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Abstract

Center manifold reduction is a standard technique in bifurcation theory, reducing
the essential features of local bifurcations to equations in a small number of vari-
ables corresponding to critical eigenvalues. This method can be applied to admissible
differential equations for a network, but it bears no obvious relation to the network
structure. A fully inhomogeneous network is one in which all nodes and couplings
can be different. For this class of networks there are general circumstances in which
the center manifold reduced equations inherit a network structure of their own. This
structure arises by decomposing the network into path components, which connect
to each other in a feedforward manner. Critical eigenvalues can then be associated
with specific components, and the network structure on the center manifold depends
on how these critical components connect within the network. This observation is
used to analyze codimension one and two local bifurcations. For codimension-1 only
one critical component is involved, and generic local bifurcations are saddle-node and
standard Hopf. For codimension two, we focus on the case when one component is
downstream from the other in the feedforward structure. This gives rise to four cases:
steady or Hopf upstream combined with steady or Hopf downstream. Here the generic
bifurcations, within the realm of network-admissible equations, differ significantly from
generic codimension-2 bifurcations in a general dynamical system. In each case we de-
rive singularity-theoretic normal forms and unfoldings, present bifurcation diagrams,
and tabulate the bifurcating states and their stabilities.
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1 Introduction

The structure and behavior of networks is a rapidly developing area with applications to
many branches of science: Stewart (2004); Newman et al. (2006); Lu et al. (2016). The
research literature now extends to many thousands of papers. The mathematical methods
employed include graph theory, algebra, probability, combinatorics, topology, and extensive
computer simulations.

A topic of considerable interest is the study of dynamics and bifurcations for networks
of coupled dynamical systems, Stewart et al. (2003); Golubitsky et al. (2005); Golubitsky
and Stewart (2006). In this context, a network is a directed graph whose edges are classified
into distinct types, one for each type of coupling. In many examples, the network structure
influences the dynamics that can be expected to occur generically, leading to behavior that
does not arise generically in a general dynamical system. Therefore the methodology of
modern nonlinear dynamics, Guckenheimer and Holmes (1983), although widely applicable,
often has to be adapted to the network context before it can be used.

Each network architecture determines a class of admissible maps and associated admissi-
ble differential equations (ODEs), which respect the structure of the network. The dynamics
of each node is determined by the node itself, and all nodes from which it receives inputs.
The type of coupling involved in the inputs is also taken into account. In particular, issues
such as symmetry and synchrony can be studied systematically using this formalism.

One of the powerful methods of bifurcation theory is center manifold reduction, Carr
(1981). This makes it possible to analyze steady-state and Hopf bifurcations analytically,
using coordinate changes to determine local polynomial approximations that capture the
bifurcation behavior. In general these coordinate changes are not well adapted to the network
structure of coupled systems. In fact, at first sight there seems to be little connection between
the network structure of a dynamical system and the structure of a center manifold reduction.
We show that in certain specific circumstances such a connection exists, and it sometimes
leads to unexpected bifurcations and dynamics. We examine this phenomenon in detail,
with rigorous proofs based on singularity-theoretic normal forms; see for example Martinet
(1982); Golubitsky and Schaeffer (1985).

A similar observation has been made for a very different class of networks. Rink and
Sanders (2015, 2014a,b); Nijholt et al. (2016, 2017); Nijholt (2018) have developed an elegant
approach to synchrony in networks, and technical issues concerning center manifold reduc-
tion, based on graph fibrations (see Boldi and Vigna (2002); Deville and Lerman (2015)). In
particular, their results show that in some cases a center manifold reduction of a network sys-
tem has a network structure of its own, inherited from the original network. Their viewpoint
is algebraic, and it is most effective for a special class of homogeneous networks: networks
where every node receives exactly one input of each of a specific list of types. Moreover,
their strongest results apply to feedforward networks, in which there are no closed directed
cycles.

Here we consider a class of networks that is almost the exact opposite of this special class:
fully inhomogeneous networks, in which all nodes and arrows have distinct types, Golubitsky
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and Stewart (2017). The graph structure of such networks carries with it dynamical notions,
notably admissible maps and systems of ODEs. For a fully inhomogeneous n-node network,
the admissible ODEs are determined by the connections, and take the form

ẋj = fj(xj, xσj(1), . . . , xσj(sj)) j = 1, . . . , n (1.1)

where σj(1), . . . , σj(sj) enumerate the sj nodes that connect to node j. Because all edges of
the network have different types, the function fj is arbitrary, subject to having the appro-
priate domain and range, and the xj are elements of finite-dimensional real vector spaces.

Biochemical networks, gene regulatory networks, and food webs are examples of such
systems. Therefore the dynamics and bifurcations for this class of networks deserve attention.
Here we consider the two standard types of local bifurcations, steady-state and Hopf, on any
dynamical system that is admissible for a fully inhomogeneous network. We also consider
mode interactions, where two local bifurcations occur simultaneously at the same parameter
values. We show that in mode interactions the center manifold determined by the critical
eigenvalues inherits its own network structure.

These observations makes it possible to apply an appropriate version of singularity theory,
adapted to the network of the center manifold and the type of local bifurcation, determining a
normal form for the bifurcation and computing and its universal unfolding — a parametrized
family of perturbations that captures the structure of all such families in a sense explained
in Section 7. We do not include a distinguished bifurcation parameter as in Golubitsky
and Schaeffer (1985), which would complicate the calculations considerably. Instead, the
bifurcation parameters are included as universal unfolding parameters. It is also convenient
to work with the special case in which all nodes have a one-dimensional phase space, which
we take to be the real line R. However, Appendix 11.4 shows that a network with multidi-
mensional nodes can be reduced to one with one-dimensional nodes and the same admissible
maps. Using this reduction, our results can be transferred directly to fully inhomogeneous
networks for which node phase spaces have any finite dimension.

Organization of Paper

The main principle underlying this paper is introduced in Section 2. Local bifurcation in the
dynamics of (1.1) occurs when the Jacobian has critical eigenvalues, which can be associated
with specific path components. See Lemma 2.3. Center manifolds are in general not unique,
but any choice captures the bifurcation structure. We show that with a suitable choice, the
dynamics on the center manifold can be interpreted as a dynamical system for a simplified
network. The remainder of the paper analyzes the most common local bifurcations, those of
codimension one or two. The codimension is the minimal number of parameters for such a
bifurcation to occur generically in a parametrized family, (Guckenheimer and Holmes, 1983,
p. 122).

The generic codimension-1 steady-state and Hopf bifurcations are described in Section 3,
without proofs at this stage. Theorem 3.1 describes steady-state bifurcation and Theorem 3.7
describes Hopf bifurcation. Abstractly these bifurcations are the same as those expected for
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a network with general vector fields, that is, with all-to-all coupling of the variables. This
result is plausible, but the proofs involve some subtleties because a path component need
not be all-to-all connected. We therefore postpone proofs to Section 6. The impact of the
bifurcations on the full network is also considered; unsurprisingly, only the nodes within or
downstream from the critical path component feel this influence. Thus, there are two kinds
of codimension-1 bifurcation for each path component in the network - one for steady-state
bifurcation and one for Hopf bifurcation.

The structure of center manifolds for the codimension-2 mode interaction bifurcations
that we consider is described in Section 4. The main result is Theorem 4.3, which states
that the dynamics on the center manifold is that of a two-node feedforward network.

The results of the bifurcation analyzes on the center manifold are stated in Section 5.
The proofs are again postponed to later sections. The four mode interactions (steady-
state/steady-state, Hopf/steady-state, steady-state/Hopf and Hopf/Hopf) are discussed in
successive subsections. In each subsection we state the singularity-theoretic normal form
for the mode interaction, compute its codimension, and obtain a universal unfolding. The
equilibria and/or periodic states involved are tabulated, along with their stabilities, and
bifurcation diagrams are presented.

Section 6 gives a proof of the codimension-1 bifurcation results. We first prove that,
within the class of admissible maps, the eigenvalues of the Jacobian are generically simple
(multiplicity 1). The proofs are presented for steady-state bifurcation in Section 6.2, and for
Hopf bifurcation in Section 6.3. Both cases involve the construction of suitable admissible
perturbations of the vector field for the linear analysis, and use Liapunov-Schmidt reduction
to control nonlinear terms up to the relevant order.

In the codimension-1 case the singularity theory required to deduce the normal form is
straightforward. The codimension-2 case requires more sophisticated ideas from singularity
theory, because of the feedforward structure of the center manifold dynamics. We therefore
outline the singularity theory needed for the codimension-2 theorems in Section 7. The
proofs for the four possible codimension-2 mode interactions are given in Sections 8 – 11.
They consist mainly of singularity-theoretic calculations of restricted tangent spaces (for the
normal form) and tangent spaces (for the unfoldings).

Finally, Appendix A describes, in the context of fully inhomogeneous networks, a general
construction that converts any network with higher-dimensional node phase spaces into an
‘expanded’ network with one-dimensional node phase spaces, without changing the space of
admissible maps. This construction justifies our running assumption that node phase spaces
are one dimensional, and implies that the same results are valid for general node phase
spaces.

2 Path Components and Feedforward Structure

Our strategy is to give a systematic and general description of the constraints on center
manifold reduced equations that are associated with mode interactions in fully inhomoge-
neous networks. To that end we enumerate a set of ‘critical components’ and associated
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‘central networks’ that capture the possible bifurcations that can occur generically for any
given inhomogeneous network. Throughout this paper, ‘path’ refers to a directed path.

Definition 2.1. Node q is downstream from node p if there exists a path from p to q. Node
p is upstream from node q if q is downstream from p. Nodes p and q are path equivalent,
denoted p ∼ q, if node p is both upstream and downstream from node q.

Definition 2.2. A path component is an equivalence class of nodes under path equivalence.
Path component Q is downstream from path component P if there exist a node p in compo-
nent P and a node q in component Q such that q is downstream from p. Path component
P is upstream from component Q if Q is downstream from P .

The notions of downstream and upstream are relational concepts that play a key role in
determining the central network.

The path components are connected in a feedforward manner (the graph-theoretic term
is ‘acyclic’: no closed path). This is well known in the theory of directed graphs, Schröder
(2002). The directed graph induced on the components is called the component graph or
condensation of the original network, Eppstein (2016). The proof is simple. Write i � j if
there is a path from node i to node j (including the trivial path from i to itself). Then � is
a preorder. The relation i ∼ j defined by i � j and j � i is an equivalence relation on nodes,
and the path components are the equivalence classes. Now � induces a partial order on the
set of equivalence classes. It is easy to prove inductively that there exists a total order on
the nodes that is compatible with �. That is, i � j implies i ≤ j.

Consider a fully inhomogeneous n-node network with components C1, . . . , Cm ordered in
this manner. The partial order determines a feedforward structure on the path components.
We can then order the nodes so that the Jacobian matrix of (1.1) is block lower triangular.
To see this let Xj ∈ Rαj be the coordinates in the j-th path component, where αj is the
number of nodes in Cj. The coordinates of an admissible vector field for a network with m
path components has the form

Ẋj = Fj(Xj, X1, . . . , Xj−1) j = 1, . . . ,m (2.1)

In general the Fj are not arbitrary, since they arise from (1.1) by collecting variables, nor
are the Fj defined uniquely from the fj. Lemma 2.3 then follows.

Lemma 2.3. The Jacobian matrix J of (2.1) at any point is block lower triangular with the
form

J =


J1

∗ J2 0

∗ ∗ . . .

∗ ∗ · · · ∗ Jm

 (2.2)

where Jj is the αj × αj Jacobian matrix of the jth path component.

The blocks in this decomposition are unique up to reordering nodes within each path
component. The ordering of the blocks need not be unique, but it must be compatible with
the feedforward partial order.
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2.1 Critical Components

By (1.1), translation preserves admissibility, so we may translate coordinates so that any
given equilibrium of (2.1) is at the origin. The form of J in (2.2) implies that the eigenvalues
of J are the union of the eigenvalues of J1, . . . , Jm (including multiplicities). Since the Ji are
unique up to reordering of the component nodes, they are unique up to similarity. Therefore
the critical eigenvalues are invariants.

Definition 2.4. At an equilibrium, the path component Cj is critical if an eigenvalue of Jj
is on the imaginary axis.

For example, Lemma 2.3 implies that a codimension-2 Hopf/steady-state bifurcation can
be associated with either one or two critical components. Moreover, when there are two
critical components, we know which is Hopf and which is steady-state.

This paper classifies the behavior of all codimension-1 and certain codimension-2 local
bifurcations on a given fully inhomogeneous network. Codimension-2 bifurcations can occur
in two types: nonlinear degeneracies of a codimension-1 bifurcation or mode interactions
occurring from the nonlinear interaction of two codimension-1 bifurcations. Moreover, in
networks, mode interactions can occur in several ways, related to how the critical components
lie within the network. Specifically, mode interactions can occur with two critical eigenvalues

• in the same critical component,

• in two critical components where one is downstream of the other,

• in two critical components where neither component is downstream of the other.

In this paper we consider in detail only the second possibility. We show that these codimension-
2 bifurcations are qualitatively different from mode interactions in general systems of differ-
ential equations. The third possibility is easy to analyze: the two codimension-1 bifurcations
are independent. We believe, but have not proved, that the first possibility behaves just like
codimension-2 bifurcations in general systems.

2.2 The Central Network

For a given bifurcation from an equilibrium in a fully inhomogeneous network, we construct
a central network and show that the dynamics on the center manifold (Carr (1981)) of the
full network are isomorphic to the dynamics on the center manifold of the central network.
See Theorem 2.10.

Definition 2.5. Suppose that the network G has at least one critical path component. The
central network C of G is defined by the following:

(a) The path components of C are the path components of G that are both upstream from
some critical component and downstream from some critical component.
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(b) The arrows in C are the arrows of G that connect nodes in C.

Remark 2.6. If G has only one critical path component, the central network C consists
of the nodes in the critical component, and the arrows that connect nodes in that critical
component. This follows since nodes are both upstream and downstream from the same
path component if and only if they lie in that path component.

Lemma 2.7. The central network can be constructed as follows:

(a) Let X be the union of all path components that are not downstream from any critical
path component.

(b) Let Z be the union of all path components in G \ X that are not upstream from any
critical component.

Then the nodes in the central network C consist of nodes in G that are not in X ∪ Z.
The arrows are those whose head and tail are in C. The nodes in G decompose as a disjoint
union

G = X ∪̇ C ∪̇ Z (2.3)

Proof. By (a), X ∩ C = ∅. By (b), Z ∩ C = ∅. Hence the nodes in the central network are
contained in the complement of nodes in X ∪ Z. Conversely, nodes in the complement of
X and Z are both upstream and downstream from some critical components, hence in C.
Finally, (b) implies that X ∩ Z = ∅, so (2.3) holds.

Using the notation in Lemma 2.7 we have:

Lemma 2.8. (a) Tails of arrows in G whose heads are in X must also be in X .

(b) Tails of arrows in G whose heads are in C must be in either C or X .

(c) Tails of arrows in G whose heads are in Z can be in any node in G.

Label the nodes of G so that the first nx are in X , the last nz are in Z, and the remaining
nodes are all in the central network C. Then Lemma 2.8 implies that an admissible ODE for
G has the form

Ẋ = F (X) (2.4a)

Ẏ = G(X, Y ) (2.4b)

Ż = H(X, Y, Z), (2.4c)

where X ∈ Rnx , Y ∈ Rny and Z ∈ Rnz . Since all critical components are in the central
network, the eigenvalues of the Jacobians DXF (0) and DZH(0) all have nonzero real part.

Relabeling coordinates, we can assume that the bifurcation point of (2.4) is at (0, 0, 0).
Specifically, we assume F (0) = 0. Now (2.4) implies:
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Theorem 2.9. A center manifold of (2.4) is contained in the subspace X = 0. That is, the
coordinates of nodes that are not downstream from any critical node are equal to 0.

We will prove that the center manifold dynamics of the central network system

Ẏ = G(0, Y )

is conjugate to the center manifold dynamics of the vector field

Ẋ = 0

Ẏ = G(0, Y )

Ż = H(0, Y, Z)

(2.5)

on G. Without loss of generality we can drop the dependence of G,H on the zero coordinates,
leading to:

Ẏ = G(Y ) (2.6a)

Ż = H(Y, Z). (2.6b)

Our goal is to prove that the dynamics on the center manifold of (2.6a) is conjugate to the
dynamics of the center manifold of (2.6).

Denote the m-dimensional center subspace of (2.6) by Ec
y,z, and denote the m-dimensional

center subspace of the central network with the vector field (2.6a) by Ec
y. Let πy : Rny×Rnz →

Rny be projection, πy(Y, Z) = Y . Denote an m-dimensional center manifold for (2.6) byWc
y,z

and let π be the restriction of πy to Wc
y,z.

Theorem 2.10. (a) The projection of the center subspace for the original network is the
center subspace of the central network. That is, πy(E

c
y,z) = Ec

y.

(b) The projection of a center manifold for the original network is a center manifold for the
central network. That is, Wc

y ≡ π(Wc
y,z) is a center manifold for the central network

equations (2.6a).

(c) The dynamics on the central network center manifoldWc
y are conjugate to the dynamics

on the center manifold of the original network Wc
y,z.

Proof. Since all critical components are in the central network, Ec
y,z∩({0}×Rnz) = {0}×{0}.

Hence, (dπ)0 = πy|Ec
y,z

is injective. Since Ec
y,z and Ec

y have the same dimension, πy : Ec
y,z →

Ec
y is an isomorphism.

Injectivity of (dπ)0 implies that π is locally injective, so Wc
y ≡ π(Wc

y,z) is locally a
submanifold. We claim that Wc

y is a center manifold for the central network. This is proved
in two steps. First, we show that the tangent space of Wc

y at the origin is Ec
y. This follows

from
T0Wc

y = T0π(Wc
y,z) = (dπ)0(T0Wc

y,z) = (dπ)0(Ec
y,z) = Ec

y,

where T0 denotes the tangent space of a manifold at the origin.
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Next, we show that Wc
y is flow-invariant under the vector field on the central network

(2.6a). Let η = (G,H)|Wc
y,z

be the vector field (2.6) restricted to the chosen center manifold
for the original network. By construction, the pushforward π∗(η) leaves the submanifoldWc

y

flow-invariant. By direct calculation π∗(η) = G|Wc
y
.

Let Ψt be the flow of the vector field η on the center manifold Wc
y,z for the original

network. Let Φt be the flow of π∗η on the center manifold Wc
y for the central network. By

the definition of pushforward, Φt = πΨtπ
−1, so Φ and Ψ are conjugate.

2.3 Interpretation of Results

In applications of networks of coupled dynamical systems, what matters most is not the
abstract nature of the dynamics (steady, periodic, quasiperiodic, chaotic, and so on) of
the entire system, but the dynamics of individual nodes. Indeed, a major feature that
distinguishes network dynamics from general dynamical systems theory is the presence of
distinguished node variables.

We sketch the implications of our results in terms of the dynamics of individual nodes of
the network. The discussion can be placed in the context of pattern formation: what is the
pattern of dynamic behavior, described from the viewpoint of the nodes?

We give a fairly complete answer (with proofs) for the codimension-1 bifurcations, steady-
state and Hopf. See Theorems 3.3 and 3.7. The result for Hopf bifurcation (all downstream
nodes from the critical component oscillate) is consistent with the results in Golubitsky et al.
(2010, 2012); Joly (2012). For the codimension-2 mode interactions considered in this paper,
with two critical components, one being downstream from the other, we base our description
on some plausible but sometimes unproved conjectures about the extent to which observing
a single node can accurately reflect the dynamics of the system.

Filling in the details rigorously (and correcting them if necessary) offers much scope for
future work. One feature of this paper deserves emphasis: the results apply to arbitrarily
large (fully inhomogeneous) networks. Even when the number of nodes, hence state variables,
is large, the most likely bifurcations have low codimension; roughly speaking, the smaller
the codimension, the more common the bifurcation is likely to be.

Our results show that typical mode interactions when one critical component is down-
stream from the other differ from the corresponding mode interactions in general dynamical
systems. In a general system, a steady-state/steady-state (Takens-Bogdanov) mode interac-
tion can create periodic solutions. A Hopf/steady-state mode interaction can lead to 2-tori.
A Hopf/Hopf mode interaction can lead to 3-tori. Since a center manifold reduction captures
all of the dynamics of the full system of ODEs near the bifurcation point, our analysis shows
that these extra frequency motions do not occur when the critical components are related in
the feedforward manner assumed here.

