x4(t) = x3


t +

1
2
T


(1.3)

that is not generated by a network symmetry of Fig. 1(b). Note that
∆ = {x1 = x2} is a flow-invariant subspace for every admissible
vector field in (1.2) and the equations for the admissible vector
fields restricted to ∆ have the form

ẋ1 = h(x1, x3, x4)
ẋ3 = g(x3, x1)
ẋ4 = g(x4, x1).

(1.4)

These equations correspond to the quotient network given in Fig. 2
and this quotient network has a symmetry τ = (3 4). It is the
symmetry τ on the quotient network that generates the solution
type (1.3). Specifically, stable solutionswhere x3(t) and x4(t) are in
anti-phase can be found by Hopf bifurcation for coupled systems
and numerically for coupled oscillators. In these solutions x1(t)
oscillates at twice the frequency of x3(t). It follows that in network
1(b), x2(t) = x1(t +

1
2T ) = x1(t).

Patterns of phase-shift synchrony

In a series of papers, Stewart and Parker [15,16] and Golubit-
sky, Romano, and Wang [17,18] proved that in path connected
networks of either coupled equations or coupled systems, rigid
phase-shifts always result from symmetry. However, that symme-
try may be a symmetry of a quotient network, rather than a net-
work symmetry.

More precisely, we define:

Definition 1.2. A pattern of phase-shift synchrony is a subset of
pairs of nodes i and j and phase-shifts 0 ≤ θij < 1. A T -periodic so-
lution x(t) = (x1(t), . . . , xn(t)) exhibits this pattern of synchrony if

xj(t) = xi(t + θijT )

for all designated pairs i, j and the θij are rigid.

These four papers [15–18] prove the following: Suppose that a
periodic solution X(t) exhibits a pattern of phase-shift synchrony.
Then the polydiagonal defined by

△ = {X = (x1, . . . , xn) : xi = xj when θij = 0}

is flow-invariant. Moreover, there is a cyclic symmetry τ on the
quotient network corresponding to △ that generates all of the
nonzero θij in the pattern of phase-shift synchrony.

Symmetry groups of periodic solutions for equivariant systems

A symmetry of a system of differential equations

Ẋ = F(X) (1.5)
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is a linear map σ that maps solutions to solutions. It is well known
that σ is a symmetry if and only if the equivariance condition

F(σX) = σ F(X)

holds.
We now recall how phase-shifts can be defined by symmetries.

Suppose that (1.5) is a general systemof differential equationswith
symmetry group Γ ; that is, F(γ X) = γ F(X) for all γ ∈ Γ . We
define the spatial symmetries and the spatiotemporal symmetries
of a T -periodic solution X(t) to be

K = {γ ∈ Γ : γ X(t) = X(t) ∀t} spatial symmetries
H = {γ ∈ Γ : γ {X(t)} = {X(t)}} spatiotemporal symmetries. (1.6)

If h ∈ H , then by definition hX(0) = X(θhT ) for a unique 0 ≤

θh < 1. Furthermore, the mapping Θ : H → S1 defined by
Θ(h) = e2π iθh is a group homomorphism with kernel K . It follows
that H/K is isomorphic to a finite subgroup of the circle group S1
and hence is cyclic. Uniqueness of solutions with a given initial
condition implies that

hX(t) = X(t + θhT )

and h, θh together form a spatiotemporal symmetry of the periodic
solution. Moreover, if h is an order two element, then either θh = 0
or θh =

1
2 . Finally, we recall that H , K , and Θ are rigid [13] in

the sense that small equivariant perturbations lead to periodic
solutions with the same H , K , and Θ .

Note that

Fix(K) = {x : σ x = x ∀σ ∈ K}

is flow-invariant and corresponds to the flow-invariant subspace
△ when discussing phase-shifts. Specifically, K identifies syn-
chronous nodes and H/K is a subgroup of symmetries on the quo-
tient network corresponding to Fix(K) [10,11].

Synchrony, phase-shifts, and multirhythms in networks

Consider an n-node network with symmetry group Γ and
an admissible system with a T -periodic solution X(t) =

(x1(t), . . . , xn(t)). It is well known (cf. [14]) that we can relate
symmetries of X(t) to synchrony and phase-shift synchrony as
follows. We write a symmetry σ as a unique product of disjoint
cycles; indeed, after renumbering, we suppose that a factor of σ is
the ℓ-cycle (1 2 · · · ℓ).

First, assume that σ is in K ⊂ Γ . Then σX(t) = X(t) implies
the synchrony condition

x1(t) = · · · = xℓ(t).

Second, assume that K = 1 and σ is a generator of the cyclic group
H/K = H . Then, the symmetry conditionσ {X(t)} = {X(t)} implies
the phase-shift synchrony conditions

xj(t) = x1


t +

j − 1
ℓ

T


for j = 1, . . . , ℓ; that is, the solution is a discrete rotating wave on
the first ℓ nodes. In addition to the rotating waves corresponding
to each cyclic factor of σ , there are relationships between the
phases on different cyclic factors that generate multirhythms. For
example, if σ = (1 2 3)(4 5)(6), then the T -periodic solution X(t)
satisfies

x1(t) = x1


t +

1
2
T


x2(t) = x1


t +

1
3
T


x3(t) = x1


t +

2
3
T


x4(t) = x4


t +

1
3
T


x5(t) = x4


t +

1
2
T


x6(t) = x6


t +

1
6
T


.

So the nodes divide into three sets. The first three nodes have
a discrete rotating wave with one-third period phase-shifts and
oscillate with period T/2. The fourth and fifth nodes are in
antiphase and oscillate with period T/3. The sixth node oscillates
with period T/6.

