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1 Introduction

Numerical simulation in (1] indicates that symmetry increasing bifurcations of chaotic at-
tractors occur with great frequency in the dynamics of symmetric mappings. The pictures
in (1], (3], (5] also demonstrate that an unexpected kind of pattern formation occurs in
symmetric chaotic dynamics where an order based on. symmetry is forced on. the random-
ness that is related to chaotic dynamics. Inspection of various numerical simulations in the
literature also show that symmetry increasing bifurcations have been observed in ODEs
(the Lorenz equation in (8]) and in Galerkin approximations of PDEs (the Ginzburg-Landau
equation in (6]).

In this paper we make a more detailed numerical analysis of how symmetry creation
can occur and how it may be related to pattern formation as the term is used in Physics
and Engineering. In applications, the fandamental question concerns how the symmetry
of an attractor in phase space manifests itself in physical space. The important point to
be noted here is that the symmetry of the attractor in phase space is only “on average”.
One must either jterate the mapping a relatively large number of times, or analogously
integrate the differential equation for a relatively long time in order to see that symmetry.
It follows that if the symmetry of the attractor is to be seen in physical variables (as a
pattern) it mrust be seen through some averaged quantity.

In Section 2 we indicate by example how averaged quantities can undergo symmetry
creation. We consider both the Brusselator and the Ginzburg-Landau equation. Although
these equations each have oaly a single reflectional symmetry, the types of symmetry
increasing they exhibit are quite different. In Section 3 we illustrate these differences by
considering the discrete dyndmics of odd maps on the line. In this section we also consider
how the parameter values where symumetry creation occurs may be compated by methods
other than direct simulation. These techniques are based on theoretical resalts in (2]
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Generally speaking we think of symmetry creation in systems with finite symmetry as
occurring through the “collision” of symmetry related conjugate attractors. As we show
in Section 3 this is not always the basis for symmetry creation — but collisions do occur
frequently and it is a useful way of thinking. In systems with continuous symmetry there
is another method by which symmetry creation can occur — drifting along group orbits.
We illustrate this phenomenon in Section 4 by using an example of a mapping on R*
having O(2) symmetry. We discuss briefly why this type of symmetry creation may be
the method by which turbulent wavy vortices turn into turbulent Taylor vortices in the
Couette-Taylor experiment,

2 Symmetry creation in PDEs

In this section we document the occurrence of symmetry increasing bifurcations in PDEs
by considering two examples: the Brusselator and the Ginzburg-Landau equation. In each

case We detect these bifurcations through the use of appropriately defined time averaged
quantities.

(a) The Brusselator

We consider the following system of reaction-diffusion equations on the interval (0,1]

Bt = REErv- (s @)
2.1
2
B o= Rl -ven

This system is known as the Brusselator, in which u,v, A and B represent chemical con-
centrations and Dy, D, are diffusion constants. In this simplified model 4 and B are
assumed to be constant in both space and time while « and v depend on z and ¢t. The
parameter A is a characteristic dimension of the system and we shall treat ) as the bifarca-

tion parameter. We consider (2.1) on the interval (0, 1] subject to the Dirichlet boundary
conditions

u(O, t) = u(l,t) A,
v(0,t) = v(1,t) = B/A.
This Dirichlet problem possesses a reflectional symmetry given by
x(u(z,t), v(z,t)) = (u(1 — z,¢), v(1 - z,t)).

Holodniok et. al. (4] have considered this model in detail and found multifrequency motions
using numerical simulation. Presuming that chaotic dynamics will occur near multifre-
quency motion we follow [4] and set

A=2, B=545 D;=0.008, D;=0.004.
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As we mentioned in the introduction the symmetry of a chaotic attractor is expected to
be a symmetry on average. Therefore it can only be seen by averaging over a long time.
But what quantity should be averaged?