This assertion follows from two principles. The main principle is heuristically reasonable:
if a particular node A has a certain qualitative kind of dynamic behavior, then generically
every node B downstream from A receives (either direct or indirectly) a signal from A. For
example, if A oscillates periodically, then B receives an input with the same period. If the
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other inputs to B have dynamics similar to A, then B receives no other conflicting signals, so
we expect B to oscillate periodically as well. (In effect, we can think of B as being ‘forced’
by its inputs, and consider the case where all inputs produce a consistent type of forcing.
Steady inputs act like parameters and do not conflict with each other, or with periodic ones.)
Although effects such as resonance might cause the period of B to differ from that of A, these
would normally require higher codimension behavior, so we ignore such possibilities here. In
the case of a codimension-1 Hopf bifurcation, which creates a periodic state of the whole
system, the period of B should be the same as that of A. For similar reasons, the growth rates
of particular states along bifurcating branches in a codimension-1 steady-state bifurcation
should also be the same for A and B.

Potential complications arise when B is downstream from both critical components, be-
cause the incoming signals can interact. However, sufficiently close to the bifurcation point,
solutions should be well described by appropriate linearized eigenfunctions, and this remark
applies to the entire network. For example, if a node is forced by a periodic signal from the
upstream critical component, and a quasiperiodic signal from the other component, these
signals share a common frequency. This suggests that no node in the full network should
exhibit more complicated dynamics than occurs in the normal form. In particular, steady
states continue to act like parameters, so the difficult case is a Hopf-Hopf mode interaction.
Generically, the two periods are incommensurable, so we expect B to behave quasiperiodi-
cally (invariant 2-torus) near the bifurcation point.

Consider first a codimension-1 bifurcation with critical component C. We partition nodes
into two kinds: those downstream from C (including those in C) and the rest. Denote these
sets of nodes by D and R respectively.

Nodes in R receive no signals from the critical components, so they do not ‘feel’ the
bifurcation. Our standing assumption is that bifurcation occurs from an equilibrium, which
is hyperbolic away from the center subspace. Therefore nodes in R remain steady, and the
Implicit Function Theorem implies that when projected onto each such node, the equilibrium
state moves smoothly with the bifurcation parameter λ. Thus the state of each node in R
moves along a smooth path parametrized by λ, with typical growth rate |λ|.

Nodes in D, on the other hand, do ‘feel’ the bifurcation. Consider first a steady-state
bifurcation. Since we prove that generically this is a saddle-node, we expect a bifurcation
diagram resembling a saddle-node in each node of D, so the growth rate is

√
|λ| and the

branch folds over on itself like a parabola. For a Hopf bifurcation, all nodes in D should begin
to oscillate, with a common period (determined by the relevant conjugate pair of imaginary
eigenvalues).

In the codimension-1 case we can read off this behavior from the entries in a critical eigen-
vector, as in Theorem 3.3 for steady-state bifurcation and Theorem 3.7 for Hopf bifurcation.
Thus we can make the above description rigorous in these cases.

We now come to codimension-2 mode interactions, with our standing assumption that
one critical component C2 is downstream from the other C1. Now we partition nodes into
four disjoint subsets:

(a) Subset R: Nodes not downstream from either C1 or C2.
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(b) Subset D1: Nodes downstream from C1 but not from C2.

(c) Subset D2: Nodes downstream from C2 (which must therefore be downstream from
C1), but not downstream from C1 by any directed path not passing through C2.

(d) Subset B: Nodes downstream from both C1 and C2, where some directed path from
C1 does not pass through C2.

The definition implies that each of these sets is a union of transitive components of the
network. See Figure 1, where for simplicity the only transitive components with more than
one node are C1, C2, and a set of three white nodes at the top of the figure.

C1

C2

Figure 1: Partition of a 23-node network into 20 transitive components and four disjoint
subsets indicated by color. White: R. Black: D1. Grey: D2. Checkered: B.

Now the (heuristic and unproved) principles that we assume govern the behavior are:

(R) Nodes in R are unaffected by the bifurcation. They thus remain in a steady state,
with typical growth rate |λ|, because of the Implicit Function Theorem.

(D1) Nodes in D1 all have the same qualitative behavior. If C1 is steady-state, the behavior
is like the codimension-1 steady-state case. If C1 is Hopf, the behavior is like the
codimension-1 Hopf case.

(D2) Nodes in D2 all have the same qualitative behavior. This is described by the C2-
coordinate of the appropriate normal form. The signal from C1 is built into the C1-
component of the normal form, and affects the C2-component via the function occurring
in the normal form.

(B) Nodes in B receive ‘independent’ signals from C1 and C2. Steady-state signals act
like parameters. Periodic signals from the same subset of nodes induce periodic states
of the same period, because the relevant Hopf bifurcation coordinates these signals;
except that in the Hopf-Hopf case, nodes in B receive two different (coordinated sets
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of) periodic signals. In this case the most natural outcome (sufficiently close to the
bifurcation point) is a two-period quasiperiodic state (invariant 2-torus).

Typically, in general systems of differential equations, universal unfoldings of codimension-
2 mode interactions lead to solutions with additional frequencies. For example, Takens-
Bogdanov singularities can perturb to periodic solutions and steady-state / Hopf mode in-
teractions can lead to two frequency solutions. However, we show that solutions with these
additional frequencies are not to be expected in network mode interaction unfoldings. This
is a (perhaps surprising) expectation based on the theorems stated in Section 5.

For any given node in D1 or D2 the growth rate is expected to be the same as that given
by the normal form, for any specific branch. For B in the Hopf-Hopf case, the growth rate is
proportional to

√
|λ| for each component oscillation, so the torus should have that growth

rate in each direction. We do not expect anomalous growth rates of the kind discussed
in Stewart and Golubitsky (2011); Stewart (2014) for steady-state bifurcation and Elmhirst
and Golubitsky (2006); Golubitsky and Postlethwaite (2012) for Hopf bifurcation, because
the networks concerned are homogeneous. (Also, in the steady-state case, they are highly
artificial, with a small number of nodes connected by arrows with large multiplicities.)

In summary: our general results make it possible (conjecturally but plausibly) to predict
the general type of dynamic behavior on each node of the network: whether it is steady,
periodic, or quasiperiodic; how the periods concerned are related; and the growth rate of
any particular branch. The ingredients for the prediction are the type of mode interaction
and the associated singularity-theoretic normal form.

In any specific model, the components of the critical eigenvectors add further quantitative
information. For example, when Hopf bifurcation is involved, these components determine
the initial relative amplitudes and phases of the bifurcating branches. As observed earlier,
the interpretation of our results for the behavior of individual nodes can be viewed as a
description of the types of dynamic pattern formation that are associated with codimension-
1 and codimension-2 bifurcations of the feedforward type considered in this paper.

3 Codimension One Bifurcations

We prove that for codimension-1 bifurcations, the eigenvalues at bifurcation are simple and
the central network is always a single critical path component. The proof that the eigenval-
ues are simple requires careful analysis, discussed in Theorem 6.1 and Corollary 6.2. The
nonlinear analysis is described in two distinct cases: steady-state (Section 3.1) and Hopf
(Section 3.2).

3.1 Codimension One Steady-State Bifurcations

In Section 6.2 we prove two generic results about codimension-1 steady-state bifurcations
of admissible differential equations, stated here as Theorems 3.1 and 3.3. First, these bifur-
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cations are saddle-node; second, the growth rate of the equilibrium solution when viewed
within any particular node is determined by the network architecture.

Theorem 3.1. Generically, codimension-1 steady-state bifurcations on a fully inhomoge-
neous network are saddle-node bifurcations.

Remarks 3.2. (a) The curve of equilibria emanating from a saddle-node bifurcation is
tangent to the eigenvector v of the Jacobian at the bifurcation point. In particular, if a
coordinate in v is nonzero, and assuming without loss of generality that the bifurcation
occurs at λ = 0, then the growth rate of the zeros in that coordinate is of order

√
|λ|,

where λ is the bifurcation parameter.

(b) This result is not always valid for networks that are not fully inhomogeneous; that is,
where some arrows or nodes have the same type. The case of regular networks (all
nodes and arrows are identical and each node has the same number of input arrows)
is discussed in Leite and Golubitsky (2006); Golubitsky and Stewart (2011); Stewart
(2014).

Theorem 3.3. Assume the bifurcation occurs at λ = 0. For all of nodes within the critical
path component, or nodes downstream from those, the growth rate of the equilibrium is

√
|λ|.

The growth rate is at most |λ| in all other components.

Remark 3.4. It follows from Theorem 3.1 and Theorem 3.3 that generically the two so-
lutions bifurcating from the saddle-node bifurcation have different coordinates on all nodes
downstream from the critical components and the same values on all other nodes. In this
sense there is a pattern hidden in the bifurcation based on which component is the critical
component.

3.2 Codimension One Hopf Bifurcations

In Section 6.3 we prove two generic results about codimension-1 Hopf bifurcations of admis-
sible differential equations for a fully inhomogeneous network, stated here as Theorems 3.6
and 3.7.

Definition 3.5. The system Ẋ = F (X,λ) has a nondegenerate Hopf bifurcation at the
equilibrium X0 if:

(a) The Jacobian J = (dXF )X0,λ0 has a complex conjugate pair of simple purely imaginary
eigenvalues with all other eigenvalues off of the imaginary axis.

(b) The growth rate of the small amplitude periodic solutions is
√
λ.

The two theorems show that codimension-1 Hopf bifurcations are nondegenerate, and
only the nodes downstream from a critical path component experience periodic motion.

Theorem 3.6. Generically, codimension-1 Hopf bifurcation on a fully inhomogeneous net-
work is nondegenerate.
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Theorem 3.7. Hopf bifurcation yields periodic motion in all nodes in the critical path com-
ponent H and any node downstream from H. The amplitude of this periodic motion has
growth rate

√
|λ|. All other nodes remain constant and experience at most |λ| growth rate.

Remark 3.8. By Theorem 3.7, there is a unique type of Hopf bifurcation associated to
each path component that can be critical, in the sense that the Jacobian on that path
component can have imaginary eigenvalues. (This would not be possible, for example, if
the component has a single node with one-dimensional phase space.) Theorem 3.7 implies
that the type of Hopf bifurcation defines the set of nodes that generically oscillate. More
specifically, bifurcating periodic solutions generically oscillate on on all nodes downstream
from the critical component and are constant on all other nodes.

4 Center Manifolds for Codimension Two Bifurcations

There are three possible central networks for codimension-2 bifurcations: (1) a single critical
path component, (2) two disconnected critical path components, and (3) two critical path
components with one strictly downstream of the other and possibly nodes in between. As
stated in the Introduction, we focus on case (3).

For case (3), suppose the network has two critical path components C1 and C2, with C2

downstream from C1. By Theorem 2.9,Wc for the full network is independent of coordinates
of nodes that are not downstream from any critical node. Hence these non-downstream nodes
can be eliminated by fixing the corresponding coordinates at equilibrium 0. Ignoring the non-
upstream nodes, the admissible vector field on the central network takes the general form

ẋ1 = f1(x1) (4.1a)

ẋ2 = f2(x1, x2) (4.1b)

ẋ3 = f3(x1, x2, x3) (4.1c)

where for convenience we have dropped the dependence of Fi on the zero coordinates for the
non-downstream nodes. Here x1 ∈ Rm1 and x3 ∈ Rm3 are coordinates for the nodes in C1

and C2, respectively, while coordinates x2 ∈ Rm2 correspond to nodes downstream from C1

and upstream from C2. By assumption, f1(0) = f2(0, 0) = f3(0, 0, 0) = 0. Throughout, we
write Df for the derivative of a map f and Djf for the partial derivative with respect to
the jth variable. Sometimes we also denote the relevant variable by a subscript, as in Dxf ,
which is ∂f/∂x. The linearization about 0 is

J =

 J1 0 0
D1f2 J2 0
D1f3 D2f3 J3


where both J1 = Df1(0) and J3 = D3f3(0, 0, 0) are singular with critical eigenvalues while
J2 = D2f2(0, 0) is nonsingular. In the following, we first focus on the central network, and
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then explore how dynamics on the central network affects nodes downstream. We show that
the flow restricted to the center manifold of (4.1) has a feedforward structure and depends
only on the two critical components. This is proved in Theorem 4.3, but first we need two
lemmas.

Lemma 4.1. The flow of (4.1) can be written as

Φt(x1, x2, x3) = (φ1t(x1), φ2t(x1, x2), φ3t(x1, x2, x3))

Proof. The feedforward structure of (4.1) implies that the flow of x1 is independent of x2

and x3, while the flow of x2 is independent of x3.

Assume that the center subspaces of J1 and J3 are the n1-dimensional subspace Ec
1 and

the n2-dimensional subspace Ec
2, respectively. Let π1(x1, x2, x3) = (x1, 0, 0) be projection

onto the first coordinate of Rm1 × Rm2 × Rm3 .
Let νc1 × {0} × {0} be an n1-dimensional center manifold of (4.1a) in Rm1 × {0} × {0}.

It follows from Lemma 4.1 and the fact that νc1 is flow-invariant for (4.1a) that π−1
1 (νc1 ×

{0} × {0}) = νc1 × Rm2 × Rm3 is flow-invariant for (4.1). Therefore we can choose an
(n1+n2)-dimensional center manifoldWc for (4.1) in π−1

1 (νc1×{0}×{0}) such that π1(Wc) =
νc1 × {0} × {0}.

Let νc2 be an n2-dimensional center manifold of (4.1c) on x1 = x2 = 0. Since (4.1a)-(4.1b)
have 0 as fixed point, {0} × {0} × νc2 is flow-invariant. We can choose Wc so that

{0} × {0} × νc2 ⊆ Wc

is a submanifold.

Lemma 4.2. The manifold νc1×{0}×{0} is a submanifold of Wc, and Wc is a fiber bundle
over the base νc1 × {0} × {0} with fibers isomorphic to {0} × {0} × νc2.

Proof. First, we show
νc1 × {0} × {0} ⊆ Wc

by verifying that
νc1 × {0} × {0} =Wc ∩ (Rm1 × {0} × {0}).

To this end, we define
ν̂c1 =Wc ∩ (Rm1 × {0} × {0})

and note that ν̂c1 is n1-dimensional manifold. Indeed, the center manifold theorem lets us
coordinatize the center manifold Wc of the network by its center subspace Ec. Now ν̂c1
is the slice of Wc along the direction that contains the n1-dimensional subspace Ec

1, so
dim(ν̂c1) = n1.

Moreover, π1 is the identity on Rm1 × {0} × {0}, so π1(ν̂c1) = ν̂c1. Therefore

ν̂c1 = π1(Wc ∩ (Rm1 × {0} × {0}))
⊆ π1(Wc) ∩ π1((Rm1 × {0} × {0}))
= (νc1 × {0} × {0}) ∩ ((Rm1 × {0} × {0}))
= νc1 × {0} × {0}

(4.2)
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Since ν̂c1 and νc1×{0}×{0} are manifolds with the same dimension, they must be the same,
so νc1 × {0} × {0} ⊆ Wc.

Second, choose (z1, 0, 0) and (0, 0, z2) on νc1 ×{0}× {0} and {0}× {0}× νc2, respectively.
Write Wc as a fiber bundle with base νc1×{0}× {0}. For each z1, define the fiber over z1 as

Uz1 =Wc ∩ ({z1} × Rm2 × Rm3) = {z ∈ Wc : π1(z) = (z1, 0, 0)}.

Since Wc is a fiber bundle, for each z1 there exists a map

ρ : (z1, {0} × {0} × νc2)→ Uz1

so ρ(z1, z2) ∈ Uz1 . We have ρ(0, z2) = {0}×z2 and ρ(z1, 0) = {0}×{0}. While ρ(z1, z2) ∈ Uz1
is isomorphic to {0}×{0}×νc2, it may have component in coordinate x2, which we denote by
ρ2(z1, z2). The following result is analogous to one proved in Golubitsky and Postlethwaite
(2012):

Theorem 4.3. The dynamics on the center manifold Wc of (4.1) can be written on νc1 × νc2
as

ż1 = g1(z1) (4.3a)

ż2 = g2(z1, z2) (4.3b)

for some functions g1 and g2 and coordinates z1 ∈ νc1 and z2 ∈ νc2.

Proof. Coordinatize the flow on Wc with the map P : νc1 × νc2 →Wc defined by

P (z1, z2) = (z1, ρ(z1, z2))

where ρ(0, z2) = {0} × {0} × z2. Clearly P is invertible, with inverse

P−1(z1, z̃2) = (z1, σ(z1, z̃2))

where σ satisfies
σ(z1, ρ(z1, z2)) = z2.

In particular,
σ(0, ρ(0, z2)) = σ(0, 0, z2) = z2.

Denote the flow on νc1 × νc2 by Ψt(z1, z2). Then

Ψt(z1, z2) = P−1ΦtP (z1, z2)
= P−1Φt(z1, ρ(z1, z2))
= P−1(φ1t(z1), φ2t(z1, ρ2(z1, z2)), φ3t(z1, ρ(z1, z2)))
= (φ1t(z1), σ(φ1t(z1), (φ2t(z1, ρ2(z1, z2)), φ3t(z1, ρ(z1, z2))))).

(4.4)

The flow of the first coordinate is independent of z2, as required.

16



5 Codimension Two Mode Interactions

In this section we summarize the main results for codimension-2 bifurcations when the cen-
tral network contains two critical path components with one downstream of the other (and
possibly nodes in between). Throughout this section we analyze the dynamics of each sys-
tem using the center manifold network associated to the given central network. Section 4
shows that the center manifold network inherits the feedforward structure of the critical
components in the central network. This leads to four possible mode interactions, defined
by whether the eigenvalues of each critical component corresponds to steady-state or Hopf
bifurcation.

The feedforward structure of the center manifold network leads to generic behavior of
the mode interactions that is different from generic behavior in the context of general vector
fields (which arise in networks with all-to-all coupling).

Remark 5.1. One manifestation of this difference is the existence of a new type of solution
in the center manifold network for the four mode interactions. In the steady-state / steady-
state and steady-state / Hopf mode interactions these solutions are invariant sets where the
coordinate of the upstream node is constant and the coordinates of the downstream node
are not. The flow-invariant set on which these solutions exist can act as a boundary that
other trajectories cannot cross, thereby partitioning phase space. 3

For each of the four mode interactions described in this section, we begin with the center
manifold vector field, identify a singularity-theoretic normal form and its universal unfolding,
and classify the small amplitude steady-state and periodic solutions as a function of unfolding
parameters. We discuss singularity theory in Section 7, which summarizes all the required
concepts and results. However, we give brief indications of the key steps as we proceed.

5.1 Steady-State/Steady-State Mode Interaction

In the steady-state/steady-state mode interaction, the Jacobian associated with each critical
component of the original network has a single zero eigenvalue, and each critical component
corresponds to a one-dimensional phase space on the center manifold. In this case the vector
field on the center manifold has the form:

ẋ = f(x)
ẏ = g(x, y)

(5.1)

where x, y ∈ R. We assume that the origin is an equilibrium, so f(0) = g(0, 0) = 0. The
Jacobian of (5.1) has two zero eigenvalues at the origin, so fx(0) = gy(0, 0) = 0.

The goal is to identify a normal form and show that any vector field of the form (5.1),
with the associated defining conditions, is equivalent to that normal form, assuming suitable
nondegeneracy conditions. We define equivalence in terms of transformations that preserve
the center manifold structure; that is, the variable dependence of the functions for each
center manifold node. To apply singularity theory we must define when two bifurcation
problems in (5.1) are (strongly) equivalent.
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Definition 5.2. Maps F (x, y) = (f(x), g(x, y)) and F̂ (x, y) = (f̂(x), ĝ(x, y)) are strongly
equivalent if there exist a(x), φ(x), b(x, y), c(x, y), ψ(x, y) such that[

f̂(x)
ĝ(x, y)

]
=

[
a(x) 0
b(x, y) c(x, y)

] [
f (φ(x))

g (φ(x), ψ(x, y))

]
(5.2)

where φ(0) = ψ(0, 0) = 0 and a(0), c(0, 0), φx(0), ψy(0, 0) > 0.

In Section 8 we prove the following:

Theorem 5.3. Assume that (5.1) satisfies the defining conditions

f(0) = fx(0) = g(0, 0) = gy(0, 0) = 0 (5.3)

and the nondegeneracy conditions

gx(0, 0) 6= 0, fxx(0) 6= 0, gyy(0, 0) 6= 0. (5.4)

Then F (x, y) = (f(x), g(x, y)) is strongly equivalent to the normal form F̂ (x, y) given by

f̂(x) = εpx
2

ĝ(x, y) = εsx+ εty
2,

(5.5)

where
εs = sign(gx(0, 0)), εp = sign(fxx(0)), εt = sign(gyy(0, 0)).