The principal questions

Networks of differential equations have phase spaces that
are products of the phase spaces for the individual nodes. We
have emphasized this by the terms coupled equations, coupled
oscillators, and coupled systems. Symmetry groups Γ of networks
consist of permutations that preserve network architecture. It
follows that every admissible vector field on a network is Γ -
equivariant, but it is not the case that every Γ -equivariant vector
field is admissible. See Section 4. In this paper, we explore
properties of periodic solutions that are rigid for equivariant
systems (H ⊃ K pairs) and properties that are rigid for admissible
systems (synchrony and phase-shift synchrony). As we have seen
these concepts are related. Indeed, for equivariants we distinguish
the three network cases by the terms equivariant equations,
equivariant oscillators, and equivariant systems, and similarly for
admissibles. Given a coupled cell network, we ask:

(a) For which patterns of phase-shift synchrony do there exist
periodic solutions of admissible vector fields exhibiting that
particular pattern?

(b) For which network symmetry subgroups H ⊃ K do there
exist periodic solutions of admissible vector fields having those
particular symmetries?

Note that question (b) is a special case of question (a) anddeals only
with those patterns of phase-shift synchrony that are attributable
to network symmetry—not those that are related to symmetries
on proper quotient networks. Our current state of knowledge is
summarized by the containments shown in Fig. 3. For a fixed
network, each rectangular box refers to the set of H ⊃ K pairs
for which there exists a vector field having a (hyperbolic) periodic
solution with space symmetries K and spatiotemporal symmetries
H . The bottom row refers to the list with admissible vector fields,
whereas the top row refers to the much larger class of equivariant
vector fields. The three columns refer to phase spaces in the cases
of coupled equations, coupled oscillators, and coupled systems.

Begin by observing that an H/K pair that occurs for an
admissible vector field also occurs for an equivariant vector field
because every admissible vector field is equivariant. In general,
we do not know that there exists an admissible vector field
with a H ⊃ K periodic solution even when such a periodic
solution exists for an equivariant vector field. This fact was
proved by Josić and Török [19] in the case of coupled systems on
transitive networks. We show by example (see Example 4.2) that
the corresponding result is false for coupled equations. Finally,
this statement is still unresolved for coupled oscillators. These
comments are summarized by the vertical containments between
the two rows in Fig. 3.

Buono and Golubitsky [20] answered a question analogous
to (b) by determining the possible subgroup pairs H ⊃ K for
equivariant vector fields of a finite group acting on RN . Their
result is the H/K Theorem which gives necessary and sufficient
conditions for the existence of a periodic solution to some
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Fig. 3. Comparison ofH ⊃ K symmetry pairs of periodic solutions of admissible and equivariant vector fields for equations, oscillators, and systems in transitive coupled-cell
networks. The equality between equivariant and admissible systems (indicated in the last column) is known only for transitive networks.
equivariant system having symmetries H ⊃ K . One of our main
results is the H/K Theorem for permutation actions of Γ on Tn

(see Theorem 3.4), which is the case of coupled oscillators. This
theorem enables us to prove that the containments on the top row
of Fig. 3 are valid. See Theorem 3.7. We also prove by different
arguments that the containments of admissible pairs H ⊃ K for
coupled equations, coupled oscillators, and coupled systems given
in the second row of Fig. 3 are valid. See Theorems 4.3 and 4.4.
Finally, not every H/K pair for coupled systems is one for coupled
oscillators and not every pair for coupled oscillators is one for
coupled equations. See Example 3.8.

Most of our results correspond to question (b); however, we
do comment on question (a). Specifically, we prove Theorem 5.1
that shows that patterns of phase-shift synchrony for coupled
equations are patterns for coupled oscillators and coupled systems.
We do not yet knowwhether patterns of phase-shift synchrony for
coupled oscillators are always patterns of phase-shift synchrony
for coupled systems, though this seems likely. See Remark 5.2.

The structure of the paper

In Section 2we define networks and network admissible vector
fields. Section 3 considers periodic solutions of equivariant vector
fields in the context where the group Γ is a permutation group,
specifically the symmetry group of a network. In this section we
prove the H/K Theorem (Theorem 3.4) for equivariant vector
fields when the phase space is TN , the phase space for coupled
oscillators. The cases of coupled equations and coupled systems
follow from the H/K Theorem of Buono and Golubitsky [20]
(see Theorem 3.1 specialized to permutation actions of symmetry
groups in Corollaries 3.2 and 3.3). In Section 4 we discuss
which of the possible symmetry pairs H ⊃ K actually have
periodic solutions associated to some admissible vector field,
and we do so in the three contexts of equations, oscillators,
and systems. Previously, Josić and Török [19] proved that every
possible symmetry pair occurs in the coupled systems case of
path-connected (or transitive) networks. Example 4.2 shows that
the same statement is not valid for coupled equations. As noted,
Section 5 comments on question (a).

2. Admissible vector fields and patterns of phase-shift syn-
chrony

Golubitsky, Stewart and coauthors [9–11] laid the foundations
for a theory of coupled systems. In these papers, they formalized
the language of coupled-cell networks and established some of
the generic properties of steady-state and periodic solutions in the
class of admissible systems.

In this theory a network is defined by a set of n nodes and a
set of directed arrows between nodes. Each arrow a has a head
node H(a) and a tail node T (a). The input set I(i) = {a1, . . . , ap}
consists of all arrows whose head node is i. Admissible systems
corresponding to the network are obtained by first choosing a
phase space Pj for each node j and associating to each input set
I(i) a vector of phase variables xI(i) as follows. We define xI(i) =

(xT (a1), . . . , xT (ap)) ∈ PT (a1) ×· · ·×PT (ap). Each admissible system
of an n-node network has the form

ẋi = fi(xi, xI(i)). (2.1)

The general theory allows for nodes to be cell-equivalent (they
have the same phase space), arrows to be edge-equivalent (the
coupling formulas are identical), and nodes to be input equivalent
(the functions fi at two nodes are identical).