The averaged quantity that we use to detect symmetry creation may be interpreted
through the following hypothetical story. Suppose that the radical whose concentration is
being measured by v is an acid and that u is actually measuring the concentration of this
acid along the bottom of a (two dimensional) rectangular container. Suppose further that
this acid can eat away or etch the bottom of this container. It would then be reasonable
that the rate of etching — at any point along the bottom — would be praportional to

the concentration u and that the total amount of the bottom that would be etched is
pProportional to

~—C0

Fu(z) = Tlim (?Z"l- /OTu(z,r)dr) . (2:2)

Suppose that the attractor 4 corresponding to the solution u(z, t) is chaotic and sym-
metric. We expect that u would sample the whole attractor in phase space rather quickly
and that the time average (2.2) would be equal to a (weighted) space average over the at-
tractor in phase space — though the rigorous proof of this point would require an ergodic
type theorem to be valid. Presuming this we would expect that (2.2) would be symmetric
under z — 1 — z if the attractor is symmetric. Moreover, generically, we would expect
(2.2) to be asymmetric should A be asymmetric.

The graphs of F, both before and after a symmetry increasing bifurcation are shown in
Figure 1. In both cases T = 20000 was chosen for the numerical computations. In Figure 2
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Figure 1: Graphs of £, for (a) A = 1.45, (b) A =1.47.

we indicate why we believe that this Symmetry creation is caused by collision of conjugate
attractors. If such a collision were to occur, the difference in phase space between the
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union of A and its conjugate attractor before collision would be approximately equal to
A after collision. Applying the presumed ergodic theorem mentioned previously we would

expect the average
1
3 (Fu(z) + Fu(1 - 2)) (2.3)

to vary continuously. The graph of (2.3) before symmetry creation is given in Figure 2
along with the difference between (2.3) before and after symmetry creation. Note how
small this difference is.
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Figure 2: (a) The average of the graphs of F, for the two conjugate attractors for A = 1.45,
and (b) the difference between the graph of F, for A = 1.47 and this graph.

~

(b) The Ginzburg-Landau equation

As a second example of symmetry creation in PDEs we consider the Ginzburg-Landau
equation:

2
A .
. i+ Co)a—g +pA +(i - p)AlA%. (2.4)
& Jz

The constants g, cg, p are real whereas A is complex. We restrict our attention to Dirichlet
boundary conditions: .
A(0,t) = A(r,t)=0.

We regard ¢ as the bifurcation. parameter and choose the remaining constants as in (7],
namely
co =0.25, p=0.25.

In this example we compute the averaged quantity

Pu) = fm (1 [ 14t e 29)
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for the detection of symmetry increasing bifurcations. The results are shown in Figures
3 and 4. Again, T = 20000 was chosen for the numerical computations. In contrast to
the symmetry creation in the Brusselator the results in this case indicate that there is no
continuous transition from the averaged graphs before the bifurcation to the symmetric
graph of F; afterwards (see Figure 4).
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Figure 4: (a) The average of the graphs of F, for the two conjugate attractors for ¢ =
0.1975, and (b) the difference between the graph of Fy for ¢ = 0.1925 and this graph.

Similar phenomena corresponding to the ezplosion of attractors have been observed in
discrete dynamical systems (see Section 3).
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3 Symmetry creation in mappings

In this section, we consider symmetry increasing of attractors for C'! mappings f : R™ —
R™. The technique that we shall describe is documented in [2] and allows us in certain
examples to compute the point at which symmetry increasing occurs to any required
accuracy. Our aim here is to illustrate by example both the utility and the limitations of
the technique.

Given a closed set § C R™, define Py to be the set of all points in R™ that either lie
in § or eventually iterate under f to a point in §. The idea is that S can be chosen so
that there is a relation between symmetry increasing of attractors and transitions of the
set Ps.

Consider first the case of mappings of the line. Suppose that /AtR—-Risa
parametrized family of Z;-equivariant (odd) mappings. In this case S is chosen to be
the origin or, more generally, a symmetric periodic orbit. In many examples, as A is
varied two conjugate asymmetric attractors collide at such an orbit to produce a single
Z;-symmetric attractor containing this orbit.