Theorem 5.3 is useful only if the set of admissible vector fields with a steady-state /
steady-state mode interaction that satisfies the mode interaction degeneracy conditions (5.3)
includes vector fields that satisfy the nondegeneracy conditions (5.4). We prove more:

Proposition 5.4. Consider two path components in a network such that one is downstream
of the other and a pair of functions f : R → R and g : R2 → R such that f(0) = f ′(0) = 0
and g(0, 0) = gy(0, 0) = 0. Then there exists an admissible vector field F whose center
manifold restriction is given by (5.1), where f is the component of the vector field associated
to the upstream path component and g is the component of the vector field associated to the
downstream path component.

Proof. Given two path components with one downstream of the other, there exists a path
consisting of n+ 1 distinct nodes that connects a node p0 in the upstream path component
to a node pn in the downstream path component. We denote the nodes along this path as
pi for i = 1, . . . , n− 1 and denote the remaining nodes in the network by ps where s > n.

We construct an admissible vector field in the following way. Associate the coordinate
zj ∈ R with the node pj and define the admissible vector field F by

ż0 = f(z0)
żi = −zi + zi−1 + f(zi) 1 ≤ i < n
żn = g(zn−1, zn)
żs = −zs s > n

(5.6)
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for these nodes.
We have assumed that the origin is an equilibrium; that is, f(0) = 0 and g(0, 0) = 0. We

have also assumed that the Jacobian of F evaluated at the origin is lower triangular with
two zero eigenvalues (that is, f ′(0) = gzn(0, 0) = 0) and the remaining eigenvalues equal to
−1. The center subspace Ec is spanned by a vector w with single nonzero component wn = 1
and a vector v with nonzero components vi = 1 for i = 0, . . . , n − 1. The center subspace
can be parametrized by coordinates uc = xv + yw ∈ Ec where x, y ∈ R.

By construction the admissible vector field F leaves the center subspace invariant; hence
the center subspace is in fact a center manifold for F . Indeed, the restriction of F to Ec is
precisely the vector field (5.1).

Remark 5.5. Proposition 5.4 implies that generically admissible vector fields that satisfy
the degeneracy conditions (5.3) also satisfy the nondegeneracy conditions (5.4).

Universal unfoldings classify perturbations up to equivalence. Recall that when com-
puting universal unfoldings, we relax the restrictions in Definition 5.2 that φ(0) and ψ(0, 0)
vanish.

Theorem 5.6. The normal form (5.5) has codimension two and a universal unfolding is

f(x, λ) = λ+ εpx
2

g(x, y, µ) = µ+ εsx+ εty
2.

(5.7)

Remark 5.7. 1) Since the Jacobian is always lower triangular, Hopf bifurcation cannot
occur in the universal unfolding (5.7). This contrasts with the codimension-2 Takens-
Bogdanov singularity (a steady-state steady-state mode interaction) where we expect
both periodic solutions and homoclinic orbits to occur, Guckenheimer and Holmes
(1983). Neither of these solution types appears in (5.7).

2) On the other hand, solutions of the type described in Remark 5.1 exist in the universal
unfolding (5.7). These solutions are invariant lines where x(t) is constant and y(t)
is not. They appear in pairs where one is stable in the x-direction and the other
is unstable in that direction. These pairs of solutions are ‘heteroclinic-like’ in that
solutions with initial conditions between the two invariant lines converge to one line in
forward time and to the other line in backward time.

To state the next result we must briefly discuss the concept of a transition variety. Given
a k-parameter family of ODEs parametrized by λ = (λ1, . . . , λk) ∈ Rk, generically the set of
equilibria or periodic states has the same topology throughout a neighborhood of a point λ0.
Bifurcations occur when this statement is false. It is often possible to classify the relevant
points λ0 according to the type of bifurcation that occurs. For each type of bifurcation, the
relevant points λ0 form the corresponding transition variety or bifurcation set. See Golubitsky
and Schaeffer (1985) Section III.5 in the similar context of qualitative changes to bifurcation
diagrams.
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We now compute the steady-state solutions as a function of the parameters µ and λ.
Changing εp, εs, εt to −εp,−εs,−εt rotates the transition variety in the µλ-plane by 180◦

and changes the stability of each steady-state in both the x and y directions. Hence we can
assume εp = −1 and consider the four cases εs = ±1, εt = ±1.

Case 1: εp = εs = εt = −1. The saddle-node part of the transition variety in parameter
space occurs when the Jacobian matrix

J =

[
−2x 0
−1 −2y

]
at an equilibrium has a zero eigenvalue. The first case is x = 0, which leads to the half line
λ = 0, µ ≥ 0. The second case y = 0 leads to the parabola λ = µ2, Figure 2 (left). Each
component of the transition variety corresponds to a saddle-node bifurcation.

There are no steady states for λ < 0; two steady states inside the parabola; and four
steady states for parameters in the region between the parabola and the half line. These
steady states and their stabilities are listed in Table 1.

Region Equilibria (x, y) Eigenvalues

I− 0 < λ < µ2 (
√
λ, y) −∗

µ < 0; y ∈ R (−
√
λ, y) +∗

II 0 < λ < µ2

(√
λ,+

√
µ−
√
λ

)
−−

0 < µ

(√
λ,−

√
µ−
√
λ

)
−+(

−
√
λ,+

√
µ+
√
λ

)
+−(

−
√
λ,−

√
µ+
√
λ

)
++

III µ2 < λ

(
−
√
λ,+

√
µ+
√
λ

)
+−(

−
√
λ,−

√
µ+
√
λ

)
++

Table 1: Steady-state/Steady-state mode interaction: Case 1. List of equilibria (column 3)
and their stabilities (column 4) in each of the regions (column 1) in Figure 2 (left). The
entries in I− column 3 list the invariant lines.

The transition varieties here are the boundaries between the four regions. The transitions
across these boundaries are conveniently illustrated by the circulant (or gyrant) bifurcation
diagram of Figure 2 (right). To obtain this diagram we start in region I+ (λ < 0) and plot
the equilibria, following a counterclockwise circle around the origin in the µλ-plane. It is
also helpful to track x-invariant sets defined by f(x) = 0, in addition to the steady states.
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I+

I− II
III

SN+

SNd

SN−

↑→ µ

λ

SN+

SNd

SNd

SN−

−−

+−

−+

++

Figure 2: Steady-state/steady-state mode interactions: Case 1: εp = εs = εt = −1. Left:
Transition variety in the µλ parameter plane, with phase portraits in the xy phase plane in
each connected region of parameter space. Solid curves SNd, SN+ and SN− represent a double
saddle-node and two single saddle-node transition curves for (5.7). The straight vertical lines
in the phase portraits indicate the existence of invariant lines defined by f(x) = 0. The dotted
half-line indicates a saddle-node of invariant lines. Right: Circulant bifurcation diagram as
a small circle is traversed counterclockwise around the origin in the µλ-plane. The plus and
minus signs show the stability of each branch in the x and y directions.
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In region I+ there are no steady states or x-invariant sets in the phase space. Moving from
region I+ to region II across the transition line SNd, two pairs of steady states appear, each
pair appearing simultaneously through a saddle-node bifurcation. This transition results in
four steady-state solutions, Table 1 column 3. The set of four equilibria is invariant under
reflection y → −y.

Moving from region II to region III across the transition line SN+ results in the loss of
the two equilibria with x > 0 through a saddle-node bifurcation. At the transition curve
SN+ there are three steady-state solutions. In region III, only the two steady states remain;
however, an x-invariant line defined by x =

√
−λ persists as a remnant of the pair of steady

states from region II that have been lost.
The remaining pair of steady-state solutions in region III disappears through a saddle-

node bifurcation when crossing the transition curve SN−. Along SN− both a single equilib-
rium at (−

√
λ, 0) and an x-invariant line given by x =

√
λ exist. In I− no steady states exist.

However, in this region two x-invariant lines given by x = ±
√
λ partition the phase space

into three regions. Finally, as λ decreases through 0, the two x-invariant lines disappear
through a saddle-node of f(x) (not a saddle-node of the entire system).

Case 2: εp = −1, εs = εt = −1. Reversing the signs of εs and εt maps µ → −µ in the
bifurcation diagram; that is, reflects the 2-parameter bifurcation diagram in Figure 2 about
the λ-axis. The set of equilibria is preserved under the transformation εs → −εs, εt →
−εt and µ → −µ, but the stability of these fixed points changes in the y-direction, while
remaining the same in the x-direction.

Case 3: εp = −1, εs = 1, εt = −1. εs → −εs does not affect the bifurcation structure in
the µλ-plane, nor the stability of any equilibrium.

Case 4: εp = −1, εs = −1, εt = 1. εt → −εt corresponds to transforming µ→ −µ in the
bifurcation diagram.

5.2 Hopf/Steady-State Mode Interaction

In a Hopf/steady-state mode interaction, the Jacobian associated with the critical component
where the Hopf bifurcation occurs has a pair of purely imaginary eigenvalues, whereas the
Jacobian associated with the other component has a single zero eigenvalue. On the center
manifold, the component associated with the Hopf bifurcation has a two-dimensional phase
space. In this case the center manifold vector field has the form

Ẋ = f(X)
ẏ = g(X, y)

(5.8)

whereX ∈ R2 and y ∈ R. Assume that the origin is an equilibrium so that f(0) = g(0, 0) = 0.
At the origin, the Jacobian of (5.8) has a pair of purely imaginary eigenvalues and a zero
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eigenvalue, so that Df(0) has eigenvalues ±i and gy(0, 0) = 0. We show in Section 9 that
under these assumptions, Liapunov-Schmidt reduction leads to a two-dimensional map F
with Z2-symmetry σ(x, y) = (−x, y). We obtain:

Theorem 5.8. Assume (5.8) satisfies the defining conditions f(0) = g(0, 0) = 0, Df(0) has
eigenvalues ±i and gy(0, 0) = 0. Then there exists a smooth map

F (x, y) =

[
r(u)x
g(u, y)

]
, u = x2, (5.9)

where r(0) = 0 and g(0, 0) = 0, such that locally, solutions to F (x, y) = 0 with x ≥ 0 are in
one-to-one correspondence with small amplitude periodic solutions to (5.8) with period near
2π.

Theorem 5.8 reduces finding periodic solutions of (5.8) to finding the zeros of a two-
dimensional system (5.9) with Z2-symmetry. The goal is then to identify a normal form
and to show that all vector fields of the form (5.9) satisfying the associated defining and
nondegeneracy conditions are equivalent. For this we need a Z2-symmetric version of Defi-
nition 5.2:

Definition 5.9. A map F (x, y) = (r(u)x, g(u, y)) and G(x, y) are strongly Z2-equivalent if

G(x, y) =

[
a(u) 0

b(u, y)x c(u, y)

] [
r(φ(u)2u)φ(u)x
g(φ(u)2u, ψ(u, y))

]
(5.10)

where ψ(0, 0) = 0 and a(0), c(0, 0), φ(0), ψy(0, 0) > 0.

Remark 5.10. The difference between equivalence in Definition 5.2, and Z2-equivalence
in Definition 5.9, is that the change of coordinates is Z2-equivariant. That is, γG(x, y) =
G(γ(x, y) where γ(x, y) = (−x, y). This implies

γS(x, y) = S(γ(x, y))γ
γΦ(x, y) = Φ(γ(x, y))

leading to the form (5.10) for strong Z2-equivalence. Requirements on φ, ψ, a and c follow
from the restrictions on Φ, S as in Definition 5.2.

Theorem 5.11. Assume that (5.9) satisfies the defining conditions

r(0) = g(0, 0) = gy(0, 0) = 0 (5.11)

and the nondegeneracy conditions

ru(0) 6= 0, gu(0, 0) 6= 0, gyy(0, 0) 6= 0. (5.12)

Then F (x, y) = (r(u)x, g(u, y)) is strongly Z2-equivalent to the normal form F̂ given by

r̂(u)x = εpux
ĝ(u, y) = εqu+ εty

2 (5.13)

where
εp = sign(ru(0)), εq = sign(gu(0, 0)), εt = sign(gyy(0, 0)).
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Theorem 5.11 is useful only if Hopf/steady-state mode interaction admissible vector fields
satisfying the mode interaction defining conditions (5.11) are rich enough to satisfy the
nondegeneracy conditions (5.12). We would like to prove a result analogous to the steady-
state/steady-state Proposition 5.4 for the Hopf/steady-state mode interaction. At the very
least, we would like to exhibit one example of an admissible vector field for a given network
that satisfies both the defining conditions (5.11) and nondegeneracy conditions (5.12). If we
can do so, the desired result can be obtained by arguments based on algebraic geometry.
What we do know so far is that, given any network, we can construct an admissible vector
field that satisfies the defining conditions by considering a subnetwork consisting of a directed
ring with a feed forward chain coming off of one of the nodes.

Because the critical path component associated with the steady-state bifurcation (zero
eigenvalue) is downstream from the one associated with the Hopf bifurcation (complex conju-
gate pair of pure imaginary eigenvalues), there exits a path from a node s in the downstream
critical component to a node h in the upstream critical component. Moreover, because the
upstream component is associated with Hopf bifurcation, it contains at least two nodes. We
can therefore construct a path connecting node h to another node in the upstream critical
component going in both directions. A directed ring exists within this bidirectional path
and can be found by clipping sections of the path beyond nodes that are contained along
both the path to and from h. Any admissible vector field on this ring-and-chain subnetwork
along with dynamics on other nodes o defined by ẋo = −xo will be admissible on the full
network.

To classify perturbations up to equivalence, we use universal unfoldings. Again, we relax
the restrictions in Definition 5.9 that ψ(0, 0) vanishes to compute universal unfoldings.

Theorem 5.12. The normal form (5.13) has codimension two. A universal unfolding is

r(u, λ)x = (λ+ εpu)x
g(x, y, µ) = µ+ εqu+ εty

2.
(5.14)

Remark 5.13. In Hopf/steady-state mode interaction, the x-invariant solutions described
in Remark 5.1 appear in the universal unfolding (5.14). The invariant line with x > 0 on the
Liapunov-Schmidt reduced space corresponds to a flow-invariant solid cylinder aligned along
the y-axis in the center manifold phase space. When present, this invariant set partitions
phase space, and ‘heteroclinic-like’ orbits appear that connect the flow-invariant line at the
center of the cylinder x = 0 with the boundary of the solid cylinder: see region I+ in Figure 3
(right). In one direction these trajectories approach helical oscillation on the boundary of
the cylinder, and in the other they approach the central line of the cylinder.

It is now straightforward to compute the steady-state solutions of (5.14) as a function
of the parameters µ and λ. Locally these equilibria are in one-to-one correspondence with
periodic solutions of (5.8) by Theorem 5.8. We are interested only in nonnegative solutions
for the variable x, which relate to the amplitude of periodic orbits of (5.8). As in Section
5.1, it is sufficient to assume εp = −1 and consider the four cases εt = ±1, εq = ±1.
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Case 1: εp = εq = εt = −1. The bifurcation in the µλ parameter space occurs when the
Jacobian

J =

[
λ− 3x2 0
−2x −2y

]
at an equilibrium has a zero eigenvalue. The first case is λ − 3x2 = 0, which leads to the
half line λ = 0, µ ≥ 0 corresponding to a pitchfork bifurcation (Hopf bifurcation in the full
three-dimensional system (5.8)). The second case y = 0 leads to two saddle-node bifurcations
given by µ = 0 and the half line µ−λ = 0, λ ≥ 0, where the former corresponds to a saddle-
node of steady states in (5.8) and the latter to a saddle-node bifurcation of periodic orbits
(SNPO) in (5.8). See Figure 3 (left).

There are no steady states for µ < 0; two steady states for λ < 0, µ > 0 and λ > µ > 0;
and four steady states for µ > λ > 0. Unlike the steady-state/steady-state mode interaction,
x-invariant lines do not always appear in pairs; in fact, one x-invariant line given by x = 0
persists throughout the full parameter space. These steady states, x-invariant solutions and
their stability are listed in Table 2.

Region Equilibria (x, y) Eigenvalues
II λ < 0

(
0,+
√
µ
)

−−
0 < µ

(
0,−√µ

)
−+

III 0 < λ
(
0,+
√
µ
)

+−
λ < µ

(
0,−√µ

)
++(√

λ,+
√
µ− λ

)
−−(√

λ,−
√
µ− λ

)
−+

IV µ < λ
(
0,+
√
µ
)

−+
0 < µ

(
0,−√µ

)
++

I+ 0 < λ (0, ∗) +∗
µ < 0

(√
λ, ∗
)

−∗
I− λ < 0 (0, ∗) −∗

µ < 0

Table 2: List of equilibria (column 3) and their stabilities (column 4) in each of the regions
(column 1) in Figure 3 (left). The entries in I+ and I− column 3 list the invariant lines.

The circulant diagram in Figure 3 (right) shows transitions across the boundaries between
the five regions. Begin in region I−; there are no steady states but there is one x-invariant
line x = 0, which partitions the phase space into two regions. Moving from region I− to
region II across the transition line SN− (with λ < 0), the first pair of steady states, Table
2 column 3, appears through a saddle-node bifurcation. At the transition line SN− there is
one steady-state solution (x, y) = (0, 0).
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↑→ µ

λ

I+

I− II

III
IV

SN−

SN+

Hd

SNPO

SN− SNPO

Hd

Hd

SN+

−−

−+

−−

−+

+−

++

Figure 3: Hopf/steady-state mode interaction: case 1: εp = εq = εt = −1. Left: Transition
variety in the µλ parameter plane, with phase portraits in the xy phase plane in each
connected region of parameter space. Solid curves SN−, SN+, SNPO and Hd represent three
saddle-node and a double pitchfork transition curves for (5.14), and correspond to two saddle-
nodes, a saddle-node of periodic orbits, and a double Hopf bifurcation for (5.8). In the phase
portraits, the square and circle symbols correspond to the steady states and the periodic
solutions of the full three-dimensional system (5.8), while the straight vertical lines indicate
x-invariant lines defined by f(x) = 0. Right: Circulant bifurcation diagram as a small circle
is traversed counterclockwise around the origin in the µλ-plane. The plus and minus signs
show the stability of each branch in the x and y directions. Thicker lines indicate the periodic
solutions of (5.8). The dotted half-line in the left-hand figure indicates a ‘pitchfork’ of the
invariant line x = 0 to the invariant lines x = 0 and x =

√
λ as λ increases through 0.

Moving from region II to region III across the transition line Hd (with µ > 0), each of
the two steady states that appeared at µ = 0 splits into three steady states through a pair
of pitchfork bifurcations. This creates six steady states. Four have nonnegative x values; see
Table 2 column 3 and Figure 3 (left). The two steady states with positive x correspond to
the two periodic solutions of (5.8) born at Hopf bifurcations.

Moving from region III to region IV across the transition line SNPO results in the loss of
the equilibria with x 6= 0 through a saddle-node bifurcation. At the transition curve SNPO
there are three steady-state solutions (0, 0), (0,±√µ). Only the two equilibria at (0,±√µ)
remain in region IV; these disappear through a saddle-node bifurcation when crossing the
transition curve SN+. Along SN+ there is one steady-state solution at (0, 0). In region
I+ no steady states exist. However, in this region there are two x-invariant lines x = 0
(unstable in the x-direction) and x =

√
λ (stable in the x-direction). These two solutions

are ‘heteroclinic-like’ as discussed in Section 5.1, and they partition the two dimensional
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phase space into three regions. Finally, as λ decreases through 0, the x-invariant line given
by x =

√
λ disappears through a pitchfork bifurcation of f(x) (not a pitchfork in the entire

system) and only x = 0 persists.

Case 2: εp = −1, εq = +1, εt = −1. Reversing the sign of εq changes the SNPO transition
line to λ + µ = 0, λ ≥ 0, which is to the left of the line SN+. In contrast to case 1, the
two periodic solutions of (5.8) that appeared at the transition line Hd persist after the two
steady states disappear at SN+, going counterclockwise in a circle around the origin in the
µλ-plane. Changing εq → −εq does not affect the stability of any equilibria. See Figure 4.

Case 3: εp = −1, εq = +1, εt = +1. Reversing the sign of εq and εt (from Case 1) is
equivalent to a transformation λ→ −λ and a change of stability in the y direction.

Case 4: εp = −1, εq = −1, εt = +1. Reversing the sign of εq and εt (from Case 2) is
equivalent to a transformation of λ→ −λ and a change of stability in the y direction.