We follow [10] and define a network architecture to be a directed
graph with annotated nodes and annotated arrows. We assume:

(a) If two nodes i and j are cell equivalent, then Pi = Pj.
(b) If two arrows are edge equivalent, their head nodes (resp. tail

nodes) have the same node type.
(c) If two arrows j → i and k → i have the same arrow type, then

fi is invariant under swapping xj and xk; that is, the couplings
indicated by these pair of arrows are identical.

(d) Two nodes i and j are input equivalent if there is an edge type
preserving bijection between I(i) and I(j). If nodes i and j are
input equivalent, then the functions fi and fj are identical.

Network symmetries and synchrony subspaces

A symmetry σ of a network is a permutation of its nodes such
that for every pair of nodes i and j there is an arrow type preserving
bijection between the set of arrows connecting node i to node j and
the set of arrows connecting node σ(i) to node σ(j). It follows that
nodes i and σ(i) are input equivalent. Each symmetry σ acts as a
permutation on the phase space P = P1 × · · · × Pn.

A synchrony subspace is a polydiagonal that is flow-invariant
for all admissible vector fields. It is well known that fixed-point
subspaces are flow-invariant for equivariant vector fields and
hence for admissible vector fields. It was shown in [21,9,10]
that there are synchrony subspaces that are not fixed-point
subspaces. This observation was both surprising and important in
the development of coupled cell theory. See [10,11].

Synchrony subspaces can be determined from the network
architecture by a combinatorial condition. A coloring is balanced
if for every pair of nodes i and j having the same color, there is
an edge type preserving bijection between I(i) and I(j) that also
preserves tail cell colors. It follows that nodes with the same color
in a balanced coloring are input equivalent. So we can associate a
polydiagonal △ to each balanced coloring as follows. Let

△ = {X = (x1, . . . , xn) : xi = xj
whenever the colors of i and j are the same}.

This polydiagonal makes sense since Pi = Pj whenever nodes i
and j are input equivalent. Theorem 4.3 in [10] proves that there is
a 1:1 correspondence between balanced colorings and synchrony
subspaces.
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3. Equivariant H/K theorems for permutation actions

In this section we consider permutation actions that arise
naturally from symmetry groups of coupled-cell networks and
address question (b); specifically we answer the following
questions:

Which pairs of subgroups K ⊆ H of Γ are spatial and spatiotem-
poral symmetries of a hyperbolic periodic solution of some equiv-
ariant vector field when the phase space is Rn (coupled equations),
Tn (coupled oscillators), Rk1 × · · · × Rkn for kj ≥ 2 (coupled sys-
tems)?

The H/K Theorem of Buono and Golubitsky [20,13] answers
this question in the general case of orthogonal actions of a finite
groupΓ onRN (see Theorem3.1) and hence leads to a specification
of spatiotemporal symmetries in the cases of equivariant coupled
equations (Corollary 3.3) and equivariant coupled systems (Corol-
lary 3.2). The principal new result in this section is Theorem 3.4—
the equivariant H/K Theorem for coupled oscillators.

Before stating the H/K Theorem, we recall some terminology
and notation. Let NΓ (K) denote the normalizer of K in Γ , let Γx
denote the isotropy subgroup of a point x ∈ RN , and define the
variety

LK :=


γ ∉K

Fix(γ ) ∩ Fix(K) = {x ∈ Fix(K) : K ( Γx}. (3.1)

Theorem 3.1 (H/K Theorem [20,13]). Let Γ be a finite group acting
orthogonally on RN and let H ⊇ K be subgroups of Γ . There
exists a hyperbolic periodic solution for a Γ -equivariant vector field
on RN with spatial symmetries K and spatiotemporal symmetries H
(see (1.6)) if and only if

(a) K is a normal subgroup of H and H/K is cyclic.
(b) K is an isotropy subgroup.
(c) dim Fix(K) ≥ 2 and if dim Fix(K) = 2, then either H = K or

H = NΓ (K).
(d) H fixes a connected component of Fix(K) r LK .

H/K theorems for permutation actions on network phase spaces

The classifications of the symmetries of periodic orbits for
equivariant equations and equivariant systems are corollaries of
the equivariant H/K theorem in the special case of permutation
actions.

Corollary 3.2 (H/K Theorem for Equivariant Systems). Let RN
=

Rk1 × · · · × Rkn where kj ≥ 2 and let Γ act by permutations on
RN . The subgroups H ⊇ K of Γ are the spatiotemporal and spatial
symmetries of a hyperbolic periodic solution of some Γ -equivariant
vector field on RN if and only if

(a) K is normal in H and H/K is cyclic.
(b) K is an isotropy subgroup of Γ .
(c) If dim Fix(K) = 2, then H = K = Γ .

Proof. Recall that fixed-point subspaces of permutation actions
are polydiagonals. Since each factor in the phase space RN has di-
mension at least two, it follows that Fix(γ ) ∩ Fix(K) has codimen-
sion at least two in Fix(K) when γ ∉ K . Thus, for equivariant
systems, Theorem 3.1(d) is satisfied as Fix(K) r LK is connected.
Moreover, Theorem 3.1(c) undergoes two changes. First, the con-
dition on the lower bound of the dimension of Fix(K) is always sat-
isfied. Second, dim Fix(K) = 2 only if P = R2

× · · · × R2 and K
acts transitively on the R2 factors. If follows that K = H = Γ since
K is an isotropy subgroup. �
Corollary 3.3 (H/K Theorem for Equivariant Equations). Suppose
that Γ acts on Rn by permutations. The subgroups H ⊇ K of Γ

are the spatiotemporal and spatial symmetries of a hyperbolic periodic
solution of some Γ -equivariant vector field on Rn if and only if

(a) K is normal in H and H/K is cyclic.
(b) K is an isotropy subgroup of Γ .
(c) dim Fix(K) ≥ 2 and if dim Fix(K) = 2, then H = K.
(d) H fixes a connected component of Fix(K) r LK .