Let ). denote the critical parameter value and suppose that the attractor was asym-
metric for A < A; and Z,-symmetric for A > A.. In [2] we prove that ANPs = 0 for A < Ac
and A C Ps for A > A.. Thus we search for transitions in the set Ps. Determining the
value of A where such a transition occurs is a standard problem in numerical bifurcation

theory. A point z is called a transition point at ). if there is a positive integer m such
that

{(z) € § (3.6)
SR = o (3.1

The point z is a transition point of order m if in addition,

=) ¢ (3.8)
In fact there is a simpler way to find transition points of minimum order mq. That is, at
minimum order 5 3
@) =0 i () =0,
This is easily seen using the chain rule.
As an example, we consider the cubic logistic map

fia(z) = Az(1 - z?)

whose bifurcation diagram is shown in Figure 2 of [1]. The lowest order for a transition
point is m = 2. A simple calculation shows that the only transition points of order 2 are

z= :t«\}a- when A, = l"zé It is known that this corresponds to the symmetry increasing
bifurcation documented in (1]. This is the first of the symmetry increasing bifurcations

M. Dellnitz et al.
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Figure 5: The attractor of the cubic logistic map fy for (a) A = 2.598076 and (b) A =
2.598077.

that occur in the cubic logistic map, see Figure 5. In this figure the graph of f) is shown
along with the associated attractor in bold.

Further symmetry increasing bifurcations occur after each periodic window in the bi-
furcation diagram. As an example, the collision of two conjugate attractors at a symmetric
period 6 point is shown in Figure 6. Here the corresponding trausition point is of order
12. (This can be regarded as a transition point of order 2 for f® at a nonsymmetric fixed

point.)
. .
4apr 4
13 N 3
. —t —— —t—t ——
Iy 2P
-t -t b
i3 L <3 ) [X] v 13 ) i <3 0 [X]) 1 13

(4 oy

Figure 6: An attractor of the cubic logistic map f for (a) A = 2.704431 and ) A=
2.704432. .

We end our discussion of one-dimensional mappings by giving an example of a second
type of symmetry increasing bifurcation where there is no transition point at criticality.
Rather there is a sequence z; of transition points of order m; at A\ where m; — oo and
Ak — Ac. This symmetry increasing bifurcation was observed in the family f2, where fj is
the cubic logistic map. It differs from the others in that the asymmetric attractors do not
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continuously approach a symmetric periodic point for A < A.. Rather they explode to a
Z;-symumetric attractor containing 0 when A > A, (see Figure 7). It should be pointed out
that this behavior is not related to a hysteresis (observe that the nonsymmetric attractor
before bifurcation is covered by the symmetric one after symmetry creation).

" M. Dellnitz et al.
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Figure 7: An attractor of f7 for (a) A = 2.705639 and (b) A = 2.705640.

Next we consider D3, the symmetry group of a regular triangle, acting on R?. The
results in [2] suggest that a symmetry increasing bifurcation to an attractor with full
Dj3-symmetry should be accompanied by a transition in a suitable preimage set Pg, i.e.
ANPs =0 before and A C Ps after symmetry creation. Here, S is the union of any two
axes of symmetry not intersecting the attractor before symmetry creation (two such axis
exist by a result in (1}).

As an example we consider the D3-equivariant map (see (1))

) f(z2,A) = (au + fv+ )z + 722, (3.9)
where z € C, A € R is the bifurcation parameter, a, 3, 7 € R are fixed constants and

=2z,

The group Dj acts by )
xz=% fz=¢?z

where § = 2X, We use the system

Im( f™)(2, )
Z1m(fm)(2,4)

in order to compute symmetry increasing bifurcations.. Some numerical results are given
in Table 1. In analogy to (3.8) “order” means the smallest value of m for which a solu-
tion of (3.10) can be found numerically and which corresponds to a symmetry increasing

0

(3.10)

0 .
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bifurcation. Infinite order in the last line of the table corresponds to a symmetry creation
caused by explosion. For all the bifurcations the attractor has Z;-symmetry before the
symmetry increasing bifurcation and D3-symmetry afterwards.