SN−

SN+

Hd

SNPO

I+

I− II

IIIIV

↑→ µ

λ

SN− SN+

Hd

Hd

SNPO

−−

−+

+−

++

−−

−+

Figure 4: Hopf/steady-state mode interaction: Case 2. Labels and symbol codings have
the same meanings as in Figure 3. Left: Transition varieties in the µλ parameter plane
and phase portraits in the xy phase plane for the regions they determine. Right: circulant
bifurcation diagram.
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5.3 Steady-State/Hopf Mode Interaction

Assume, as in the previous two subsections, that there are two critical components with
one downstream of the other. The steady-state/Hopf mode interaction differs from the
Hopf/steady-state mode interaction: the Jacobian associated with the upstream critical
component of the original network has a single zero eigenvalue, whereas the Jacobian associ-
ated with the downstream critical component has a complex conjugate pair of pure imaginary
eigenvalues. The vector field on the center manifold has the form:

ẋ = f(x)

Ẏ = g(x, Y )
(5.15)

where x ∈ R, Y ∈ R2, f(0) = 0, and g(0, 0) = 0.
At the origin, the Jacobian of (5.15) has a zero eigenvalue and a pair of purely imaginary

eigenvalues, namely:

fx(0) = 0 tr DY g(0, 0) = 0 det DY g(0, 0) > 0.

Rescaling time, we can assume det DY g(0, 0) = 1 and the eigenvalues are ±i.
Section 9 employs Liapunov-Schmidt reduction to reduce finding steady-states and peri-

odic orbits of (5.15) to finding zeros of a map associated with two one-dimensional nodes.
The goal is to identify a normal form for the reduced map (5.16) below, using equivalences
that preserve the network structure of the center manifold.

Theorem 5.14. Assume that (5.15) has an equilibrium at the origin that undergoes a steady
state/Hopf mode interaction. The defining conditions are

f(0) = 0 g(0, 0) = 0 fx(0) = 0 tr DY g(0, 0) = 0 det DY g(0, 0) = 1.

Then there exists a smooth map on R× R of the form

F (x, y) = (f(x), r(x, v)y) (5.16)

where v = y2 and r(0, 0) = 0, such that locally solutions to F (x, y) = 0 with y ≥ 0 are in
one-to-one correspondence with small amplitude periodic solutions to (5.15) with period near
2π.

On the reduced system (5.16), the transformations that define equivalence must respect
Z2-symmetry in addition to the network structure of the center manifold.

Definition 5.15. Maps F (x, y) = (f(x), r(x, v)y) and F̂ (x, y) = (f̂(x), r̂(x, v)y) are strongly
Z2-equivalent if there exist a(x), φ(x), b(x, v), c(x, v), φ(x, v) such that

F̂ (x, v) =

[
a(x) 0

b(x, v)y c(x, v)

] [
f(φ(x))

r(φ(x), ψ(x, v)y)

]
(5.17)

where v = y2, φ(0) = 0, and a(0), c(0, 0), φx(0), ψ(0, 0) > 0.

28



Remark 5.16. This differs from equivalence as in Definition 5.9 because it requires equiv-
ariance under a different representation of Z2, namely γG(x, y) = G(γ(x, y)) where γ(x, y) =
(x,−y).

We now state the normal form in terms of the Liapunov-Schmidt reduced system (5.16),
where the variable y represents the amplitude of the periodic orbit in the Y coordinates
of (5.15) on the center manifold.

Theorem 5.17. Assume (5.16) satisfies the defining conditions

f(0) = fx(0) = r(0, 0) = 0,

and the nondegeneracy conditions

fxx(0) 6= 0, rv(0, 0) 6= 0, rx(0, 0) 6= 0.

Then F (x, y) = (f(x), r(x, v)y) where v = y2 is strongly Z2-equivalent, as defined by (5.15),
to the normal form F̂ (x, y) = (f̂(x), r̂(x, v)y) given by

f̂(x) = εpx
2

r̂(x, v)y = (εtv + εsx) y
(5.18)

where
εp = sign(fxx(0)), εt = sign(rv(0, 0)), εs = sign(rx(0, 0)).

As usual we compute a universal unfolding by relaxing the restriction in Definition 5.15
that φ(0) vanishes.

Theorem 5.18. The normal form (5.18) has codimension two. A universal unfolding is

f(x) = λ+ εpx
2

r(x, v)y = (µ+ εsx+ εtv) y.
(5.19)

Remark 5.19. Both the steady-state/Hopf mode interaction (5.19) and the the Hopf/steady-
state mode interaction (5.14) are very different from what is observed for the analogous mode
interaction in general vector fields. In particular, 2-tori, which are observed in general vector
fields, are not possible because of the feedforward structure of the network.

Remark 5.20. In steady-state/Hopf mode interaction, the x-invariant solutions described
in Remark 5.1 exist in the universal unfolding (5.19). These invariant lines on the Liapunov-
Schmidt reduced space correspond to the flow-invariant planes perpendicular to the x-axis in
the center manifold phase space. Similar to the steady-state/steady-state mode interaction,
they appear in pairs where one is stable in the x-direction and the other is unstable in that
direction. When present, the invariant sets partition phase space, and ‘heteroclinic-like’
orbits appear that connect the two flow-invariant planes. In one direction these trajectories
approach one plane, and in the other they approach the other plane.
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H−

H+

SN

SN+SNPO

I

II

III

IV

↑→ λ

µ

SN

H+

H−

SN+SNPO

−−

−+

+−

++

−−

−+

Figure 5: Steady-state/Hopf mode interaction: Case 1: εp = −1, εs = −1, εq = −1.
Left: Transition variety in the λµ-plane, with phase portraits in the xy phase plane in each
connected region of parameter space. Solid curves SN, SN + SNPO, H+ and H− represent
saddle-node, double saddle-node, and pitchfork transition curves for (5.19). They correspond
to saddle-node, saddle-node and saddle-node of periodic orbits, and Hopf bifurcation curves
for (5.15). Right: Circulant bifurcation diagram. Plus and minus signs show the stability of
each branch in the x and y directions. Thicker lines indicate the periodic solutions of (5.8).

We discuss all possible cases described by (5.19) in terms of the signs of the coefficients,
as follows. We fix εp = −1 and consider the four cases with εs = ±1 and εt = ±1. The
remaining four possibilities are obtained from these by noting that flipping the sign of all
three coefficients is equivalent to changing the sign of the parameters µ and λ, and changing
the stability of each equilibrium in both the x and y direction. We provide a detailed
discussion when εp = εs = εt = −1 (Table 3, Figure 5), and present the other three cases in
terms of the signs of coefficients εs and εt.

Case 1: εp = −1, εs = −1, εt = −1. The Jacobian of (5.19) linearized about an equilib-
rium (x, y) is

J =

[
−2x 0
−y µ− 3y2 − x

]
.

The eigenvalues can be read off rectly as −2x and µ − 3y2 − x. For all parameter values
the line y = 0 is flow-invariant in the two-dimensional Liapunov-Schmidt reduced space. In
the three-dimensional center manifold this line corresponds to the line (x, 0, 0) (see (5.15)).
When λ > 0, a pair of equilibria (x, y) = (±

√
λ, 0) exist; they are created at a saddle-node
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Region Equilibria (x, y) Type Eigenvalues
I-IV (∗, 0) FIS

II-IV 0 < λ
(

+
√
λ, ∗
)

FIS −∗(
−
√
λ, ∗
)

FIS +∗

II 0 < λ
(

+
√
λ, 0
)

SS −−

µ < −
√
λ

(
−
√
λ, 0
)

SS +−

III µ2 < λ
(

+
√
λ, 0
)

SS −−(
−
√
λ, 0
)

SS ++(
−
√
λ,

√
µ+
√
λ

)
PO +−

IV 0 < λ
(

+
√
λ, 0
)

SS −+(
+
√
λ,

√
µ−
√
λ

)
PO −−

√
λ < µ

(
−
√
λ, 0
)

SS ++(
−
√
λ,

√
µ+
√
λ

)
PO +−

Table 3: Steady-state/Hopf mode interaction: Case 1. List of steady-state equilibria (SS),
periodic orbits (PO) and flow-invariant sets (FIS) with y ≥ 0. The region in parameter space
where each exists is given in column 1 in terms of the four regions identified in Figure 5
(left) and in terms of parameter regimes in column 2. The coordinates and type are given
in columns 3 and 4, respectively, and the stabilities of the equilbria are in column 5.

bifurcation along this y-invariant line at λ = 0. Each of these two equilibria exists as part
of an x-invariant line in the two-dimensional space that corresponds to an x-invariant plane
in the three-dimensional center manifold. If additionally µ > 0, there is a saddle-node of
periodic orbits bifurcating simultaneously at λ = 0. These periodic orbits correspond to the
pair of steady-state equilibria

(x, y) =

(
±
√
λ,

√
µ∓
√
λ

)
in the two-dimensional space. Each of the two periodic orbits created through this bifur-
cation exists within the x-invariant plane containing the equilibrium point with the same
x-coordinate. The curve λ = µ2 defines two families of Hopf bifurcations, each connecting
the steady state y = 0 to the periodic orbit with the same x-coordinate. Figure 5 (left)
shows these transition varieties in the (λ, µ)-plane, along with representative phase portraits
within each connected region of the complement.
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The circulant diagram of Figure 5 (right) shows transitions across the boundaries between
the four regions in the λµ-plane. The dynamics along the x-direction is y-invariant, and the
line y = 0 (corresponding to the line Y = 0 in the three-dimensional center manifold) is
flow-invariant and persists for all parameter values. In region I there are no equilibria,
since µ < 0; trajectories approach −∞ along the x-direction. A saddle-node bifurcation
occurs as we cross from region I into region II where a stable and an unstable steady-state
equilibrium exist on the invariant line y = 0. A heteroclinic trajectory along y = 0 connects
the unstable steady state to the stable steady state. Because the flow along the x-direction
is y-invariant, a pair of x-invariant lines (corresponding to flow-invariant planes in the center
manifold) is also created along with the equilibria. Each x-invariant subspace contains one
of the steady states, and the unstable steady state is in fact stable when restricted to its
x-invariant subspace. Moreover, these x-invariant subspaces partition the phase space so
that trajectories between them remain trapped for all time. In contrast to the previous two
mode interactions, the x-invariant subspaces never exist independently of equilibria. This
can be traced back to the persistence of the y-invariant subspace defined by y = 0 for all
parameter values.

Going from region II to region III, a pitchfork bifurcation of the unstable steady state
occurs. This corresponds to a Hopf bifurcation in the center manifold, and creates an unsta-
ble periodic orbit contained in the x-invariant plane of the unstable steady state. The orbit
is unstable to perturbations along the x-direction, but stable within the flow-invariant plane
that contains it. We also expect a heteroclinic connection from the periodic orbit to the
stable steady state. Crossing from region III to region IV also results in a pitchfork bifurca-
tion, corresponding to a Hopf bifurcation in the center manifold space, but this time of the
stable steady state. The resulting periodic orbit is stable and is contained in the x-invariant
subspace of the steady state from which it emerges. In general, the two periodic orbits do
not have the same amplitude y. A heteroclinic orbit connects them, which corresponds to a
trajectory that approaches the frequency of the unstable periodic orbit as t→ −∞, and the
frequency of the stable periodic orbit as t→∞.

Going from region IV back into region I, the two x-invariant subspaces undergo a kind of
saddle-node bifurcation in which both the pair of steady states and the pair of periodic orbits
annihilate. At this transition, the two periodic orbits therefore have the same amplitude.
Finally we return to the original configuration with no equilibria and a flow-invariant line
y = 0.

Remark 5.21. The steady-state/Hopf mode interaction (5.19) differs from the Hopf/steady-
state mode interaction (5.14). Instead of the simultaneous Hopf bifurcations observed in the
Hopf/steady-state case, simultaneous saddle-node and saddle-node of periodic orbits occur.
1

1The following was commented out: Need to say something about this unfolding: (1) compare to general
vector field SS-H mode interaction, and (2) compare to H-SS in previous section.
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Case 2: εp = −1, εt = −1, εs = 1. Reversing the sign of εs is equivalent to reflecting
the phase space across the x-axis and changing stability along the x-direction. The two
Hopf transition lines H+ and H− exchange location, but the number of equilibria within each
region remains unchanged.

Case 3: εp = −1, εt = 1, εs = −1. Reversing the sign of εt maps µ → −µ in the
bifurcation diagram; that is, reflects the 2-parameter bifurcation diagram of Figure 5 in the
λ-axis. In addition, the x-axis is reflected and stability along the y direction for the equilibria
is changed.

Case 4: εp = −1, εt = 1, εs = 1. Reversing the signs of εt and εs maps µ→ −µ as in the
previous case. Stability along the y direction is also changed, but the orientation of the x
axis remains unchanged.

5.4 Hopf/Hopf Mode Interaction

In the Hopf/Hopf mode interaction, the Jacobian associated with each of the two critical
components of the original network has a complex conjugate pair of pure imaginary eigen-
values. We assume that one critical component is downstream from the other, so that the
center manifold vector field has the form:

Ẋ = f(X)

Ẏ = g(X, Y )
(5.20)

where X, Y ∈ R2. Assume that the origin of (5.20) is a steady state, so that f(0) = 0
and g(0, 0) = 0, and that the Jacobian of (5.15) has two distinct pairs of purely imaginary
eigenvalues; namely,

tr DXf(0) = 0 det DXf(0) > 0 tr DY g(0, 0) = 0 det DY g(0, 0) > 0,

with det DY g(0, 0) 6= det DXf(0). Let the eigenvalues associated with the upstream and
downstream critical component be ±iω and ±iν respectively. We restrict the following
discussion to the nonresonant case in which ω and ν are not rationally related, though the
results turn out to also be valid for sufficiently weak resonance. The reason for this restriction
is that in the nonresonant case the Birkhoff normal form of the Hopf/Hopf mode interaction
commutes with the 2-torus T2 acting on R4 by

~R(θx, θy)(X, Y ) = (R(θx)X,R(θy)Y ) (5.21)

where R(θ) acts on R2 by counterclockwise rotation through θ.
The goal of this section is more limited in scope than in the previous sections. We begin

by assuming that(5.20) is in Birkhoff normal form, and use phase-amplitude coordinates to
reduce finding steady-states and periodic orbits in (5.20) to finding zeros of a map with two
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one-dimensional nodes that describes the amplitude dynamics of the two-dimensional nodes.
We then identify a normal form for the reduced map (5.22) below using equivalences that
preserve the feedforward structure of the center manifold network.

Theorem 5.22. Assume that (5.20) has an equilibrium at the origin that undergoes a non-
resonant Hopf/Hopf mode interaction. The defining conditions are

tr DXf(0) = 0 det DXf(0) = ω2 tr DY g(0, 0) = 0 det DY g(0, 0) = ν2,

with ω and ν nonzero and irrationally related. Further assume that (5.20) is in Birkhoff
normal form, so F = (f, g) commutes with T2 under the action (5.21). Then there exists a
smooth map on R× R of the form

F (x, y) = (r(u)x, s(u, v)y) (5.22)

where u = x2, v = y2, r(0) = 0 and s(0, 0) = 0, such that locally solutions to F (x, y) = 0
with y ≥ 0 and x ≥ 0 are in one-to-one correspondence with solutions to (5.20) of the four
types in Table 4.

Upstream Node Downstream Node Equilibrium Type
x = 0 y = 0 steady state
x 6= 0, r = 0 y = 0 periodic orbit with period near 2π/ω
x = 0 y 6= 0, s = 0 periodic orbit with period near 2π/ν
x 6= 0, r = 0 y 6= 0, s = 0 invariant two-torus

Table 4: Four possible types of equilibria in feedforward Hopf/Hopf mode interaction
classified by amplitude of the upstream and downstream nodes.

On the reduced system (5.22), the transformations defining equivalence must respect
Z2 ⊕ Z2-symmetry, in addition to the network structure of the center manifold:

Definition 5.23. Maps F (x, y) = (r(u)x, s(u, v)y) and F̂ (x, y) = (r̂(u)x, ŝ(u, v)y) are
strongly (Z2 ⊕ Z2)-equivalent if there exist a(u), φ(u), b(u, v), c(u, v), ψ(u, v) such that

F̂ (x, y) =

[
a(u) 0

b(u, v)xy c(u, v)

] [
r(φ2(u)u)φ(u)x

s(φ2(u)u, ψ2(u, v)v)ψ(u, v)y

]
(5.23)

where u = x2, v = y2 and a(0), c(0, 0), φ(0), ψ(0, 0) > 0.

The normal form is stated in terms of the reduced system (5.22), where the variables x
and y represent the amplitudes of periodic motions in the X and Y coordinates of (5.20) on
the center manifold, assuming Birkhoff normal form.
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Theorem 5.24. Assume (5.22) satisfies the defining conditions

r(0) = s(0, 0) = 0,

and the nondegeneracy conditions

ru(0) 6= 0, su(0, 0) 6= 0, sv(0, 0) 6= 0.

Then F (x, y) = (r(u)x, s(u, v)y) where u = x2 and v = y2 is strongly Z2 ⊕ Z2-equivalent to
the normal form F̂ (x, y) = (r̂(u)x, ŝ(u, v)y) given by

r̂(u)x = εpux
ŝ(u, v)y = (εqu+ εtv) y

(5.24)

where
εp = sign(ru(0)), εq = sign(su(0, 0)), εt = sign(sv(0, 0)).

To classify all possible perturbations of the normal form (5.24) up to equivalence, we
compute a universal unfolding.

Theorem 5.25. The normal form (5.24) has codimension two. A universal unfolding is

r(u)x = (λ+ εpu)x
s(u, v)y = (µ+ εqu+ εtv) y

(5.25)

It is now straightforward to compute the steady-state solutions of (5.25) as a function of
the parameters µ and λ. Solutions with one of x or y equal to zero correspond to periodic
solutions of (5.20), and those where both x and y are non-zero correspond to invariant tori.
Changing εp, εq, εt to −εp,−εq,−εt rotates the transition variety in the µλ-plane by 180◦

and changes the stability of all solutions in both the x and y directions. Hence we assume
εp = −1, and consider the resulting four cases.

Case 1: εp = εq = εt = −1 The Jacobian at an equilibrium (x, y) is

J =

[
λ− 3x2 0
−2xy µ− 3x2 − 3y2

]
There is an equilibrium x = y = 0 for all values of µ and λ, with eigenvalues λ and µ. The
lines µ = 0 and λ = 0 correspond to Hopf bifurcations in the full system, creating periodic
solutions with y =

√
µ and x =

√
λ respectively. When λ > 0 there is an invariant cylinder

x =
√
λ. There are also two torus bifurcations. One occurs on the half-line λ = 0, µ ≥ 0,

and the other on the half-line λ = µ, µ ≥ 0. The steady states and their stabilities are listed
in Table 5 and shown in Figure 6.
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Figure 6: Hopf/Hopf mode interaction: Cases 1 and 2. Left: bifurcation sets (bold lines)
in the µλ-plane, with phase portraits in the xy plane for each region of parameter space.
Right: bifurcation diagram as a small circle is traversed around the origin in the µλ-plane,
starting in the third quadrant. Dots indicate bifurcations and small plus and minus signs
show the stability of each branch in the x and y directions. Lines of medium thickness
(solid or dashed) indicate periodic solutions in the full four-dimensional system. Very thick
lines linking these branches represent the invariant torus. In case 1, solid lines H−y , H+

y ,
H−x , and Td represent pitchfork, bifurcations for (5.25) and H+

x + T represents a double
pitchfork bifurcation for (5.25). They correspond to Hopf, Hopf, Hopf, torus and Hopf plus
torus bifurcations respectively for (5.20). In case 2, labels are the same except the torus
bifurcation T occurs with H−x rather than H+

x .36



Region Equilibria (x, y) Eigenvalues
I λ < 0 (0, 0) −−

µ < 0
II λ < 0 (0, 0) −+

0 < µ
(
0,
√
µ
)

−−
III 0 < λ (0, 0) ++

λ < µ
(
0,
√
µ
)

+−(√
λ, 0
)

−+(√
λ,
√
µ− λ

)
−−

IV 0 < µ (0, 0) ++
µ < λ

(
0,
√
µ
)

+−(√
λ, 0
)

−−
V µ < 0 (0, 0) +−

0 < λ
(√

λ, 0
)

−−

Table 5: Hopf/Hopf mode interaction: Case 1. List of equilibria (column 3) and their
stabilities (column 4) in each of the regions (column 1) in Figure 6 (left).

Case 2: εp = εq = −1, εt = 1 Changing the sign of εt (from case 1) changes the criticality

of the bifurcations which create the equilibria at (x, y) =
(

0,
√
−µ
εt

)
and

(√
λ,
√
−(εqλ+µ)

εt

)
.

Bifurcation curves however remain unchanged. See Figure 6.