Proof. Theorem 3.1(c) is modified in the case of equivariant
equations, whereas conditions (a), (b), and (d) are the same. If the
dimension of Fix(K) is two, then after renumbering of the nodes

Fix(K) = {x ∈ Rn
: x1 = · · · = xℓ, xℓ+1 = · · · = xn},

for some 1 ≤ ℓ ≤
n
2
.

Consequently, either K = NΓ (K) (in which case H = K ) or
NΓ (K)/K ∼= Z2 (in which case H = K or H = NΓ (K)). However, if
NΓ (K)/K ∼= Z2, then LK = {x ∈ Rn

: x1 = · · · = xn} and Fix(K)rLK
splits into two connected components that are interchanged by the
elements of NΓ (K) r K . Thus, if Fix(K) has dimension two, then
H = K . �

Symmetry pairs for equivariant oscillators

We now state and prove the H/K Theorem for equivariant
oscillators.

Theorem 3.4 (H/K Theorem for Equivariant Oscillators). Suppose
that Γ acts on Tn by permutations. The subgroups H ⊇ K of Γ are
the spatiotemporal and spatial symmetries of a hyperbolic periodic
solution of some Γ -equivariant oscillators if and only if

(a) K is normal in H and H/K is cyclic.
(b) K is an isotropy subgroup.
(c) If dim Fix(K) = 1, then K = H = Γ .

If dim Fix(K) = 2, then either H = K or H = NΓ (K) and
NΓ (K)/K ∼= Z2

(d) H fixes a connected component of Fix(K) r LK .

As in the H/K Theorem, we show in the proof that the vector
field may be chosen so that the periodic orbit is asymptotically
stable.

Proof of necessity. The proof that properties (a), (b) and (d) are
necessary is identical to that of Buono and Golubitsky [13] for the
equivariant H/K theorem on RN . The main difference occurs when
verifying the necessity of assertion (c).

If dim Fix(K) = 1, then Fix(K) = {(θ, . . . , θ) ∈ Tn
: θ ∈ S1}

and since K is an isotropy subgroup of a point in Fix(K), K must
equal Γ and it follows that H = K = Γ .

If dim Fix(K) = 2, then after renumbering, Fix(K) must have
the form (3.2).

Fix(K) = {(θ1, . . . , θn) ∈ Tn
:

θ1 = · · · = θℓ and θℓ+1 = · · · = θn}. (3.2)

Next, since K is an isotropy subgroup, any element γ ∈ Γ

that permutes the first ℓ coordinates (and hence the last n −

ℓ coordinates) must be in K . Furthermore, since the normalizer
NΓ (K) acts on Fix(K) by permutation, the elements of NΓ (K) that
act nontrivially on Fix(K) must swap the two blocks. Therefore,
eitherNΓ (K) acts trivially on Fix(K) inwhich caseNΓ (K) = H = K
or NΓ (K)/K = Z2 in which case either H = K or H = NΓ (K).
So when dim Fix(K) = 2, either H = K or H = NΓ (K) with
NΓ (K)/K = Z2 and n even. �
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We claim that the four properties enumerated in Theorem 3.4
are also sufficient for the pair H ⊇ K to be the spatiotemporal and
spatial symmetries of a hyperbolic periodic orbit for a equivariant
oscillators. In fact, we will prove more by showing that the
corresponding closed curve may be chosen as a asymptotically
stable periodic orbit of a Γ -equivariant vector field on Tn. In order
to prove our claim here, we:

(i) Show that if the subgroups H ⊇ K satisfy (a)–(d), there exists
a simple closed curve α in Fix(K) that is invariant under the
action of H .

(ii) Construct a Γ -equivariant vector field F : Tn
→ Rn for which

α is an asymptotically stable periodic orbit.

We address these points in Lemmas 3.5 and 3.6.

Lemma 3.5. Let Γ be a finite group acting on Tn by permuta-
tions. Suppose that H ⊇ K are subgroups of Γ that satisfy The-
orem 3.4(a)–(d). Then, there exists a smooth simple closed curve α
contained in Fix(K)with spatial symmetries K and invariant under H.

Proof. Let k = dim Fix(K). If k = 1, then K = H = Γ , Fix(K) =

{(θ, . . . , θ) ∈ Tn
}, and we can choose α(t) = (t, . . . , t).

If k = 2 assumption (c) implies (after renumbering of
coordinates) that

Fix(K) = {(θ1, . . . , θ1, θ2, . . . , θ2) ∈ Tn
},

and either H = K or H/K = Z2 with H = NΓ (K). Consequently,
either LK = {(θ, . . . , θ) ∈ Tn

} or LK is empty, and it follows that
C = Fix(K) r LK is connected. In the case when LK is empty, we
can choose α to be any closed curve in C = Fix(K). Otherwise, H
acts on Fix(K) = T2 as the permutation symmetry (1 2). We can
write T2

= [0, 1] × [0, 1] modulo spatial periodicity and choose
α(t) = (t, t + 0.5). Note that

(1 2)α(t) = (t + 0.5, t) ≡ (s, s + 0.5) = α(s) = α(t + 0.5)

where s = t + 0.5. So α is fixed by K and invariant under H as
desired.