Order z a B v A
2 0.516121 + i 0.915104 | -1.0 | 0.0 -0.5 2.269928
2 0.532793 + i 0.751622 | 1.0 | 0.0 0.1 -2.371198
3 -0.214232 + § 0.288230 | 1.8| 0.0 1.34164 -1.648899
4 0.753472 + i 0.772307 | -1.0 { 0.1 -0.8 1.519215
11 0.347859 + i 0.917966 | -1.1 | 0.212 0.6 1.891572
24 0.465201 + i 0.159120| 1.0 | 0.0 0.5 -1.798928
co —_— 1.0} 0.7 -0.8. 2 -1.98356

Table 1: Data for symmetry-increasing bifurcations

4 Symmetry creation via drifts along group orbits

In the previous sections we have seen two different mechanisms by which symmetry cre-
ation can occur in dynamical systems with discrete symmetry: collisions of conjugate
attractors or ezplosions. In this section we describe another possibility of symmetry cre-

ation that can be found in systems with continuous symmetry: the drifting of a chaotic
attractor along its group orbit.

We consider the following O(2)-equivariant mapping

f(z21,22,A) = ( (a+Bru +119)z + 612 )
- (A +Bauz +120)22 + 6221

where
u; =z}, v= Be(z2,).
Set

a=-26, O = 1.5, f2 =104, Nn=07, 17=05 4= -0.5, 6 =03

and regard A as the bifurcation parameter. In Figure 8 the projection of attractors of f
onto the z;-plane is shown for different values of A. In (a) the attractor is Z, symmetric
and a small change in A causes a drift of this attractor along its SO(2) group orbit. The
resulting attractor in (b) then has fail O(2) symmetry.

In (1] the possibility was pointed out that the transition to turbulent Taylor vortices in
the Couette-Taylor experiment may be an example of symmetry increasing bifurcation. We
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Figure 8: Projection of an attractor of f onto the z -plane for (a) A = —0.477 and (b)
A= —0479.

will explain why we still believe that this may be true by describing in terms of symmetry
the drifting along group orbits that might be responsible for this symmetry creation.

In that experiment a fluid is contained between two concentric circular cylinders with
the inner one rotating, at speed (or Reynold’s number) A. When A is small the flow is
laminar Couette flow. As ) is increased Couette flow loses stability to Taylor vortices and
then to wavy vortices.

In the analysis of this experiment one often assumes periodic boundary conditions in
the axial direction which introduces O(2) axial symmetry. The total symmetry group
is O(2) x SO(2) where the SO(2) symmetry comes from the azimuthal geometry of the
apparatus. In terms of symmetry the solutions described previously have symmetry types

Couette flow — Taylor vortices — Wavy vortices
0(2) x SO(2) — Z3(s)xSO(2) — Zy(x,7)

where & is a reflection in axial direction and 7 is a half-period rotation in the azimuthal
direction. :

As ) is further increased, the flow becomes chaotic and turbulent. However, for large
), there is a turbulent flow with the pattern of Taylor vortices superimposed. This flow
evolves from a turbulent wavy vortex pattern as ) is increased. A transition from turbulent
Taylor vortices to homogeneous turbulence takes place at even larger A.

We believe that the transition from turbulent wavy vortices to turbalent Taylor vortices
may be associated with a symmetry increasing bifurcation of a chaotic attractor with
Zy(x,) symmetry forming a chaotic attractor. with Z;(x) X SO(2) symmetry. Such a
change could in principle be generated by drifting along the azimuthal SO(2) group orbits. .
Much investigation is needed in order to verify such 2 mechanism.
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