Case 3: εp = −1, εt = εq = 1 Changing the sign of εq and εt (from case 1) is equivalent
to changing the sign of µ together with a change of stability in the y-direction.

Case 4: εp = εt = −1, εq = 1 Changing the sign of εq and εt (from case 2) is equivalent
to changing the sign of µ together with a change of stability in the y-direction.

6 Proofs of Codimension One Theorems

Section 6.2 below provides proofs of the main theorems on codimension-1 steady-state bi-
furcation, and Section 6.3 provides proofs of the main theorems on codimension-1 Hopf
bifurcation. Neither proof is trivial. First, we show in Section 6.1 that generically, within
the class of admissible maps, the Jacobian has distinct eigenvalues.

It is useful to introduce the following notion. A shape space S is a vector space of all
n×n matrices A having a certain set of nondiagonal matrix entries equal to zero, Golubitsky
and Stewart (2017). By (1.1) the linear admissible maps for a fully inhomogeneous network
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form a shape space; a zero entry in the (i, j)th slot indicates that node j is not directly
connected to node i. The same equation obviously implies that at any point, the Jacobian of
an admissible map for a fully inhomogeneous network G lies in the shape space corresponding
to G.

6.1 Simple Eigenvalues are Generic

We begin with a technical lemma. Let ‖ · ‖ denote any norm on Rn (all norms on Rn are
equivalent).

Theorem 6.1. Let A be an n × n matrix in a shape space S that includes all diagonal
matrices, with characteristic polynomial p(t) = det(A− tI). Let

p(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0.

Then there exists ε > 0 such that for any (bn−1, . . . , b0) ∈ Rn satisfying

‖(bn−1 − an−1, . . . , b0 − a0)‖ < ε

there exist εj such that the perturbed matrix

B = A+ diag(ε1, . . . , εn) ∈ S

has characteristic polynomial

q(t) = tn + bn−1t
n−1 + · · ·+ b1t+ b0.

Proof. We start from the standard version of Jacobi’s formula, Wikipedia (2018):

det(K + εX) = detK + tr(adj(K)X)ε+O(ε2)

for n × n matrices K,X. Here adj(K) is the adjugate (or adjoint) matrix — the transpose
of the matrix of cofactors Cij = (−1)i+j detMij where Mij is the minor obtained by deleting
row i and column j from K. This formula follows directly from the standard formula for the
determinant as a sum over permutations σ of products of the form sign(σ)ai,σ(i).

The first step is to perturb the diagonal so that all diagonal entries aii are distinct.
Having pre-prepared A in this manner, we proceed as follows:

Let eij be the elementary matrix with 1 in the (i, j) position and 0 everywhere else. Put
K = A − tI and X = e11. The only contribution to the trace of adj(K)X comes from the
(1, 1) position, so we want the cofactor C11 for A− tI. Since (−1)1+1 = 1, this is

det[A[1] − tI]

where A[1] is A with row and column 1 deleted. This is the characteristic polynomial of A[1].
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Let p[i] be the characteristic polynomial of A[i], which is A with row and column i deleted.
The same calculation (think of the Taylor expansion or just take X = diag(ε1, . . . , εn)) yields

q(t) = det(A− tI + diag(ε1, . . . , εn)) = p(t) +
∑
i

εip
[i](t) +O(2)

where O(2) is of order 2 in the εi.
By the Implicit Function Theorem it is enough to prove the theorem neglecting the O(2)

terms. So we have to prove that generically (that is, after a small enough perturbation) the
polynomials p[1], . . . , p[n] are linearly independent. (The εi are independent, and there are
n of them, the same as the number of coefficients in each p[i], including the leading term
1 · tm−1.

Expanding and collecting coefficients of powers of t, each coefficient of each p[i] is a poly-
nomial in the entries aij of A. The condition for linear independence is that the determinant
∆ of these coefficients (including the leading term with coefficient 1) should not vanish.

We claim that ∆ defines a codimension-1 subvariety. This follows provided ∆ does not
vanish identically on the shape space S of G. Suppose for a contradiction that it does vanish.
Then it vanishes on the diagonal matrices, since these are contained in S, so some nontrivial
linear combination vanishes: ∑

i

µip
[i](t) ≡ 0. (6.1)

However, when A is diagonal,

p[i](t) =
∏
j 6=i

(t− ajj).

We initially perturbed the diagonal of A (say by ε/2) so that all diagonal elements aii are
distinct. Now for each i we can substitute t = aii in (6.1). All terms vanish except possibly

µip
[i](aii) =

∏
j 6=i

(aii − ajj),

so µi = 0 for all i, contradiction.
Therefore the p[i] are linearly independent off the codimension-1 variety ∆ = 0, so small

enough εj give characteristic polynomials filling an entire neighbourhood of p(t).

Corollary 6.2. All sets of eigenvalues sufficiently close to those of A can be obtained by a
diagonal perturbation A+ diag(ε1, . . . , εn).

Proof. Take q(t) = (t−λ1) · · · (t−λn) to be the perturbed polynomial in Theorem 6.1, where
the λj are the required perturbed eigenvalues.

6.2 Proofs for Codimension One Steady-State Bifurcation

Proof of Theorem 3.1 Fix a fully inhomogeneous network and consider an admissible
system

ẏ = F (y, λ)
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for the network, where y ∈ Rn, λ ∈ R. Assume F (0, 0) = 0 so that y = 0 is an equilibrium
when λ = 0. Because the network is fully inhomogeneous, Corollary 6.2 implies that at a
codimension-1 steady-state bifurcation the Jacobian J = (DyF )(0,0) generically has a simple
zero eigenvalue. We call the corresponding eigenvector v 6= 0, so Jv = 0.

Let v∗ 6= 0 be a null vector for the adjoint J∗. The range of J is the orthogonal com-
plement of v∗ since 〈v∗, Jw〉 = 〈J∗v∗, w〉 = 0 for any w ∈ Rn, and the range of J is
(n− 1)-dimensional. We claim that

〈v∗, v〉 6= 0. (6.2)

To prove the claim assume, for a contradiction, that 〈v∗, v〉 = 0. This implies v ∈ range(J),
so there exists u 6= 0 such that Ju = v and J2u = Jv = 0. Since u and v are linearly
independent, zero is not a simple eigenvalue of J , a contradiction.

Since rank(J) = n− 1, Liapunov-Schmidt reduction shows that the zeros of F (y, λ) near
the bifurcation are in one-to-one correspondence with zeros of a single equation g(x, λ),
where x ∈ R. The Liapunov-Schmidt procedure implies that gx(0, 0) = 0. Moreover,
gxx(0, 0)gλ(0, 0) 6= 0 if and only if the resulting bifurcation is a saddle-node bifurcation.

The formulas for computing gxx(0, 0) and gλ(0, 0) are standard (Golubitsky and Schaeffer,
1985, p. 33). In particular,

gxx(0, 0) = 〈v∗,D2F (v, v)〉
gλ(0, 0) = 〈v∗, Fλ〉

where when v = (v1, . . . , vn) and w = (w1, . . . , wn) the kth component of D2F is

[D2F (v, w)]k =
n∑

i,j=1

∂2fk
∂xi∂xj

(0, 0)viwj.

In order to show that saddle-node bifurcations are generic, we must consider the case when
gxx(0, 0) = 0 and show that a generic homogeneous quadratic perturbation of F leads to a
new vector field G = F + εΦ where

gεxx(0, 0) = 〈v∗,D2G(v, v)〉 = ε〈v∗,D2Φ(v, v)〉

is nonzero. The Jacobian J and therefore v and v∗ remain unchanged by this pertur-
bation because we assume Φ to be homogeneous quadratic. Indeed, because the map
Φ 7→ 〈v∗, d2Φ(v, v)〉 is linear, it is enough to show that

〈v∗,D2Φ(v, v)〉 6= 0 (6.3)

for some admissible Φ, in order to satisfy (6.3) for almost all admissible Φ.
The quadratic Φ = (φ1, . . . , φn) is admissible if

∂φj
∂xi

= 0
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whenever node j is not connected to node i and j 6= i. In particular, a quadratic Φ of the
form ∂φj/∂xi = 0 for i 6= j is admissible for any network.

By (6.2) there is a component k such that both v∗k 6= 0 and vk 6= 0. We can therefore
choose φk = x2

k/2 and φj = 0 for j 6= k so that for this Φ we have

gεxx(0, 0) = εv∗kv
2
k 6= 0

The bifurcation of the perturbed vector field is therefore a saddle-node.

Lemma 6.3. Fix a fully inhomogeneous network with shape space S. Let Ŝ be the set of
matrices J ∈ S that have a simple zero eigenvalue. Define Ŝi ⊆ Ŝ to be the set of matrices
J ∈ Ŝ with null vector v = (v1, . . . , vn) such that vi 6= 0. Let

T̂ij = {J ∈ Ŝi : vj 6= 0}.

Then for any node j downstream of node i, T̂ij is open and dense in Ŝi.

Proof. The set of J ∈ Ŝi that lead to a nonzero vj is open by the continuous movement of

the null vector v. So it is enough to show that this subset is dense in Ŝi for all j downstream
of i.

Fix J ∈ Ŝi. If vj 6= 0, the proof is complete, so we can suppose vj = 0. Because node j is
downstream of node i, there exists a path of length m such that k0 → k1 → · · · → km where
k0 = i, km = j, and arrows indicate connections between the corresponding nodes.

Given that component vk0 = vi is nonzero, the proof proceeds by constructing a series of
m perturbations that sequentially makes each k` component of the null vector v nonzero, to
achieve the desired result vj 6= 0.

Suppose we have found perturbations 1 through ` so that vk0 , ...., vk` are all nonzero.
We show how to make an arbitrarily small perturbation of J , denoted by J̃ , that makes
vk`+1

6= 0. We choose the perturbation small enough so that the perturbed Jacobian still lies

in Ŝi, and the nonzero components of v remain nonzero. For convenience, relabel nodes so
that k`+1 is 1 and k` is 2. Now v1 = 0 and node 1 receives input from node 2 with v2 6= 0.
Each perturbation is constructed in two stages, as we now describe.

First perturbation: Given the above labeling, let

J =

[
A B
C D

]
where A is a scalar and D is an (n − 1) × (n − 1) matrix. By assumption v = (0 z)T for
z ∈ Rn−1. The condition that v is a null vector becomes[

A B
C D

] [
0
z

]
= J

[
0
z

]
=

[
0
0

]
. (6.4)

Now (6.4) implies Bz = 0 and Dz = 0, so D is singular with null vector z.
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We claim there exists a perturbation of J so that the zero eigenvalue of D is simple. By
Theorem 6.1 we can choose an admissible n× n perturbation matrix

Ψ∆ =

[
0 0
0 ∆

]
,

where ∆ is diagonal, so that the perturbed matrix J + Ψ∆ has a simple eigenvalue λ close
to zero. Then the perturbed matrix

J̃ = J + Ψ∆ − λI =

[
Ã B

C D̃

]
,

where Ã = A−λ and D̃ = D+∆−λI, has a simple zero eigenvalue. Moreover, we can choose
the perturbation Ψ∆ small enough so that the nonzero components of v remain nonzero and
J̃ ∈ Ŝi.

If the new null vector of J̃ has v1 6= 0, we are done. So we may assume that the null vector
still has the form ṽ = (0 z̃)T , which implies that the simple zero eigenvalue is associated
with D̃. The claim is verified by dropping the tildes on Ã, D̃, J̃ , ṽ and z̃.

Second perturbation: Let

ΦE =

[
0 E
0 0

]
,

where E = (ε, 0, . . . , 0). Since node 2 connects to node 1, ΦE is a small admissible matrix.
Moreover, Ez 6= 0. Consider the small perturbation J̃ = J + ΦE − ρI of J , where ρ is the
simple eigenvalue of the matrix J + ΦE near zero. Thus J̃ has a simple zero eigenvalue with
null vector ṽ = [ỹ z̃]T and

J̃

[
ỹ
z̃

]
=

[
A− ρI B + E
C D − ρI

] [
ỹ
z̃

]
=

[
0
0

]
(6.5)

We claim that ỹ 6= 0. We argue by contradiction; suppose ỹ = 0. Then (6.5) reduces to

Bz̃ + Ez̃ = 0
Dz̃ = ρz̃

(6.6)

Since ρ is near 0 and D has a simple eigenvalue at 0 with all other eigenvalues bounded away
from 0, it follows that ρ = 0 and we can take z̃ = z. From (6.4) we know that Bz = 0; hence
(6.6) implies Ez = 0. This is a contradiction, so ỹ 6= 0.

The proof of Lemma 6.3 does not require the eigenvalues or the eigenvectors of J to
be real. Hence Lemma 6.3 also holds for matrices in S that have a pair of simple purely
imaginary eigenvalues. This adaptation, stated without proof in the next lemma, is needed
in Section 3.2.
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Lemma 6.4. Fix a fully inhomogeneous network with shape space S. Let Ŝ be the set of
matrices J ∈ S that have a pair of simple purely imaginary eigenvalues. Define Ŝi ⊆ Ŝ to
be the set of matrices J ∈ Ŝ with critical eigenvector v = (v1, . . . , vn) such that vi 6= 0. Let

T̂ij = {J ∈ Ŝi : vj 6= 0}.

Then for any node j downstream of node i, T̂ij is open and dense in Ŝi.

Lemma 6.5. Let C be the critical path component associated with the saddle-node bifurca-
tion. Let v be the associated critical eigenvector. Then the coordinates of v on nodes that
are not downstream from C are zero. Generically, the coordinates of v on all nodes that are
downstream from C (including C) are nonzero.

Proof. Because the zero eigenvalue at the saddle-node bifurcation is simple, it is associated
with a unique path component C. By Theorem 2.9, the corresponding zero eigenvector v
has zero components on nodes that are not downstream from C. Since v has at least one
nonzero component on C, Lemma 6.3 implies that v has nonzero components on C and on
all nodes downstream.

Proof of Theorem 3.3 The growth rates follow from Lemma 6.5 and Remark 3.2.

6.3 Proofs for Codimension One Hopf Bifurcation

We first consider the special case of a directed ring, and then parlay this case into a proof
of the general result.

Lemma 6.6. Nondegenerate Hopf bifurcation can occur for suitable admissible vector fields
in a directed ring with more than one node.

Proof. Consider a directed ring of nodes 1, . . . ,m with 1→ 2, . . . ,m→ 1. Admissible vector
fields for this ring have the form

ẋ1 = f1(x1, xm)
ẋ2 = f2(x2, x1)

...
ẋm = fm(xm, xm−1)

(6.7)

Assume that (6.7) has an equilibrium at the origin; that is, fj(0) = 0 for all j. We claim that
the m ×m Jacobian of (6.7) at the origin can be chosen to have a pair of simple complex
conjugate purely imaginary eigenvalues, and no other imaginary eigenvalues.

In block form let L be the m×m matrix

L =

[
0 1

Im−1 0

]
.
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The characteristic polynomial of L is p(λ) = det(λIm − L) = λm − 1 and the eigenvalues
of L are the mth roots of unity. For each m the matrix L has simple complex conjugate
eigenvalues, so there exists µ such that J = L−µIm has simple purely imaginary eigenvalues
and no other imaginary eigenvalues. The standard Hopf bifurcation theorem implies that
adding λIm to the vector field leads to a nondegenerate Hopf bifurcation; that is, to the
desired

√
λ growth rate of small amplitude periodic solutions.

Lemma 6.7. Hopf bifurcation in a path component H, at a pair of simple complex conjugate
purely imaginary eigenvalues, is possible for some admissible map if and only if the number
of nodes in that component satisfies nH > 1.

Proof. For nH = 1, Hopf bifurcation is not possible. We therefore show that for nH > 1,
there exists an admissible Jacobian J with one pair of simple purely imaginary eigenvalues
and all other eigenvalues off of the imaginary axis.

Fix a path component H with nH > 1 nodes. We construct a directed ring within that
path component as follows. Given any two distinct nodes ` and k in H, there exists a directed
loop `→ · · · → k and k → · · · → `. Consider a loop of minimal length m. If any node occurs
twice (except where the ends join) the segment in between is a smaller loop. So a minimal
loop consists of distinct nodes, forming a closed ring. In particular, there are no connections
between distinct nodes in the ring, except for the unidirectional nearest neighbor ones.

Order the nodes in the ring by 1, . . . ,m. Consider admissible vector fields such that the
coordinate function fj ≡ 0 when j > m and fj has the form in (6.7) for 1 ≤ j ≤ m. By
Lemma 6.6 these admissible vector fields can have an equilibrium at which the Jacobian J
has simple purely imaginary eigenvalues. However, 0 occurs n−m times as an eigenvalue of
J .

Theorem 6.1 implies that we can perturb the diagonal entries of J to make the 0 eigenval-
ues nonzero while fixing the purely imaginary pair of eigenvalues. The Jacobian J constructed
in this way is admissible, and it has exactly one pair of simple purely imaginary eigenvalues
and no other imaginary eigenvalues.

Proof of Theorem 3.6 Fix a fully inhomogeneous network and consider the network
admissible system

ẏ = F (y, λ)

for y ∈ Rn, λ ∈ R. Assume F (0, λ) = 0 so that y = 0 is a steady-state solution for all λ.
By Lemma 6.7, purely imaginary eigenvalues associated with each path component H are
possible as long as nH > 1. Moreover, we can assume these eigenvalues are simple and all
other eigenvalues are off the imaginary axis. Without loss of generality we can assume at
codimension-1 Hopf bifurcation that J = (DyF )(0,0) has simple eigenvalues ±i and no other
imaginary eigenvalues.

Define the eigenvectors c and d by Jc = −ic and JTd = id, where the superscript T
denotes transpose. Using the inner product

〈w, v〉 = w̄Tv, (6.8)
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where the overbar denotes complex conjugate, we can choose d such that 〈d, c〉 = 2 (Golu-
bitsky and Schaeffer, 1985, p. 346). In particular,

〈d, c〉 6= 0.

Since dim ker(J) = 2, Liapunov-Schmidt reduction shows that near bifurcation the small
amplitude periodic orbits of ẏ = F (y, λ) are in one-to-one correspondence with zeros of a
single equation g(x, λ) = r(x2, λ)x = 0, where x ∈ R. By the Liapunov-Schmidt procedure,
rz(0, 0)rλ(0, 0) 6= 0 (where z = x2) if and only if the resulting bifurcation is a nondegenerate
Hopf bifurcation. The formulas for computing rz(0, 0) and rλ(0, 0) are standard (Golubitsky
and Schaeffer, 1985, p. 352), and we assume that rλ(0, 0) 6= 0.

To show that Hopf bifurcations are nondegenerate, we consider the case rz(0, 0) = 0,
and prove that a generic homogeneous cubic perturbation of F leads to a new vector field
G = F + εΨ such that the new cubic coefficient in the reduction rεz(0, 0) 6= 0. In this case
the coefficient can be computed as

rεz(0, 0) =
1

16
Re 〈d, (D3G)(c, c, c̄)〉 =

ε

16
Re 〈d, (D3Ψ)(c, c, c̄)〉

The Jacobian J and therefore c and d remain unchanged by the perturbation because we
assume Ψ to be homogeneous cubic.

Because Re〈d, c〉 = 2, there must be some node k such that Re(d̄kck) 6= 0 and |ck| 6= 0.
Choose Ψk = 1

6
x3
k and Ψj = 0 for j 6= k. Then

rεz(0, 0) =
ε

16
Re(d̄kckckc̄k) =

ε

16
|ck|2Re(d̄kck) 6= 0

as desired. This perturbation is admissible, since for every node j the variable xj appears in
fj in (1.1).

Lemma 6.8. Let H be the critical path component associated with a nondegenerate Hopf
bifurcation, and let v be the associated critical eigenvector. Then the coordinates of v on
nodes that are not downstream from H are zero. Generically, the coordinates of v on all
nodes that are downstream from H are nonzero.

Proof. Since the purely imaginary eigenvalues are simple at the Hopf bifurcation, we can
associate it with a unique path component H. The fact that the coordinates of v that are
not downstream from H are zero follows from Theorem 2.9. By Lemma 6.4, generically all
components of v that are downstream from H are nonzero.

Proof of Theorem 3.7 This follows immediately from Lemma 6.8.
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7 Overview of Singularity Theory

The analysis of codimension-2 mode interactions in the next four sections relies on techniques
from singularity theory. We summarize the main concepts and results here. We follow the
approach to bifurcation problems in Golubitsky and Schaeffer (1985); Golubitsky, Stewart
and Schaeffer (1988), but we do so without a distinguished parameter. These sources should
be consulted for further details and proofs.