Finally, assume k ≥ 3. Let C be a connected component of
Fix(K) r LK that is fixed by H , the existence of which is guaranteed
by assumption (d). We show that there exists a smooth simple
closed curve α such that

(i) α(t) ∈ C for all t ,
(ii) {α(t)} is H-invariant,
(iii) for all γ ∈ Γ r H , γ {α(t)} ∩ {α(t)} = ∅.

Indeed, if a simple closed curve α satisfies (i)–(iii), then H is the
subgroup of Γ that leaves α invariant and K is the subgroup that
fixes every point of α. To verify these assertions, first note that
K fixes α pointwise by (i) and H fixes α setwise by (ii). Second,
suppose that γα(t0) = α(s0) for some γ ∈ Γ , then γ ∈ H by (iii);
so H is the largest subgroup of Γ that leaves α invariant. Finally,
γα(t0) = α(t0) implies γ ∈ K , because α(t0) ∈ C .

We now construct a simple closed curve α that satisfies (i) and
(ii). Note that if H = K , then any simple closed curve in C will
do. So, let m = |H/K | > 1. Let h ∈ H be such that hK is a
generator of H/K . Fix a point x0 ∈ C and a nonzero tangent vector
v0 ∈ Tx0 Fix(K). Since C is path connected and hx0 ∈ C , we may
choose a C∞ smooth curve α̃ : [0, 1] → C satisfying

α̃(t) = (1 + t)v0 t ∈ [0, ε]
α̃(t) = thv0 t ∈ [1 − ε, 1] (3.3)

where v0 ≠ 0. Next, extend α̃ to be a C∞ smooth curve defined
on [0, 1]. Note that hα̃(0) = α̃(1) so that we can define the C∞

smooth closed curve α : [0,m] → C by

α(t) = hiα̃(t − i) for i ≤ t ≤ i + 1 and 0 ≤ i ≤ m − 1.
Clearly α is a closed curve inside C; while properties (i) and (ii)
hold by construction. However, there are two obstructions to α
being a simple closed curve: α may have self-intersections and γα
may intersect α for some γ ∈ Γ r H . Since we are assuming that
dim Fix(K) ≥ 3 and the groups are finite, we can use transversality
arguments to circumvent these difficulties and choose α̃ such that
the resulting curve α has no self-intersections and γα does not
intersect α for all γ ∈ Γ r H .

Suppose that α has a self-intersection; that is, α(r) = α(s) for
some r ≠ s. Then, the map

A(t, u) = (α(t), α(u))

intersects the diagonal△ = {(x, x) : x ∈ Fix(K)} at (r, s). Since the
domain of A is two-dimensional and the codimension of△ is k > 2,
it follows that At△ implies α has no self-intersections. We cannot
apply the transversality theoremdirectly because, by construction,
α is not arbitrary. Note that, again by construction, α(r) = α(s) if

hiα̃(r − i) = hjα̃(s − j)

and hence that

α̃(r̃) = hpα̃(s̃)

for some p and r̃, s̃ ∈ [0, 1]. Thus, α has a self-intersection only if
one of the maps

Ãp(t̃, ũ) = (α̃(t̃), hpα̃(ũ))

intersects the diagonal △. Moreover, α̃ is arbitrary away from
the end points and a countable intersection of transversality
conditions on α̃ can always be satisfied. So there exists α̃ that leads
to a non-self-intersecting α, as desired.

Finally, we can verify (iii) by using another transversality
argument. Suppose that α(r) = γα(s) for some r ≠ s and γ ∈

Γ r H . It follows that (iii) is invalid if and only if the map

(t̃, ũ) → (α̃(t̃), h−iγ hjα̃(ũ))

intersects the diagonal △. Thus (iii) is verified by applying the
transversality theorem simultaneously for each such map. �

We now prove an extension lemma that when combined with
the existence lemma above, leads to a proof of the converse of
Theorem 3.4.

Lemma 3.6. Let K ⊂ Γ be an isotropy subgroup of the action of Γ on
Tn. Let α be a simple closed curve in Fix(K) r LK and let H ⊂ NΓ (K)
be the subgroup of Γ that preserves α setwise. Then, there exists a
Γ -equivariant vector field F on Tn such that α is an asymptotically
stable periodic orbit for F .

Proof. Choose an H-invariant tubular neighborhood U of α such
that γU ∩U = ∅ for all γ ∉ H . Near α we can write U ∼= T × Rn−1

where h(θ, v) = (hθ, hv) for all h ∈ H .
Let G1 be a nonzero vector field defined on α that is tangent to

α. Let

G2(θ) =
1

|H|


h∈H

h−1G1(hθ)

where θ is on α. Then G2 is a nonzero H-equivariant vector field
defined on α that is tangent to α. Next, extend G2 to a vector field
G3 defined on U so that α is an asymptotically stable limit cycle
for G2 and G2 = 0 near the boundary of U . Indeed we can take
G3(θ, v) = (α(θ), −v) onα.We can then extendG3 to be a smooth
vector field G4 on Tn that is zero off U . Finally, average G4 over Γ

to obtain

F(x) =
1

|H|


γ∈Γ

γ −1G4(γ x).
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Observe that F is Γ -equivariant and on the tubular neighbor-
hood U

F(u) =
1

|H|


γ∈Γ

γ −1G4(γ u) =
1

|H|


γ∈H

γ −1G3(γ u)

since G4(γ u) = 0 if γ ∉ H . Finally, near α

F(θ, v) =
1

|H|


γ∈H

γ −1(γG2(θ), −γ v)

=
1

|H|


γ∈H

(G2(θ), −v) = (G2(θ), −v)

sinceG2 isH-equivariant. Hence,α is an asymptotically stable limit
cycle for F , as desired. �

Proof of sufficiency for Theorem 3.4. We now prove that the
necessary conditions enumerated in Theorem 3.4 for a pair of
subgroups H ⊇ K to be the symmetries of a periodic solution on
Tn are also sufficient for the existence of a periodic solution on
Tn having H ⊇ K as its symmetry pair. More precisely, we show
that such a curve may be chosen as a locally attracting periodic
solution of a smoothΓ -equivariant vector field. Lemma3.6 implies
that there exists a Γ -equivariant vector field F that has α as an
asymptotically stable limit cycle, as desired. �

Comparing menus of admissible pairs H ⊇ K

We now have all the ingredients for comparing the menus of
admissible pairs supported by equivariant equations, equivariant
oscillators, and equivariant systems.