The analysis of the four codimension-2 mode interactions (steady-state/steady-state,
steady-state/Hopf, Hopf/steady-state, and Hopf/Hopf) reduce to functions F : R2 → R2

that satisfy a feedforward structure F (x, y) = (f(x), g(x, y)). In addition, F commutes with
the action of a symmetry group on R2 in the three interactions involving Hopf modes.

Singularity theory is about the local topological structure of classes of C∞ smooth maps

F : Rm → Rn

near some point. By translation, we take this point to be 0 ∈ Rm and assume F (0) = 0.
The local structure is captured by introducing the following notion. Two such maps F,G
are germ-equivalent if their restrictions to some open neighborhood U ⊆ Rm of 0 are equal;
that is, F (X) = G(X) for all X ∈ U . A germ is a germ-equivalence class. We define a germ
by specifying a representative map, and identify the germ with this map, bearing in mind
that only local information near 0 is meaningful. In particular, derivatives DkF |X=0 of F at
0 are meaningful concepts for the germ of F , and so is the Taylor series of F near 0.

With this understood, we can henceforth omit ‘germ’ and refer to maps and functions.
All of these are assumed smooth, and we mainly require the case m = n = 2.

Singularity theory uses changes of coordinates to simplify the form of F , where possible.
These changes of coordinates preserve the number of solutions (zeros of F ), and the type of
solutions (if symmetry is present). To do this, define two problems F,G : R2 → R2 to be
contact equivalent if

G(X) = S(X)F (Φ(X))

where the smooth map Φ : R2 → R2 is a diffeomorphism and the smooth map

S : R2 → GL(2)

where GL(2) is the group of invertible real 2 × 2 matrices. The equivalence is strong if
Φ(0) = 0.

Contact equivalence preserves the topology of the zero set of F . It is the most general
form of equivalence with this property, and it has technical advantages over any stronger
form of equivalence.

The methods of singularity theory usually have to be adapted to any specific context,
imposing extra conditions to ensure that the equivalences preserve any relevant structure.
As we see in the next four sections, contact equivalence must be suitably modified in each of
the four mode interactions to preserve the feedforward structure and the relevant symmetry.
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Normal form theory: The first main objective is to use an suitable equivalence to trans-
form a given map F into a simple polynomial map, a normal form. This is not always
possible, but it can be done for ‘almost all’ maps, namely, those of finite codimension, see
(7.1). To achieve this we consider ‘infinitesimal’ perturbations. Consider a one-parameter
family of strong equivalences

G(X, ε) = S(X, ε)F (Φ(X, ε))

where ε ∈ R is small. Differentiate with respect to ε (shown by a dot) and evaluate at ε = 0.
We get

Ġ(x, 0) = Ṡ(X, 0)F (X) + (DF )XΦ̇(X, 0)

We therefore define the restricted tangent space of F to consist of all possible Ġ; that is,

RT (F ) = {SF + (DF )Φ}

where S(X) is an arbitrary 2 × 2 matrix for each X and Φ : R2 → R2 is an arbitrary map
that satisfies Φ(0) = 0. We now have:

Theorem 7.1 (Tangent Space Constant Theorem). Let F be a vector field. Suppose there
exists p : R2 → R2 such that

RT (F + εp) = RT (F )

for all ε ∈ [0, 1]. Then F + εp is strongly equivalent to F for all ε ∈ [0, 1].

See Golubitsky and Schaeffer (1985) Chapter II Theorem 2.2 when n = 1, and Golubit-
sky, Stewart and Schaeffer (1988) Chapter XIV Theorem 3.1 for the general case. We can
apply Theorem 7.1 to construct normal forms, and to solve the recognition problem: using
conditions on Taylor coefficients to characterize when F has the normal form concerned.

The proof of Theorem 7.1 can be adapted to prove analogous theorems for each of the
mode interactions. Alternatively, the appropriate tangent space constant theorem for each
mode interaction follows from general results of Damon (1988). The principal difficulty in
applying Theorem 7.1 is the computation of RT (F ). This computation is simplified by using
its algebraic structure (a module over a system of rings) and Nakayama’s Lemma (Golubitsky
and Guillemin (1973); Gibson (1979); Martinet (1982)), which we briefly recall:

Lemma 7.2 (Nakayama’s Lemma). Let R be a commutative ring with unit, with an ideal I
such that whenever r ∈ I the element 1 + r is invertible in R. Let M be a finitely generated
R-module, with a submodule N . Then the condition

N + IM = M

implies that N = M .

The next four sections carry out these calculations under the assumption that the corre-
sponding tangent space constant theorem is valid.
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Unfolding theory: The other main topic we need is unfolding theory, which determines all
possible perturbations of F (of finite codimension) in a sense we now explain. A k-parameter
unfolding of F is a smooth map

F̃ : R2 × Rk → R2

such that
F̃ (X, 0) = F (0)

Let H̃(X, β) be an l-parameter unfolding of F . Then H̃ factors through F̃ if

H̃(X, β) = S(X, β)F̃ (Φ(X, β), A(β))

where A : Rl → Rk, A(0) = 0, and S(X, 0) = I,Φ(X, 0) = X. An unfolding is versal if every
unfolding factors through it. It is universal if it is versal and the number of parameters is
minimal among all versal unfoldings. This minimal number is the codimension

codim(F ). (7.1)

The tangent space of F is
T (F ) = {SF + (DF )Φ},

where the diffeomorphism Φ is an equivalence, but not necessarily a strong equivalence. That
is, Φ(0) need not equal 0.

The codimension of F is equal to the codimension of the tangent space T (F ), which
contains RT (F ) but may be larger. We refer to Golubitsky, Stewart and Schaeffer (1988)
Chapter XV Section 2 for a discussion and definition.

Finally, we state a criterion for a universal unfolding to exist:

Theorem 7.3. A family F̃ is a universal unfolding of F if and only if

~EX = T (F )⊕ R{F̃α1(X, 0), . . . , F̃αk
(X, 0)}.

Corollary 7.4. The codimension of F is equal to the codimension of T (F ) in ~EX .

The proofs of the theorems for the four mode interaction cases that are analogous to
Theorem 7.3 follow from Damon (1988) and these corresponding theorems are used in the
next four sections. Generally speaking, a singularity theory analysis proceeds by computing
RT (F ), determining a normal form F̂ of F , computing T (F ) based on the computation of
RT (F̂ ), and finally determining a universal unfolding of F̂ .

8 Steady-State/Steady-State Mode Interaction: Proofs

This section outlines proofs based on singularity theory, as reviewed in Section 7, of the main
results in Section 5.1 on steady-state/steady-state mode interaction. We first compute the
restricted tangent space for the center manifold dynamics (5.1) associated with this mode
interaction, and use this result to prove Theorem 5.3: that (5.1) can be transformed to the
normal form (5.5). We then use a complement of the unrestricted tangent space of (5.5) to
identify the universal unfolding (5.7), proving Theorem 5.6.
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8.1 Restricted Tangent Space for SS/SS Mode Interaction

The restricted tangent space of a map F , denoted RT (F ), is obtained from d
dτ

Γτ (F )|τ=0,
where Γτ is a one-parameter family of strong equivalences (as in Definition 5.2) with Γ0(x, y) =
(x, y).

For technical reasons we use a version of singularity theory adapted to maps of the form
(f(x), g(x, y)). These maps are analyzed using a special case of the general concept of a
system of rings and an associated system of modules, as defined in Damon (1984) p. 242–
243. In this case the key step is to work with a pair of rings (Ex, Ex,y) instead of a single ring.
In place of a module over a ring, we use a direct sum M1 ⊕M2 where M1 is a module over
Ex and M2 is a module over Ex,y. Tangent spaces and restricted tangent spaces are defined
by analogy with the case of a single ring and module.

In Lemma 8.1 we show that RT (F ) is a system of modules over the system of rings
(Ex, Ex,y). The tangent space constant theorem that is analogous to Theorem 7.1 states that
if

RT (F + τp) = RT (F )

for all τ > 0, then F + τp is strongly equivalent to F . In the context of systems of rings,
this theorem follows from Damon (1984, 1988). See also Dangelmayr and Stewart (1985).

Lemma 8.1. Let F = (f(x), g(x, y)) be a map in (Ex, Ex,y). A map G ∈ (Ex, Ex,y) is in
RT (F ) if and only if there exist maps Pi(x) ∈ Ex and Qj(x, y) ∈ Ex,y such that

G(x, y) = P1

[
f
0

]
+ P2

[
xfx
xgx

]
+Q1

[
0
f

]
+Q2

[
0
g

]
+Q3

[
0
xgy

]
+Q4

[
0
ygy

]
Proof. The general form of strong equivalence is given in (5.2). Define a one-parameter
family of strong equivalences by

Γτ (F )(x, y) =

[
a(x, τ) 0
b(x, y, τ) c(x, y, τ)

] [
f (φ(x, τ))

g (φ(x, τ), ψ(x, y, τ))

]
, (8.1)

where Γ0 is the identity and Γτ (0, 0) = (0, 0). Then

a(x, 0) = 1 b(x, y, 0) = 0 c(x, y, 0) = 1 φ(x, 0) = x ψ(x, y, 0) = y
φ(0, τ) = 0 ψ(0, 0, τ) = 0

(8.2)

We compute the restricted tangent space by differentiating (8.1) with respect to τ (indicated
by a dot) and evaluating at τ = 0, obtaining

Γ̇0(x, y) = ȧ(x, 0)

[
f (x)

0

]
+ ḃ(x, y, 0)

[
0

f (x)

]
+ ċ(x, y, 0)

[
0

g (x, y)

]
+ φ̇(x, 0)

[
fx (x)
gx (x, y)

]
+ ψ̇(x, y, 0)

[
0

gy (x, y)

] (8.3)
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We use (8.2) to conclude that ȧ(x, 0), ḃ(x, y, 0) and ċ(x, y, 0) are arbitrary, whereas φ̇(x, 0) =
xη(x) and ψ̇(x, y, 0) = xσ(x, y) + yν(x, y) for arbitrary functions η, σ, ν. The restricted
tangent space is therefore〈[

f
0

]
,

[
xfx
xgx

]〉
{x}
⊕
〈[

0
f

]
,

[
0
g

]
,

[
0
xgy

]
,

[
0
ygy

]〉
{x,y}

Here the notations 〈· · · 〉{x} and 〈· · · 〉{x,y} indicate generators of a module over the rings Ex
and Ex,y, respectively.

8.2 Normal Form for SS/SS Mode Interaction

We prove Theorem 5.3 by showing that F can be transformed to the normal form (5.5). We
do this in two steps. First, in Lemma 8.2 we explicitly transform the linear and quadratic
terms of F into the normal form (5.5); then we use the tangent space constant theorem to
transform away terms of order three and higher.

The defining conditions for a steady-state steady-state mode interaction imply that to
quadratic order F takes the form F2 = (f2, g2), where

f2(x) = px2

g2(x, y) = qx+ rx2 + sxy + ty2.
(8.4)

Lemma 8.2. Any map of the form (8.4) with p, q, t 6= 0 is strongly equivalent to the normal
form F̂ = (f̂ , ĝ) where

f̂(x) = εpx
2

ĝ(x, y) = εqx+ εty
2,

(8.5)

and ε∗ = sign(∗).

Proof. As we are interested only in terms up to second order in x and y, we take the truncated
forms of the transformation functions used to define equivalence in (5.2) to be

φ(x) = αx ψ(x, y) = βx+ γy a(x) = δ b(x, y) = σ c(x, y) = ρ.

Now [
f̂(x)
ĝ(x, y)

]
=

[
δpα2x2

σpα2x2 + ρ (qαx+ rα2x2 + sαx(βx+ γy) + t(βx+ γy)2)

]
(8.6)

Combining terms in (8.6), the transformed coefficients are

p̂ = δα2p
q̂ = ραq
r̂ = σα2p+ ρα2r + ραβs+ ρβ2t
ŝ = ραγs+ 2ρβγt
t̂ = ργ2t
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We assumed that p 6= 0, t 6= 0, q 6= 0 in f and g. Thus we can simplify the system so that
p̂ = εp, q̂ = εq, t̂ = εt where ε(∗) = sign(∗). Additionally, we can impose the conditions r̂ = 0
and ŝ = 0, leading to the transformation

ρ =
εt
γ2t

α =
εq
ρq

=
εqγ

2t

εtq

δ =
εp
α2p

=
ε2
t εpq

2

ε2
pγ

4t2p

β = −αs
2t

= −εqγ
2s

2εtq

σ = − ρ

α2p

(
α2r + αβs+ β2t

)
= − εt

γ2tp

(
r − s2

4t

)
.

Here γ > 0 is a free parameter. We require δ, ρ, α, γ > 0 so that the transformation preserves
the stabilities of steady states. Were we free to choose the signs of δ, α, ρ, we could have
transformed p̂, q̂, t̂ to +1. Applying the transformation specified above to (8.4) produces
(8.5).

Proof of Theorem 5.3: By Lemma 8.2 a general map F (x, y) = (f(x), g(x, y)) satisfying
the defining and nondegeneracy conditions is strongly equivalent to (5.5) modulo terms of
order three or higher. That is, F is equivalent to F̃ = F̂ + · · · , where · · · indicates terms
of order three or higher. Using the tangent space constant theorem we may also remove
terms of order three and higher by a suitable transformation. Specifically, we show that
RT (F̃ ) = RT (F̂ ).

First, we claim that the restricted tangent space of the normal form (f̂ , ĝ) is

RT (F̂ ) =

[
M2

x

0

]
⊕
[

0
M2

xy + R{x}

]
, (8.7)

which is a system of modules over the system of rings (Ex, Exy). By Lemma 8.1, the restricted

tangent space for the normal form F̂ in (5.5) is

RT (F̂ ) =

〈[
εpx

2

0

]
,

[
2εpx

2

εqx

]〉
{x}
⊕
〈[

0
εpx

2

]
,

[
0

εqx+ εty
2

]
,

[
0

2εtxy

]
,

[
0

2εty
2

]〉
{x,y}

.

By linear combinations of the vectors, we can reduce this to

RT (F̂ ) =

〈[
x2

0

]〉
{x}
⊕
〈[

0
x

]
,

[
0
x2

]
,

[
0
y2

]
,

[
0
xy

]〉
{x,y}

.

The restricted tangent space is therefore as in (8.7).
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Next, we consider higher order maps n ∈ M3
x and m ∈ M3

xy; that is, F̃ = F̂ + (n,m).

We use Nakayama’s Lemma (Lemma 7.2) to prove that RT (F̃ ) = RT (F̂ ). It follows that
F̃ = (f̂ +n, ĝ+m) is strongly equivalent to the normal form F̂ and hence that F is strongly
equivalent to F̂ , as desired. Specifically, we set

f̃(x) = εpx
2 + n(x)

g̃(x, y) = εqx+ εty
2 +m(x, y)

(8.8)

and compute

RT (F̃ ) =

〈[
εpx

2 + n
0

]
,

[
2εpx

2 + xnx
εqx+ xmx

]〉
{x}
⊕〈[

0
εpx

2 + n

]
,

[
0

εqx+ εty
2 +m

]
,

[
0

2εtxy + xmy

]
,

[
0

2εty
2 + ymy

]〉
{x,y}

.
(8.9)

By (8.7) each generator of RT (F̃ ) in (8.9) is in RT (F̂ ). Hence RT (F̃ ) ⊆ RT (F̂ ). Next we
apply Nakayama’s Lemma to prove RT (F̂ ) ⊆ RT (F̃ ), for which we must show thatRT (F̂ ) ⊆
RT (F̃ ) + (Mx,Mxy)RT (F̂ ). The generators of RT (F̂ ) over the system of rings are[

x2

0

]
,

[
0
x

]
,

[
0
y2

]
=

[
M2

x

M2
xy + R{x}

]
and

(Mx,Mxy)RT (F̂ ) =

[
M3

x

M3
xy +Mxy{x}

]
.

Thus we must show that〈[
x2

0

]
,

[
0
x

]
,

[
0
y2

]〉
⊆ RT (F̃ ) +

〈[
x3

0

]
,

[
0
x2

]
,

[
0
xy

]
,

[
0
y3

]〉
,

which follows from [
x2

0

]
=

[
x2 + n

0

]
−
[
n
0

]
∈ RT (F̃ ) +

[
M3

x

0

]
[

0
y2

]
=

[
0

y2 + ymy

]
−
[

0
ymy

]
∈ RT (F̃ ) +

[
0

M3
xy ⊕Mxy 〈x〉

]
[

0
x

]
=

[
0

x+ y2 +m

]
−
[

0
y2

]
−
[

0
m

]
∈ RT (F̃ ) +

[
0

M3
xy ⊕Mxy 〈x〉

]
.

Therefore the restricted tangent space of the perturbed system is identical to the restricted
tangent space of the original system, so the two are equivalent.

The next step is to compute the codimension of the restricted tangent space to ensure
that it is finite. A complement of the restricted tangent space of (5.5) in (Ex, Ex,y) is

R
{[

1
0

]
,

[
x
0

]
,

[
0
1

]
,

[
0
y

]}
so the codimension of RT (F̂ ) is 4.
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8.3 Tangent Spaces for SS/SS Mode Interaction

In order to find a universal unfolding we must compute a complement of the unrestricted
tangent space, which is generated by relaxing the constraint that the origin remains fixed
under coordinate transformations.

Lemma 8.3. The tangent space of a map F = (f, g) where f ∈ Ex and g ∈ Ex,y is

T (F ) = RT (F )⊕ R
{[

fx(x)
gx(x, y)

]
,

[
0

gy(x, y)

]}
. (8.10)

Proof. Computing the tangent space is similar to computing the restricted tangent space as
in Lemma 8.1, except that now we do not require the origin to be fixed by the coordinate
transformation. That is, φ̇(x, 0) and ψ̇(x, y, 0) in (8.3) can be arbitrary functions. Hence the
tangent space is 〈[

f
0

]
,

[
fx
gx

]〉
{x}
⊕
〈[

0
f

]
,

[
0
g

]
,

[
0
gy

]〉
{x,y}

.

Equation (8.10) follows from〈[
fx
gx

]〉
{x}

=

〈[
xfx
xgx

]〉
{x}
⊕ R

{[
fx
gx

]}
〈[

0
gy

]〉
{x,y}

=

〈[
0
xgy

]
,

[
0
ygy

]〉
{x,y}
⊕ R

{[
0
gy

]}
.

We are now in a position to compute a universal unfolding of the normal form (5.5) using
the analog of Theorem 7.3.

Proof of the Universal Unfolding Theorem 5.6: Compute{[
fx(x)
gx(x, y)

]
,

[
0

gy(x, y)

]}
=

{[
2εpx
εq

]
,

[
0

2εty

]}
.

The tangent space is therefore

T (F ) =

[
M2

x

0

]
⊕
[

0
Mxy

]
⊕ R

{[
2εpx
εq

]}
,

and a complement to T (F ) is a two dimensional complement to (2εpx, εq) in the span

R
{[

1
0

]
,

[
0
1

]
,

[
x
0

]}
.

The complement

R
{[

1
0

]
,

[
0
1

]}
leads to the universal unfolding (5.7).
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9 Hopf/Steady-State Mode Interaction: Proofs

This section outlines proofs of the main results in Section 5.2 on Hopf/steady-state mode
interaction. To apply singularity theory, we first use Liapunov-Schmidt reduction on the
three-dimensional center manifold to construct a two-dimensional network whose zeros are
in one-to-one correspondence with the equilibria of the center manifold network. We com-
pute the restricted tangent space for the Liapunov-Schmidt reduced network of the vector
field (5.8), and use this result to prove Theorem 5.11, which states that (5.13) is a normal
form. We then use the complement of the tangent space of (5.13) to identify the universal
unfolding (5.14), proving Theorem 5.12.

9.1 Liapunov-Schmidt Reduction for H/SS Mode Interaction

In this subsection, we prove Theorem 5.8 using the standard ‘loop space’ approach to Hopf
bifurcation via Liapunov-Schmidt reduction, Golubitsky and Schaeffer (1985) Chapter VIII.
First we construct, from the center manifold vector field (5.8), an operator Φ with the
property that solutions to Φ = 0 correspond to periodic solutions of (5.8) with period
approximately 2π. Then we apply Liapunov-Schmidt reduction to Φ to prove Theorem 5.8.

Proof of Theorem 5.8: We seek periodic solutions of (5.8) with period approximately
2π, for which we introduce τ corresponding to a rescaled time s = t/(1 + τ). In terms of s,
(5.8) can be rewritten as [

dX
ds
− (1 + τ)f(X)

dy
ds
− (1 + τ)g(X, y)

]
= 0. (9.1)

A 2π-periodic solution of (9.1) corresponds to a periodic solution of (5.8) with period
2π(1 + τ), which is close to 2π for τ ≈ 0. We define

Φ : C1
2π(R2)× C1

2π(R)× R→ C2π(R2)× C2π(R)× R

by the left hand side of (9.1). Then the zeros of Φ(X, y, τ) characterizes periodic solutions
of (5.8) with period approximately 2π.

We now apply the Liapunov-Schmidt reduction to Φ to find a reduced map φ in the coor-
dinates (9.3) on ker(dΦ). Then we use its properties to derive the theorem. The linearization
of Φ about (X, y, τ) = (0, 0, 0) is

dΦ =

[
d
ds
−Df 0
−∇Xg

d
ds

]
, (9.2)

whose kernel is 3-dimensional:

ker(dΦ) =

〈[
c

−i(∇Xg) · c

]
eis,

[
c̄

i(∇Xg) · c̄

]
e−is,

[
0
1

]〉
. (9.3)
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Here c is a 2-dimensional complex eigenvector that satisfies Df c = ic. Identify ker(dΦ) with
R3 via the map

(x1, x2, y)→ x1Re[weis] + x2Im[weis] + ye3, (9.4)

where w = (c,−i(∇ug) · c) and e3 = (0, 0, 1). The circle group S1 acts on ker(dΦ) by

γ(θ) =

[
R(θ) 0

0 1

]
where R(θ) acts on R2 by rotation counterclockwise through the angle θ.

In the coordinates (9.4) on ker(dΦ), the reduced map φ has the form

φ(x1, x2, y, τ) = p(x2
1 + x2

2, τ)

 x1

x2

0

+ q(x2
1 + x2

2, τ)

 −x2

x1

0

+ σ(x2
1 + x2

2, y, τ)

 0
0
1


because φ commutes with the action of S1. Formulas for the derivatives of the reduced
function (Golubitsky and Schaeffer, 1985, p. 295) imply that p(0, 0) = q(0, 0) = σ(0, 0, 0) =
pτ (0, τ) = στ (0, 0, τ) = 0 and qτ (0, τ) = −1. Solutions to φ = 0 locally are in one-to-one
correspondence with periodic solutions of (5.8).

The rotational symmetry lets us assume that x2 = 0, x1 ≥ 0, and the implicit function
theorem lets us solve q(x2

1, τ) = 0 for τ = τ(x2
1) (Golubitsky and Schaeffer, 1985, p. 345).

Now all solutions to φ = 0 may be obtained from zeros of

F (x1, y) =

[
r(x2

1)x1

g(x2
1, y)

]
where r(z) = p(z, τ(z)) and g(z, y) = σ(z, y, τ(z)) and x1 ≥ 0.

9.2 Restricted Tangent Space for H/SS Mode Interaction

The restricted tangent space of a map F in the context of symmetry, denoted by RT (F ),
is obtained from d

dτ
Γτ (F )|τ=0, where Γτ is a one-parameter family of strong Z2-equivalences

(Definition 5.9) with Γ0(x, y) = (x, y).

Lemma 9.1. Let F = (r(u)x, g(u, y)) be a map in (Eu · {x}, Eu,y). A map G ∈ (Eu · {x}, Eu,y)
lies in RT (F ) if and only if there exist maps Pi(u) ∈ Eu and Qj(u, y) ∈ Eu,y such that

G(x, y) =P1

[
rx
0

]
+ P2

[
2ruux+ rx

2guu

]
+Q1

[
0
ru

]
+Q2

[
0
g

]
+Q3

[
0
ugy

]
+Q4

[
0
ygy

]
.

Proof. The general form of strong Z2-equivalence is (5.10). Define a one-parameter family
of strong Z2-equivalences by

Γτ (F )(x, y) =

[
a(u, τ) 0

b(u, y, τ)x c(u, y, τ)

] [
r(φ2(u, τ)u)φ(u, τ)x
g(φ2(u, τ)u, ψ(u, y, τ))

]
, (9.5)
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where Γ0 is the identity and Γτ (F )(0, 0) = (0, 0). Then

a(u, 0) = 1, b(u, y, 0) = 0, c(u, y, 0) = 1, φ(u, 0) = 1, ψ(u, y, 0) = y, ψ(0, 0, τ) = 0. (9.6)

To compute the restricted tangent space, differentiate (9.5) with respect to τ and evaluate
at τ = 0, to obtain

Γ̇0(x, y) = ȧ(u, 0)

[
r(u)x

0

]
+ ḃ(u, y, 0)

[
0

r(u)u

]
+ ċ(u, y, 0)

[
0

g(u, y)

]
+φ̇(u, 0)

[
2ru(u)ux+ r(u)x

2gu(u, y)u

]
+ ψ̇(u, y, 0)

[
0

gy(u, y)

]
.

(9.7)

Conditions (9.6) imply that ȧ(u, 0), ḃ(u, y, 0), ċ(u, y, 0) and φ̇(u, 0) are arbitrary, whereas
ψ̇(u, y, 0) = uσ(u, y) + yν(u, y) for arbitrary functions σ and ν. The restricted tangent space
is therefore spanned by〈[

rx
0

]
,

[
2ruux+ rx

2guu

]〉
{u}
⊕
〈[

0
ru

]
,

[
0
g

]
,

[
0
ugy

]
,

[
0
ygy

]〉
{u,y}

.

9.3 Normal Form for H/SS Mode Interaction

The proof of Theorem 5.11 is similar to the proof of Theorem 5.3, and is carried out in
two steps. First, in Lemma 9.2 we explicitly transform the lower order terms in r(u) and
g(u, y) in F = (r(u)x, g(u, y)) into the normal form (5.13). Second, we use the tangent space
constant theorem for the Hopf/steady-state mode interaction that is analogous to Theorem
7.1 to transform away higher order terms.

The defining conditions for a Hopf/steady-state mode interaction imply that to first order
in u and quadratic order in y, the functions r(u) and g(u, y) take the forms pu and qu+ ty2.
Hence F takes the form F̄ = (r̄x, ḡ) where

r̄(u)x = pux
ḡ(u, y) = qu+ ty2 (9.8)

Lemma 9.2. Any map of the form (9.8) with p, q, t 6= 0 is strongly Z2-equivalent to the
normal form F̂ = (r̂x, ĝ) where

r̂(u)x = εpux
ĝ(u, y) = εqu+ εty

2 (9.9)

and ε∗ = sign(∗).

Proof. We are interested only in terms of r(u) and g(u, y) up to first order in u and second
order in y, so we compute the truncated forms of the transformation functions used to define
Z2-equivalence in (5.10), obtaining
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φ(u) = α ψ(u, y) = γy a(u) = δ b(u, y) = 0 c(u, y) = ρ.

Now [
r̂(u)x
ĝ(u, y)

]
=

[
δpα3ux

ρqα2u+ ρtγ2y2

]
. (9.10)

Combining like terms, the transformed coefficients are

p̂ = δα3p
q̂ = ρα2q
t̂ = ργ2t.

(9.11)

By assumption, p 6= 0, q 6= 0, t 6= 0 in r̄ and ḡ. Thus we can impose the conditions p̂ = εp,
q̂ = εq and t̂ = εt, where ε∗ = sign(∗), by making the transformation

δ = εp
pα3

ρ = εq
α2q

γ2 = α2qεt
εqt

.

Here α > 0 is a free parameter. We require δ, ρ, α, γ > 0 to preserve the stabilities of steady
states. Were we free to choose the signs of δ, ρ, we could have transformed p̂, q̂, t̂ to be +1.
Applying the above transformation to (9.8) produces (9.9).

Proof of Theorem 5.11: By Lemma 9.2 a general map F (x, y) = (r(u)x, g(u, y)) satis-
fying the defining and nondegeneracy conditions is strongly Z2-equivalent to F̃ = F̂ + · · · ,
where F̂ is the normal form (5.13) and · · · indicates terms of higher order. Using the tan-
gent space constant theorem we remove higher order terms associated to F̂ by a suitable
transformation. Specifically, we show that RT (F̃ ) = RT (F̂ ).

First, we claim that the restricted tangent space of the normal form (r̂x, ĝ) is

RT (F̂ ) =

[
Mu 〈x〉

0

]
⊕
[

0
M2

uy + R{u}

]
, (9.12)

which is a system of modules over the system of rings (Eu, Eu,y). By Lemma 9.1, the restricted
tangent space for the normal form (5.13) is

RT (F̂ ) =

〈[
εpux

0

]
,

[
3εpux
2εqu

]〉
{u}
⊕
〈[

0
εpu

2

]
,

[
0

εqu+ εty
2

]
,

[
0

2εtuy

]
,

[
0

2εty
2

]〉
{u,y}

.

Taking linear combinations, this reduces to

RT (F̂ ) =

〈[
ux
0

]〉
{u}
⊕
〈[

0
u

]
,

[
0
y2

]
,

[
0
uy

]〉
{u,y}

.

The restricted tangent space is therefore given by (9.12).
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Next, consider higher order maps n ∈ M2
u, and m ∈ M3

uy ⊕ Muy 〈u〉. That is, let

F̃ = (r̃x, g̃) = F̂ + (nx,m), where

r̃(u)x = (εpu+ n(u))x
g̃(u, y) = εqu+ εty

2 +m(u, y).

We use Nakayama’s Lemma to prove that RT (F̃ ) = RT (F̂ ). Then F̃ = ((r̂ + n)x, ĝ +m) is
strongly Z2-equivalent to the normal form F̂ , so F is strongly Z2-equivalent to F̂ , as desired.

Observe that

RT (F̃ ) =

〈[
εpux+ nx

0

]
,

[
3εpux+ 2nuux+ nx

2εqu+ 2muu

]〉
{u}
⊕〈[

0
εpu

2 + nu

]
,

[
0

εqu+ εty
2 +m

]
,

[
0

2εtuy + umy

]
,

[
0

2εty
2 + ymy

]〉
{u,y}

.

(9.13)
By (9.12), each generator of RT (F̃ ) in (9.13) lies in RT (F̂ ). Hence RT (F̃ ) ⊆ RT (F̂ ). Next,
we apply Nakayama’s Lemma to prove that RT (F̂ ) ⊆ RT (F̃ ), for which we need to show
that RT (F̂ ) ⊆ RT (F̃ ) + (Mu,Muy)RT (F̂ ). The generators of RT (F̂ ) over the system of
rings (Eu, Eu,y) are {[

ux
0

]
,

[
0
u

]
,

[
0
y2

]}
.

Therefore

(Mu,Muy)RT (F̂ ) =

〈[
u2x
0

]
,

[
0
u2

]
,

[
0
uy

]
,

[
0
y3

]〉
=

[
M2

u 〈x〉
M3

uy +Muy 〈u〉

]
.

So we need to show that〈[
ux
0

]
,

[
0
u

]
,

[
0
y2

]〉
⊆ RT (F̃ ) +

〈[
u2x
0

]
,

[
0
u2

]
,

[
0
uy

]
,

[
0
y3

]〉
,

which follows from[
ux
0

]
=

[
ux+ nx

0

]
−
[
nx
0

]
∈ RT (F̃ ) +

[
M2

u 〈x〉
0

]
[

0
y2

]
=

[
0

y2 + ymy

]
−
[

0
ymy

]
∈ RT (F̃ ) +

[
0

M3
uy ⊕Muy{u}

]
[

0
u

]
=

[
0

u+ y2 +m

]
−
[

0
y2

]
−
[

0
m

]
∈ RT (F̃ ) +

[
0

M3
uy ⊕Muy 〈u〉

]
.

Therefore the restricted tangent space of F̃ is equal to the restricted tangent space of the
original system F , so the two are equivalent.

Remark 9.3. A complement in (Eu · {x}, Eu,y) of the restricted tangent space of the normal
form (5.13) is

R
{[

x
0

]
,

[
0
1

]
,

[
0
y

]}
so the codimension of RT (F̂ ) is 3.
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9.4 Tangent Space for H/SS Mode Interaction

We follow the standard procedure used in previous cases, starting with

Lemma 9.4. The tangent space T (F ) of a map F = (r(u)x, g(u, y)) in (Eu · {x}, Eu,y) is

T (F ) = RT (F )⊕ R
{[

0
gy(u, y)

]}
. (9.14)

Proof. Computing the tangent space is similar to computing the restricted tangent space
in Lemma 9.1, except that now we do not require the origin to be fixed by the coordinate
transformation. That is, ψ̇(u, y, 0) in (9.7) can be an arbitrary function. The tangent space
is therefore〈[

r(u)x
0

]
,

[
2ru(u)ux+ r(u)x

2gu(u, y)u

]〉
{u}
⊕
〈[

0
r(u)u

]
,

[
0

g(u, y)

]
,

[
0

gy(u, y)

]〉
{u,y}

.

(9.15)
Equation (9.14) follows from〈[

0
gy

]〉
{u,y}

=

〈[
0
ugy

]
,

[
0
ygy

]〉
{u,y}
⊕ R

{[
0
gy

]}
.

We now find a universal unfolding of the normal form (5.13) according to the analog of
Theorem 7.3.

Proof of the Universal Unfolding Theorem 5.12: Compute[
0

gy(x, y)

]
=

[
0

2εty

]
. (9.16)

The tangent space is therefore

T (F ) =

[
Mu 〈x〉

0

]
⊕
[

0
Muy

]
,

and the complement to T (F ) is two dimensional:

R
{[

x
0

]
,

[
0
1

]}
.

This leads to the universal unfolding (5.14).
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10 Steady-State/Hopf Mode Interaction: Proofs

This section outlines proofs for the main results presented in Section 5.3 for steady-state/Hopf
mode interaction. The basic strategy is the same as in Section 9, though some differences
appear in the details of the proofs. In order to apply the methods of singularity theory,
we use Liapunov-Schmidt reduction on the three-dimensional center manifold to construct
a two-dimensional network whose zeros are in one-to-one correspondence with the equilibria
of the center manifold network. We compute the restricted tangent space for this reduced
network for the vector field (5.15), and use this to prove Theorem 5.17 that (5.18) is a normal
form. We then use the complement of the tangent space of (5.18) to identify the universal
unfolding (5.19), proving Theorem 5.18.

10.1 Liapunov-Schmidt Reduction for SS/H Mode Interaction

We outline a proof of Theorem 5.14. Begin with the system (5.15) that describes the center
manifold dynamics for the steady-state Hopf mode interaction. Assume that the origin is an
equilibrium, so that f(0) = g(0, 0) = 0; that f is associated with steady-state bifurcation, so
that fx(0) = 0; and that a Hopf bifurcation is associated with g, so that DY g has eigenvalues
±i at the origin. We seek periodic solutions and rescale time by t = (1+τ)s to set the period
to 2π. We can now define a map

Φ : C1
2π(R)× C1

2π(R2)× R→ C2π(R)× C2π(R2)× R

given by
Φ1(u, v, τ) = du

ds
− (1 + τ)f(u)

Φ2(u, v, τ) = dv
ds
− (1 + τ)g(u, v)

where u ∈ C1
2π(R) and v ∈ C1

2π(R2) are once-differentiable 2π-periodic functions on R and R2

respectively, and τ ∈ R.
The zeros of Φ correspond to periodic solutions for the center manifold vector field. The

linearization of Φ about (u, v, τ) = (0, 0, 0) is

dΦ =

[
d
ds

0
−gu d

ds
−Dvg

]
and an element of the kernel, η(s) ∈ ker(dΦ), is

η(s) = x

[
1

(Dvg)−1gu

]
+ Re

[
z

[
0
c

]
eis
]
,

for coordinates x ∈ R and z ∈ C, where c ∈ C2 is the complex eigenvector defined by
(Dvg)c = ic. Moreover, the S1-action is

γ(θ) =

[
1 0
0 eiθ

]
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The reduction now proceeds as in standard Hopf bifurcation, Golubitsky and Schaeffer
(1985). Periodic solutions of the vector field are locally in one-to-one correspondence with
zeros of the function F (x, y) = (f(x), r(x, y2)y) on R2.

10.2 Restricted Tangent Space for SS/H Mode Interaction

The proof of Theorem 5.17 requires computing the restricted tangent space RT (F ) of the
map (5.18). Let Γτ be a one-parameter family of strong Z2-equivalences as in (5.15), with
Γ0(x, y) = (x, y). A typical element of RT (F ) is

d

dτ
Γτ (F )

∣∣∣∣
τ=0

The analog of the tangent space constant theorem, Theorem 7.1, lets us prove equivalence
of maps. Here we use restricted tangent spaces in the Z2-symmetric context.

Lemma 10.1. Let F = (f(x), r(x, v)y) be a map in (Ex, Ex,v ·{y}). A map G ∈ (Ex, Ex,v ·{y})
is in RT (F ) if and only if there exist maps Pi(x) ∈ Ex and Qj(x, v) ∈ Ex,v such that

G(x, y) = P1

[
f
0

]
+ P2

[
xfx
xyrx

]
+Q1

[
0
yf

]
+Q2

[
0
yr

]
+Q3

[
0

yvrv

]
.

Proof. Define a parametrized family of near-identity transformations (5.17), generating an
orbit of strongly equivalent systems near the original vector field F (x, y) for all small τ , by

Γτ (F )(x, y) =

[
a(x, τ) 0

b(x, v, τ)y c(x, v, τ)

] [
f(φ(x, τ))

r (φ(x, τ), ψ(x, v, τ)2v)ψ(x, v, τ)y

]
, (10.1)

where Γ0 is the identity and Γτ (0, 0) = (0, 0). Then

a(x, 0) = 1 b(x, v, 0) = 0 c(x, v, 0) = 1 φ(x, 0) = x ψ(x, v, 0) = 1. (10.2)

Compute the restricted tangent space by differentiating (10.1):

Γ̇0(x, y) = ȧ(x, 0)

[
f(x)

0

]
+ ḃ(x, v, 0)

[
0

f(x)y

]
+ ċ(x, v, 0)

[
0

r(x, v)y

]
+χ̇(x, 0)

[
fx(x)x

rx(x, v)xy

]
+ ψ̇(x, v, 0)

[
0

(2rv(x, v)v + r(x, v)) y

]
,

where φ(x, 0) = χ(x, 0)x and χ(x, 0) = 1. Equations (10.2) imply that

ȧ(x, 0) ḃ(x, v, 0) ċ(x, v, 0) χ̇(x, 0) ψ̇(x, v, 0)

are arbitrary functions. The restricted tangent space is therefore spanned by〈[
f
0

]
,

[
xfx
yxrx

]〉
{x}
⊕
〈[

0
yf

]
,

[
0
yr

]
,

[
0

yvrv

]〉
{x,v}

.
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10.3 Normal Form for SS/H Mode Interaction

We prove that (5.18) is a normal form by showing that a given admissible Z2-equivariant
F of the form (5.16) satisfying the defining and nondegeneracy conditions of Theorem 5.17
can be transformed to (5.18) via a transformation of the form (5.17). Consider a map
F̄ (x, y) = (f̄(x), r̄(x, v)y), where

f̄(x) = px2

r̄(x, v)y = (qv + sx)y,
(10.3)

and v = y2. Aapply the tangent space constant theorem to show that all other nonlinear
terms can be removed by a suitable transformation. Specifically, we compute RT (F̄ ) in
Lemma 10.2 and then show that RT (F ) = RT (F̄ ) for the given F . Finally, by an appropriate
(orientation preserving) rescaling of F̄ , we obtain the normal form (5.18).

Lemma 10.2. The restricted tangent space of (f̄ , r̄y) given by (10.3) is

RT (F̄ ) =

[
M2

x

0

]
⊕
[

0
Mx,v〈y〉

]
,

which is a system of modules over the system of rings (Ex, Ex,v).

Proof. By Lemma 10.1 the restricted tangent space for (10.3) is

RT (F̄ ) =

〈[
px2

0

]
,

[
2px2

sxy

]〉
{x}
⊕
〈[

0
px2y

]
,

[
0

(qv + sx)y

]
,

[
0

(3qv + sx) y

]〉
{x,v}

.

Taking linear combinations, this reduces to

RT (F̄ ) =

〈[
x2

0

]〉
{x}
⊕
〈[

0
vy

]
,

[
0
xy

]〉
{x,v}

.

The restricted tangent space is therefore (10.2).

Proof of Theorem 5.17: The restricted tangent space of (10.3) is given by Lemma 10.2.
We show that a general Z2-equivariant map F̃ = F̄ + · · · , where F̄ is given by (10.3), and
· · · indicates higher-order admissible perturbations. We use Nakayama’s Lemma to show
that RT (F̃ ) = RT (F̄ ), so the tangent space constant theorem guarantees that the two maps
F̃ and F̄ are strongly Z2-equivalent as in Definition 5.15.