Theorem 3.7. Let Γ be the symmetry group of a coupled-cell
network. Let H ⊇ K be subgroups of Γ . Then:

(a) If the pair of subgroups H ⊇ K are the symmetry groups of a
periodic solution of some Γ -equivariant equation, then some Γ -
equivariant oscillator has a periodic solution with spatiotemporal
symmetries H and spatial symmetries K .

(b) If the pair of subgroups H ⊇ K are the symmetry groups of a
periodic solution of some Γ -equivariant oscillator, then some Γ -
equivariant system has a periodic solution with spatiotemporal
symmetries H and spatial symmetries K .

Proof. The comparisons are done by checking the necessary
and sufficient conditions in the H/K theorem for each class.
Theorem 3.4 implies that to verify (a) we need to check that H
fixes a connected component of FixT(K) r LT

K . Let π : Rk
→ Tk be

the quotient map defining the topology of Tk and CR a connected
component of FixR(K) r LR

K fixed by H; the existence of which is
guaranteed by Corollary 3.3. Note that

π(FixR(K) r LR
K ) = FixT(K) r LT

K .

Weclaim that the connected component of FixT(K)rLT
K containing

π(CR) is fixed by NΓ (K). Indeed, since the actions of NΓ (K) on
FixR(K) and FixT(K) commute with π , that is, π


FixR(K)

is NΓ (K)-
equivariant, it follows that π(CR) is fixed by H . But each element
h ∈ H permutes the connected components of FixT(K)r LT

K ; hence
the connected component containing π(CR) is fixed by H .

To prove assertion (b), it suffices to note that the necessary and
sufficient conditions for pairs of symmetries of periodic solutions
on equivariant oscillators are a subset of those needed for the same
pair to be the symmetries of some periodic orbit on equivariant
systems. �

Example 3.8. We claim that in general the containments listed in
the top row of Fig. 3 are strict. Consider the all-to-all coupled three
identical node network with symmetry group Γ = S3.
Fig. 4. Ring of five identical cells with D5-symmetry.

(a) The pair (H, K) = (S3, S3) is a solution type that occurs
for equivariant coupled oscillators but does not occur in
equivariant coupled equations. Note that Γ -equivariant vector
fields on R3 cannot support this symmetry pair since Fix(K) ∼=

R. On the other hand, Theorem3.4 implies that such hyperbolic
solutions are supported on T3 since Fix(K) ∼= T1.

(b) Similarly, we claim that the pair (H, K) = (Z2(1 2), 1) is
a solution type that occurs for equivariant coupled systems
but does not occur for equivariant coupled oscillators. For
equivariant systems there are no obstructions on a symmetry
pair beyond the algebraic conditions K = 1 is an isotropy
subgroup and H/K ∼= Z2(1 2) is cyclic, which are both valid.
Therefore, Corollary 3.2 implies that this pair is supported on
S3-equivariant vector fields on (Rk)3 where k ≥ 2. We claim
that no such vector fieldmay be found on T3. First we note that
regardless of the ambient space, the variety L1 is given by

L1 = {y1 = y2} ∪ {y2 = y3} ∪ {y1 = y3}.

It is easy to check that L1 divides the 3-torus Fix(1) = T3 into
two connected components as follows:

C1 : y1 < y2 < y3 or y2 < y3 < y1 or y3 < y1 < y2

and

C2 : y1 < y3 < y2 or y2 < y1 < y3 or y3 < y2 < y1

where 0 ≤ y1, y2, y3 < 1. Moreover, these components
are swapped by the transposition (1 2) in H . Therefore,
Theorem 3.4(c) fails and there is no S3-equivariant vector
field on T3 supporting a periodic solution with spatiotemporal
symmetries H = Z2(1, 2) and trivial spatial symmetry. �

4. Symmetry pairs for admissible vector fields on networks

We fix a coupled-cell network G with nontrivial symmetry
group Γ . It is a fact that every admissible vector field is Γ -
equivariant. However, in general, there are two ways in which
admissible vector fields differ from equivariant vector fields.

First, networks are not in general all-to-all coupled. In these
cases the coordinates of admissible vector fields depend only on
a subset of coordinates. However, the corresponding equivariant
vector fields are all-to-all coupled in the sense that each vector field
coordinate can depend on all other coordinates.

Second, admissible vector field node coordinates may satisfy
more invariance conditions than Γ -equivariant vector fields. For
example, consider the five-node ring in Fig. 4. Let

ẋ1 = f1(x1, x2, x3, x4, x5)

be the first coordinate of a vector field on the phase space of the
network. If the vector field is admissible, then f1 satisfies the two
invariance conditions

f1(x1; x2, x3, x4, x5) = f1(x1; x2, x4, x3, x5) and
f1(x1; x2, x3, x4, x5) = f1(x1; x5, x3, x4, x2)
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whereas the first coordinate of a D5-equivariant vector field
satisfies only the single condition

f1(x1; x2, x3, x4, x5) = f1(x1; x5, x4, x3, x2).