Let F̃ (x, y) = (f̃(x), r̃(x, v)y), where

f̃(x) = px2 + n(x)
r̃(x, v)y =

(
qv + sx+m(x, v)

)
y,
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and n ∈M3
x, m ∈M2

xv. Lemma 10.1 shows that

RT (F̃ ) =

〈[
px2 + n

0

]
,

[
2px2 + xnx
(s+mx)xy

]〉
{x}
⊕〈[

0
(px2 + n)y

]
,

[
0

(qv + sx+m)y

]
,

[
0

(3qv + sx+ 2vmv +m) y

]〉
{x,v}

.
(10.4)

By Lemma 10.2, each generator of RT (F̃ ) in (10.4) lies in RT (F̄ ), so RT (F̃ ) ⊆ RT (F̄ ).
Next we apply Nakayama’s Lemma to prove RT (F̄ ) ⊆ RT (F̃ ), for which we need to show
RT (F̄ ) ⊆ RT (F̃ ) + (Mx,Mxv)RT (F̄ ). A set of generators of RT (F̄ ) over the system of
rings (Ex, Exv) is {[

x2

0

]
,

[
0
vy

]
,

[
0
xy

]}
.

Therefore

(Mx,Mxv)RT (F̄ ) =

〈[
x3

0

]〉
{x}
⊕
〈[

0
xvy

]
,

[
0

v2y

]
,

[
0

x2y

]〉
{x,v}

=

[
M3

x

M2
xv 〈y〉

]
,

and we need to show that〈[
x2

0

]〉
{x}
⊕
〈[

0
vy

]
,

[
0
xy

]〉
{x,v}
⊆ RT (F̃ ) +

[
M3

x

M2
xv 〈y〉

]
.

This follows from[
x2

0

]
= 1

p

[
px2 + n

0

]
− 1

p

[
n
0

]
∈ RT (F̃ ) +

[
M3

x

0

]
[

0
vy

]
= 1

2q

([
0

(3qv + sx+ 2vmv +m)y

]
−
[

0
(qv + sx+m)y

])

−1
q

[
0

vymv

]
∈ RT (F̃ ) +

[
0

M2
xv〈y〉

]
[

0
xy

]
= 1

2s

(
3

[
0

(qv + sx+m)y

]
−
[

0
(3qv + sx+ 2vmv +m)y

])

−1
s

[
0

ym− yvmv

]
∈ RT (F̃ ) +

[
0

M2
xv〈y〉

]
.

Therefore the restricted tangent space of F̃ is equal to the restricted tangent space of F̄ , so
F̃ and F̄ are equivalent. Moreover the transformation f → f/|p|, r → r/|q| and x→ |q|x/|s|
takes F̄ to the normal form (5.18).
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Remark 10.3. The restricted tangent space has finite codimension. The complement of the
restricted tangent space of the normal form (5.18) in (Ex, Ex,v · {y}) is

R
{[

1
0

]
,

[
x
0

]
,

[
0
y

]}
,

so the codimension of RT (F̂ ) is 3.

10.4 Tangent Space for SS/H Mode Interaction

As usual we first specify the relevant tangent space:

Lemma 10.4. The tangent space T (F ) of a map F = (f(x), r(x, v)y) in (Ex, Ex,v · {y}) is

T (F ) = RT (F )⊕ R
{[

fx
yrx

]}
. (10.5)

Proof. Computing the tangent space is similar to computing the restricted tangent space
in Lemma 9.1, except that now we do not require the origin to be fixed by the coordinate
transformation. This means that we no longer enforce φ̇(x, 0) = χ̇(x, 0)x, and instead take
φ̇(x, 0) to be an arbitrary function. Hence the tangent space is〈[

f
0

]
,

[
fx
yrx

]〉
{x}
⊕
〈[

0
yf

]
,

[
0
yr

]
,

[
0

y (2vrv + r)

]〉
{x,v}

.

Relaxing the restriction of fixing the origin modifies the second element of the first span
compared to the calculation for the restricted tangent space. In fact we can write the span
of this modified vector in terms of a span of vectors of RT (F ) as〈[

fx
yrx

]〉
{x}

=

〈[
xfx
xyrx

]〉
{x}
⊕ R

{[
fx
yrx

]}
.

The tangent space is therefore given by (10.5).

By computing the complement of T (F̂ ), we derive a universal unfolding of the normal
form (5.18) using the analog of Theorem 7.3.

Proof of the Universal Unfolding Theorem 5.18: The restricted tangent spaceRT (F̂ ) =
RT (F̄ ) is given by Lemma 10.2. We must therefore compute[

f̂x(x)
r̂x(x, v)y

]
=

[
2εpx
εsy

]
.

The tangent space is

T (F ) =

[
M2

x

0

]
⊕
[

0
Mxv 〈y〉

]
⊕ R

{[
2εpx
εsy

]}
.
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A two-dimensional complement of T (F ) can be spanned either by〈[
1
0

]
,

[
x
0

]〉
or by 〈[

1
0

]
,

[
0
y

]〉
.

A universal unfolding corresponding to the latter choice is (5.19).

11 Hopf/Hopf Mode Interaction: Proofs

This section outlines proofs for the main results presented in Section 5.4 for Hopf/Hopf
mode interaction. In order to apply the methods of singularity theory, we assume the four-
dimensional center manifold dynamics is in Birkhoff normal form. We can then reduce it
to the dynamics of a two-dimensional network, whose vector field (5.22) commutes with the
standard action of Z2 ⊕ Z2 in the plane. We compute the restricted tangent space for this
reduced network, and use the result to prove Theorem 5.24, which states that (5.24) is a
normal form.

11.1 Amplitude Reduction for H/H Mode Interaction

Here we outline a proof of Theorem 5.22. Begin with the system (5.20) that describes the
center manifold dynamics for the Hopf/Hopf mode interaction. Assume that the origin is an
equilibrium so that f(0) = g(0, 0) = 0, and that the linear part of (f, g) is nonresonant, so
that DXf and DY g have two distinct pairs of complex conjugate purely imaginary eigenvalues
±iω and ±iν at the origin, with ω and ν irrationally related. Assume also that (5.20) is in
Birkhoff normal form, so that (f, g) commutes with the two-torus T2 whose action on R4 is
(5.21). Equivalently, T2 acts on C2 by

(ψ1, ψ2)(z1, z2) = (eiψ1z1, e
iψ2z2) (11.1)

where (ψ1, ψ2) ∈ T2 and (z1, z2) ∈ C2. Now

(ψ1, ψ2)(f(z1), g(z1, z2)) = (f(eiψ1z1), g(eiψ1z1, e
iψ2z2)),

which implies
(f(z1), g(z1, z2)) = (P1(|z1|2)z1, P2(|z1|2, |z2|2)z2) , (11.2)

where P1(0) = ωi and P2(0, 0) = νi.
Set z1 = xeiθ1 and z2 = yeiθ2 . Using (11.2) we can reduce the Birkhoff normal form (f, g)

to the amplitude equations (5.22), which we write as

F (x, y) = (p1(x2)x, p2(x2, y2)y) .

Here pj is the real part of Pj for j = 1, 2, so that p1(0) = p2(0, 0) = 0.
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11.2 Restricted Tangent Space for H/H Mode Interaction

The proof of Theorem 5.24 requires computing the restricted tangent space RT (F ) of the
map F in (5.24). Let Γτ be a one-parameter family of strong Z2 ⊕ Z2-equivalences (as in
Definition 5.23) with Γ0(x, y) = (x, y). A typical element of RT (F ) is

d

dτ
Γτ (F )

∣∣∣∣
τ=0

.

The analog of the tangent space constant theorem, Theorem 7.1, lets us prove equivalence
of the relevant maps. The restricted tangent spaces involved are computed in the Z2 ⊕ Z2-
symmetric context using Lemma 11.1.

Lemma 11.1. Let F = (r(u)x, s(u, v)y) be a map in (Eu · {x}, Eu,v · {y}). A map G ∈
(Eu ·{x}, Eu,v ·{y}) is in RT (F ) if and only if there exist maps Pi(u) ∈ Eu and Qj(u, v) ∈ Eu,v
such that

G(x, y) = P1

[
xr
0

]
+ P2

[
xruu
ysuu

]
+Q1

[
0
ys

]
+Q2

[
0
yru

]
+Q3

[
0

ysvv

]
.

Proof. Define a parametrized family of near-identity transformations (5.23), generating an
orbit of strongly equivalent systems near the original vector field F (x, y) for all small τ , by

Γτ (F )(x, y) =

[
a(u, τ) 0

b(u, v, τ)xy c(u, v, τ)

] [
r(φ2(u, τ)u)φ(u, τ)x

s (φ2(u, τ)u, ψ2(u, v, τ)v)ψ(u, v, τ)y

]
, (11.3)

where Γ0 is the identity and Γτ (0, 0) = (0, 0). Then

a(u, 0) = 1 b(u, v, 0) = 0 c(u, v, 0) = 1 φ(u, 0) = 1 ψ(u, v, 0) = 1 (11.4)

Compute the restricted tangent space by differentiating (11.3):

Γ̇0(x, y) = ȧ(u, 0)

[
r(u)x

0

]
+ ḃ(u, v, 0)

[
0

r(u)uy

]
+ ċ(u, v, 0)

[
0

s(u, v)y

]
+φ̇(u, 0)

[
(2ru(u)u+ r(u))x

2su(u, v)uy

]
+ ψ̇(u, v, 0)

[
0

(2sv(x, v)v + s(u, v)) y

]
.

Equations (11.4) imply that

ȧ(u, 0) ḃ(u, v, 0) ċ(u, v, 0) φ̇(u, 0) ψ̇(u, v, 0)

are arbitrary functions. The restricted tangent space is therefore spanned by〈[
xr
0

]
,

[
xruu
ysuu

]〉
{u}
⊕
〈[

0
ys

]
,

[
0
yru

]
,

[
0

ysvv

]〉
{u,v}

.
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11.3 Normal form for H/H Mode Interaction

We prove that (5.24) is a normal form by showing that a given admissible Z2⊕Z2-equivariant
F of the form (5.22), satisfying the defining and nondegeneracy conditions of Theorem 5.24,
can be transformed to (5.24) via a transformation of the form (5.23).

The defining conditions for Hopf/Hopf mode interaction imply that to first order in u
and v, the functions r(u) and s(u, v) take the forms pu and qu + tv. Therefore F takes the
form F̄ (x, y) = (r̄(u)x, s̄(u, v)y) with

r̄(u)x = pux
s̄(u, v)y = (qu+ tv)y,

(11.5)

where u = x2, v = y2. We prove Theorem 5.24 in two steps. First, we apply the tangent
space constant theorem to transform away all other higher order terms by showing that
RT (F ) = RT (F̄ ). Second, we rescale F̄ to obtain the normal form (5.24).

Lemma 11.2. The restricted tangent space of (r̄x, s̄y) given by (11.5) is

RT (F̄ ) =

[
Mu〈x〉

0

]
⊕
[

0
Mu,v〈y〉

]
,

which is a system of modules over the system of rings (Eu, Eu,v).

Proof. By Lemma 11.1 the restricted tangent space for (11.5) is

RT (F̄ ) =

〈[
xpu

0

]
,

[
xpu
yqu

]〉
{u}
⊕
〈[

0
y(qu+ tv)

]
,

[
0

ypu2

]
,

[
0
ytv

]〉
{u,v}

.

Taking linear combinations, this reduces to

RT (F̄ ) =

〈[
xu
0

]〉
{u}
⊕
〈[

0
yv

]
,

[
0
yu

]〉
{u,v}

.

The restricted tangent space is therefore given by (11.2).

Proof of Theorem 5.24: Now F = F̄ + · · · where F̄ is given by (11.5) and · · · indicates
admissible higher-order perturbations. We use Nakayama’s Lemma to show that RT (F ) =
RT (F̄ ), so the tangent space constant theorem guarantees that the maps F and F̄ are
strongly Z2 ⊕ Z2-equivalent, as in Definition 5.23. Then we rescale F̄ to obtain the normal
form (5.24).

We can write F (x, y) = (r(u)x, s(u, v)y) as

r(u) =
(
pu+ n(u)

)
x

s(u, v)y =
(
qu+ tv +m(u, v)

)
y,
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where n ∈M2
u, m ∈M2

u,v are higher order maps. By Lemma 11.1,

RT (F ) =

〈[
x(pu+ n)

0

]
,

[
x(p+ nu)u
y(q +mu)u

]〉
{u}
⊕〈[

0
y(qu+ tv +m)

]
,

[
0

y(pu+ n)u

]
,

[
0

y (t+mv) v

]〉
{x,v}

.
(11.6)

By Lemma 11.2, each generator of RT (F ) in (11.6) is in RT (F̄ ), so RT (F ) ⊆ RT (F̄ ).
Next we apply Nakayama’s Lemma to prove RT (F̄ ) ⊆ RT (F ), for which we need to show
RT (F̄ ) ⊆ RT (F ) + (Mu,Mu,v)RT (F̄ ). The set of generators of RT (F̄ ) over the system of
rings (Eu, Eu,v) is {[

ux
0

]
,

[
0
vy

]
,

[
0
uy

]}
.

Therefore

(Mu,Mu,v)RT (F̄ ) =

〈[
u2x
0

]〉
{u}
⊕
〈[

0
uvy

]
,

[
0

v2y

]
,

[
0

u2y

]〉
{x,v}

=

[
M2

u 〈x〉
M2

u,v 〈y〉

]
.

Now we must show that〈[
ux
0

]〉
{u}
⊕
〈[

0
vy

]
,

[
0
uy

]〉
{u,v}

⊆ RT (F ) +

[
M2

u 〈x〉
M2

u,v 〈y〉

]
.

This follows from[
ux
0

]
= 1

p

[
x(pu+ n)

0

]
− 1

p

[
n
0

]
∈ RT (F ) +

[
M2

u 〈x〉
0

]
[

0
vy

]
= 1

t

[
0

y (t+mv) v

]
− 1

t

[
0

yvmv

]
∈ RT (F ) +

[
0

M2
xv〈y〉

]
[

0
uy

]
= 1

q

([
0

y(qu+ tv +m)

]
−
[

0
y (t+mv) v

])
− 1

q

[
0

ym− yvmv

]
∈ RT (F ) +

[
0

M2
u,v〈y〉

]
.

Therefore the restricted tangent space of F is equal to the restricted tangent space of F̄ , so
the two are equivalent. Moreover the transformation r → r/|p|, s → s/|q| and v → |q|v/|t|
takes F̄ to the normal form (5.24).

Remark 11.3. The restricted tangent space has finite codimension. A complement of the
restricted tangent space of the normal form (5.24) in (Eu · {x}, Eu,v · {y}) is

R
{[

x
0

]
,

[
0
y

]}
.

The codimension of RT (F̂ ) is 2.
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11.4 Tangent Space for H/H Mode Interaction

We find a universal unfolding in terms of the complement of the tangent space, which is
forced to be identical to the restricted tangent space by the Z2 ⊕ Z2-symmetry.

Lemma 11.4. The tangent space T (F ) of F = (r(u)x, s(u, v)y) in (Eu · {x}, Eu,v · {y}) is
equal to RT (F ).

Proof. Computing T (F ) is similar to computing RT (F ) as in Lemma 11.1, except that now
we do not require the origin to be fixed by the coordinate transformation Φ(x, y). However,
Z2 ⊕ Z2-symmetry forces Φ(0) = 0, so T (F ) = RT (F ).

We can now compute a universal unfolding of the normal form (5.24) using the analog
of Theorem 7.3.

Proof of the Universal Unfolding Theorem 5.25: By Lemma 11.4 and Remark 11.3,
a complement to T (F ) in (Eu · {x}, Eu,v · {y}) is

R
{[

x
0

]
,

[
0
y

]}
,

giving the universal unfolding (5.25).

Appendix A: Reduction Procedure for Networks with

Higher-Dimensional Nodes

We describe a construction that converts any network G with higher-dimensional node phase
spaces Pc into a network G† with 1-dimensional node phase spaces, without changing the
space of admissible maps, when variables are suitably identified. We call G† the expansion of
G. Here we describe the construction only for fully inhomogeneous networks G, but there is
a straightforward generalisation to any network in the multiarrow formalism of Golubitsky
et al. (2005).

Let G be fully inhomogeneous with nodes C = {1, . . . , n}. Assume that dim Pc = δ(c) ≥ 1
for c ∈ C. Each arrow e ∈ E can be identified with the pair (H(e), T (e)), and distinct arrows
give distinct pairs. In the single-arrow formalism of Stewart et al. (2003), which applies
to the fully inhomogeneous case, c 6∈ I(c), so the pair (c, c) does not appear as an arrow.
Moreover, the input set I(c) can be identified with the set of tail nodes {T (e) : e ∈ I(c)} in
this case.

Definition 11.5. Given G, fully inhomogeneous, we define the expansion G† as follows.
Nodes and arrows are defined by

C† = {[c, k] : 1 ≤ k ≤ δ(c)}
E† = {([c, k], [d, l]) : (c, d) ∈ E , 1 ≤ k ≤ δ(c), 1 ≤ l ≤ δ(d)}

∪{([c, k], [c,m]) : 1 ≤ k,m ≤ δ(c), k 6= m},
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where for clarity, ordered pairs are denoted by square brackets [c, k]. Each node c is expanded
to a clump of nodes [c, k] where 1 ≤ k ≤ δ(c). Each input arrow e = (c, d) of c is expanded
to a bundle of arrows between nodes in the corresponding clumps, one for each pair of heads
and tails [c, k] and [d, l]. Moreover, there are arrows between all distinct [c, k], [c,m]; that is,
each clump is ‘internally’ all-to-all connected.

Heads and tails in G† are defined by the pairs of nodes. All node types and arrow types
are distinct. 3

The simplest way to describe this construction is in terms of the adjacency matrix A =
A(G), defined by

Aij = 1 ⇐⇒ (i, j) ∈ E or i = j

Then A† = A(G†) is obtained from A be replacing every entry Aij by a block matrix Bij of
size δ(i)× δ(j), whose entries are all the same as Aij. That is, all 0s or all 1s.

Observe that G† is fully inhomogeneous since by definition all node types and arrow types
are distinct.

Example 11.6. The 3-node network G of Figure 7 (left) gives the expansion G† of Figure 7
(right) when dim P1 = 3, dim P2 = dim P3 = 2.

12

3

[1,1]

[1,2]

[1,3]

[2,1]

[2,2]

[3,1][3,2]

Figure 7: Left: A fully inhomogeneous network G. Right: The expansion G† when dim P1 =
3, dim P2 = dim P3 = 2. (All arrows and nodes have distinct types.)
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The adjacency matrix for G is

A(G) =

 1 1 0
0 1 1
1 1 1


and that of G† is

A(G†) =



1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 0 0 1 1 1 1
0 0 0 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


For both networks, the diagonal entries 1 come from the nodes, whereas the off-diagonal

entries 1 in any diagonal block of A(G†) come from the all-to-all connections within that
clump.

Clearly, for any i the input set I([c, i]) in G† is

I([c, i]) = (I(c))† = {[d, j] : d ∈ I(c)}
Next we define how to interpret an admissible map f for G as an admissible map f † for

G†. For each node [c, i] of G† let
P[c,i] = R

Then we identify

Rδ(c) = Pc =
⊕
i

P[c,i]

so that the x[c,i] are coordinates on Pc.
Now a map f : P → P with components fc : Pc → P can be split into finer components

f[c,i](x) = (f(x))[c,i]

where x ∈ P can be identified with its component representations (xc)c∈C ∈ ⊕Pc and
(x[c,i])[c,i]∈C† ∈ ⊕P[c,i]. We then have:

Theorem 11.7. Let G be fully inhomogeneous. A map f is G-admissible and only if, when
represented in the natural manner using coordinates indexed by the [c, k], it is G†-admissible.

Proof. In a fully inhomogeneous network, the only constraint on an admissible map is the
domain condition. The adjacency matrices show that this holds for f † if and only if it holds
for f . That is, fc depends only on the xj for j ∈ I(c) if and only if all f[c,i] depend only on
the x[j,k] for [j, k] ∈ I([c, i]) = (I(c))†. All components are otherwise arbitrary.

Remark 11.8. (a) Expansion preserves path components in the sense that the union of the
clumps of a path component in G is the corresponding path component in G†.

(b) Expansion also preserves ‘upstream/downstream’, that is, the natural feedforward
ordering between path components.

71



Acknowledgment

This research was supported in part by the National Science Foundation Grant DMS-1440386
to the Mathematical Biosciences Institute. MG and INS thank the Department of Mathe-
matics of the University of Auckland for its support and hospitality. The research of CMP
is supported by the Marsden Fund Council from New Zealand Government funding, man-
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