Thus, equivariant vector fields lead to those f1 that are invariant
under only the single permutation (2 5)(3 4), whereas admissible
vector fields lead to those f1 that are invariant under both
transpositions (2 5) and (3 4). Clearly, admissible vector fields are
equivariant, but not conversely.

When are subgroup pairs H ⊃ K admissible for admissible systems?

Fix a pair of subgroups H ⊃ K that are the symmetry groups
of a periodic solution of a Γ -equivariant vector field. We now ask
whether H ⊃ K can be the symmetry groups of some admissible
vector field. This question is valid in each of the three kinds of
networks we consider: coupled equations, coupled oscillators, and
coupled systems. Note that the converse is always valid since
admissibles are Γ -equivariant.

The Josić–Török result for admissible coupled systems
Recall that a network is transitive (or path-connected or strongly

connected) if every pair of nodes is connected by a path of
arrows. Josić and Török [19] proved that for coupled systems
the equivariant classification extends to the admissible one.
Specifically:

Theorem 4.1 ([19, Theorem 18]). Let Γ be the symmetry group of
a transitive coupled-cell network G. The pair of subgroups H ⊇ K
of Γ are the symmetry groups of a hyperbolic periodic solution of an
admissible coupled system on G if and only if

(a) H/K is cyclic and
(b) K is an isotropy subgroup of Γ .

Furthermore, the admissible coupled system can be chosen so that the
periodic solution is asymptotically stable inside Fix(K).

In Example 4.2 we show that the analogous theorem is
false for coupled equations on transitive networks. We have not
determined whether admissible pairs for equivariant oscillators
and coupled oscillators are different or the same.

Example 4.2 (Equivariant and Admissible Classifications Differ for
Coupled Equations). Consider the transitive four-cell network in
Fig. 1(b)withΓ = Z2(σ ) symmetry, where σ = (1 2)(3 4).We set
H = Z2(σ ) and K = 1 and show that there exists a Γ -equivariant
systemwith a periodic solution having H, K symmetries, but there
does not exist such an admissible system. This example shows that
( in the first column of Fig. 3 is correct.

The equivariance result follows from the H/K theorem.
Specifically,H/K is cyclic; K is an isotropy subgroup; dim Fix(K) =

4 > 2; and LK = {x ∈ R4
: x1 = x2, x3 = x4} so that

Fix(K) r LK = R4 r LK is connected. Now apply Theorem 3.1.
Next consider admissible coupled equations that have the form

(1.2).We claim that there cannot exist a T -periodic solution of (1.2)
that satisfies

x2(t) = x1


t +

1
2
T


x4(t) = x3


t +

1
2
T


.

(4.1)

To verify the claim, observe that

△ = {(x1, x2, x3, x4) : x1 = x2}
is a synchrony subspace. Suppose that there exists a T -periodic
solution to (1.2) satisfying (4.1). Because x1 ∈ R it follows that
there is a time t0 such that

x1(t0) = x1


t0 +

1
2
T


.

It then follows from (4.1) that x2(t0) = x1(t0). Flow invariance of
△ then implies that x2(t) = x1(t) for all t; that is, the periodic
solution x(t) lies in △.

The quotient network corresponding to △ is given in Fig. 2 and
has a symmetry τ = (3 4). The H/K Theorem for coupled equa-
tions guarantees that admissible equations for this network cannot
have periodic solutions satisfying x4(t) = x3(t +

1
2T ) since on the

quotient network L1 = {(x1, x3, x4) : x3 = x4} has codimension
one and τ interchanges the two connected components of R3 r L1.
Hence solutions satisfying (4.1) do not exist for coupled equations
even though they do exist for Z2(σ )-equivariant systems.

We note that this network is not a counterexample for Theo-
rem 4.1 in the case of coupled oscillators since T3 rL1 is connected
and appropriate admissible vector fields on the quotient network
do exist. �

Comparison of the H ⊃ K menus of admissible pairs
Although we have not characterized the admissible pairs for

admissible vector fields, we are able to prove that the menus of
admissible pairs in the three cases of coupled equations, coupled
oscillators, and coupled systems enjoy the same hierarchy as for
equivariant vector fields.

Theorem 4.3. Let G be a coupled-cell network with symmetry group
Γ . Suppose that a pair of subgroups H ⊇ K of Γ is admissible for
coupled equations. Then it is also admissible for coupled oscillators.

Proof. Suppose that the admissible system of coupled equations

ẋi = fi(xi, xI(i)),

where xI(i) is the set of input variables to cell i, possesses a periodic
orbit x(t) with symmetry groups H and K . After a suitable transla-
tion F(X − α), if necessary, we may assume that the coordinates
functions of x(t) are all positive. We construct an admissible sys-
tem of coupled oscillators G = (g1, . . . , gn) from F = (f1, . . . , fn)
having x(t) as a periodic orbit. The periodic orbit x(t) is bounded;
therefore we can chose 0 < r < R

2 so that for each i

r < xi(t) < R/2 for all t.

By rescaling the vector field F(x) → F(Rx), we can assume R = 1.
Let φ : R → [0, 1] be a bump function supported in (0, 1) such

that

φ(s) = 1 for r < s <
1
2
.

Define the mapping G̃ by

G̃i(x1, xI(i)) = φ(xi)fi(xi, xI(i)), 1 ≤ i ≤ n.

The function G̃ is a smooth vector field on Rn supported away from
the boundary in the cube [0, 1]n. As such, G̃ defined on the cube is
easily extended to a periodic vector field G on Rn.

It is easy to verify that G is admissible since the localizing factor
φ only depends on the internal state variable. Also, x(t) is a periodic
orbit of G since {x(t)} ⊂ (r, 1/2)n and φ[r, 1/2] = 1. Finally, since
(r, 1/2)n is open in Tn ∼= Rn/Zn, we infer that {x(t)} is a solution
of the admissible vector field G of coupled oscillators. �

Next, we show that for a given coupled-cell network, the
admissible pairs H ⊃ K for coupled oscillators are also admissible
for coupled systems.
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Theorem 4.4. Let G be a coupled-cell network with symmetry group
Γ . Suppose that a pair of subgroups H ⊇ K of Γ is admissible
for coupled oscillators. Then the pair is also admissible for coupled
systems.

Proof. Suppose that the pair of subgroups H ⊇ K of Γ is
admissible for coupled oscillators on a coupled-cell network G.
Let G be an admissible vector field on Tn possessing a hyperbolic
periodic orbit Θ(t) = (θ1(t), . . . , θn(t)) with symmetry groups H
and K . Denote the coordinate functions of G by

θ̇i = gi(θi, θI(i))

where 1 ≤ i ≤ n.
Let

M̂ = Rk1 × · · · × Rkn ,

where ki ≥ 2, be the phase space for the coupled systems. It
suffices to construct the desired coupled systems vector field F on
M = (R2)n, because then we can extend F to F̂ on M̂ by writing
Rk1 = R2

×Rki−2 and setting F̂i(x, y) = (Fi(x), −yi). Note thatM is
globally attracting as a submanifold of M̂ and it suffices to construct
F onM from G on Tn.

Next, note that

Tn
= {(x1, . . . , xn) ∈ (R2)n : |x1| = · · · = |xn| = 1}

is an embedded submanifold of (R2)n. We extend G to an
admissible vector field F on (R2)n for which

X(t) = (x1(t), . . . , xn(t)) with xi(t) = (cos θi(t), sin θi(t)) (4.2)

is a hyperbolic periodic orbit. Note that X(t) has K as its spatial
symmetries group and H as its invariant group. Let f : R → R
satisfy f (1) = 0 and f ′(1) = −1. Using polar coordinates on
each nodal phase space R2, we define the vector field F on (R2)n

as follows

ṙi = f (ri)
θ̇i = gi(θi, θI(i))

1 ≤ i ≤ n. (4.3)

The vector field F is admissible since the ṙi coordinates are
identical for each node and G is admissible in the θi coordinates.
Furthermore, the torus Tn is attracting for F and the curve X(t)
defined in (4.2) is a periodic solution of F inside Tn. Finally, X(t)
is a hyperbolic periodic orbit for F since Θ(t) is hyperbolic for G, F
extends G to (R2)n, and Tn is globally attracting for F . Thus, H ⊇ K
is an admissible symmetry pair for coupled systems. �

We have now verified all of the containments in Fig. 3.

5. Phase-shift synchrony

As discussed in the introduction, the symmetries in K
correspond to synchrony and the symmetries in H correspond to
phase-shift synchrony and multirhythms. The results of [15–18]
show that in the cases of coupled equations and coupled systems
all patterns of phase-shift synchrony arise from a symmetry on
some quotient network. The corresponding statement has not
been proved in the case of coupled oscillators. If the statement
for coupled oscillators was valid, then we could easily compare
patterns of phase-shift synchrony in the three contexts using H/K
theory. However, using a different argument we can show that
patterns for coupled equations are patterns for coupled oscillators
and systems (Theorem 5.1).

Comparison of patterns for equations with patterns for oscillators and
systems

Assuming the network is transitive, patterns of rigid phase-shift
synchrony for coupled equations and coupled oscillators are each
forced by admissible cyclic symmetries on quotient networks. This
follows from the results in the series of papers [15–18] mentioned
previously. The result for coupled systems is an ‘‘if and only if’’
result in the sense that there is a coupled system admissible vector
field with a periodic solution that exhibits any given pattern of
synchrony implied by a symmetry on the quotient network.2 As
we showed (see Example 4.2) periodic solutions corresponding to
cyclic symmetries on quotient networks need not exist for coupled
equations since in this context they can be obstructed by the H/K
Theorem (Corollary 3.3) applied to the quotient network. What
we can show is that each pattern of synchrony that is realizable
for coupled equations is realizable for both coupled oscillators and
coupled systems.

Theorem 5.1. Let G be a coupled cell network and let F be an
admissible vector field for coupled equations with a periodic solution
that has a pattern of phase-shift triple. Then there exist admissible
vector fields G for coupled oscillators and for coupled systems that
have the same pattern of phase-shift synchrony.

Proof. The result for coupled oscillators is a corollary of the proof
of Theorem 4.3. In that proof we showed that if F has a periodic
solution X(t) with certain phase-shifts, it can be embedded in
the torus (because the periodic solution is bounded and can be
assumed to live in the unit cube) and be the solution of a vector
field G on the n-torus. In fact, more is true. The embedding of F to
G is 1:1 for perturbations of F on a neighborhood of the trajectory
{X(t)}. Hence, rigidity on the coupled equations level leads to
rigidity on the coupled oscillators level, and the theorem is proved.

The result for coupled systems follows from the fact that in
both contexts the relevant patterns of phase-shift synchrony are
generated by cyclic symmetries on quotient networks and the fact
mentioned above that all such symmetries generate patterns of
phase-shift synchrony for coupled systems. �

Remark 5.2. We believe that each pattern of phase-shift syn-
chrony in coupled oscillators is forced by a symmetry on a quotient
network, but this has not yet been shown. This statement is valid if
every pattern of phase-shift synchrony that is realizable in coupled
oscillators is also realized in coupled systems.

It is the case that there are patterns of phase-shift synchrony
for coupled oscillators that are not realizable for coupled equations
andpatterns for coupled systems that are not realizable for coupled
oscillators. This follows directly from the corresponding H/K
results (Theorem 3.4 and Corollary 3.3).
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